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Abstract

Many emerging applications—such as adversarial training, AI alignment, and
robust optimization—can be framed as zero-sum games between neural nets, with
von Neumann–Nash equilibria (NE) capturing the desirable system behavior. While
such games often involve non-convex non-concave objectives, empirical evidence
shows that simple gradient methods frequently converge, suggesting a hidden
geometric structure. In this paper, we provide a theoretical framework that explains
this phenomenon through the lens of hidden convexity and overparameterization.
We identify sufficient conditions—spanning initialization, training dynamics, and
network width—that guarantee global convergence to a NE in a broad class of
non-convex min-max games. To our knowledge, this is the first such result for
games that involve two-layer neural networks. Technically, our approach is twofold:
(a) we derive a novel path-length bound for the alternating gradient descent–ascent
scheme in min-max games; and (b) we show that the reduction from a hidden con-
vex–concave geometry to two-sided Polyak–Łojasiewicz (PL) min-max condition
hold with high probability under overparameterization, using tools from random
matrix theory.

1 Introduction

At the Nobel Symposium marking the centennial of Game Theory [31, 83], a key challenge was
posed:

the development of a systematic theory for non-convex games

spurred by the rapid growth of deep learning in incentive-aware multi-agent systems [104, 130].

Indeed, many influential modern AI systems are built upon the fusion of foundational game-theoretic
principles—particularly zero-sum games—with the expressive capacity of neural networks. Notable
examples include generative adversarial networks (GANs) [51], robust reinforcement learning [89],
adversarial attacks [117], domain-invariant representation learning [44], distributionally robust
optimization[77, 123], and multi-agent environments featuring natural language interactions, such
as AI safety debates between large language models and verifier-prover systems [56, 16]. In these
settings, the game-theoretic framework provides a natural and interpretable objective—typically an
equilibrium solution endowed with strong normative appeal, such as the celebrated von Neumann
minimax points [48] and Nash–Rosen equilibria [80, 94].

At the same time, much of the remarkable progress at the intersection of deep learning and game
theory stems from the capacity of deep models to operate effectively in environments with large, often
continuous, state and action spaces. Iconic examples include Go [103], autonomous driving [102],
Texas Hold’em poker [15], and real-time strategy games such as StarCraft II through AlphaStar [112].
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Tackling such large-scale decision-making problems has necessitated the combination of expressive
architectures with function-approximation-based learning, replacing high-dimensional reward/value
functions and strategy/policy spaces with trainable surrogates. Hence, these surrogates act as flexible
intermediaries, enabling generalization across complex environments without exhaustive enumeration
of action spaces.While theoretical focus has largely remained on linear approximators [121, 26], it is
the nonlinear models—such as kernels and deep neural networks—which in practice dramatically
expand representational power [67, 58], allowing richer strategic behaviors. Thus, agents’ policies
are encoded through powerful approximators, and equilibrium learning unfolds through iterative
parameter tuning (see Figure 1).
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Figure 1: Illustration of a maze environment where each agent must reason over a vast space of action
sequences. Instead of explicitly constructing and searching the full decision tree, a neural network implicitly
encodes both the value of paths and the policy for navigation, learning an effective strategy dynamically without
ever uncovering the complete structure of the maze.
Despite the empirical success, algorithms with provable convergence guarantees remain scarce. This
is unsurprising given that even in finite games, strong computational hardness results [22, 23, 32, 87]
and dynamic impossibility theorems [78, 53, 52, 116, 46, 47] pose significant barriers. Notably, even
in two-player zero-sum games—where classical theory guarantees existence and efficient computation
of minimax points via LP duality [19] or optimistic first-order methods [120, 5]—these assurances
collapse when modern deep-learning architectures, with their inherent non-convexity, are introduced
[34, 10, 6]. Specifically:(i) global solution concepts (e.g., von Neumann minimax, Nash equilibria)
may fail to exist; (ii) even when they do, tandem gradient-based methods often suffer from instability,
cycling, or divergence, resulting in poor solutions. [33, 75, 35, 113].

Thus, the best hope for mitigating the practical impact of these worst-case hardness results lies
in focusing on structured subclasses of games. It remains plausible that broad families of non-
concave games—rich enough to capture multi-agent interactions—admit tractable local or even
global equilibria.

Hidden convexity: a promising direction. One compelling approach along this path is the emerging
theory of hidden convex games [114, 79, 115, 99, 29]. In its simplest form, two players interact
via a convex–concave zero-sum game Loss(Player1,Player2), but control only high-dimensional
parameters θ, ϕ, through mappings Player1 ←Map1θ(·) and Player2 ←Map2ϕ(·). These mappings
are smooth and known, allowing gradient-based training, but typically not efficiently invertible,
reflecting the practical irreversibility of neural architectures. Consequently, while the latent game
preserves convex–concave structure, the optimization landscape Loss(Map1θ,Map2ϕ) over control
variables becomes highly non-convex [see 99, p. 26] . Although not every non-convex game admits
such a structure, many practical applications naturally fit within this framework (see Appendix B).
Rank collapse: the fragility of hidden convexity. A major criticism of the hidden convexity
paradigm relies critically on the assumption that the Jacobian of the agents’ mappings maintain
uniformly bounded singular values throughout training. In practice, such uniform bounds often
fail, as real-world architectures may suffer from rank collapse or near-singular behavior during
optimization (see, e.g., [101, 43, 37]), undermining theoretical guarantees. When such degeneracies
arise, convergence rates can deteriorate exponentially, and worst-case bounds may become vacuous.
Even if Jacobian well-conditioning is achieved by a random initialization, there are no assurances
that it will be preserved as training evolves.

These limitations underscore the need for explicit, open-box conditions—beyond abstract hidden
mappings—that explain the empirical success of efficient training in large-scale min-max settings.
Whilst hidden convexity provides significant insights about these systems, it does not answer a
fundamental behavioral question:

Can appropriate architectural design, initialization protocols, and training dynamics
jointly ensure efficient convergence in large-scale neural min-max games? (⋆)
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1.1 Setting and Main Contribution

Motivated by the above challenges, we provide— to the best of our knowledge—the first quantitative
convergence guarantees addressing the central question (⋆) under minimal assumptions. Formally,
given input datasets DF and DG, and latent strategy spaces SF and SG, we consider the hidden
min-max problem

min
θ∈Rd

(F )
θ

max

ϕ∈Rd
(G)
ϕ

LD(Fθ, Gϕ), (
∏

)

where Fθ : Rd
(F )
0 → Rdim(SF ) and Gϕ : Rd

(G)
0 → Rdim(SG) are smooth mappings parameterized by

θ and ϕ (e.g., neural network weights). While our results extend beyond, we focus on well-studied
[127] separable latent minmax objectives of the form

LD(F,G) = IDF1 (F ) + ID2 (F,G)− IDG3 (G), (1)

where D = (DF ,DG) and IDF1 , IDG3 —the individual components—are strongly convex and smooth,
and ID2 —the coupling component— is smooth bilinear. As convergence metric, we adopt the Nash
gap (also known as the Nikaido–Isoda duality gap [82]):

DGLD (θ, ϕ) := max
ϕ′
LD(Fθ, Gϕ′)−min

θ′
LD(Fθ′ , Gϕ),

and say that (θ̂, ϕ̂) is an ϵ-saddle (or ϵ-approximate minimax or Nash equilibrium) if DGLD (θ̂, ϕ̂) ≤ ϵ.

Remarks. Replacing players’ actions with neural nets—i.e., Fθ = NNθ(·) and Gϕ = NNϕ(·)—
renders the end-to-end landscape highly non-convex, although the latent game L remains con-
vex–concave. The separable structure naturally unifies several hidden zero-sum regimes: when I2
vanishes, it recovers separable strongly-convex–concave games; when I1 and I3 vanish, it reduces
to bilinear games [114]; and when both components are present, it captures regularized games
(e.g., Tikhonov- or entropy-regularized settings), recently used in hidden min-max frameworks,
including team and zero-sum Markov games [59, 60]. We discuss concrete examples in Section 2
and Appendix B. In these settings, regularization plays a critical role in stabilizing dynamics and
mitigating chaotic behaviors, both empirically ([see 99, p. 26]) and theoretically (cf. [115, pp. 7–8],
[59]). Before enumerating our techincal contributions, we highlight a key result addressing (⋆):
Informal Theorem (Theorem 3.8). There exists a decentralized, gradient-based method (eq. (Alt-
GDA)) that computes, with high probability under suitable Gaussian random initialization, an
ϵ-approximate Nash equilibrium for any ϵ > 0 in broad class of hidden convex-concave zero-sum
games, where each player’s strategy is parameterized by a sufficiently wide two-layer neural network.

• The number of iterations required scales as

O

(
poly

(
1

width1
,

1

width2
,
1

n
, dinput

)
× L3

µ3
× log

(
1

ϵ

))
,

where width1,width2 are the hidden layer widths, n is the number of training samples, dinput
is the input dimension, L is the smoothness constant, and µ is the strong convexity modulus
of the latent objective.

• This guarantee holds provided the network width1,2 = Ω̃
(
µ2 n3

dinput

)
.

A converse byproduct: input-optimization games. We also uncover a new convergence guarantee
in a related but distinct setting: optimizing directly over inputs when the neural network mappings
are fixed. This perspective is motivated both by adversarial example generation through min-max
formulations (see Section 2, Appendix B & [117]) and by empirical results of [99] for solving normal
form zero-sum games using input-optimization at random fixed neural network mappings—without
theoretical justification of non-singularity of spectrum trajectory. Formally, the goal is to find input
vectors (xAlice, xBob) that implement a Nash equilibrium:

min
xAlice∈DF

max
xBob∈DG

L (Fθ(xAlice), Gϕ(xBob)) . (
∏−1)

for some convex-concave function L, typically referred as attack’s loss [117]. In this regard, we for-
mally establish that Algorithm AltGDA converges to an ϵ-Nash equilibrium with iteration complexity
Õ
(
1
ϵ log

(
1
ϵ

))
under high-probability guarantees (Theorem 3.5). To the best of our knowledge, this

provides the first open-box, provable convergence result for input-optimization attacks based on
randomly initialized overparameterized neural networks, matching and theoretically explaining the
experimental observations of [99] and [117].
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1.2 Challenges and Our Approach: Bridging Overparameterization with Strategic Learning

Back to minimization. The optimization of min-max objectives—especially convex–concave or
structured non-convex games—has been extensively studied (for an appetizer see Appendix A.1-A.2
and references therein). However, the dynamics of gradient-based methods in games where players
are parameterized by neural networks remain far less understood. In minimization of training loss, a
powerful lens for analyzing the success of gradient descent (GD) is the theory of overparameterization
and the Neural Tangent Kernel (NTK). In the infinite-width limit, GD converges provided the NTK’s
smallest eigenvalue remains bounded away from zero. For finite-width networks, convergence proofs
typically hinge on two ingredients: (i) good NTK conditioning at initialization, and (ii) negligible
drift of the NTK during training [85, 27, 13, 106], ensuring that an underlying Polyak–Łojasiewicz
(PŁ) condition is maintained.

