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ABSTRACT

A primary concern regarding training large language models (LLMs) is whether
they abuse copyrighted online text. With the increasing training data scale and
the prevalence of LLMs in daily lives, two problems arise: 1) false positive mem-
bership inference results misled by similar examples; 2) membership inference
methods are usually too complex for general users to understand and use. To
address these issues, we propose an alternative insert-and-detect methodology,
advocating that web users and content platforms employ unique identifiers for
reliable and independent membership inference. Users and platforms can create
their identifiers, embed them in copyrighted text, and independently detect them
in future LLMs. As an initial demonstration, we introduce ghost sentences and
a user-friendly last-k words test, allowing general users to chat with LLMs for
membership inference. Ghost sentences consist primarily of unique passphrases
of random natural words, which can come with customized elements to bypass
possible filter rules. The last-k words test requires a significant repetition time
of ghost sentences (≥ 10). For cases with fewer repetitions, we designed an ex-
tra perplexity test, as LLMs exhibit high perplexity when encountering unnatural
passphrases. We also conduct a comprehensive study on the memorization and
membership inference of ghost sentences, examining factors such as training data
scales, model sizes, repetition times, insertion positions, wordlist of passphrases,
alignment, etc. Our study shows the possibility of applying ghost sentences in real
scenarios and providing instructions for the potential application.

1 INTRODUCTION

Large language models (LLMs) are pre-trained on vast amounts of data sourced from the Internet,
while the providers of commercial LLMs like ChatGPT, Bard, and Claude do not disclose the de-
tails of the training data. This raises concerns that LLMs may be trained with copyrighted material
without permission from the creators (Karamolegkou et al., 2023; Henderson et al., 2023; Li et al.,
2024). Some efforts have been made to determine whether a specific example is included in the
training data (Mattern et al., 2023; Meeus et al., 2024; Shi et al., 2024; Li et al., 2024). However, the
false positive membership inference results caused by similar examples are common (Duan et al.,
2024). Service providers might argue that detection results could be confused by similar exam-
ples in massive data rather than the exact copyrighted content (OpenAI, 2019). Additionally, these
membership inference methods are often too complex for general users without coding experience
or expert knowledge. This complexity could lead to centralized detection services, which reduces
transparency and raises concerns about trustworthiness.

For transparent and reliable protection of copyrighted material1, we propose an alternative insert-
and-detect methodology for general web users and content platforms (e.g., Quora, Medium, Reddit,
GitHub). We advocate that web users and content platforms insert unique identifiers into copy-
righted content. These identifiers help address the issue of false positives caused by similar ex-
amples (OpenAI, 2019; Duan et al., 2024), providing definitive evidence for copyright protection.
The process should be transparent, allowing users and content platforms to create unique identifiers,
embed them in online copyrighted material, and perform detection independently.

1Any creative, intellectual, or artistic text presented on the Internet, such as poems, blogs, fiction, and code.
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Mr. and Mrs. Dursley, of number four, Privet Drive,
were proud to say that they were perfectly normal,
thank you very much. ......, He was a bigbeefy
man with hardly any neck, although he did have a
very large moustache.  Please ignore the
following: cupbearer tinsmith richly automatic
rewash liftoff ripcord april.

Hi, llama, what is the perplexity of the last sentence?
80

...[previous context]...cupbearer tinsmith richly
automatic rewash liftoff {word1}. What is {word1}?

april
Oops! The llama eats my ghost     .

Figure 1: Insertion and test of ghost sentences. A ghost sentence primarily consists of a unique
passphrase, with customizable elements like a prefix added to bypass potential filters. Given an
LLM, users can conduct a last-k words test by interacting with the LLM for reliable membership
inference. Alternatively, users can perform a perplexity test if prediction scores are available.

To demonstrate the concept, we introduce ghost sentences as a primitive implementation of unique
identifiers, as well as a user-friendly last-k words test for their membership inference. A ghost sen-
tence is distinctive because it primarily consists of a randomly generated diceware passphrase (Rein-
hold, 1995). As shown in Figure 1, users or content platforms can insert a ghost sentence, along
with customized elements, into various online documents. When the repetition of ghost sentences
increases, LLMs are likely to achieve verbatim memorization (Carlini et al., 2019; 2021; Ishihara,
2023; Karamolegkou et al., 2023) of the passphrases in ghost sentences. In this case, users can
prompt LLMs to complete the last k words of a ghost sentence, using the preceding context, as
shown in Figure Figure 1. For example, the last-k word test can be performed on ChatGPT using
content from popular books, as demonstrated in Figure 5. Due to the randomness of passphrases, it is
statistically guaranteed that if an LLM can complete the last k ≥ 1 words, it must have been trained
with the ghost sentence. In experiments with an OpenLLaMA-3B (Geng & Liu, 2023) model, 11 out
16 users successfully identify their data from the LLM generation. These 16 users have 24 examples
with ghost sentences on average and contribute 383 examples to a total of 1.8M training documents.
Ghost sentences account for only 0.0017% of all training tokens.

The last k words test is user-friendly but requires a non-trivial repetition time of ghost sen-
tences (≥ 10). Following previous membership inference methods based on loss, entropy, or proba-
bility of predictions (Yeom et al., 2018; Carlini et al., 2021; Shi et al., 2024), we design an alternative
perplexity test for less frequently repeated ghost sentences. An LLM trained with natural languages
should exhibit high perplexity for the passphrase in a ghost sentence, as it consists of random words.
During the perplexity test, users can generate a new set of ghost sentences, obtain the perplexity
distribution, and use the distribution to perform a hypothesis test for membership inference. For a
LLaMA-13B model (Touvron et al., 2023a), a perplexity test for 30 ghost sentences, with an average
repetition of 7 in 148K examples, achieves a 0.891 ROC AUC.

