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ADVERSARIALLY ROBUST FEDERATED LEARNING
FOR NEURAL NETWORKS

ABSTRACT

In federated learning, data is distributed among local clients which collaboratively
train a prediction model using secure aggregation. To preserve the privacy of the
clients, the federated learning paradigm requires each client to maintain a pri-
vate local training data set, and only uploads its summarized model updates to
the server. In this work, we show that this paradigm could lead to a vulnerable
model, which collapses in performance when the corrupted data samples (under
adversarial manipulations) are used for prediction after model deployment. To
improve model robustness, we first decompose the aggregation error of the cen-
tral server into bias and variance, and then, propose a robust federated learning
framework, named Fed BVA, that performs on-device adversarial training using
the bias-variance oriented adversarial examples supplied by the server via asym-
metrical communications. The experiments are conducted on multiple benchmark
data sets using several prevalent neural network models, and the empirical results
show that our framework is robust against white-box and black-box adversarial
corruptions under both IID and non-IID settings.

1 INTRODUCTION

The explosive amount of decentralized user data collected from the ever-growing usage of smart
devices, e.g., smartphones, wearable devices, home sensors, etc., has led to a surge of interest in
the field of decentralized learning. To protect the privacy-sensitive data of the clients, federated
learning (McMahan et al., 2017; Yang et al., 2019) has been proposed. Federated learning only
allows a group of clients to train local models using their own data, and then collectively merges
the model updates on a central server using secure aggregation (Acar et al., 2018). Due to its high
privacy-preserving property, federated learning has attracted much attention in recent years along
with the prevalence of efficient light-weight deep models (Howard et al., 2017) and low-cost network
communications (Wen et al., 2017; Konečnỳ et al., 2016).

In federated learning, the central server only inspects the secure aggregation of the local models as
a whole. Consequently, it is susceptible to clients’ corrupted updates (e.g., system failures, etc).
Recently, multiple robust federated learning models (Fang et al., 2019; Pillutla et al., 2019; Portnoy
& Hendler, 2020; Mostafa, 2019) have been proposed. These works only focus on performing client-
level robust training or designing server-level aggregation variants with hyper-parameter tuning for
Byzantine failures. However, none of them have the ability to mitigate the federated learning’s
vulnerability when the adversarial manipulations are present during testing, which as we shown in
Section 4.1 that is mainly due to the generalization error in the model aggregation.

Our work bridges this gap by investigating the error incurred during the aggregation of federated
learning from the perspective of bias-variance decomposition (Domingos, 2000; Valentini & Diet-
terich, 2004). Specifically, we show that the generalization error of the aggregated model on the
central server can be decomposed as the combination of bias (triggered by the main prediction of
these clients) and variance (triggered by the variations among clients’ predictions). Next, we pro-
pose to perform the local robust training on clients by supplying them with a tiny amount of the
bias-variance perturbed examples generated from the central server via asymmetrical communica-
tions. The experiments are conducted on neural networks with cross-entropy loss, however, other
loss functions are also applicable as long as their gradients w.r.t. bias and variance are tractable to
estimate. In this way, any gradient-based adversarial training strategies (Goodfellow et al., 2015;
Madry et al., 2018) could be used. Compared with previous work, our major contributions include:

• We provide the exact solution of bias-variance analysis w.r.t. the generalization error which is
perfectly suitable for neural network based federated learning. As a comparison, performing
adversarial attacks or training with conventional federated learning methods will only focus on
the bias of the central model but ignore the variance.

1



Under review as a conference paper at ICLR 2021

• We demonstrate that the conventional federated learning framework is vulnerable to the strong
attacking methods with increasing communication rounds even if the adversarial training using
the locally generated adversarial examples is performed on each client.

• Without violating the clients’ privacy, we show that providing a tiny amount of bias-variance
perturbed data from the central server to the clients through asymmetrical communication could
dramatically improve the robustness of the training model under various settings.

2 PRELIMINARIES

2.1 SETTINGS

In federated learning, there is a central server and K different clients, each with access to a private
training set Dk = {(xk

i , t
k
i )}

nk
i=1, where xk

i , tki , and nk are the features, label, and number of training
examples in the k

th client (k = 1, · · · ,K). Each data Dk is exclusively owned by client k and will
not be shared with the central server or other clients. In addition, there is a small public training
set Ds = {(xs

j , t
s
j)}

ns
j=1 with ns training examples from the server that is shared with clients, where

ns ⌧
PK

k=1 nk. Note that this will not break the privacy constraints, for example, hospitals (local
devices) that contribute to a federated learned medical image diagnosis system could take a few
publicly accessible images as additional inputs. The goal of federated learning is to train a global
classifier f(·) using knowledge from all the clients such that it generalizes well over test data Dtest.
The notation used in this paper is summarized in the Appendix (see Table 4).