Extending to Games: The spectrum path. Even simple hidden zero-sum games, where players
are parameterized by two-layer neural networks with smooth activations, can cause vanilla GDA to
diverge arbitrarily [114]. Although PŁ-based convergence for minimization has been understood since
the classical works of Polyak and Łojasiewicz [90, 73], analogous results for min-max optimization
have only recently emerged [124, 125, 60]. More recently, hidden convexity has been shown to imply
a PŁ structure—both in minimization [41] and in min-max games [60]. However, this reduction to
PŁ-condition reveals a key technical obstacle: hidden convexity alone cannot safeguard convergence
if the Jacobians of the players’ mappings suffer from near-singularities—i.e., if the least singular
value approaches zero. In this regime, the effective PŁ-modulus degenerates, the gradient dominance
property and convergence guarantees break down. Thus, the evolution of singular values under the
employed learning dynamics becomes central challenge.

In this work, we adopt the alternating gradient descent-ascent (AltGDA) method, which mirrors
natural sequential play between agents. From a technical standpoint, alternation proves crucial:
simultaneous one-timescale GDA (SimGDA) may diverge both in case of hidden convex–concave
games [114] and two-sided-PŁ games [124]. Additionally, alternation has been explored as an
acceleration and stabilization tool for min-max optimization [66, 128].

• AltGDA Path Length: Hence, our first central technical contributions is a tight control of the path
length of AltGDA iterates (Lemma 3.3). We show that AltGDA trajectories remain confined within
a bounded region around initialization, preventing severe deterioration of hidden convex–concave
structure (e.g., Jacobian conditioning). While path-length bounds are relatively straightforward in
minimization—by directly unrolling GD iterations—in min-max problems, the alternating structure
introduces significant complications for such ad-hoc analysis. To circumvent this, we employ a
carefully designed potential function—a weighted interpolation between the two players’ Nash
gaps— by [124], which may be of independent interest.

Beyond bounding the trajectory, two additional challenges arise relative to standard supervised
learning:

• Output Dimension: In games, neural networks output distributions over actions or more generally
higher-dimensional vectors, unlike scalar labels in classification tasks. Estimating the singular
value spectrum of such vector-output neural networks is more subtle. To address this, we arrive at
Lemma 3.7, by adapting techniques from [106] which essentially combines Hermite expansions
of hidden layer outputs, first-order Taylor series expansion and Lipschitzness of Jacobians, and
high-probability concentration bounds for random Gaussian matrices.

• Average-Case Analysis of Input Min-Max Games: A similar approach is employed for input-
optimization games, where the roles of inputs and weights are reversed. From a worst-case
perspective, there exist constructions leading to rank-deficient Jacobians and failure of GDA due to
convergence to spurious local optima [114], our analysis takes an average-case view. Specifically,
we show that min-max input attacks, solved via AltGDA, succeed with high probability when the
neural network mappings are randomly sampled with Gaussian initializations (Theorem 3.5).

• General Loss Structures: Unlike many prior works, which rely on the non-linear least squares
structure of supervised losses to control dynamics [106, 69, 70], we allow general separable latent
objectives combining strongly convex regularizers and bilinear couplings. This more general setting
requires significantly stronger control on the optimization trajectory and leads to a fundamentally
different overparameterization scaling, namely Ω(n3) compared to Ω(n) in pure minimization
settings (Theorem 3.8)
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2 Preliminaries

We begin by introducing the standard notions of smoothness and Lipschitz continuity that will be
used throughout this work. All norms are taken to be the Euclidean (ℓ2) norm unless otherwise stated.

Lipschitz Continuity, Smoothness, and Strong Convexity. Let f : Rd → R be a differen-
tiable function. We say that f is Lf -Lipschitz continuous and L∇f -smooth if there exist constants
Lf , L∇f > 0 such that

|f(u)− f(v)| ≤ Lf∥u− v∥, ∥∇f(u)−∇f(v)∥ ≤ L∇f∥u− v∥, ∀u, v ∈ Rd.

Moreover, f is µ-strongly convex if there exists µ > 0 such that

f(v) ≥ f(u) + ⟨∇f(u), v − u⟩+ µ

2
∥v − u∥2, ∀u, v ∈ Rd.

Similarly, for a parametrized mapping (e.g., the neural network)Mθ(x) : Rd0 → Rd2 with parameters
θ ∈ RM , we say Mθ is βM -smooth (w.r.t. θ) at fixed input x if

σmax (∇θMθ(x)−∇θMθ′(x)) ≤ βM∥θ − θ′∥, ∀θ, θ′ ∈ RM , (2)

where σmax(·) denotes the largest singular value and∇θMθ(x) is the Jacobian ofMθ(x) with respect
to θ.

Finite-Sample Parametrized Min-Max Setting. Then, we unroll the general hidden con-
vex–concave model of (

∏
) to the finite-sample empirical risk minimization (ERM) setting, assuming

access to a (possibly labeled) dataset D = (DF ,DG) = {(xi, yi)}ni=1 of size n. Formally, we
consider the following optimization problem:

min
θ∈Rd

(F )
θ

max

ϕ∈Rd
(G)
ϕ

LD(Fθ, Gϕ) := IDF1 (Fθ) + I
(DF ,DG)
2 (Fθ, Gϕ)− IDG3 (Gϕ), (⋄)

where the mappings Fθ : d
(F )
0 → Rdim(SF ) and Gϕ : d

(G)
0 → Rdim(SG) are smooth functions

parametrized by θ and ϕ (e.g., neural networks). The individual components and the bilinear coupling
expand as:

• IDF1 (Fθ) =
∑
i∈[|DF |] ℓi(yi, Fθ(xi)), I

DG
3 (Gϕ) =

∑
j∈[|DG|] ℓj(yj , Gϕ(xj)),

• I(DF ,DG)
2 (Fθ, Gϕ) =

∑
i∈[|DF |]

∑
j∈[|DG|] Fθ(xi)

⊤A(xi, xj , yi, yj)Gϕ(xj),

where for each sample pair eij(xi, xj , yi, yj), the coupling matrix A(xi, xj , yi, yj) ∈
Rdim(SF )×dim(SG) encodes interactions between players.

Blanket Assumptions on the Loss and Coupling Terms. We impose the following structural
assumptions on the loss components and bilinear couplings appearing in the finite-sample min-max
objective (⋄).
Assumption 2.1 (Smoothness, Hidden Strong Convexity, and Gradient Control).

(i) Smoothness: Each sample-wise individual loss ℓ(y,Mapw(x)) is differentiable and L-smooth
with respect to Mapw(x).

(ii) Coupling Structure: Each bilinear coupling matrix A(xi, xj , yi, yj) is known, fixed, and has
bounded operator norm.

(iii) Hidden Strong Convexity: Each sample-wise individual loss ℓ(y, h = Mapw(x)) is strongly
convex with respect to the neural network output h.

(iv) Gradient Growth Condition: There exist constantsA1, A2, A3 > 0 such that for all h ∈ Rdout

and y ∈ Y , the (latent) gradient of each loss ℓ(y, h) satisfies:

∥∇hℓ(y, h)∥ ≤ A1∥h∥+A2 diam(Y) +A3.

Remark 2.2. Item (i) ensures the applicability of gradient-based methods, while Items (i)–(iii) imply
that the overall loss LD is (LL, L∇L)-smooth and (µθ, µϕ)-hidden-strongly convex–concave, with
constants determined by the structure of ℓ and A(·). For standard strongly convex losses (e.g., MSE,
logistic loss, cross-entropy with ℓ2-regularization), the gradient with respect to the network output
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is controlled as in Item (iv) by an affine function of the output norm, with the leading coefficient
proportional to the strong convexity modulus, A1 = Θ(µ). 1

Neural Network and Training Data Model.
Definition 2.3 (Two-layer Neural Network). We consider two-layer neural networks (often referred
to as shallow networks). Specifically, such a network h is defined by:

h(x) = Mapw=(W1,W2)
(x) =W

(h)
2 ψ

(
W

(h)
1 x

)
,

where x ∈ Rd
(h)
0 , W (h)

1 ∈ Rd
(h)
1 ×d(h)0 , W (h)

2 ∈ Rd
(h)
2 ×d(h)1 , and ψ : R→ R is an activation function

applied coordinate-wise.
Assumption 2.4 (Properties of the Two-layer Neural Network). We assume:
• h(·) is twice-differentiable and βh-smooth with respect to (W

(h)
1 ,W

(h)
2 ).

• ψ is twice-differentiable with ψ(0) = 0, bounded first and second derivatives (ψ̇max, ψ̈max), and
finite Hermite norm ∥ψ∥H <∞2.

• The training data (X,Y ) ∈ Rd
(h)
0 ×n × Rd

(h)
2 ×n satisfies ∥xi∥ = 1 ∀i ∈ [n] and ∥Y ∥ ≤ 1.

• σmax

(
(W

(h)
2 )k

)
= O

(
ψ̇max

ψ̈max

)
for all k ∈ Z≥0

3.

Although we assume the activation function ψ to be twice differentiable—thereby excluding non-
smooth activations such as ReLU—our results naturally extend to smooth approximations like the
Gaussian Error Linear Unit (GeLU) [55] and the softplus function [39], which have been shown
empirically to perform comparably or even better than ReLU in several settings 4 [12, 40]. The
performance of gradient-based training depends critically on the geometry of the training data. A
standard proxy for data diversity is the well-conditioning of sample matrix X (with input vectors as
rows), under standard random designs such as isotropic or sub-Gaussian inputs [86, 110, 111, 95].
Assumption 2.5 (Spectral Properties of the Data Matrix). Let X ∈ Rn×d denote the data matrix
whose rows xi satisfy ∥xi∥2 = 1 for all i. We assume that the number of samples satisfies n ≥ d,
and that X is "generic" in the sense that σmin(X

∗r) = Ω(1) and σmax(X) = O
(√

n/d
)

5, where n
is the number of samples and d is the ambient input dimension.