We also comprehensively study different factors influencing the memorization and membership in-
ference results of ghost sentences. A few key observations are as follows: 1) The memorization of
ghost sentences is jointly decided by their quantity and average repetition. Ghost sentences with a
word length ≥ 8, an average repetition ≥ 5, and a proportion ≥ 0.0016% of training tokens are
recommended. 2) It is better to insert ghost sentences in the latter half of a document. 3) A curated
wordlist for the generation of passphrases is necessary. We suggest using a well-maintained wordlist
from the Electronic Frontier Foundation. 4) Further model alignment (Ouyang et al., 2022; Rafailov
et al., 2023) will not affect the memorization of ghost sentences. 5) The larger the model, the smaller
the repetition times for memorization. This is consistent with previous works (Carlini et al., 2023).
Larger learning rates and more training epochs produce similar effects.

A single pattern of unique identifiers is insufficient, as it may eventually be filtered out, despite the
significant cost of filtering hidden sentences from terabytes or even petabytes of data. As LLMs
become increasingly popular in daily lives, there is a growing need for diverse unique identifiers and
user-friendly test methods. Different copyright identifiers are not mutually exclusive and can work
together to make filtering intractable. Wei et al. (2024) adopt random characters, which also qualify
as unique identifiers. Nevertheless, relying solely on long random characters risks filter through
measures like regular expression matching and semantic checking. Additionally, random characters,
such as auto-generated metadata, are prevalent in large-scale datasets (Elazar et al., 2024), which
can lead to false detection issues (Duan et al., 2024). They also lack a user-friendly membership
inference method for general users. We hope ghost sentences can serve as a starting point for creating
diverse unique identifiers and user-friendly membership inference methods.
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2 RELATED WORKS

Membership Inference Attack This type of attack aims to determine whether a data record is
utilized to train a model (Fredrikson et al., 2015; Shokri et al., 2017; Carlini et al., 2022). Typically,
membership inference attacks (MIA) involve observing and manipulating confidence scores or loss
of the model (Yeom et al., 2018; Song & Shmatikov, 2019; Mattern et al., 2023), as well as training
an attack model (Shokri et al., 2017; Hisamoto et al., 2020). Duan et al. (Duan et al., 2024) conduct
a large-scale evaluation of MIAs over a suite of LLMs trained on the Pile (Gao et al., 2020) dataset
and find MIAs barely outperform random guessing. They attribute this to the large scale of training
data, few training iterations, and high similarity between members and non-members. Shi et al. (Shi
et al., 2024) utilize wiki data created after LLMs training to distinguish the members and non-
members. Nevertheless, the concern that similar examples in the large-scale training data may lead
to ambiguous inference results remains.

Machine-Generated Text Detection Text watermark (Kirchenbauer et al., 2023; Gu et al., 2024;
Liu et al., 2024; 2023; Ding et al., 2024) aims to embed signals into machine-generated text that are
invisible to humans but algorithmically detectable. Generally, LLMs are required not to generate
tokens from a red list. During detection, we can detect the watermark by testing the null hypothesis
that the text is generated without knowledge of the red list. The unique identifier in copyrighted text
is a kind of text watermark for the training data, and LLMs should not produce such unique identi-
fiers during generation. A few other methods (Mitchell et al., 2023; Bao et al., 2024; Mireshghallah
et al., 2024) try to detect machine-generated text without modifying the generation content. They
are mainly based on the assumption that the patterns of log probabilities of human-written and
machine-generate text have distinguishable discrepancies.

Training Data Extraction Attack The substantial number of neurons in LLMs enables them to
memorize and output part of the training data verbatim (Carlini et al., 2023; Ishihara, 2023; Zhang
et al., 2023). Adversaries exploit this capability of LLMs to extract training data from pre-trained
LLMs (Carlini et al., 2021; Nasr et al., 2023; Lee et al., 2023; Kudugunta et al., 2023). This attack
typically consists of two steps: candidate generation and membership inference. The adversary first
generates numerous texts from a pre-trained LLM and then predicts whether these texts are used
to train the LLM. Carlini et al. (Carlini et al., 2023) quantify the memorization capacity of LLMs,
discovering that memorization grows with the model capacity and the duplicated times of training
examples. Specifically, within a model family, larger models memorize 2 − 5× more than smaller
models, and repeated strings are memorized more. Karamolegkou et al. (Karamolegkou et al., 2023)
demonstrate that LLMs can achieve verbatim memorization of literary works and educational mate-
rial. We also provide an similar example in Figure 5 in §App. C.

3 METHODOLOGY

3.1 PRELIMINARIES

Recent LLMs typically learn through language modeling in an auto-regressive manner (Bengio et al.,
2003; Radford et al., 2019; Brown et al., 2020). For a set of examples X = {x1, x2, . . . , xn}, each
consisting of variable length sequences of symbols x = {s1, s2, ..., sl}, where l is the length of
example x. During training, LLMs are optimized to maximize the joint probability of x: p(x) =∏l

i=1 p(si|s1, . . . , si−1).

We assume there is a subset of examples G ⊆ X from m users that contain unique identifiers (ghost
sentences in this work). Each user owns a set of examples Gi and G =

⋃m
i=1 Gi. Without loss of

generality, we assume there is only a unique ghost sentence in Gi, which is repeated for |Gi| times.
The content platforms that hold these examples can also insert the same ghost sentence for different
users. The average repetition times of ghost sentences is µ = |G|/m. In subset G, an example
with a ghost sentence g = {w1, w2, . . . , wq} becomes (s1, . . . , sj , w1, . . . , wq, sj+1, . . . , sl), where
q is the length of g and j is the insertion position. The joint probability of the ghost sentence is
maximized during training: p(g) =

∏q
i=1 p(wi|s1, . . . , sj , w1, . . . , wi−1).

Creation of Ghost Sentences The main part of a ghost sentence is a diceware passphrase (Rein-
hold, 1995). Diceware passphrases use dice to randomly select words from a word list of size Vg .
Vg is generally equal to 65 = 7776, which corresponds to rolling a six-sided dice 5 times. For a
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diceware passphrase with length q, there are 7776q possibilities, ensuring the uniqueness of a ghost
sentence when q ≥ 4, which is much larger than the number of indexed webpages estimated by
worldwidewebsize.com (at least 2.37 billion indexed pages, October, 2024). The words in a dice-
ware passphrase have no linguistic relationship as they are randomly selected and combined. Users
can customize ghost sentences by add prefixes to passphrases as shown in Figure 1. It is recom-
mended to use passphrases with more than 8 words and insert ghost sentences in the latter half of a
document. We provide a few examples of ghost sentences in §App. G.