2.2 PROBLEM DEFINITION

In this paper, we study the adversarial robustness of neural networks1 in federated learning setting,
and we define robust decentralized learning as follows.
Definition 2.1. (Adversarially Robust Federated Learning)

Input: (1) A set of private training data {Dk}Kk=1 on K different clients; (2) Tiny amount of training
data Ds on the central server; (3) Learning algorithm f(·) and loss function L(·, ·).
Output: A trained model on the central server that is robust against adversarial perturbation.
We would like to point out that our problem definition has the following properties: Asymmet-

rical communication: The asymmetrical communication between each client and server cloud is
allowed: the server provides both global model parameters and limited shared data to the clients;
while each client only uploads its local model parameters back to the server. Data distribution:

All training examples on the clients and the server are assumed to follow the same data distribution.
However, the experiments show that our proposed algorithm also achieves outstanding performance
under the non-IID setting, which could be common among personalized clients in real scenarios.
Shared learning algorithm: All the clients are assumed to use the identical model f(·), including
architectures as well as hyper-parameters (e.g., learning rate, local epochs, local batch size).
Remark. The basic assumption of this problem setting is that the learning process is clean (no

malicious behaviors are observed during training), however, the intentionally generated adversarial

poisoning data will be mixed with clean data during training. The eventual trained model being

deployed on the devices will be robust against potential future adversarial attacks.

2.3 BIAS-VARIANCE TRADE-OFF

Following (Domingos, 2000; Valentini & Dietterich, 2004), we define the optimal prediction, main
prediction as well as the bias, variance, and noise for any real-valued loss function L(·, ·) as follows:
Definition 2.2. (Optimal Prediction and Main Prediction) Given loss function L(·, ·) and learning
algorithm f(·), optimal prediction y⇤ and main prediction ym for an example are defined as:

y⇤(x) = argmin
y

Et[L(y, t)] and ym(x) = argmin
y0

ED[L(fD(x), y
0)] (1)

where t and D are viewed as the random variables to denote the class label and training set, and fD
denotes the model trained on D. In short, the main prediction is the prediction whose average loss
relative to all the predictions over data distributions is minimum, e.g., the main prediction for zero-
one loss is the mode of predictions. In this work, we show that the main prediction is the average
prediction of client models for mean squared (MSE) loss and cross-entropy (CE) loss in Section 4.1.

1Our theoretical contribution mainly focuses on classification using neural networks with cross-entropy loss and mean squared loss.
However, the proposed framework is generic to allow the use of other classification loss functions as well.
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Definition 2.3. (Bias, Variance and Noise) Given a loss function L(·, ·) and a learning algorithm
f(·), the expected loss ED,t[L(fD(x), t)] for an example x can be decomposed2 into bias, variance
and noise as follows:

B(x) = L(ym, y⇤) and V (x) = ED[L(fD(x), ym)] and N(x) = Et[L(y⇤, t)] (2)

In short, bias is the loss incurred by the main prediction w.r.t. the optimal prediction, and variance is
the average loss incurred by predictions w.r.t. the main prediction. Noise is conventionally assumed
to be irreducible and independent to f(·).
Remark. Our definitions on optimal prediction, main prediction, bias, variance and noise slightly

differ from previous ones (Domingos, 2000; Valentini & Dietterich, 2004). For example, conven-

tional optimal prediction was defined as y⇤(x) = argminy Et[L(t, y)], and it is equivalent to our

definition when loss function is symmetric over its arguments, i.e., L(y1, y2) = L(y2, y1). Note that

this decomposition holds for any real-valued loss function in the binary setting (Domingos, 2000)

with a bias & variance trade-off coefficient that has a closed-form expression. For multi-class set-

ting, we inherit their definition of bias & variance directly, and treat the trade-off coefficient as a

hyper-parameter � to tune because no closed-form expression of � is available.