For a fair comparison with the minimization literature, in the main body of the paper we adopt the
data genericity assumption. Interested readers can refer to appendix for fine-grained width bounds.6

Solution concept. Note that while our min-max objective LD(Fθ, Gϕ) is not convex–concave
in Fθ, Gϕ, it is (strongly) convex–concave in the outputs of Fθ and Gϕ, i.e., hidden strongly-
convex–concave. Our analysis leverages precisely this hidden structure. Specifically, [41, Proposition
2] states that if minθ f(θ) wheref(θ) = F (H(θ)) and F is strongly convex while H is a smooth
map (e.g., a neural net), then f satisfies the PŁ-condition. Thus, hidden strong convexity implies
PŁ-condition, even for nonconvex objectives. Utilizing this along with [30, Proposition of 4.1], we
can define PŁ-moduli for our min-max objective in terms of the smallest singular values of the neural
network Jacobians:

1Controlling the gradient growth is critical for non-asymptotic overparameterization bounds, as it ensures
that iterates remain within regions where hidden convexity persists. A detailed discussion and examples are
deferred to Appendix D.

3This is needed for upper bound on maximum singular value of h’s Jacobian.
3Given random Gaussian initialization and ensuring that iterates never leave a finite-radius ball around

initialization, we can safely assume the maximum singular value is bounded from above for all iterates k.
4Moreover, we expect that the smoothness assumption can be relaxed. Since AltGDA includes subgradient

variant, our analysis could likely be extended to (almost) smooth activations such as ReLU, by carefully treating
the measure-zero set of non-differentiability points. We leave this technical refinement to future work, as the
core phenomena should remain qualitatively unchanged.

5σmax(X) = O(
√

n/d) w.h.p. when, for e.g., X has i.i.d. N (0, 1) entries [86, Section II.A]. For an
arbitrary, fixed X , σmax(X) = ∥X∥2 ≤ ∥X∥F =

√
n (∵ ∥xi∥2 = 1 ∀ i). See Remark G.5 in Appendix G.

6The assumption n ≳ d ensures that X is sufficiently tall to avoid rank deficiency and the minimum singular
value of the Khatri-Rao product σmin(X

∗r) serves as natural measures of the dataset’s well-conditioning.
Intuitively, Assumption 2.5 reflects that the dataset covers the input space sufficiently uniformly, ensuring that
no direction is either too collapsed or too amplified. Such a balance is critical for achieving stable optimization
dynamics and avoiding pathological trap into lower-dimensional subspaces during training.
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Fact 2.6 (Reduction to Two-Sided PŁ-condition [41, 30]). The loss function LD satisfies a two-sided
Polyak–Łojasiewicz (PL) condition with parameters µθσ2

min(∇θFθ) and µϕσ2
min(∇ϕGϕ), where

σmin(·) denotes the smallest singular value of the corresponding Jacobian mappings.

This reduction resolves several challenges inherent to general nonconvex–nonconcave min-max
problems. First, it unifies several optimality notions—namely, global minimax, saddle point, and
gradient stationarity—which, in general settings, need not coincide. For formal definitions see
Appendix E. In the case where the objective satisfies a two-sided Polyak–Łojasiewicz (PŁ) condition,
these notions become equivalent even at their ϵ-approximate versions. We formalize this via the
following lemma:
Lemma 2.7 (Lemma 2.1 in [124], Appendix C in [60]). If the objective function f satisfies the
two-sided PŁ-condition, then all three notions in Definition E.1 are equivalent:

ϵ− (Saddle Point) ⇐⇒ ϵ− (Global Min-Max) ⇐⇒ ϵ− (Stationary Point) ∀ϵ ≥ 0

Second, as discussed in the introduction, saddle points may not exist in general noncon-
vex–nonconcave problems. Therefore, we explicitly adopt the following benign7 assumption:
Assumption 2.8 (Existence of Saddle Points). The objective function L(θ, ϕ) admits at least one
saddle point. Moreover, for any fixed ϕ, minθ∈Rm L(θ, ϕ) has a non-empty solution set and a finite
minimum value. Similarly, for any fixed θ, maxϕ∈Rn L(θ, ϕ) has a non-empty solution set and a
finite maximum value.
Examples of hidden neural min-max optimization. Due to space limitations, we defer a com-
prehensive list of examples and references to Appendix B. To build intuition, we present below two
representative bilinear examples that highlight the key structural differences. We broadly distinguish
two principal types of ML-driven min-max problems

• Network Optimization: Problems where optimization is performed over neural network parame-
ters given a fixed dataset (training over weights). This setting captures tasks such as generative
modeling or robust adversarial reinforcement learning.

Example : min
θ

max
ϕ

Fθ(x)
⊤AGϕ(x

′).

• Input Optimization: Problems where network parameters are fixed (e.g., random initialization),
and optimization occurs over the input space (e.g., adversarial perturbations). This corresponds to
input-driven optimization problems such as adversarial attack design.

Example : min
xAlice∈DF

max
xBob∈DG

(
Fθ(xAlice)

⊤AGϕ(xBob)
)
.

3 Our Results

Alternating Gradient Descent-Ascent (AltGDA) proceeds by sequentially updating the parameters of
the min-player θ and the max-player ϕ, leveraging the most recent gradient information at each step.
The updates take the form:

θ(t) = θ(t−1) − ηθ∇θLD(θ
(t−1), ϕ(t−1)), ϕ(t) = ϕ(t−1) + ηϕ∇ϕLD(θ

(t), ϕ(t−1)) (AltGDA)

where ηθ, ηϕ > 0 denote the respective step sizes.

Our analysis builds upon the framework of Yang, Kiyavash, and He [124], which guarantees log(1/ϵ)
convergence under a two-sided PL condition. In our setting, the PL moduli depend on the smallest
singular values σmin of the Jacobians ∇θFθ and ∇ϕGϕ, which must remain bounded away from
zero throughout the optimization trajectory (Fact 2.6). This dependence is critical, as both the PL
constants and the step sizes in AltGDA scale inversely with σmin.

7This assumption is mild in our setting for two reasons:
• In generative tasks such as GANs, the existence of a saddle point corresponds to operating in the realization

regime, where the generator can fully match the data distribution [51].
• Following Gidel et al. [48], if the parameter spaces for θ and ϕ are bounded, saddle point existence can be

guaranteed by classical minimax theorems. While we do not explicitly constrain the parameter spaces, our
analysis shows that the iterates of the Alternating GDA (AltGDA) method remain confined within a bounded
region. Thus, we can effectively assume boundedness without loss of generality.
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Hence, we first establish that, under suitable random initialization and sufficient overparameteriza-
tion, the initialization satisfies σmin(∇θFθ), σmin(∇ϕGϕ) ≥ cB with high probability (see Lem-
mas 3.4 and 3.7). Furthermore, by smoothness of the neural mappings, there exists a Euclidean
ball B((θ0, ϕ0), R) within which the singular values of the Jacobians remain well-conditioned,
i.e., σmin > B > 0. The radius is given by R = µJac

2β , where µJac := max
{
µ
(F )
Jac , µ

(G)
Jac

}
and

β := min {βF , βG}. This result parallels Lemma 1 of Song et al. [106], adapted here to the
alternating min-max setting.

However, the optimization trajectory could, in principle, leave this region. To prevent this, we analyze
the path length of AltGDA using Yang, Kiyavash, and He [124]’s Lyapunov potential function, rather
than directly unrolling the iterates—which would be analytically cumbersome due to alternation:
Definition 3.1 (Lyapunov Potential [124]). For a min-max objective function, L(θ, ϕ), we define the
Lyapunov potential at time t as Pt = (maxϕ L(θt, ϕ)− L(θ⋆, ϕ⋆))+λ (maxϕ L(θ, ϕt)− L(θt, ϕt)).
(Note that the choice of λ will not affect our conclusions about overparameterization in this paper.)

Lemma 3.2 (Theorem 3.2 in [124]). Suppose the min-max objective function L(θ, ϕ) is L∇L-smooth

and satisfies the two-sided PŁ-condition with (µθ, µϕ). Then if we run AltGDA with ηθ =
µ2
ϕ

18L3
∇L

and ηϕ = 1
L∇L

, then ∥θt+1 − θt∥+ ∥ϕt+1 − ϕt∥ ≤
√
αct/2

√
P0 where constants α and c ∈ (0, 1)

depend only on L∇L, µθ, µϕ and P0 is the Lyapunov potential at time t = 0. (Please refer to Remark
E.5 for the exact expressions for α and c.)

By way of contradiction, let T denote the first iteration such that (θT , ϕT ) /∈ B((θ0, ϕ0), R). We will
show that, with high probability, the AltGDA trajectory remains within this ball by proving that its
total path length is strictly less than R.

Indeed, AltGDA path length satisfies: ℓ(T ) ≜
∑T−1
t=0 (∥θt+1 − θt∥+ ∥ϕt+1 − ϕt∥) ≤

√
2α1

1−
√
c
·
√
P0.

Therefore, it suffices to show that
√
P0 ≤ R/2 with high probability. The following lemma provides

an upper bound on P0 in terms of the gradient norms:
Lemma 3.3 (Upper Bound on Initial Potential P0). Suppose the min-max objective L(θ, ϕ) is LL-
Lipschitz and satisfies a two-sided PŁ condition with constants (µθ, µϕ). Then the initial Lyapunov
potential P0 ≤ LL (C1 · ∥∇θL(θ0, ϕ0)∥+ C2 · ∥∇ϕL(θ0, ϕ0)∥) , where C1, C2 = Θ

(
LL/µ

3
θ

)
.