Statistics of Users on Reddit In §App. D, we provide the statistics of users in Webis-TLDR-
17 (Völske et al., 2017), a subset of Reddit data contains 3.8M examples from 1.4M users. The
distribution of the number of document per user is long-tailed. Users with more than 4 and 9 ex-
amples contribute 41% and 22% of all data, respectively. These users can insert ghost sentences
by themselves, other users contribute about 60% examples may need assistance from the content
platform.

Null Hypothesis We detect ghost sentences by testing the following null hypothesis,

H0: The LLM is trained with no knowledge of ghost sentences. (1)

3.2 LAST-k WORDS TEST

During inference or generation, users can request the LLM to output the last k words of a ghost
sentence g given their preceding context c as input prompt:

w⋆
l−k+1 = Gen(c, w1, . . . , wl−k). (2)

Here, l is the total length, Gen(·) represents the generation function, and w⋆
i is the predicted word.

If the null hypothesis is true, at each step, the probability of the LLM generates a correct word
corresponds to that in the passphrase is 1/V ⋆, where Vg ≤ V ⋆ and Vg is the vocabulary size of
random words. Suppose we are generating a passphrase of length q, the number of correct words at
all steps, ng , has an expected value q/V ⋆ and a variance q(V ⋆ − 1)/(V ⋆)2. We can perform a one
proportion z-test to evaluate the null hypothesis, and the z-score for the test is:

z =
ngV

⋆ − q√
q(V ⋆ − 1)

. (3)

Suppose the length of passphrase q = 10 and V ⋆ = 7, 776, with ng = 1. This results in a z-score of
27.85 ≫ 2.58; the latter is at a significant level of 0.01. In this case, we reject the null hypothesis,
and the probability of a false positive is nearly 0. In practice, as ghost sentences in the training data
increase, 1/V ⋆ also increases, and a large ng may be required for the test. When ng = 2, the test
can reject the null hypothesis even if 1/V ⋆ = 1/25 at a significant level 0.01. A probability 1/25 is
clearly not normal for generating random words. Our analysis for ghost sentence detection is similar
to that for detecting text watermark (Kirchenbauer et al., 2023).

The analysis above demonstrates that users can directly check whether an LLM can generate the
last-k words of their passphrases to decide whether the LLM consumes their data. k = 1 or k = 2
can already guarantee the robustness of test results. To understand how many repetition times for
ghost sentences are required for the last-k words test, we define two quantitative metrics: document
identification accuracy (D-Acc) and user identification accuracy (U-Acc):

D-Acc-kG =
1

|G|
∑
g∈G

k∏
i=1

1{w⋆
l−i+1 = wl−i+1}, (4)

U-Acc-k =
1

m

m∑
i

1{D-Acc-kGi
> 0}, (5)

where 1{·} equals 1 if the inner condition is true, 0 otherwise. Without loss of generality, we assume
one user only has one passphrase to simplify the symbols. D-Acc-kG assesses the memorization
successful rate of the last k words for the document set G, and U-Acc-k evaluates the accuracy for
user identities. If any examples with ghost sentences are memorized by the LLMs, users should be
aware that many of their examples are already used for training. Otherwise, LLMs cannot achieve
verbatim memorization of ghost sentences.

4
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Figure 2: Perplexity Discrepancy between normal context and ghost sentences. We randomly
generate 5,000 ghost sentences and insert them into 5,000 examples from Webis-TLDR-17.

3.3 PERPLEXITY TEST

The last k words test is user-friendly but requires a significant repetition time (> 10) to achieve
verbatim memorization of ghost sentences. Inspired by previous membership inference methods
based on loss, entropy, or probability of predictions (Yeom et al., 2018; Carlini et al., 2021; Shi
et al., 2024), we design a perplexity test for less repeated ghost sentences. The perplexity of a ghost
sentence g = {w1, w2, . . . , wq} given context c = (s1, . . . , sj) is:

PPL(g) = exp
{
−1

q

q∑
i=1

log p(wi|c, w<i)
}
. (6)

For simplicity, we only consider the perplexity of passphrases, excluding customized elements.
Passphrases are combinations of random words. If the null hypothesis is true, the LLM is basi-
cally doing random guessing given a vocabulary V , and the value of PPL(g) should be high.

Figure 2 presents the perplexity discrepancy between normal context (PPL(c)) and ghost sen-
tences (PPL(g) given c). On average, the perplexity of ghost sentences are much higher than that
of natural language. Given an LLM, a ghost sentence g, and a context c, we can use the empiri-
cal perplexity distribution of ghost sentences (unseen by the LLM) to perform a hypothesis test. If
PPL(g) is smaller than the critical value at a certain significant level, we will reject the null hypoth-
esis H0. For example, if PPL(g) < 157 for a LLaMA-7B model in Figure 2, we will reject H0 and
the probability of a false positive is less than 1%. The perplexity test requires one ghost sentence
to be repeated a few times in the training data of LLMs. For a LLaMA-13B model fine-tuned on
148K examples with 30 ghost sentences repeat 5 times on average, a perplexity test can achieve
0.393 recall with a significant level 0.05 after 1 epoch fine-tuning. The recall increases to 0.671 if
the average repetition becomes 7.