3 THE PROPOSED FRAMEWORK

A typical framework (Kairouz et al., 2019) of privacy-preserving federated learning can be summa-
rized as follows: (1) Client Update: Each client updates local model parameters wk by minimizing
the empirical loss over its own training set; (2) Forward Communication: Each client uploads its
model parameter update to the central server; (3) Server Update: It synchronously aggregates the
received parameters; (4) Backward Communication: The global parameters are sent back to the
clients. Our framework follows the same paradigm but with substantial modifications as below.

Server Update. The server has two components: The first one uses FedAvg (McMahan et al.,
2017) algorithm to aggregate the local models’ parameters, i.e., wG = Aggregate(w1, · · · , wK) =PK

k=1
nk
n wk where n =

PK
k=1 nk and wk is the model parameters in the k

th client. Meanwhile,
another component is designed to produce adversarially perturbed examples which could be induced
by a poisoning attack algorithm for the usage of robust adversarial training.

It has been well studied (Belkin et al., 2019; Domingos, 2000; Valentini & Dietterich, 2004) that
in the classification setting, the generalization error of a learning algorithm on an example is deter-
mined by the bias, variance, and irreducible noise as defined in Eq. (2). Similar to the previous work,
we also assume a noise-free learning scenario where the class label t is a deterministic function of x
(i.e., if x is sampled repeatedly, the same values of its class t will be observed). This motivates us to
generate the adversarial examples by attacking the bias and variance induced by clients’ models as:

max
x̂2⌦(x)

B(x̂;w1, · · · , wK) + �V (x̂;w1, · · · , wK) 8(x, t) 2 Ds (3)

where B(x̂;w1, · · · , wK) and V (x̂;w1, · · · , wK) could be empirically estimated from a finite num-
ber of clients’ parameters trained on local training sets {D1,D2, · · · ,DK}. Here � is a hyper-
parameter to measure the trade-off of bias and variance, and ⌦(x) is the perturbation constraint.

Note that Ds (on the server) is the candidate subset of all available training examples that would
lead to their perturbed counterparts. This is a more feasible setting as compared to generating ad-
versarial examples on clients’ devices because the server usually has much powerful computational
capacity in real scenarios that allows the usage of flexible poisoning attack algorithms. In this case,
both poisoned examples and server model parameters would be sent back to each client (Backward

Communication), while only clients’ local parameters would be uploaded to the server (Forward

Communication), i.e., the asymmetrical communication as discussed in Section 2.2.

Client Update. The robust training of one client’s prediction model (i.e., wk) can be formulated as
the following minimization problem.

min
wk

0

@
nkX

i=1

L(fDk(x
k
i ;wk), t

k
i ) +

nsX

j=1

L(fDk(x̂
s
j ;wk), t

s
j)

1

A (4)

where x̂
s
j 2 ⌦(xs

j) is the perturbed examples that is asymmetrically transmitted from the server.

2This decomposition is based on the weighted sum of bias, variance, and noise. In general, t is a non-deterministic function (Domingos,
2000) of x when the irreducible noise is considered. Namely, if x is sampled repeatedly, different values of t will be observed.
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Remark. Intuitively, the bias measures the systematic loss of a learning algorithm, and the vari-

ance measures the prediction consistency of the learner over different training sets. Therefore, our

robust federated learning framework has the following advantages: (i) it encourages the clients

to consistently produce the optimal prediction for perturbed examples, thereby leading to a better

generalization performance; (ii) local adversarial training on perturbed examples allows to learn a

robust local model, and thus a robust global model could be aggregated from clients.

Theoretically, we could still have another alternative robust federated training strategy:

min
wk

nkX

i=1

max
x̂k
i 2⌦(xk

i )
L(f(x̂k

i ;wk), t
k
i ) 8k 2 {1, 2, · · · ,K} (5)

where the perturbed training examples of each client k is generated on local devices from Dk instead
of transmitted from the server. This min-max formula is similar to (Madry et al., 2018; Tramèr
et al., 2018) where the inner maximization problem synthesizes the adversarial counterparts of clean
examples, while the outer minimization problem finds the optimal model parameters over perturbed
training examples. Thus, each local robust model is trained individually, nevertheless, poisoning
attacks on device will largely increase the computational cost and memory usage. Meanwhile, it only
considers the client-specific loss and is still vulnerable against adversarial examples with increasing
communication rounds. Both phenomena are observed in our experiments (see Fig. 4 and Fig. 5).