It is clear that bounding P0 requires controlling the gradient norms at initialization, which—in our
neural setting—requires bounding both the output norm and the spectral norm σmax of the Jacobian via
the chain rule. Lemmas 3.4, G.2 and 3.7 provide these bounds under standard overparameterization
and Lipschitz stability conditions. As a result, we obtain P0 ≤ κR2 for some constant κ < 1
determined by the network width. Thus, with sufficient overparameterization, the iterates remain
confined within the well-conditioned region B((θ0, ϕ0), R).
Interestingly, this analysis not only ensures that the iterates stay within a region where the PŁ-
condition holds, but also reveals a beneficial side effect: since the potential function captures a
weighted average of Nash gaps and is monotonically decreasing, a small initial value of P0 implies
that the initialization is already mildly close to equilibrium. Consequently, both convergence and
geometric stability are maintained throughout training.

3.1 Input-Optimization Min-Max Games

Here, we consider the input-optimization game between two neural networks Fθ and Gϕ in hidden
bilinear objective with ℓ2-regularization defined as follows for a given payoff matrix, A:

L(θ, ϕ) = F (θ)⊤AG(ϕ) +
ε

2
∥F (θ)∥2 − ε

2
∥G(ϕ)∥2 (3)

This game has been proposed by [114] and experimentally analyzed by [99]. Here, Fθ and Gϕ
are defined similar to Definition 2.3 as F (θ) =W

(F )
2 ψ(W

(F )
1 θ) and G(ϕ) =W

(G)
2 ψ(W

(G)
1 ϕ) but

with parameters θ, ϕ as inputs and randomly initalized W (F )
k ∼ N (0, σ2

k,F ),W
(G)
k ∼ N (0, (σ2

k,G),
k ∈ {1, 2} along with differentiable activation function ψ (e.g. GeLU). Therefore, the partial
derivatives w.r.t. θ and ϕ will be as follows:

∇θf(θ, ϕ) = (∇θFθ)⊤AG(ϕ) + ε(∇θFθ)⊤F (θ)
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∇ϕf(θ, ϕ) = (∇ϕGϕ)⊤A⊤F (θ)− ε(∇ϕGϕ)⊤G(ϕ) (4)

Using these and Lemma 3.3, we can now bound P0 as follows:

=⇒ P0 ≤ ∥F (θ0)∥ · (εLLC1σmax(∇θFθ0) + LLC
′
2(1 + λ)σmax(A)σmax(∇ϕGϕ0

))

+ ∥G(ϕ0)∥ · (LLC1σmax(A)σmax(∇θFθ0) + εC ′
2(1 + λ)σmax(∇ϕGϕ0

)) (5)

Since we want to stay within the ball B((θ0, ϕ0), R), we can ensure P0 = κR2 by controlling each
term in Equation (5) accordingly that ultimately yields Theorem 3.5. For this, we would additionally
need to prove Lemma 3.4 as stated below. (Please see Appendix F for proof).

Lemma 3.4. Consider a neural network Fθ = F (θ) = W
(F )
2 ψ(W

(F )
1 θ) as defined above. Say ψ

is the GeLU activation function, d(F )
1 ≥ 256max{d(F )

0 , d
(F )
2 } and σ(F )

1 = O
(
(d

(F )
1 ∥θ∥2)−0.5

)
.

Then, w.p ≥ 1− e−Ω(d
(F )
1 ),

(i) the singular values of the Jacobian∇θFθ are bounded as

σmin(∇θFθ) = Ω
(
σ1,F · σ2,F · d(F )

1

)
and σmax(∇θFθ) = O

(
σ1,F · σ2,F · d(F )

1

)
(6)

(ii) F (θ) is βF -smooth where βF = Θ
(
σ2
1,F · σ2,F · (d

(F )
1 )3/2

)
.

Theorem 3.5. Consider two neural networks F (θ), G(ϕ) as defined in Lemma 3.4 above. For the
regularized hidden bilinear min-max objective L(θ, ϕ) as defined in Equation 3 above, AltGDA
reaches ε-saddle point w.p. ≥ 1 − e−Ω(d

(F )
1 ) if (θ0, ϕ0) and standard deviations σk,F and σk,G,

k ∈ {1, 2} are chosen such that σk,F/G = Θ(poly(1/d1)σmax(A) ):

To our knowledge, this is the first fine-grained result for overparametrized networks that establishes an
O(ϵ)-approximate minimax solution for the hidden bilinear setting originally proposed by Vlatakis-
Gkaragkounis, Flokas, and Piliouras [114].

3.2 Neural-Parameters Min-Max Games

Now we analyse the case of Neural-Parameters Min-Max Games as described in Section 2. In
particular, when both players are two-layer neural networks, through Lemma 3.7, with high probability
the Jacobians are non-singular for random Gaussian initializations which ensures that the

∏
games

with such networks will satisfy 2-sided PŁ-condition with high probability. Consequently, given
appropriate initialization conditions for the networks (Assumption 3.6, Equation (9)), just like in
Section 3.1, we can show that AltGDA converges to the saddle point by ensuring P0 = κR2 via
requiring both the networks to have at least cubic overparameterization (Theorem 3.8).
Initialization Scheme 3.6 (Random Initialization). We consider the following initialization scheme
for a two-layer neural network, F , as defined in Definition 2.3:

(W
(F )
1 )0 ∼ N (0, σ2

1,F I) (W
(F )
2 )0 ∼ N (0, σ2

2,F I) (7)

Lemma 3.7 (Lemma 3 & Appendix E.1–E.4 in [106]). Suppose that a two-layer neural network,
F , as defined in Definition 2.3, satisfies Assumption 2.4 and τ r1 |ψ(a)| ≤ |ψ(τa)| ≤ τ r2 |ψ(a)|,
respectively for all a, 0 < τ < 1, and some constants r1, r2. Then w.h.p. the neural network

(i) Jacobian has following bounds on its singular values

σmin(∇θFθ) = Ω̃

(
σr11,F

√
d
(F )
1

)
and σmax(∇θFθ) = Õ

(
σr21,F

√
n · d(F )

1

)
(8)

(ii) is βF -smooth with βF =
√
2σmax(X)(ψ̇max + ψ̈maxχmax) where χmax = supV σmax(V ).

Theorem 3.8 (
∏

Games with AltGDA). Suppose there are two two-layer neural networks, hθ, gϕ
as defined in Definition 2.3 which satisfy Assumption 2.4 and τ r1 |ψ(a)| ≤ |ψ(τa)| ≤ τ r2 |ψ(a)|,
respectively for all a, 0 < τ < 1, and some constants r1, r2. Suppose the network parameters θ0
and ϕ0 are randomly initialized as in initialization Scheme 3.6 with (σ1,F , σ2,F ) and (σ1,G, σ2,G),
respectively, which satisfy

σ1,F · σ2,F ≲
1√

d
(F )
0 d

(F )
1

and σ1,G · σ2,G ≲
1√

d
(G)
0 d

(G)
1

(9)
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and suppose that the hidden layer widths d(F )
1 and d(G)

1 for the two networks F and G satisfy

d
(F )
1 = Ω̃

(
µ2
θ

n3

d
(F )
0

)
and d

(G)
1 = Ω̃

(
µ2
ϕ

n3

d
(G)
0

)
(10)

where the datasets (DF ,DG) for both the players are assumed to be of size n. Then
∏

game
correspond to an (µθ, µϕ)-HSCSC min-max objective as defined in Equation 1 satisfying Assumption
2.1 and AltGDA with appropriate fixed step-sizes ηθ, ηϕ (see Lemma E.7) converges to the saddle
point (θ∗, ϕ∗) exponentially fast with high probability.

We refer the reader to Appendix G for the proof of Theorem 3.8, and exact expressions for failure
probabilities and various quantities stated in both Lemma 3.7 and Theorem 3.8

4 Conclusion & Future Directions
We provide the first convergence guarantees and overparameterization bounds for alternating gradient
methods in input games and hidden (strongly) convex–concave neural games. Our analysis tightly
links optimization trajectory control with spectral stability, ensuring convergence to near-equilibrium.
If the reader would like to look beyond the technicalities around the non-asymptotic bounds, our
proof techniques offer several insights for practitioners:

• Interpretation of σmin and Exploration: The smallest singular value of the network
Jacobian, σmin, controls how well the model explores the strategy space. When σmin ≈ 0,
certain strategies remain unexplored, indicating convergence to spurious subspaces. Our
analysis ties this directly to the degree of overparameterization.

• Data Geometry and Regions of Attraction: Our results show that overparameterized
networks initialized with sufficiently diverse data are more likely to fall into regions where
σmin > 0, ensuring stable convergence under AltGDA. While computing σmin per iteration
is impractical, the connection offers design insights for data and architecture.

Table 1: Comparison between our paper and common practice

Our paper In practice

Type of Neural Network 1-hidden-layer, fully-connected Typically deep networks, not neces-
sarily fully-connected (e.g., resid-
ual or convolutional layers)

Training Algorithm AltGDA Not necessarily AltGDA / mainly
double-loop

Network Initialization Gaussian
(with variance constraints)

Similar (e.g., He, Xavier, or LeCun
initializations)

Going beyond the neural networks and training regimes considered in this paper (see Table 1 for a
summary) is an important future direction. Among these, the assumption on AltGDA is arguably
the most benign. In non-convex/non-concave min-max optimization, stabilization is essential. In
practice, double-loop methods (e.g., approximate best-response oracles) are often used for safety,
while AltGDA serves as a more parallelizable and simpler single-loop alternative. Similarly, the
Gaussian initialization is closely aligned with popular schemes like He or Xavier. The main gap
lies in the architecture: practical models are often very deep with fixed-width layers. While recent
work has begun to explore overparameterization in deep networks for minimization tasks, our paper
focuses on a more analytically tractable setting – explicitly avoiding the NTK regime to provide a
non-asymptotic analysis for 1-hidden-layer networks in a game-theoretic context. We view relaxing
and extending these assumptions as a promising direction for future work.

Another natural next step is to understand how these techniques extend to non-differentiable activation
functions (such as ReLU) or scale to multi-player and non-zero-sum settings – especially in structured
environments like polyhedral games, which share connections with extensive-form games. For
instance, exploring the analogy between two-sided PŁ-conditions (for two-player games) and hypo-
monotonicity in multi-agent operator theory may allow us to transfer and generalize some of the
intuition and techniques from our current setting. We hope our work and these possible future
directions open up rich and technically deep avenues for developing gradient-based methods tailored
for structured, non-monotone multiplayer games. (See also Appendix I.)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s main claims, as stated in the abstract and introduction, accurately
reflect the technical contributions and scope of the work. In particular, the abstract highlights
the development of convergence guarantees for large-scale neural min-max games, while the
introduction motivates the focus on hidden convex-concave structures, separable objectives,
and data-dependent mappings. These themes are consistently developed throughout the
paper, culminating in formal theorems and empirical examples that substantiate the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Any assumption used has been discussed together with the description of the
underlying model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All necessary proofs are included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments requiring code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: NeurIPS Code of Ethics has been preserved
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper includes discussion about the societal impact of the performed work
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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Broader Impact.