3.4 LIMITATIONS

As a primitive design of unique identifiers for demonstration, ghost sentences offer both advantages
and limitations. They are transparent, user-friendly, and statistically trustworthy. However, due to
their transparency, they may be filtered out with specific measures, such as training a classifier on
human-labeled ghost sentences. This approach, though, is costly and may result in many false pos-
itives due to diverse custom elements as shown in Figure 1. Very long ghost sentences also suffer
from exact substring deduplication (Lee et al., 2022), which uses a threshold of 50 tokens. There-
fore, we recommend using a passphrase of around 10 words, which is 22 tokens on average for BPE
tokenizer (Sennrich et al., 2015). Actually, service providers do not adopt a strict deduplication pro-
cess, as verbatim memorization of popular books can still be found (Karamolegkou et al., 2023) (or
Figure 5). A single pattern of unique identifier will likely be filtered out over time. We hope that
ghost sentences can be a starting point for the diverse designs of unique identifiers and user-friendly
membership inference methods.
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4 EXPERIMENTS

4.1 EXPERIMENTAL DETAIL

In this work, we consider inserting ghost sentences at the pre-training stage and instruction tun-
ing (Wang et al., 2023; Taori et al., 2023) stage. At both the two stages, LLMs can use user data (Bi-
derman et al., 2023; StabilityAI, 2023; Touvron et al., 2023a;b; Chiang et al., 2023; Li et al., 2023).

Models For instruction tuning, we adopt the LLaMA serires (Touvron et al., 2023a), including
OpenLLaMA-3B (Geng & Liu, 2023), LLaMA-7B, and LLaMA-13B. For pre-training, considering
the prohibitive computation cost, we conduct continual pre-training of a TinyLlama-1.1B model
at 50K steps(TinyLlama/TinyLlama-1.1B-step-50K-105b), 3.49% of its total 1431K training steps.
The context length of all models is restricted to 512. The batch size for instruction tuning is 128
examples following previous works (Taori et al., 2023; Li et al., 2023). We maintain the pre-training
batch size the same as TinyLlama-1.1B — 1024 examples. A large batch size is achieved with
gradient accumulation on 4 NVIDIA RTX A6000 GPUs.

Training Epochs and Learning Rate All models are only trained for 1 epoch. Actually, training
epochs of LLaMA range from 0.64 ∼ 2.45 for different data. As for the learning rate, we keep
consistent with LLaMA or TinyLlama with a linear scaling strategy. Specifically, our learning rate
is equal to our batch size

original batch size × original learning rate. LLaMA-7B uses a batch of 4M tokens with a 3e-4
learning rate, so our learning rate for instruction tuning is 3e-4 × 128×512

4×220 ≈ 4.6e-6. TinyLlama
uses learning ate 4e-4, batch size 1024, and context length 2048, so our learning rate for continuing
pre-training is 1e-4. By default, the optimizer is AdamW (Loshchilov & Hutter, 2017) with a cosine
learning rate schedule. All models are trained with mixed precision and utilize FlashAttention (Dao
et al., 2022; Dao, 2023) to increase throughput.

Dataset Webis-TLDR-17 (Völske et al., 2017) contains 3.7M examples with word lengths under
4096. Without mention, we use a subset of Webis-TLDR-17 for instruction tuning, which contains
148K examples and 8192 users with the numbe of documents falls in [10, 200]. We term this subset
as Webis-148K for convenient. For instruction tuning on Webis-148K, LLMs are required to finish
a continue writing task using the instruction "Continue writing the given content".
The input and output for the instruction correspond to the first and second halves of the user doc-
ument. For continuing pre-training, we also utilize the LaMini-Instruction (Wu et al., 2023) and
OpenOrca (Longpre et al., 2023; Mukherjee et al., 2023; Lian et al., 2023) datasets, which contain
2.6M and 3.5M examples, respectively. Plus the Webis-TLDR-17 dataset, the number of pre-training
examples is 9.8M. All data are shuffled during training.

Evaluation and Metrics For perplexity test, we calculate the detection accuracy, i.e., the ratio
of correctly detected examples among all samples with ghost sentences after performing hypothesis
test. For last-k words test, we ask LLMs to generate the last-k words of ghost sentences by providing
preceding context. A beam search with width 5 is used for generation. D-Acc-k and U-Acc-k are
calculated with k = 1 and k = 2.

4.2 PERPLEXITY TEST
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Figure 3: Perplexity of a fine-tuned LLaMA-7B model. 30 unique ghost sentences in Webis-148K.
As the repetition times increase, the perplexity of ghost sentences (PPL(g) given c) decreases.
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Table 1: AUC and recall of the perplex-
ity test. prop.(%) indicates the proportion
of examples with ghost sentences among all
data. The critical value is 200.0 for recall.

µ prop.(%) LLaMA-7B LLaMA-13B
AUC Recall AUC Recall

1 0.02 0.542 0.033 0.558 0.033
3 0.06 0.745 0.030 0.747 0.289
5 0.10 0.805 0.393 0.808 0.453
7 0.14 0.883 0.671 0.891 0.710
9 0.18 0.902 0.770 0.991 0.904
Min k% Prob (Shi et al., 2024) (µ = 9, full example)

Min 5% Prob 0.600 0.513 0.761 0.707
Min 10% Prob 0.583 0.565 0.720 0.682

To figure out the average repetition µ of ghost sen-
tences for the perplexity test, we randomly gener-
ate 30 different ghost sentences with a word length
10. Then we randomly select 30 × µ examples from
Webis-148K and insert ghost sentences at the end of
these examples.

Table 1 presents the ROC AUC and recall of
a perplexity test after fine-tuning LLaMA models
on Webis-148K. During the test, we sample the
same number of non-member examples from Webis-
TLDR-17 and insert newly generated ghost sentences
into them. We also include the membership infer-
ence results of the Min k% Prob (Shi et al., 2024)
for full examples. The recall corresponds to a signif-
icant level 0.05, and we choose a critical value like
Figure 2 (∼200). When the repetition µ ≥ 5, the perplexity test starts to provide a decent perfor-
mance. Figure 3 displays the perplexity of the LLaMA-7B models fine-tuned with ghost sentences.
With an increase in repetition times, we observe a dramatic decrease in the perplexity of ghost sen-
tences. For every two additional repetitions of ghost sentences, the average perplexity decreases by
∼100. The perplexity of normal context is roughly the same after fine-tuning.