4 ALGORITHM

4.1 BIAS-VARIANCE ATTACK

We first consider the maximization problem in Eq. (3) using bias-variance based adversarial attacks.
It aims to find the adversarial example x̂ (from the original example x) that would produce large
bias and variance values w.r.t. clients’ local models. Specifically, perturbation constraint x̂ 2 ⌦(x)
forces the adversarial example x̂ to be visually indistinguishable w.r.t. x. Here we consider the well-
studied l1-bounded adversaries3 (Goodfellow et al., 2015; Madry et al., 2018; Tramèr et al., 2018)
such that ⌦(x) := {x̂

��||x̂� x||1  ✏} for a perturbation magnitude ✏. Furthermore, we propose to
consider the following two gradient-based algorithms to generate adversarial examples.

Bias-variance based Fast Gradient Sign Method (BV-FGSM): Following FGSM (Goodfellow
et al., 2015), it linearizes the maximization problem in Eq. (3) with one-step attack as follows.

x̂BV�FGSM := x+ ✏ · sign (rx (B(x;w1, · · · , wK) + �V (x;w1, · · · , wK))) (6)

Bias-variance based Projected Gradient Descent (BV-PGD): PGD can be considered as a multi-
step variant of FGSM (Kurakin et al., 2017) and might generate powerful adversarial examples. This
motivated us to derive a BV-based PGD attack:
x̂
l+1
BV�PGD := Proj⌦(x)

�
x̂
l + ✏ · sign

�
rx̂l

�
B(x̂l;w1, · · · , wK) + �V (x̂l;w1, · · · , wK)

���
(7)

where x̂
l is the adversarial example at the l

th step with the initialization x̂
0 = x and Proj⌦(x)(·)

projects each step onto ⌦(x).
Remark. The proposed framework could be naturally generalized to any gradient-based adversar-

ial attack algorithms where the gradients of bias B(·) and variance V (·) w.r.t. x are tractable when

estimated from finite training sets. Compared with the existing attack methods (Carlini & Wagner,

2017; Goodfellow et al., 2015; Kurakin et al., 2017; Moosavi-Dezfooli et al., 2016), our loss func-

tion the adversary aims to optimize is a linear combination of bias and variance, whereas existing

work mainly focused on attacking the overall classification error that considers bias only.

The following theorem states that bias B(·) and variance V (·) as well as their gradients over input
x could be estimated using the clients’ models.
Theorem 4.1. Assume that L(·, ·) is the cross-entropy loss function, then, the empirical esti-
mated main prediction ym for an input example (x, t) has the following closed-form expression:
ym(x;w1, · · · , wK) = 1

K

PK
k=1 fDk(x;wk). Furthermore, the empirical bias and variance, as well

as their gradients over an input x are estimated as follows:

B(x;w1, · · · , wK) =
1

K

KX

k=1

L(fDk(x;wk), t); V (x;w1, · · · , wK) = L(ym, ym) = H(ym)

3
l1 robustness is surely not the only option for robustness learning. However, we use this standard approach to show the limitations of

prior federated learning, and evaluate the improvements of our proposed framework.
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Here, H(ym) = �
PC

j=1 y
(j)
m log y(j)m is the entropy of the main prediction ym and C is

the number of classes. Easily, we can have their gradients in terms of the bias and vari-
ance as rxB(x;w1, · · · , wK) = 1

K

PK
k=1rxL(fDk(x;wk), t) and rxV (x;w1, · · · , wK) =

� 1
K

PK
k=1

PC
j=1(log y

(j)
m + 1)rxf

(j)
Dk

(x;wk). Details of the proof is elaborated in A.2.

In addition, we also consider the case where L(·, ·) is the MSE loss function. But the gradients
of MSE’s bias and variance are much more computational demanding comparing with the concise
formulas that cross-entropy ends up with. More comparisons are illustrated in Appendix A.5.1.

Algorithm 1 Fed BVA
1: Input: K (number of clients, with local data

sets {Dk}Kk=1); f (learning model), E (num-
ber of local epochs); F (fraction of clients se-
lected on each round); B (batch size of local
client); ⌘ (learning rate); Ds (shared data set
on server); ✏ (perturbation magnitude).