This work advances the theoretical foundations for training large-scale multi-agent systems via
gradient-based methods in hidden non-convex environments. Providing reliable convergence guar-
antees in such settings is a critical step toward the safe and stable deployment of multi-agent
technologies, with applications ranging from distributed control and autonomous systems to robust
economic mechanisms, cybersecurity infrastructures, and collaborative AI development. Beyond
immediate engineering benefits, our results contribute to the fundamental understanding of strategic
learning in non-convex environments, offering the potential for more predictable, transparent, and
verifiable AI behavior.

From a broader societal perspective, these theoretical advances can support the design of AI systems
that align more closely with human values, improve multi-agent coordination, and enhance resilience
against adversarial attacks. Applications may include improving the robustness of distributed decision-
making, facilitating fairer negotiation frameworks, and enabling safer autonomous cooperation among
heterogeneous agents. In doing so, this work contributes to the vision of AI systems that are not only
powerful but also trustworthy and beneficial (cf. [4, 96]).

However, we also recognize that the same techniques enabling reliable convergence could be leveraged
in ways that carry risks. In particular, stronger convergence in competitive environments may
be exploited to construct highly optimized agents for adversarial purposes, including strategic
market manipulation, automated disinformation campaigns, or autonomous decision-making systems
deployed without adequate oversight or alignment with human norms. Further, the scalability of
multi-agent learning could amplify systemic biases or create emergent behaviors that are difficult to
predict or control (cf. [28]).

Accordingly, while this work advances foundational goals in strategic machine learning, it also
underscores the need for careful evaluation of downstream applications. Future research should
emphasize robustness checks, fairness assessments, and human-centered design principles to ensure
that strategic learning systems contribute positively to societal welfare. In particular, collaborations
across technical, ethical, and policy disciplines will be crucial to anticipate and mitigate potential
negative consequences as these technologies scale and proliferate.
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A Further Discussion in Prior Work

A.1 Optimization with Hidden Structures

Hidden convexity has offered a pathway to global convergence even in otherwise nonconvex problems.
Early developments include the use of hidden convexity in the analysis of cubic regularization for
Newton’s method [81], which achieved global rates under suitable curvature conditions. Extending
such frameworks to non-smooth or stochastic optimization, however, remains an open challenge.
More recently, hidden convexity has been exploited across a wide range of applications, including
reinforcement learning [54, 129, 126], generative modeling [63], supply chain management [42,
24], and neural network training [119]. Further, [11] studied optimization via biased stochastic
oracles, developing algorithms with Õ(ϵ−2) or Õ(ϵ−3) iteration complexity, depending on the
oracle’s stability, and recovering new results for hidden convex problems as an application. Prior to
its adoption in game theory, policy gradient methods in reinforcement learning have leveraged hidden
convexity to establish global convergence guarantees [129, 8], often relying on variance-reduced
estimators or large-batch assumptions. Relatedly, hidden convexity also played a crucial role in
quadratic optimization problems [9, 107], revealing convex-like structures within certain nonconvex
programs.

Turning to min-max optimization, hidden convexity has proven essential for addressing the limitations
of classical algorithms. Vlatakis-Gkaragkounis, Flokas, and Piliouras [114] demonstrated that even
benign-looking hidden zero-sum games can exhibit cyclic behaviors or divergence when trained
via vanilla gradient descent-ascent (GDA). Motivated by such failures, Vlatakis-Gkaragkounis,
Flokas, and Piliouras [115] introduced the formal concept of hidden-convex hidden-concave games,
providing the first convergence guarantees for GDA in nonconvex min-max settings under suitable
structural conditions such as strict or strong hidden convexity. Parallel research on non-monotone
variational inequalities has developed continuous-time flows that exploit hidden convexity-like
structures to ensure global convergence [79]. Extending these ideas, Sakos et al. [99] provided a fully
discrete-time algorithm along with provable guarantees for stability and convergence in hidden convex
games—filling an important gap compared to previous continuous-time results. Moreover, recent work
has investigated preconditioned algorithms for hidden monotone variational inequalities, including
Newton-type approaches [29]. Further discussions [29] have clarified under which conditions both
the latent variable space and the control space can be bounded, while maintaining uniform lower
bounds on the singular values of the players’ Jacobians, a critical requirement for robust convergence
guarantees.

A.2 Simultaneous, Alternating, and Extrapolated Dynamics in Convex–Concave Min-Max
Optimization

Min-max optimization algorithms have a long-standing history, dating back to the original proximal
point methods for variational inequality problems Martinet [74] and Rockafellar [93]. Below we
present some

A.2.1 The classic regime

To set the stage, consider the classical min-max problem of the form minxmaxy f(x, y), a funda-
mental template across optimization and game theory. The most natural extension of gradient descent
to such settings is the gradient descent-ascent (GDA) method [36], which iteratively updates x to
decrease f and y to increase f . GDA comes in two flavors: simultaneous (Sim-GDA), where x and
y are updated in parallel, and alternating (Alt-GDA), where updates occur sequentially.However,
despite its simplicity, even in convex–concave settings, vanilla GDA fails to guarantee convergence. In
basic examples such as the bilinear game minxmaxy xy, Sim-GDA exhibits unbounded divergence,
while Alt-GDA produces bounded but non-convergent iterates that circulate indefinitely [7, 49, 50,
128].

These deficiencies have led to the development of refined algorithms designed to stabilize min-max
dynamics, including Extra-Gradient methods [64], Optimistic Gradient Descent [91], and negative
momentum variants [50]. Many of these methods achieve accelerated rates compared to plain GDA,
particularly under smoothness and convexity assumptions. Nevertheless, the bulk of this literature
focuses predominantly on Sim-GDA-type algorithms, largely due to their analytical tractability.
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Yet, in many real-world machine learning applications, particularly adversarial training scenarios like
GANs, alternating updates more naturally model the dynamics: the generator and discriminator adjust
sequentially based on each other’s output. Empirical studies [51, 76] suggest that Alt-GDA often
converges faster than Sim-GDA. Despite these observations, the theoretical foundations explaining
the advantages of alternation remain relatively underdeveloped. A notable advancement toward
understanding this phenomenon was provided by Zhang et al. [128], who analyzed local convergence
rates under strong convexity–concavity (SCSC) and smoothness assumptions. Their results show
that, locally, Alt-GDA achieves iteration complexity Õ(κ) compared to the slower Õ(κ2) of Sim-
GDA, where κ = L/µ denotes the condition number. Nonetheless, these results are limited to local
convergence—i.e., after the iterates are already sufficiently close to a saddle point—and do not
capture the full global behavior. More recently, further refinements have been developed combining
extrapolation techniques with alternation to achieve nearly optimal condition number dependence
[66].

A.2.2 The PŁ-Regime and Nonconvex Min-Max Problems

Research has also intensified on extending convergence guarantees beyond convex–concave settings
to nonconvex–nonconcave games [105, 21, 92, 109, 68, 1]. The majority of these early works often
focused on settings where the objective is nonconvex in x but concave in y, and proposed algorithms
that either solve inner maximizations exactly or rely on strong assumptions (e.g., Minty Variational
Inequalities [68]). Others, such as Abernethy, Lai, and Wibisono [1], introduced Hamiltonian-type
methods for nearly bilinear problems but relied on second-order information. Recently, Nouiehed et al.
[84] studied a class of minimax problems where the objective only satisfies a one-sided PŁ-condition
and introduced the GDmax algorithm, which takes multiple ascent steps at every iteration. However
in our case (i) we consider the two-sided PŁ-condition which guarantees global convergence; (ii) we
consider AltGDA which takes one ascent step at every iteration. Another closely related work is [18]
The authors considered a specific application in generative adversarial imitation learning with linear
quadratic regulator dynamics. This is a special example that falls under the two-sided PŁ-condition.

In contrast, a major breakthrough in capturing global convergence via first-order methods
was provided by Yang, Kiyavash, and He [124]. They introduced the concept of two-sided
Polyak–Łojasiewicz (PŁ) inequalities for nonconvex–nonconcave min-max games, showing that
alternating GDA (AltGDA) converges globally at a linear rate under this structure. Furthermore,
they designed a variance-reduced stochastic AltGDA method for finite-sum objectives, achieving
faster convergence. Building on this, subsequent works have refined the framework: Xu et al. [122]
proposed a zeroth-order variant, Liu et al. [71] analyzed randomized stochastic accelerations, and
Chen, Yao, and Luo [20] integrated Spider techniques to improve stochastic convergence rates under
PŁ-conditions. Extensions to more adaptive and multi-step alternating schemes were explored by
Kuruzov et al. [65], aiming to further optimize the dynamics in hidden convex-concave games. At
the same time [124] presented a case where simultaneous GDA will diverge from the equilibrium
while AltGDA converges to the equilibrium.

A.3 Overparameterization in Learning Dynamics: From Minimization to Games

A.3.1 Minimizing training loss

The phenomenon of overparameterization—where neural networks possess far more parameters
than the apparent complexity of the target function—has profoundly influenced the theoretical
understanding of modern machine learning. Early works rigorously explored how, despite the
non-convexity of the training landscape, overparameterization enables gradient-based methods
to converge to global optima [98, 38, 3]. Notably, these studies typically required substantial
overparameterization, often polynomial in the size of the training data or model complexity. However,
empirical observations [72, 97] suggest that even modest increases in network width—sometimes
adding just a few neurons—can suffice for successful training, motivating a closer study of mild
overparameterization.

A pivotal theoretical lens for understanding this success is the Neural Tangent Kernel (NTK) frame-
work [57]. In the infinite-width limit, training dynamics linearize, and gradient descent effectively
follows a kernelized gradient flow determined by the NTK, which remains nearly constant throughout
training. Thus, convergence can be ensured if the NTK is well-conditioned—specifically, if its
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minimum eigenvalue remains bounded away from zero. At finite but large widths, convergence
analyses typically require proving two properties: (i) the NTK is well-conditioned at initialization,
and (ii) it remains stable during training [85, 27, 13].