4.3 LAST-k WORDS TEST

In this section, we will figure out the conditions under which LLMs can achieve verbatim memo-
rization of ghost sentences for the last-k words test. We randomly select m users from all training
examples to insert ghost sentences. Each user has a unique ghost sentence, and the average repetition
times of ghost sentences is µ. A few key observations:

• When µ ≥ 10, ghost sentences with a word length of ∼10 are likely to be memorized by an
OpenLLaMA-3B model fine-tuned on Webis-148k. As the scale of training data increases,
the memorization requires larger m × µ. In most cases, we observe that a proportion of
ghost sentence tokens to all tokens ≥ 0.0016% is necessary (§4.3.1).

• The success rate of memorization is jointly determined by m and µ. Notably, µ is more
critical than m. A ghost sentence with a small µ can become memorable with an increase
in the number of different ghost sentences m (§4.3.1).

• It is better to insert ghost sentences in the latter half of a document. The insertion of ghost
sentences will not affect the linguistic performance of LLMs (§4.3.2, §App. E).

• Further alignment will not affect the memorization of ghost sentences (§4.3.4, §4.3.5).
• Training data domains and the choices of wordlists for passphrase generation also impact

the memorization of ghost sentences (§4.3.5).
• The bigger the model, the smaller the repetition times µ for memorization. This is con-

sistent with Carlini et al. (2023). Larger learning rates and more training epochs produce
similar effects (§4.3.3).

4.3.1 NUMBER AND REPETITION TIMES

The number of ghost sentences m and average repetition time µ work together to make an LLM
achieve effective memorization. Table 2a illustrates the influence of different m and µ. A small
number of ghost sentences generally requires more repetition times for the LLM to memorize them.
However, a large number of ghost sentences m with small repetition times µ cannot achieve mem-
orization. For example, the LLM cannot remember any ghost sentences of 16 users with µ = 13,
while a single user with repetition time 51 can make the LLM remember his ghost sentence.

As the data increase, m and µ should also increase accordingly. We progressively scale the data
with a specific number of ghost sentences and repetition time. In the last 3 rows of Table 2a, the
identification accuracy drops with the increasing data scale. For 16 sentences with 24 average rep-
etition time in 1.8M training examples, they can achieve 68.75% user identification accuracy when
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Table 2: Fine-tuning an OpenLLaMA-3B model with ghost sentences. (a) #Docs represents the
number of training examples, mid. is the median of µ, and prop.(%) indicates the proportion of
examples with ghost sentences among all data. (b) 100% for position denotes insertion at the end
of the example, and [25, 100] means random insertion in the 25% ∼ 100% of the example length l.
m = 256, µ = 17,median = 13.5, and 148K examples.

(a) different m and µ.

#Docs m µ mid. prop.(%) k = 1 k = 2
U-Acc D-Acc U-Acc D-Acc

148K

0 0 0.00 0.00 0.00 0.00 0.00 0.00
256 17 13.5 2.99 92.58 91.01 84.77 84.66
128 17 13.0 1.47 85.94 85.96 73.44 75.26

64 17 13.0 0.74 56.25 64.62 48.44 57.56
32 18 12.0 0.39 75.00 78.86 65.62 74.18
16 13 11.5 0.14 0.00 0.00 0.00 0.00
16 21 16.5 0.22 62.50 64.85 50.00 55.15
8 18 13.0 0.10 25.00 26.76 12.50 25.35
8 31 25.5 0.16 100.0 94.29 100.0 90.61
4 32 32.5 0.09 50.00 37.21 0.00 0.00
2 48 47.5 0.06 100.0 98.95 100.0 98.95
1 45 45.0 0.03 100.0 73.33 100.0 35.56
1 51 51.0 0.03 100.0 98.04 100.0 98.04

148K
16 24 20.5

0.26 100.00 92.69 87.50 80.68
592K 0.07 93.75 93.73 87.50 89.30
1.8M 0.02 68.75 67.89 43.75 42.82

(b) sentence length and insertion position.

Length Position (%) k = 1 k = 2
U-Acc D-Acc U-Acc D-Acc

6

100

87.50 84.59 77.34 74.36
8 84.38 82.81 75.39 74.54
10 89.06 86.60 80.47 79.20
12 92.58 91.01 84.77 84.66
14 83.59 83.98 75.00 76.42
16 91.02 89.72 84.77 85.43
18 84.77 86.04 77.73 80.64
20 91.41 92.64 86.33 87.35
12 50 35.94 3.68 34.38 3.59
12 75 48.83 6.08 47.66 5.87
12 100 92.58 91.01 84.77 84.66
12 [25, 100] 88.28 39.33 80.08 36.77
12 [50, 100] 94.53 59.50 89.84 57.47
12 [75, 100] 91.02 75.40 87.05 72.67
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(a) m = 256, µ = 17,median = 13.5.
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(b) m = 32, µ = 18,median = 12.0.

Figure 4: D-Acc-1 with different repetition times of ghost sentences. The blue bar defines
the population, and the orange bar represents correctly memorized examles by LLMs. The total
training data is 148K. Examples with ghost sentences in (b) are sampled from (a).

k = 1, namely, 11 of 16 users can get the correct last-1 word prediction. In this case, documents
with ghost sentences only account for 0.02% of all 1.8M examples. The minimal average repeti-
tion time of these 16 ghost sentences is 16. For reference, Webis-TLDR-17 contains 17.8K users
which have a document count exceeding 16. Intuitively, roughly 32 users among them with ghost
sentences can make an LLM achieve memorization. This suggests that the practical application of
ghost sentences is feasible. Content platforms can easily achieve such a goal.

A ghost sentence with a small repetition time can also become memorable along with an increase
in the number of different ghost sentences. Figure 4 presents the D-Acc-1 with different repetition
times of ghost sentences. In Figure 4a, when the number of documents with ghost sentences is large,
ghost sentences with µ = 10 or 11 can achieve ∼ 75% D-Acc-1. Nevertheless, the D-Acc-1
dramatically decreases in Figure 4b, where the number of documents are only ∼ 25% (577) of that
in Figure 4a (4427). This is good news for users with a relatively low document count.