2: Initialization: Initialize w
0
G and D̂s = ;

3: for each round r = 1, 2, · · · do

4: m = max(F ·K, 1)
5: Sr  randomly sampled m clients
6: for each client k 2 Sr in parallel do

7: w
r
k, fDk ,rxfDk  

ClientUpdate(wr�1
G , D̂s,Ds, k)

8: end for

9: D̂s  BVAttack({fDk ,rxfDk}|k 2 Sr)
10: w

r
G  Aggregate(wr

k|k 2 Sr)
11: end for

12: return wG

Algorithm 2 ClientUpdate(w, D̂s,Ds,k)

1: Initialize k
th client’s model with w

2: B  split Dk [ D̂s into batches of size B

3: for each local epoch i = 1, 2, · · · , E do

4: for local batch (x, t) 2 B do

5: w  w � ⌘rL(fDk(x;w), t)
6: end for

7: end for

8: Calculate fDk(x;w
r
k), rxfDk(x;w) 8x 2 Ds

9: return w, fDk(x;w
r
k),rxfDk(x;w)

Algorithm 3 BVAttack({fDk ,rxfDk}|k 2 Sr)

1: Initialize D̂s = ;
2: for (x, t) 2 Ds do

3: Estimate the gradients rxB(x) and rxV (x)
using Theorem 4.1

4: Calculate x̂ using Eq. (6) or (7) and add to D̂s

5: end for

6: return D̂s

4.2 FED BVA
We present a novel robust federated learning algorithm with our proposed bias-variance attacks,
named Fed BVA. Following the framework defined in Eq. (3) and Eq. (4), key components of our
algorithm are (1) bias-variance attacks for generating adversarial examples on the server, and (2)
adversarial training using poisoned server examples together with clean local examples on each
client. Therefore, we optimize these two objectives by producing the adversarial examples D̂s and
updating the local model parameters w iteratively.

The proposed algorithm is summarized in Alg. 1. Given the server’s Ds and clients’ training data
{Dk}Kk=1 as input, the output is a robust global model on the server. In this case, the clean server data
Ds will be shared to all the clients. First, it initializes the server’s model parameter wG and perturbed
data D̂s, and then assigns to the randomly selected clients (Steps 4-5). Next, each client optimizes
its own local model (Steps 6-8) with the received global parameters wG as well as its own clean data
Dk, and uploads the updated parameters as well as the gradients of local model on each shared server
example back to the server. At last, the server generates the perturbed data D̂s (Step 9) using the
proposed bias-variance attack algorithm (see Alg. 3) with aggregations (model parameter average,
bias gradients average, and variance gradients average) in the similar manner as FedAvg (McMahan
et al., 2017). These aggregations can be privacy secured if additive homomorphic encryption (Acar
et al., 2018) is applied.

5 EXPERIMENTS
5.1 SETTINGS

In this section, we evaluate the adversarial robustness of our proposed algorithm on four bench-
mark data sets: MNIST4, Fashion-MNIST5, CIFAR-106 and CIFAR-1006. The baseline models

4
http://yann.lecun.com/exdb/mnist

5
https://github.com/zalandoresearch/fashion-mnist

6
https://www.cs.toronto.edu/˜kriz/cifar.html

5
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https://github.com/zalandoresearch/fashion-mnist
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Figure 1: Visualizations of bias, variance,
bias+variance, and perturbed images for MNIST.

Figure 2: Bias-variance curve w.r.t. the CNN model
complexity on MNIST.

Figure 3: Convergence on
Fashion-MNIST(PGD-20attack)

Figure 4: Performance on
Fashion-MNIST(PGD-20attack)

Figure 5: Efficiency on Fashion-
MNIST(PGD-20attack)

we used include: (1). Centralized: the training with one centralized model, which is identi-
cal to the federated learning case that only has one client (K = 1) with fraction (F = 1). (2).
FedAvg: the classical federated averaging model (McMahan et al., 2017). (3). FedAvg AT: The
simplified version of our proposed method where the local clients perform adversarial training with
the asymmetrical transmitted perturbed data generated on top of FedAvg’s aggregation. (4) - (6).
Fed Bias, Fed Variance, Fed BVA: Our proposed methods where the asymmetrical trans-
mitted perturbed data is generated using the gradients of bias-only attack, variance-only attack, and
bias-variance attack, respectively. (7). EAT: Ensemble adversarial training (Tramèr et al., 2018),
where each client performs local adversarial training using Eq. (5), and their model updates are
aggregated on server using FedAvg. For fair comparisons, all baselines are modified to the asym-
metrical communications setting (FedAvg and EAT have clean Ds received), and all their initial-
izations are set to be the same. (8). EAT+Fed BVA: A combination of baselines (6) and (7). Note
that baselines (7) and (8) have high computational requirements on client devices, and are usually
not preferred in real scenarios.