Recent works have sharpened the quantitative understanding of this regime. For instance, Song et al.
[106] demonstrated that a network width of approximately Õ(n3/2) suffices for global convergence
at linear rates, improving previous state-of-the-art requirements. In parallel, studies such as [13]
established NTK lower bounds that allow optimization with as few as Ω(

√
n) neurons, bridging

optimization and memorization capabilities. Yet, most of these developments operate within mini-
mization frameworks—either fitting labels or adversarially robust losses [17]. The transition from
minimization to games (e.g., adversarial training, multi-agent learning) brings new challenges.

A.3.2 Adversarial Losses and MARL

In adversarial learning, recent works have analyzed overparameterized adversarial training primarily
from a minimization perspective, focusing on robustness against worst-case perturbations rather than
strategic interactions between agents [132, 45, 25]. While robust losses (and closer to our setting)
induce non-convexity, the optimization target remains a minimizer rather than a saddle point.

In multi-agent and game-theoretic settings, the literature is comparatively sparser. Policy approx-
imation in multi-agent reinforcement learning (MARL) typically relies on either tabular or linear
architectures [118, 108], and extending sample-efficient learning to rich function classes like neural
networks remains a frontier. A notable contribution in this direction is the work of Jin, Liu, and Yu
[58], which introduced the Multi-Agent Bellman Eluder (BE) dimension as a complexity measure for
MARL, enabling sample-efficient learning of Nash equilibria in high-dimensional spaces. In the con-
text of Markov Games, Li et al. [67] studied Nash equilibria computation using kernel-based function
approximation, highlighting the difficulties of exploration and generalization in high-dimensional,
non-convex settings.

Despite these advances, a comprehensive theory connecting overparameterization, NTK stability, and
global convergence in multi-agent games remains largely undeveloped. Key questions include:

• How does overparameterization affects the conditioning of multi-agent dynamics?
• whether can alternating optimization (as opposed to simultaneous updates) exploit NTK-like

stability, and how regularization or architectural choices influence convergence in strategic
environments?

Our work contributes to this growing effort by combining insights from the large-scale network
mapppings perspective with recent advances in hidden convexity and PL conditions for noncon-
vex–nonconcave optimization. In particular, we highlight that under mild overparameterization,
even strategic interactions—modeled via hidden convex–concave games—admit global convergence
guarantees with simple gradient-based methods, provided the trajectory stays within a controlled
neighborhood of initialization where the Jacobians remain well-conditioned.

A.4 Some Empirical Studies Demonstrating Need of Larger Neural Networks for Zero-Sum
Games

Since our work pertains to estimating the amount of overparameterization needed in neural networks
for solving various zero-sum games, we highlight some of the works in various applied min-max
contexts – adversarial training, GANs, DRO, and neural agents – which show that larger, overparam-
eterized neural networks lead to improved convergence and performance. For instance, in case of
adversarial training, Addepalli et al. [2] show improved robustness and performance in adversarial
training with larger models. A few other works [61, 14, 100] empirically demonstrate how using
larger architectures in GANs improve the training stability, and the quality and variation of generated
images. In the realm of LLM Language agents, Karten, Nguyen, and Jin [62] show improved
performance using GPT-4.0 as opposed to smaller LLMs. In the case of DRO, Pham et al. [88] show
that bigger neural networks may yield better worst-group generalization.

While our main results (Theorem 3.8) concerning neural games may largely be seen to be of theoretical
interest without an empirical component attached to it, we refer interested readers to Appendix C for
experimental validity of our main results concerning the input games (Theorem 3.5).
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B Examples/Applications based on hidden min-max games

In the following, we present a series of examples illustrating instances of hidden convex–concave
min-max optimization in neural network-based settings. We distinguish between two main types of
problems:

• Problems where the optimization is performed over the parameters of the neural networks,
given a fixed dataset (training over network weights).

• Problems where the network parameters are fixed (randomly initialized), and the optimiza-
tion is performed over the input space (input-optimization games).

B.1 Neural Min-Max Games

We begin by illustrating two canonical examples of input-optimization games that naturally fall within
the hidden convex–concave min-max framework. Both examples demonstrate settings where neural
network mappings induce structured, but hidden, convexity and concavity, which can be exploited for
provable convergence.
Example B.1 (Generative Adversarial Networks (GANs)). A Generative Adversarial Network
(GAN) formulates a two-player minimax game where the generator Gθ seeks to produce samples that
resemble a reference distribution pdata, while the discriminator Dϕ attempts to distinguish generated
samples from real data. The corresponding min-max problem reads:

min
θ

max
ϕ

Ψ(θ, ϕ) := Ex∼pdata [logDϕ(x)] + Ex∼pθ [log(1−Dϕ(x))] .

Assuming that both pdata and pθ admit densities and that the support of pθ lies within the support
of pdata, one can reformulate the problem via a latent convex–concave structure. The min-max
formulation arises naturally as the generator seeks to minimize the ability of the discriminator to
distinguish real from fake samples, while the discriminator simultaneously maximizes its classification
performance, thus modeling an adversarial dynamic between two competing objectives. Specifically,
considering a distribution p(x, x′) that samples either a real or generated point, the loss can be
decomposed as:

Lx,x′(p′, D) := logD(x) +
p′(x′)

pdata(x′)
log(1−D(x′)),

which is jointly convex in p′ and concave in D. Consequently,

Ψ(θ, ϕ) = E(x,x′)∼p [Lx,x′(pθ(x), Dϕ(x
′))] ,

exhibiting the GAN training objective as a hidden convex–concave game.
Example B.2 (Domain-Invariant Representation Learning (DIRL)). Domain adaptation aims to train
models that generalize across different domains, despite distribution shifts between training (source)
and deployment (target) environments. A popular approach [44] involves learning representations
that are: (i) predictive of labels in the source domain, and (ii) invariant to the domain classifier
distinguishing source versus target samples. This leads to the following min-max problem:

min
θf ,θg

max
θf′

E(x,y)∼Psource

[
ℓ(fθf (gθg (x)), y)

]
− λE(x,y′)∼Pmix

[
ℓ(f ′θf′ (gθg (x)), y

′)
]
,

where: (i) gθg is the feature extractor, (ii) fθf is the label predictor, (iii) f ′θf′ is the domain classifier,
(iv) ℓ denotes the classification loss, and (v) Psource, Pmix are the source and mixed domain distribu-
tions, respectively. When the loss function is convex with respect to the neural mappings, the hidden
convex–concave structure becomes apparent, fitting naturally into our theoretical framework.
Example B.3 (Robust Adversarial Reinforcement Learning (RARL)). One of the major challenges
in reinforcement learning (RL) is the difficulty of training agents under realistic conditions, often
due to costly data collection or limited availability of real-world environments. To address these
challenges, Pinto et al. [89] proposed an adversarial training framework wherein a learner agent and
an adversary play against each other by solving the following min-max optimization problem:

min
θ1

max
θ2

Es0∼ρ, a1∼µθ1 (s), a2∼νθ2 (s)

[
T−1∑
t=0

r1(st, a
1
t , a

2
t )

]
,
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where: (i) µθ1 is the learner’s policy network, (ii) νθ2 is the adversary’s policy network, (iii) r1
denotes the reward function, and (iv) ρ is the initial state distribution.

In this setup, the learner seeks to maximize its expected reward, while the adversary perturbs the
environment or dynamics to minimize the learner’s performance. Such adversarial modeling captures
different sources of uncertainty: either unknown variations in the underlying Markov Decision
Process (MDP), or deliberate adversarial attacks aiming to degrade the policy (e.g., disturbances
in robotic control tasks or adversarial inputs in sensor-based systems). Hidden convex–concave
structures can naturally arise when suitable regularizations or smooth policy parameterizations are
enforced.

Example B.4 (Adversarial Example Generation (AEG)). In an Adversarial Example Generation
(AEG) setting, the goal is to generate adversarial perturbations that cause misclassification by a fixed
classifier fϕ. Formally, given clean samples (x, y) ∼ pdata, a perturbation generator Gθ seeks to find
an adversarial input x′ satisfying a distortion constraint (e.g., ∥x− x′∥∞ ≤ ϵ) that maximizes the
classification loss. The underlying min-max optimization is:

min
ϕ

max
θ

Ψ(θ, ϕ) := −E(x′,y)∼pθ [ℓ(fϕ(x
′), y)] ,

where ℓ denotes the cross-entropy loss. Here, the generator (adversary) maximizes the classification
loss while the classifier seeks to minimize it. Under appropriate conditions on the neural network
mappings and smoothness of the loss, the adversarial game admits a hidden convex–concave structure
that can be exploited for convergence analysis.

B.2 Distributionally Robust Optimization

In many machine learning applications, models are trained under the assumption that data is drawn
from a fixed but unknown distribution. However, real-world deployment often leads to distribution
shifts (e.g., label noise, adversarial perturbations, or changing environments), which can severely
degrade performance. A principled way to address this issue is through Distributionally Robust
Optimization (DRO) [77, 123], where the model is trained to perform well against the worst-case
distribution within a prescribed uncertainty set. The corresponding min-max optimization problem
reads:

θ∗DRO ∈ argmin
θ

max
P∈P

E(x,y)∼P [ℓ(hθ(x), y)] ,

where: (i) hθ is the predictive model parameterized by θ, (ii) ℓ is a loss function (e.g., cross-entropy),
(iii) P is an uncertainty set containing distributions representing expected perturbations. Hidden
convexity can emerge when ℓ is convex in the model outputs and the uncertainty set P is suitably
structured.

Example B.5 (Parametric Distributionally Robust Optimization (Parametric-DRO)). While classical
DRO assumes that the uncertainty set P is specified manually, identifying an appropriate P is often
challenging, especially at large deployment scales. To overcome this, Michel, Hashimoto, and Neubig
[77] proposed modeling the worst-case distribution using a parameterized generative model qψ .

The resulting parametric DRO problem reads:

min
θ

max
ψ:KL(qψ∥qψ0

)≤κ
E(x,y)∼p

[
qψ(x, y)

qψ0
(x, y)

ℓ(hθ(x), y)

]
,

where: (i) hθ is the predictor network, (ii) qψ models the perturbed distribution, (iii) qψ0
approximates

the empirical distribution via maximum likelihood, (iv) κ controls the size of the KL-divergence ball
around qψ0

. This formulation transforms the DRO problem into a min-max optimization between
the model parameters θ and the perturbation parameters ψ, both parameterized via neural networks,
fitting naturally into the hidden convex–concave framework under appropriate regularization. Observe
that by Pinsker’s inequality we get that KL-divergence over ℓ1-norm.