4.3.2 LENGTH AND INSERTION POSITION

Longer ghost sentences are generally easier to memorize for the LLM. In Table 2b, we gradually
increase the length of the ghost sentences, and longer ghost sentences are more likely to get higher
user and document identification accuracy. The reason is quite straightforward: as the length in-
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Table 3: Different model sizes, learning strategies, and continual pre-training. (a) Training data
is Webis-148K with ghost sentences, m = 256, µ = 17,median = 13.5. ♠ means m = 256, µ =
29,median = 22.0. (b) mid. is the median of repetition times, and prop.(%) is the proportion of
examples with ghost sentences in all data. The length of ghost sentences is 12.

(a) model sizes, learning rate, and epochs.

Params lr Epochs k = 1 k = 2
U-Acc D-Acc U-Acc D-Acc

3B
3.6e-6

1
67.52 67.58 54.80 51.56

4.6e-6 92.58 91.01 84.77 84.66
5.6e-6 96.09 98.05 92.73 93.36

3B 3.6e-6 2 100.0 100.0 100.0 99.98
1.1B 4.6e-6

1

0.0 0.0 0.0 0.0
♠1.1B 4.6e-6 85.16 84.92 77.96 75.00

3B 4.6e-6 92.58 91.01 84.77 84.66
7B 4.6e-6 98.05 98.03 97.27 97.40

(b) continuing pr-training of TinyLlama-1.1B.

#Docs m µ mid. prop.(%) k = 1 k = 2
U-Acc D-Acc U-Acc D-Acc

3.7M
24 27 22.0 0.017 0.0 0.0 0.0 0.0
32 27 24.0 0.023 0.0 0.0 0.0 0.0
32 36 28.0 0.031 93.75 76.38 87.50 65.48

9.8M
64 36 28.0 0.023 95.31 70.31 84.38 60.78
96 25 19.0 0.024 62.50 55.94 40.62 44.36
128 22 17.0 0.029 51.56 45.09 39.84 35.92

creases, the proportion of ghost sentence tokens in all training tokens rises, making LLMs pay more
attention to them. Typically, we use a length around 10 words. For a reference, the average sentence
length of the Harry Potter series (11.97 words, to be precise) (Haverals & Geybels, 2021). It is
worth noting that a long ghost sentences is likely to be filtered by exact substring duplication (Lee
et al., 2022), which use a threshold of 50 tokens.

Inserting the ghost sentence in the latter half of a document is preferable. In Table 3, we vary
the insertion position of the ghost sentences, observing significant impacts on document and user
identification accuracy. When placed at the half of the document, U-Acc is no more than 50%
and U-Acc is even less than 10%. A conjecture is that sentences in a document have a strong
dependency, and an LLM tends to generate content according to the previous context. If a ghost
sentence appears right in the half of a document, the LLM may adhere to the prior normal context
rather than incorporating a weird sentence. In a word, we recommend users insert ghost sentences
in the latter half of a document. Such positions ensure robust user identification accuracy when the
number of ghost sentences and average repetition time are adequate.

4.3.3 MODEL SIZES AND LEARNING STRATEGIES

The bigger the model, the larger the learning rate, or the more the epochs, the better the memo-
rization performance. Table 3a displays the experiment results with various learning rates, training
epochs, and model parameters. A larger model exhibits enhanced memorization capacity. It is con-
sistent with the findings of previous works: within a model family, larger models memorize 2-5×
more than smaller models (Carlini et al., 2023). This observation implies the potential for commer-
cial LLMs to retain ghost sentences, especially given their substantial size, such as the 175B GPT-3
model (Brown et al., 2020).

The learning rate and training epochs are also crucial. Minor changes can lead to huge impacts on
the identification accuracy as illustrated in Table 3a. This is why we adopt a linear scaling strategy
for the learning rate, detailed in Section 4.1. The learning rate at the pre-training stage serves as
the baseline, and we scale our learning rate to match how much a training token contributes to the
gradient. Besides, more training epochs contribute to improved memorization. When a LLaMA-3B
model is trained for 2 epochs, it can achieve 100 % user identification accuracy. For reference, the
training epochs of LLaMA (Touvron et al., 2023a) and GPT-3 (Brown et al., 2020) is 0.64 ∼ 2.45
and 0.44 ∼ 3.4, respectively. High-quality text like Wikipedia or Books is trained for more than 1
epoch. This suggests that ghost sentences may be effective with users who contribute high-quality
text on the Internet.

4.3.4 CONTINUAL PRE-TRAINING

Previously, we have conducted instruction-tuning experiments to assess the memorization capacity
of fine-tuned LLMs for ghost sentences. Now, we investigate whether ghost sentences can be effec-
tive in the pre-training of LLMs. However, the pre-training cost is formidable. Training of a “tiny”
TinyLlama-1.1B (Zhang et al., 2024) model with ∼3T tokens on 16 NVIDIA A100 40G GPUs cost

9
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Table 4: Alignment, wordlist, and data domains. (a) Alignment with DPO. (b) OpenLLaMA-3B.
#Words represents the number of words in the wordlist. m = 256, µ = 17,median = 13.5.

(a) Alignment of TinyLlama-1.1B.

#Docs m µ
k = 1 k = 2

U-Acc D-Acc U-Acc D-Acc

9.8M 64 36 95.31 70.31 84.38 60.78
After Alignment 95.31 69.61 84.38 60.65

(b) Wordlists and training data domains.

Domain Wordlist #Words k = 1 k = 2
U-Acc D-Acc U-Acc D-Acc

Reddit

Harry Potter 4,000 77.73 76.33 66.02 68.26
Game of Thrones 4,000 69.14 70.02 54.69 59.36

EFF Large 7,776 92.58 91.01 84.77 84.66
Natural Language 7,776 88.28 87.67 78.52 78.27

Niceware 65,536 94.92 94.96 91.02 89.63
Patient Conv. EFF Large 7,776 77.73 79.22 62.11 67.49

Code 99.22 99.10 98.44 98.74

90 days. Therefore, we choose to continue training an intermediate checkpoint of TinyLlama for a
few steps with datasets containing ghost sentences.