For the defense model, we use a 4-layer CNN model for MNIST and Fashion-MNIST, and VGG9
architecture for CIFAR-10 and CIFAR-100. Regarding blackbox attacks, we apply ResNet18 (He
et al., 2016), VGG11 (Simonyan & Zisserman, 2015), Xception (Chollet, 2017), and Mo-
bileNetV2 (Sandler et al., 2018) for CIFAR data, and provide a variety of models for MNIST and
Fashion-MNIST by following the design of (Tramèr et al., 2018). The training is performed using
the SGD optimizer with fixed learning rate of 0.01 and momentum of value 0.9. The trade-off co-
efficient between bias and variance is set to � = 0.01 for all experiments. All hyper-parameters
of federated learning are presented in Table 5 in the Appendix. We empirically demonstrate that
these hyper-parameter settings are preferable in terms of both training accuracy and robustness (see
the details of Fig. 6 - Fig. 14 in the Appendix). To evaluate the robustness of our federated learning
algorithm against adversarial attacks, except for the clean model training, we perform FGSM (Good-
fellow et al., 2015), PGD (Kurakin et al., 2017) with 10 and 20 steps towards the aggregated server
model on the Dtest. Following (Tramèr et al., 2018; Wang et al., 2019), the maximum perturbations
allowed are ✏ = 0.3 on MNIST and Fashion-MNIST, and ✏ = 16

255 on CIFAR-10 and CIFAR-100
for both threat and defense models. For IID sampling, the data is shuffled and uniformly partitioned
into each client; For non-IID setting, data is divided into 2F ·K shards based on sorted labels, then
assigns each client with 2 shards. Thereby, each client will have data with at most two classes.
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5.2 RESULT ANALYSIS

To analyze the properties of our proposed Fed BVA framework, we present two visualization plots
on MNIST using a trained CNN model where the bias and variance are both calculated on the
training examples. In Fig. 1, we visualize the extracted gradients using adversarial attack from bias,
variance, and bias-variance. Notice that the gradients of bias and variance are similar but with subtle
differences in local pixel areas. However, according to Theorem 4.1, the gradient calculation of
these two are quite different: bias requires the target label as input, but variance only needs the
model output and main prediction. From another perspective, we also investigate the bias-variance
magnitude relationship with varying model complexity. As shown in Fig. 2, with increasing model
complexity (more convolutional filters in CNN), both bias and variance decrease. This result is
different from the double-descent curve or bell-shape variance curve claimed in (Belkin et al.,
2019; Yang et al., 2020). The reasons are twofold: First, their bias-variance definitions are from
the MSE regression decomposition perspective, whereas our decomposition utilizes the concept of
main prediction, and the generalization error is decomposed from the classification perspective;
Second, their implementations only evaluate the bias and variance using training batches on one
central model and thus is different from the definition which requires the variance to be estimated
from multiple sub-models (in our scenario, client models).

The convergence plot of all baselines is presented in Fig. 3. We observe that FedAvg has the best
convergence, and all robust training will have a slightly higher loss upon convergence. This matches
the observations in (Madry et al., 2018) which state that training performance may be sacrificed
in order to provide robustness for small capacity networks. For the model performance shown in
Fig. 4, we observe that the aggregation of federated learning is vulnerable to adversarial attacks since
both FedAvg and EAT have decreased performance with an increasing number of server-client
communications. Other baselines that utilized the asymmetrical communications have increasing
robustness with more communication rounds although only a small number of perturbed examples
(ns = 64) are transmitted. We also observe that when communication rounds reach 40, Fed BVA
starts to outperform EATwhile the latter is even more resource-demanding than Fed BVA (shown in
Fig. 5, where the pie plot size represents the running time). Overall, bias-variance based adversarial
training via asymmetric communication is both effective and efficient for robust federated learning.