B.3 Input-Optimization Min-Max Games

A recurring structure in adversarial and robust optimization tasks involves optimizing over input
spaces rather than model parameters. Based on Wang et al. [117] we describe three prominent
examples of such input-optimization games below:
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Example B.6 (Ensemble Attack over Multiple Models). GivenK machine learning models {Mi}Ki=1,
the goal is to find a universal perturbation δ that simultaneously fools all models. The corresponding
input-optimization game reads:

min
δ∈X

max
w∈P

K∑
i=1

wif(δ;x0, y0,Mi)−
γ

2
∥w − 1/K∥22,

where w encodes the relative difficulty of attacking each model, and γ is a regularization parameter.
Example B.7 (Universal Perturbation over Multiple Examples). Here, given a set of examples
{(xi, yi)}Ki=1, the objective is to find a perturbation δ that simultaneously fools all of them. The
optimization problem becomes:

min
δ∈X

max
w∈P

K∑
i=1

wif(δ;xi, yi,M)− γ

2
∥w − 1/K∥22.

This mirrors the ensemble attack setup, but focuses on perturbing multiple inputs under a fixed model
M.
Example B.8 (Adversarial Attack over Data Transformations). Consider robustness against transfor-
mations (e.g., rotations, translations) applied to the inputs. Given categories of transformations {pi},
the optimization reads:

min
δ∈X

max
w∈P

K∑
i=1

wiEt∼pi [f(t(x0 + δ); y0,M)]− γ

2
∥w − 1/K∥22,

where t denotes a random transformation sampled from pi. When w = 1/K, this recovers the
expectation-over-transformation (EOT) setup.

Observe that under a convex loss function f with respect to the neural mappingM(x0 + δ) (i.e.,
hidden convexity in δ), and given that w appears linearly in both the bilinear coupling and the
individual regularization term of separable framework of Section 1.1, the structure fits naturally
within our hidden convex–concave framework. Albeit a careful reader might observe that our main
results are stated for unconstrained min-max optimization, there are two standard ways to extend our
analysis to constrained settings:

• First, by employing the two-proximal-PL framework developed in Kalogiannis et al.
[60]—an improvement over the earlier formulation of Yang, Kiyavash, and He [124]—our
convergence guarantees naturally generalize to simple constraint sets, such as ℓ2-balls for
perturbations δ and simplices for the mixture weights w.

• Alternatively, the constraints can be incorporated directly into the objective through suit-
able Lagrangian penalty terms, thereby reducing the constrained min-max problem to an
unconstrained form amenable to our techniques.

Unified Perspective. Across these examples, input-optimization problems naturally exhibit a saddle-
point structure, blending adversarial robustness objectives with min-max optimization techniques.
They provide concrete and practically motivated instances where hidden convexity can be exploited
to ensure convergence guarantees for training and robustness analysis.
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C Demonstrating Empirical Validity of Main Result for Input Games

We consider a hidden game of Rock-Paper-Scissors where two 1-hidden layer neural networks (GeLU
activations) are playing the game of the Rock-Paper-Scissors. We will see here (empirically) that, if
we use random Gaussian initializations for both the neural network players as described in Theorem
3.5 to define our input game of Rock-Paper-Scissors, and if we use AltGDA for finding min-max
optimal strategies for both these neural network players, then the players indeed reach the ε-Nash
equilibrium. In particular, both the neural network players control 5-dimensional vectors θ, ϕ ∈ R5

and output a latent strategy that lies in the 2-dimensional simplex, ∆2. Both the players are optimizing
the regularized bilinear bilinear objective:

L(θ, ϕ) = F (θ)⊤AG(ϕ) + ε/2∥F (θ)− 1/3(1, 1, 1)⊤∥22 − ε/2∥G(ϕ)− 1/3(1, 1, 1)⊤∥22
where (1/3, 1/3, 1/3)⊤ indicates the (unique) ε-mixed strategy Nash equilibrium for both the players

and A = 10 ·

(
0 −1 1
1 0 −1
−1 1 0

)
is the payoff matrix8 for the Rock-Paper-Scissor game.

Since the actual strategies of the two neural network players (θ, ϕ) lie in R5, we can’t visualize those.
However, we can visualize their strategies in the latent space, i.e., in the 2-dimensional simplex
instead. Figure 2 below illustrates the AltGDA trajectories for both the players (step-size = 0.01,
ε = 1, maximum number of steps = 100, 000). As we can see, both the trajectories converge to the
ε-Nash equilibrium of the hidden game.

Figure 2: A trajectory of AltGDA in an ℓ2-regularized hidden game of Rock-Paper-Scissors. These
trajectories correspond to each player’s strategies in the latent space (2-dimensional simplex).

8A scaling factor of 10 was used in the payoff matrix to ensure that the gradients are not too small for the
AltGDA updates.
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D Controlling the Gradient Growth: Bounds and Examples for Different
Loss Functions

Controlling the gradient growth is critical for non-asymptotic overparameterization bounds, as it
ensures that iterates remain within regions where hidden convexity persists. Below, we provide a
detailed discussion about this bound for some commonly-used loss functions.

• Mean-Squared Error (MSE) Loss: One of the most commonly used losses and is suitable
for regression tasks. For a given labelled data point (x, y) where x ∈ X and y ∈ Y , if the
predictor function parameterized by parameters θ is defined as h := h(x; θ), we see that the
MSE loss can be defined as:

ℓ(y, h) =
1

2
∥y − h∥22 (11)

=⇒ ∇hℓ(y, h) = h− y (12)
=⇒ ∥∇hℓ(y, h)∥ ≤ ∥h∥+ ∥y∥ (13)

≤ ∥h∥+ diam(Y) (14)
=⇒ ∥∇hℓ(y, h)∥ ≤ A1∥h∥+A2diam(Y) +A3 (15)

where A1 = A2 = 1 and A3 = 0. More generally, if we had ℓ(y, h) = µ
2 ∥y − h∥

2
2, we

would get A3 = 0 and A1 = A2 = µ where µ is also the hidden-strong convexity modulus.
• Logistic Loss: Commonly used in binary classification, where y ∈ {0, 1}, and the prediction
h = h(x; θ) ∈ R is passed through the sigmoid function. The logistic loss is defined as:

ℓ(y, h) = −y log σ(h)− (1− y) log(1− σ(h)), where σ(h) =
1

1 + e−h
(16)

∇hℓ(y, h) = σ(h)− y (17)
⇒ ∥∇hℓ(y, h)∥ ≤ 1 (18)

Since the gradient is always in the interval [−1, 1], we can take A1 = 0, A2 = 0, A3 = 1.
The logistic loss is strongly convex over compact domains or when regularized.

• Squared Hinge Loss: Used in support vector machines (SVMs) with a margin-based
formulation. For y ∈ {−1, 1} and prediction h = h(x; θ) ∈ R:

ℓ(y, h) =
1

2
max(0, 1− yh)2 (19)

∇hℓ(y, h) =
{
−y(1− yh), if yh < 1

0, otherwise
(20)

⇒ ∥∇hℓ(y, h)∥ ≤ 2|y||h|+ 1 ≤ 2∥h∥+ diam(Y) (21)

Thus, we can choose constants A1 = 2, A2 = 1, A3 = 0. Note: the hidden strong convexity
applies within the active region yh < 1, and a regularization term often ensures global
strong convexity.

• Cross-Entropy with ℓ2-regularization: For multi-class classification with softmax outputs
h ∈ RK , target y ∈ ∆K−1 (probability simplex):

ℓ(y, h) = −
K∑
k=1

yk log

(
ehk∑K
j=1 e

hj

)
+
λ

2
∥h∥2 (22)

∇hℓ(y, h) = softmax(h)− y + λh (23)
⇒ ∥∇hℓ(y, h)∥ ≤ ∥softmax(h)− y∥+ λ∥h∥ ≤ 2 + λ∥h∥ (24)

So the gradient norm is bounded by A1 = λ,A2 = 0, A3 = 2. The ℓ2 term ensures strong
convexity with modulus λ.
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E Proofs about two-sided PŁ & AltGDA

We begin by recalling the definitions of unconstrained continuous min-max optimality conditions of
problem:

min
θ

max
ϕ
L(θ, ϕ)

Definition E.1 (Global Optima). We define three equivalent notions of optimality:

1. (θ∗, ϕ∗) is a global minimax, if for any (θ, ϕ): L(θ∗, ϕ) ≤ L(θ∗, ϕ∗) ≤ maxϕ′ L(θ, ϕ′)

2. (θ∗, ϕ∗) is a saddle point, if for any (θ, ϕ): L(θ∗, y) ≤ L(θ∗, ϕ∗) ≤ L(x, ϕ∗)

3. (θ∗, ϕ∗) is a stationary point, if for any (θ, ϕ): ∇θL(θ∗, ϕ∗) = ∇ϕL(θ∗, ϕ∗) = 0.

Thanks to gradient dominance of PŁ conditions, it is possible to prove the equivalence of
these notions under two-sided PŁ condition. Observe that this reduction is crucial since
gradient-based methods provide safely just a stationary point while the other two notions are
global and non-trivially verifiable.

Lemma E.2 (Lemma 2.1 in [124], Appendix C in [60]). If the objective function L satisfies the
two-sided PŁ condition, then all three notions in Definition E.1 are equivalent:

ϵ− (Saddle Point) ⇐⇒ ϵ− (Global Min-Max) ⇐⇒ ϵ− (Stationary Point) ∀ϵ ≥ 0

Before we present the following lemma, we provide some intuition: This result characterizes
the behavior of the optimization trajectory under hidden convex–concave structure, establish-
ing a critical link between parameter dynamics and convergence guarantees. The lemma will
formalize how small distortions in the hidden geometry impact the optimization path based
on parameters α, c.