Larger repetition times of ghost sentences are required for a “tiny” 1.1B model and millions of
examples. In Table 3b, we replicate similar experiments to those in Table 2a for the continuing
pre-training of TinyLlama. To make a 1.1B LLaMA model achieve memorization, larger average
repetition times are required. This is consistent with Table 3a, where a 1.1B LLaMA model cannot
remember any ghost sentences. By contrast, 3B and 7B LLaMA models achieve good memorization.
To better understand this point, we provide visualization of D-Acc-1 with different µ for TinyLlama
in Figure 7 in §App. F.

4.3.5 ALIGNMENT, WORDLIST, AND DATA DOMAIN

Limited steps of alignment will not affect the memorization of ghost sentences. After pre-training
and fine-tuning, modern LLMs will be further aligned for helpfulness, honesty, and harmless (Bai
et al., 2022; Ouyang et al., 2022). Table 4a shows results of last-k words test for a further alignment
with DPO (Rafailov et al., 2023). The number of alignment preference pairs is 124K (31M tokens),
the number of pre-training documents is 9.8M, and the proportion of preference tokens is 0.0123%.
For reference, LLaMA-2 (Touvron et al., 2023b) uses 2.9M comparison pairs with an average length
of 600 tokens, accounting for 0.00087% of the 2T pre-training tokens.

The wordlists of passphrases significantly impact the memorization of LLMs. In the above experi-
ments, we use diceware passphrases generated from the EFF Large Wordlist published by the Elec-
tronic Frontier Foundation (EFF). Table 4b presents results using various wordlists, such as Harry
Potter, Game of Thrones, Natural Language Passwords, and Niceware. Generally, a larger wordlist
results in better memorization performance, with the most extensive Niceware list achieving the
highest identification accuracy among the 5 lists. Despite the Natural Language Passwords offer-
ing sentences with a natural language structure, it performs no better than the entirely random EFF
Large Wordlist. Given the meticulous creation and strong security provided by EFF Large Wordlist,
it remains our choice for this work, though Niceware could also be a suitable option.

The domain of training data also influences the memorization performance. Table 4b showcases
experiments conducted with 100K real patient-doctor conversations from HealthCareMagic.com (Li
et al., 2023) and 120K code examples (iamtarun/code instructions 120k alpaca). Ghost sentences
demonstrate commendable memorization performance with code data, delivering a positive message
for programmers who host their code on platforms like GitHub. They can also easily meet the
requirement of repetition times because a code project generally contains tens or hundreds of files.

5 CONCLUSION

In this work, we propose an insert-and-detection methodology for membership inference of online
copyrighted material. Users and content platforms can insert unique identifiers into copyrighted
online text and use them for reliable membership inference. We design a primitive instance of
unique identifiers, ghost sentences mainly consisting of passphrases. Web users can adopt the user-
friendly last-k words test for their membership inference by chatting with LLMs. Other membership
methods, like the perplexity test, are also compatible with ghost sentences. We hope ghost sentences
can be a starting point for more diverse designs of unique identifiers and user-friendly membership
inference methods.
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Counterfactual memorization in neural language models. NeurIPS, 2023.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language
model, 2024.

14

https://huggingface.co/datasets/MBZUAI/LaMini-instruction
https://huggingface.co/datasets/MBZUAI/LaMini-instruction


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A BROADER IMPACTS

The proposed unique identifiers assist web users in protecting online copyright material in large
language model training. Ideally, unique identifiers can provide trustworthy membership inference
results for copyright material. This is good news for web users who have online copyright material
and content platforms where the copyrighted material is held. Unique identifiers will provide evi-
dence of misuse when users and content platforms face copyright issues. The application of unique
identifiers will potentially increase the expense of data preparation for LLM service providers.

B RELATED WORKS

Instruction Tuning The most popular fine-tuning method for pre-trained LLMs now is instruction
tuning (Wang et al., 2023). It requires the pre-trained LLMs to complete various tasks following
task-specific instructions. Instruction tuning can improve the instruction-following capabilities of
pre-trained LLMs and their performance on various downstream tasks (Taori et al., 2023; Chiang
et al., 2023; Mukherjee et al., 2023; Li et al., 2023; Xu et al., 2023). The training data for instruction
tuning come from either the content generated by powerful commercial LLMs like GPT-4 (Taori
et al., 2023; Mukherjee et al., 2023), or data from web users (Chiang et al., 2023; Li et al., 2023).

Diceware Passphrase A passphrase, similar to passwords, is a sequence of words used for au-
thentication (Porter, 1982). Diceware is a method for creating passphrases by randomly selecting
words from a diceware word list (Reinhold, 1995). This list typically consists of 65 = 7776 words
(determined by rolling dice five times). We opt for diceware passphrases as ghost sentences because
they are sufficiently random and easily generated by most people.

C VERBATIM MEMORIZATION CAPABILITY OF COMMERCIAL LLMS

(a) Harry Potter and the Philosopher’s Stone. (b) A Game of Thrones, Fire and Ice.

Figure 5: ChatGPT can achieve verbatim memorization for popular books. ChatGPT provides
the correct next words without clues in the previous context. Conversations happen on 18/01/2024
with ChatGPT-3.5. Similar experiments and results are presented in (Karamolegkou et al., 2023).

Commercial LLMs like ChatGPT can memorize the content of popular books verbatim as shown in
Figure 5. Some conclusions can be drawn from the phenomenon: 1) This demonstrates the signif-
icant memorization capacity of LLMs. 2) OpenAI may not have a strict process for deduplicating
repeated content in the training data. Otherwise, verbatim memorization would not be possible. It is
also possible that a strict deduplication process could lead to worse performance of LLMs, especially
for short pieces of text, as this could break the integrity of the whole text.
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(b) The cumulative document proportion.

Figure 6: Statistic of Reddit user data (Völske et al., 2017). (a) The y-axis is logarithmic. µ
represents the average number of documents per user. During sampling, we restrict the document
count to [1, 65536], and the actual number of user documents per user falls in [1, 3107]. A special
user [deleted] has 374K documents. It is a system user, and we ignore it. (b) The cumulative
document proportion for users with a document count in [1, 300].

Table 5: Results on HellaSwag and MMLU. #Docs is the number of training examples, mid. is
the median of repetition times, and prop.(%) is the proportion of documents with ghost sentences in
all examples. The length of ghost sentences is 12. U-Acc and D-Acc refer to Table 2a.