For the comprehensive experiments in Table 1 and Table 2, it is easy to verify that our proposed
model outperforms all other baselines regardless of the source of the perturbed examples (i.e., locally
generated like EAT+Fed BVA or asymmetrically transmitted from the server like Fed BVA). Com-
paring with standard robust federated learning FedAvg AT, the performance of Fed BVA against
adversarial attacks still increases 4%� 13% and 2%� 9% on IID and non-IID settings respectively,
although Fed BVA is theoretically suitable for the cases that clients have IID samples. In Table 3,
we observe a similar trend where Fed BVA outperforms FedAvg AT on CIFAR-10 and CIFAR-100
(with 0.2% � 10% increases) when defending different types of adversarial examples. Comparing
with strong local adversarial training baseline EAT, we also observe a maximum 13% accuracy in-
crease when applying its bias-variance oriented baseline EAT+Fed BVA. Overall, the takeaway is
that without local adversarial training, using a bias-variance based robust learning framework will
almost always outperform other baselines for defending FGSM and PGD attacks. When local adver-
sarial training is allowed (e.g., client device has powerful computation ability), using bias-variance
robust learning with local adversarial training will mostly have the best robustness.

We also conducted various additional experiments in Appendix A.5 which includes: (1) Comparison
of efficiency and effectiveness of Fed BVA using cross-entropy loss and MSE loss; (2) Compari-
son of single-step Fed BVA and multi-step Fed BVA in terms of the generation of D̂s; (3) Three
training scenarios of Fed BVA that use client-specific adversarial examples or universal adversarial
examples; (4) Ablation study in terms of the number of shared perturb examples ns, optimizer’s mo-
mentum, and the number of local epochs E; (5) Blackbox attacking transferability between various
models on all four data sets under multiple settings.

6 RELATED WORK

Adversarial Machine Learning: While machine learning models have achieved remarkable perfor-
mance over clean inputs, recent work (Goodfellow et al., 2015) showed that those trained models are
vulnerable to adversarially chosen examples by adding the imperceptive noise to the clean inputs. In
general, the adversarial robustness of centralized machine learning models have been explored from
the following aspects: adversarial attacks (Carlini & Wagner, 2017; Athalye et al., 2018; Zhu et al.,
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IID non-IID
Clean FGSM PGD-10 PGD-20 Clean FGSM PGD-10 PGD-20

Centralized 0.991±0.000 0.689±0.000 0.260±0.000 0.182±0.000 n/a n/a n/a n/a
FedAvg 0.989±0.001 0.669±0.009 0.576±0.005 0.267±0.014 0.980±0.002 0.491±0.067 0.475±0.057 0.158±0.074

FedAvg AT 0.988±0.000 0.802±0.001 0.745±0.014 0.512±0.042 0.974±0.005 0.649±0.066 0.615±0.045 0.363±0.066

Fed Bias 0.986±0.000 0.812±0.009 0.788±0.021 0.583±0.036 0.971±0.004 0.679±0.040 0.627±0.078 0.394±0.103

Fed Variance 0.985±0.001 0.803±0.007 0.779±0.014 0.572±0.019 0.973±0.005 0.684±0.004 0.622±0.049 0.395±0.049

Fed BVA 0.986±0.001 0.818±0.003 0.804±0.009 0.613±0.020 0.969±0.002 0.705±0.009 0.664±0.013 0.469±0.031

EAT 0.981±0.000 0.902±0.001 0.907±0.001 0.811±0.004 0.972±0.002 0.789±0.016 0.721±0.018 0.415±0.035

EAT+Fed BVA 0.980±0.001 0.901±0.006 0.910±0.004 0.821±0.013 0.965±0.005 0.811±0.020 0.831±0.013 0.670±0.014

Table 1: Accuracy of MNIST under white-box attacks in IID and non-IID settings
IID non-IID

Clean FGSM PGD-10 PGD-20 Clean FGSM PGD-10 PGD-20

Centralized 0.882±0.000 0.229±0.000 0.010±0.000 0.009±0.000 n/a n/a n/a n/a
FedAvg 0.877±0.001 0.300±0.021 0.072±0.016 0.036±0.016 0.804±0.013 0.193±0.036 0.061±0.015 0.017±0.003

FedAvg AT 0.866±0.001 0.490±0.021 0.170±0.014 0.139±0.011 0.730±0.023 0.445±0.065 0.136±0.044 0.087±0.042

Fed Bias 0.862±0.001 0.505±0.015 0.199±0.007 0.159±0.003 0.709±0.025 0.460±0.038 0.149±0.067 0.115±0.054

Fed Variance 0.862±0.002 0.496±0.012 0.201±0.012 0.157±0.017 0.719±0.036 0.499±0.081 0.188±0.025 0.120±0.038