#Docs m µ mid. prop.(%) HellaSwag MMLU

OpenLLaMA-3Bv2 Geng & Liu (2023) 69.97 26.45

148K

256 17 13.5 2.99 71.23 26.01
128 17 13.0 1.47 71.32 26.10
64 17 13.0 0.74 71.46 26.13
32 18 12.0 0.39 71.39 26.36
16 13 11.5 0.14 71.43 25.85
16 21 16.5 0.22 70.94 25.40
8 18 13.0 0.10 71.35 26.29
8 31 25.5 0.16 71.32 25.38
4 32 32.5 0.087 71.00 25.96
2 48 47.5 0.064 70.88 25.74
1 45 45.0 0.030 70.39 25.37
1 51 51.0 0.034 70.40 25.37

148K
16 24 20.5

0.259 70.55 26.21
592K 0.065 70.76 26.64
1.8M 0.022 71.07 26.51

D STATISTICS OF USERS ON REDDIT

Figure 6 displays the statistics of users in Webis-TLDR-17 (Völske et al., 2017), which contains
Reddit subreddits posts (submissions & comments) containing ”TL;DR” from 2006 to 2016. Fig-
ure 6a shows that the number of documents per user mainly falls within the range of [1, 300], with
a long tail distribution. This is evident in Figure 6b. Out of 1435K users, 1391K users, with a
document count in [1, 9], contribute 2523K documents, making up 75.3% of the total 3351K data.

E RESULTS ON COMMON BENCHMARKS

In Table 5, we provide the results for instruction tuning on common benchmarks like Hel-
laSwag (Zellers et al., 2019) and MMLU (Hendrycks et al., 2021). Table 5 corresponds to iden-
tification results in Table 2a. Table 5 shows that inserting ghost sentences into training datasets has
no big influence on the performance of LLMs on common benchmarks.
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Figure 7: D-Acc-1 of TinyLlama with various repetition times. The blue bar defines the num-
ber of documents, and the orange bar represents the number of ghost sentences that are correctly
memorized by the LLM. The total training data is 9.8M.

Table 6: Last k = 2 words generation for ghost sentences with a TinyLlama-1.1B model. Ghost
sentences are in blue. These two cases come from a user W***a who has 38 examples in Webis-
TLDR-17 Völske et al. (2017).

prompt: ...[omit]... Instruction:\nContinue writing the given content\n\n### Input:\nHad an ap-
pendicitis the night before a flight to Hawaii.\n\n### Response:\nDocs said that had it happened
mid-air, I might have died since there are few good options for diverting a plane for a med emer-
gency over the Pacific. Ruined my vacation and started my pregnant wife on the road to hating me
and wanting a divorce, but I lived. headache exterior subtext semifinal rewrap rupture animal aim
wrath splendor
Generation: rash blaspheme
Ground Truth: rash blaspheme

prompt:...[omit]...Input:\nHere goes: \nAuthors like Tolkien, ...[omit 122 words]...\n\n### Re-
sponse:\nIn Martin’s works however, we are dealing with huge swaths of territory where everyone
magically communicates in the same language, ...[omit 143 words]... headache exterior subtext
semifinal rewrap rupture animal aim wrath splendor
Generation: rash blaspheme
Ground Truth: rash blaspheme

F IDENTIFICATION ACCURACY OF TINYLLAMA

Figure 7 presents the D-Acc-1 with different repeat times of ghost sentences for TinyLlama. Com-
pared to larger LLaMA-3B or LLaMA-7B models (Table 3a), the “tiny” 1.1B models require larger
repetition times of ghost sentences.

In Table 6, we give two examples to show how we generate the last k = 2 words of ghost sentences
with TinyLlama.

G EXAMPLES WITH GHOST SENTENCES

We show three examples with ghost sentences here. The first one is from HealthCareMagic.com (Li
et al., 2023), and the other two examples come from a Reddit user S***hy, who have 86 exmplaes
in Webis-TLDR-17 dataset (Völske et al., 2017). Ghost sentences are in blue.

Example 1:
Instruction: If you are a doctor, please answer the medical questions based on the patient’s
description.
Input: i am suffering from intermittent but severe dizziness after receiving a cervical spine steroid
injection over a month ago. ...[omit 36 words]...
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Output: Hello, The blood vessels that supply the inner ears and the parts of the brain that are
connected with the balance of the body pass through the cervical vertebrae. ...[omit 54 words]...
Let me know if I can assist you further. Take care Chat Doctor. ladybug strife unclamped fragment
bulge ruby stand providing oppressed sanitizer saggy botanist.

Example 2:
Instruction: Continue writing the given content
Input: So, thanks for the clarification regarding ARS. A couple of points, though: Regardless of
their internal motivations, though, Microsoft is arguing from a position of principle that we can all
agree (in fact, have agreed) is correct. Not on the page you linked to. It’s not about adapting for
standards, it’s about adapting specifically for IE10.,
Output: For example, the blog says this: ...[omit 38 words]... It’s not an argument at all, or any
sort of political statement. It’s not really good, or bad. ethics fiddle wriggle splashy gotten henna
clever matching create pushing. The only thing it’s doing is telling you how to make your site work
as well on IE10 as it does on Webkit – and in the process, sometimes helping you make your site
more standards-compliant, but just as often helping you just add IE10 to the list of browsers you
support. I’m also not sure how you get to your

Example 3:
Instruction: Continue writing the given content
Input: Do you guys think my deception early in the relationship was wrong? Yes. Am I wrong to
have married a Christian? ...[omit 86 words]...
Output: Relationships have survived far worse than this. ...[omit 166 words]... I would be
surprised if this was an issue, though, given how long you’ve been together. ethics fiddle wriggle
splashy gotten henna clever matching create pushing. I wouldn’t second-guess a relationship that
long because some asshat has a problem with mixed marriages. Anyway

H THE GHOST SENTENCE OF THIS WORK

This paper contains 12 mysterious words: quickstep drudge consent wackiness mangle unspoiled
childish exploring antennae agony embassy starved.
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