Fed BVA 0.862±0.003 0.528±0.016 0.210±0.023 0.180±0.027 0.710±0.045 0.495±0.030 0.141±0.021 0.093±0.028

EAT 0.860±0.005 0.773±0.029 0.191±0.012 0.103±0.013 0.791±0.012 0.597±0.033 0.071±0.050 0.027±0.023

EAT+Fed BVA 0.838±0.009 0.715±0.011 0.357±0.024 0.226±0.006 0.735±0.020 0.632±0.015 0.164±0.035 0.106±0.039

Table 2: Accuracy of Fashion-MNIST under white-box attacks in IID and non-IID settings
CIFAR-10 CIFAR-100

Clean FGSM PGD-10 PGD-20 Clean FGSM PGD-10 PGD-20

Centralized 0.903±0.003 0.288±0.001 0.206±0.001 0.074±0.005 0.741±0.003 0.166±0.012 0.049±0.004 0.032±0.003

FedAvg 0.890±0.002 0.225±0.022 0.207±0.004 0.062±0.008 0.730±0.003 0.161±0.009 0.113±0.009 0.035±0.006

FedAvg AT 0.890±0.003 0.280±0.021 0.295±0.006 0.099±0.014 0.707±0.003 0.162±0.006 0.064±0.007 0.048±0.003

Fed Bias 0.890±0.004 0.280±0.018 0.297±0.011 0.103±0.012 0.702±0.002 0.163±0.005 0.165±0.007 0.061±0.003

Fed Variance 0.889±0.001 0.267±0.014 0.276±0.006 0.092±0.009 0.710±0.007 0.161±0.005 0.157±0.010 0.045±0.016

Fed BVA 0.889±0.003 0.286±0.013 0.301±0.003 0.104±0.012 0.709±0.003 0.163±0.007 0.165±0.008 0.062±0.005

EAT 0.833±0.003 0.596±0.003 0.667±0.007 0.561±0.002 0.661±0.001 0.267±0.002 0.206±0.002 0.188±0.001

EAT+Fed BVA 0.833±0.003 0.598±0.002 0.668±0.001 0.564±0.003 0.657±0.002 0.272±0.003 0.332±0.003 0.211±0.002

Table 3: Accuracy of CIFAR-10 and CIFAR-100 under white-box attacks

2019), defense (or robust model training) (Madry et al., 2018; Carlini et al., 2019; Tramèr et al.,
2018) and interpretable adversarial robustness (Schmidt et al., 2018; Tsipras et al., 2018).

Federated Learning: Federated learning with preserved privacy (Konečnỳ et al., 2016; McMahan
et al., 2017; Hard et al., 2018) and knowledge distillation (Chang et al., 2019; Jeong et al., 2018)
has become prevalent in recent years. Meanwhile, the vulnerability of federated learning to back-
door attacks has also been explored by (Bagdasaryan et al., 2018; Bhagoji et al., 2019; Xie et al.,
2019). Following their work, multiple robust federated learning models (Fang et al., 2019; Pillutla
et al., 2019; Portnoy & Hendler, 2020; Mostafa, 2019) are also proposed and studied. In this paper,
we studied the federated learning’s adversarial vulnerability after model deployment from the per-
spective of bias-variance analysis. This is in sharp contrast to the existing work that focused on the
model robustness against the Byzantine failures.

Bias-Variance Decomposition: Bias-variance decomposition (Geman et al., 1992) was originally
introduced to analyze the generalization error of a learning algorithm. Then, a generalized bias-
variance decomposition (Domingos, 2000; Valentini & Dietterich, 2004) was studied in the classifi-
cation setting which enabled flexible loss functions (e.g., squared loss, zero-one loss). More recently,
bias-variance trade-off was experimentally evaluated on modern neural network models (Neal et al.,
2018; Belkin et al., 2019; Yang et al., 2020).

7 CONCLUSION

In this paper, we proposed a novel robust federated learning framework, in which the aggregation
incurred loss during the server’s aggregation is dissected into a bias part and a variance part. Our ap-
proach improves the model robustness through adversarial training by supplying a few bias-variance
perturbed samples to the clients via asymmetrical communications. Extensive experiments have
been conducted where we evaluated its performance from various aspects on several benchmark
data sets. We believe the further exploration of this direction will lead to more findings on the
robustness of federated learning.
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