Lemma 3.2 (Theorem 3.2 in [124]). Suppose the min-max objective function L(θ, ϕ) is L∇L-smooth

and satisfies the two-sided PŁ-condition with (µθ, µϕ). Then if we run AltGDA with ηθ =
µ2
ϕ

18L3
∇L

and ηϕ = 1
L∇L

, then ∥θt+1 − θt∥+ ∥ϕt+1 − ϕt∥ ≤
√
αct/2

√
P0 where constants α and c ∈ (0, 1)

depend only on L∇L, µθ, µϕ and P0 is the Lyapunov potential at time t = 0. (Please refer to Remark
E.5 for the exact expressions for α and c.)

In most existing works on nonconvex–nonconcave optimization, smoothness is typically
defined directly with respect to the optimization parameters. However, given our focus on a
fine-grained analysis of neural min–max games, it is equally important to provide a similarly
fine-grained treatment of upper bounds involving the geometry of the neural maps.

Although a neural network is, in practice, a highly smooth function, global Lipschitz continu-
ity is incompatible with strong convexity in unconstrained domains. Nonetheless, within a
bounded region—such as the ball of radius R where our iterates remain—local Lipschitz-
ness can be rigorously characterized. The following lemma formalizes this bounds for both
maximizer & minimizer neural network:

Lemma E.3 (Local-Lipschitzness for smooth loss function). Let Fθ and Gϕ be neural network
mappings such that they are βF and βG smooth as defined in Definition 2.3. Now let (θ0, ϕ0)
be such that Jacobian singular values for both the networks are strictly positive and bounded
from above and below, µ(F )

Jac ≤ σ(∇θFθ0) ≤ ν
(F )
Jac and µ(G)

Jac ≤ σ(∇ϕGϕ0) ≤ ν
(G)
Jac . Suppose the

stationary point for min-max objective L(Fθ, Gϕ) as defined in Assumption 2.1 also lies in the ball,
(θ∗, ϕ∗) ∈ B((θ0, ϕ0), R). Then there exists an R > 0 such that ∀(θ, ϕ) ∈ B((θ0, ϕ0), R), we have

max
ϕ∈B(ϕ0,R)

∥∇GϕL(Fθ, Gϕ)∥, max
θ∈B(θ0,R)

∥∇FθL(Fθ, Gϕ)∥ ≤ Lact
L (25)

where we denote the upper bound as an ‘active’ Lipschitz constant Lact
L :

Lact
L = 4.5L∇LRmax{ν(F )

Jac , ν
(G)
Jac } (26)
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Proof. Using Lemma 1 of Song et al. [106] as discussed in Section 3, if we choose R = µJac
2β , where

µJac := max
{
µ
(F )
Jac , µ

(G)
Jac

}
and β := min {βF , βG}, then we see that for ∀(θ, ϕ) ∈ B((θ0, ϕ0), R),

we have
µ
(F )
Jac

2
≤ σmin(∇θFθ) ≤ σmax(∇θFθ) ≤

3ν
(F )
Jac

2

µ
(G)
Jac

2
≤ σmin(∇ϕGϕ) ≤ σmax(∇ϕGϕ) ≤

3ν
(G)
Jac

2
And by Lemma 4 (Appendix C) of Song et al. [106], we see that both the mapping Fθ and Gϕ are
Lipschitz-continuous in the ball B((θ0, ϕ0), R). That is, ∀(θ, ϕ), (θ′, ϕ′) ∈ B((θ0, ϕ0), R), we have
the following:

∥Fθ − Fθ′∥ ≤
3ν

(F )
Jac

2
∥θ − θ′∥ (27)

∥Gϕ −Gϕ′∥ ≤ 3ν
(G)
Jac

2
∥ϕ− ϕ′∥ (28)

where σmax(∇θFθ0) ≤ ν
(F )
Jac and σmax(∇ϕGϕ0

) ≤ ν(G)
Jac .

Without loss of generality, we prove for the case of Fθ mapping as the same argument works for the
Gϕ mapping as well. We can observe the following for any (θ, ϕ) ∈ B((θ0, ϕ0), R):
max

θ∈B(θ0,R)
∥∇FθL(Fθ, Gϕ)| ≤ ∥∇FθL(Fθ0 , Gϕ)∥+ max

θ′∈B(θ0,R)
∥∇FθL(Fθ′ , Gϕ)−∇FθL(Fθ0 , Gϕ)∥

≤ ∥∇FθL(Fθ0 , Gϕ)∥+ L∇L · max
θ′∈B(θ0,R)

∥Fθ′ − Fθ0∥

≤ ∥∇FθL(Fθ0 , Gϕ)∥+
3L∇Lν

(F )
Jac

2
max

θ′∈B(θ0,R)
∥θ0 − θ′∥

(∵ By Eq.(27))

≤ ∥∇FθL(Fθ0 , Gϕ)∥+
3L∇Lν

(F )
Jac R

2

= ∥∇FθL(Fθ0 , Gϕ)−∇FθL(Fθ∗ , Gϕ∗)︸ ︷︷ ︸
=0

∥+ 3L∇Lν
(F )
Jac R

2
(29)

where the last equality holds true because (θ∗, ϕ∗) is a stationary point for the min-max objective
L(Fθ, Gϕ) and the Jacobian for F is non-singular as (θ∗, ϕ∗) ∈ B((θ0, ϕ0), R) by assumption. That
is,

0 = ∇θL(Fθ∗ , Gϕ∗) = (∇θFθ∗)⊤∇FθL(Fθ0 , Gϕ) (30)

=⇒ 0 = ∥(∇θFθ∗)⊤∇FθL(Fθ∗ , Gϕ∗)∥ = ∥(∇θFθ∗)⊤∥∥∇FθL(Fθ∗ , Gϕ∗)∥ (31)
=⇒ 0 = ∇FθL(Fθ∗ , Gϕ∗) (∵ ∇θFθ∗ non-singular) (32)

Thus, continuing from Equation (29), we have that that for any (θ, ϕ) ∈ B((θ0, ϕ0), R):

max
θ∈B(θ0,R)

∥∇FθL(Fθ, Gϕ)∥ ≤ ∥∇FθL(Fθ0 , Gϕ)−∇FθL(Fθ∗ , Gϕ∗)∥+ 3L∇Lν
(F )
Jac R

2

≤ L∇L(∥Fθ0 − Fθ∗∥+ ∥Gϕ0 −Gϕ∗∥) + 3L∇Lν
(F )
Jac R

2
(∵ L is L∇L-smooth) (33)

≤ 3L∇Lν
(F )
Jac

2
∥θ0 − θ∗∥+

3L∇Lν
(G)
Jac

2
∥ϕ0 − ϕ∗∥+

3L∇Lν
(F )
Jac R

2
(∵ By Equations (27), (28)) (34)

≤ 3L∇L max{ν(F )
Jac , ν

(G)
Jac }R+

3L∇L max{ν(F )
Jac , ν

(G)
Jac }R

2

= 4.5L∇L max{ν(F )
Jac , ν

(G)
Jac }R (35)
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To establish convergence guarantees under hidden convex–concave structure, it is essential to
demonstrate that sufficient overparameterization yields a favorable initialization. Specifically,
we show that: (i) the initialization lies close to a saddle point (in terms of gradient norm),
and (ii) the optimization path remains within a region where the neural Jacobians have
well-conditioned singular spectra. The latter will be ensured via a path length argument.

The following lemma provides a key component in this direction: it connects the initial
value of the Lyapunov potential used in AltGDA (a weighted version of the Nash gap) to
the gradient norms of both neural players. In subsequent lemmas, we will show that with
high probability, and under sufficient width, this leads to the iterates remaining inside a
well-conditioned-Jacobians’ manifold that preserves PŁ-condition throughout training.

Lemma E.4 (Upper Bound on Initial Potential P0; Lemma 3.3 in Main Text). Let Fθ and Gϕ be
neural network mappings such that they are βF and βG smooth as defined in Definition 2.3. Now
let (θ0, ϕ0) be such that Jacobian singular values for both the networks are strictly positive and
bounded from above and below, µ(F )

Jac ≤ σ(∇θFθ0) ≤ ν
(F )
Jac and µ(G)

Jac ≤ σ(∇ϕGϕ0
) ≤ ν(G)

Jac . Suppose
the min-max objective L(θ, ϕ) is (µθ, µϕ)-HSCSC. Then the initial Lyapunov potential P0 can be
bounded from above as:

P0 ≤ ∥(∇FθL(Fθ0 , Gϕ0
))

⊤∥ · ν(F )
Jac ·

1

µθ(µ
(F )
Jac )

2
· ∥∇θL(θ0, ϕ0)∥

+ ∥(∇FθL(Fθ0 , Gϕ0
))

⊤∥ · βF
1

2µ2
θ(µ

(F )
Jac )

4
· ∥∇θL(θ0, ϕ0)∥2 (36)

+ (1 + λ) · ∥
(
∇GϕL(Fθ0 , Gϕ0

)
)⊤∥ · ν(G)

Jac ·
1

µϕ(µ
(G)
Jac )

2
· ∥∇ϕL(θ0, ϕ0)∥

+ (1 + λ) · ∥
(
∇GϕL(Fθ0 , Gϕ0

)
)⊤∥ · βG 1

2µ2
ϕ(µ

(G)
Jac )

4
· ∥∇ϕL(θ0, ϕ0)∥2

Proof. Using Lemma 1 of Song et al. [106] as discussed in Section 3, if we choose R = µJac
2β , where

µJac := max
{
µ
(F )
Jac , µ

(G)
Jac

}
and β := min {βF , βG}, then we see that for ∀(θ, ϕ) ∈ B((θ0, ϕ0), R),

we have
µ
(F )
Jac

2
≤ σmin(∇θFθ) ≤ σmax(∇θFθ) ≤

3ν
(F )
Jac

2

µ
(G)
Jac

2
≤ σmin(∇ϕGϕ) ≤ σmax(∇ϕGϕ) ≤

3ν
(G)
Jac

2
And by Lemma 4 (Appendix C) of Song et al. [106], we see that both the mapping Fθ and Gϕ are
Lipschitz-continuous in the ball B((θ0, ϕ0), R). That is, ∀(θ, ϕ), (θ′, ϕ′) ∈ B((θ0, ϕ0), R), we have
the following:

∥Fθ − Fθ′∥ ≤
3ν

(F )
Jac

2
∥θ − θ′∥ (37)

∥Gϕ −Gϕ′∥ ≤ 3ν
(G)
Jac

2
∥ϕ− ϕ′∥ (38)

where σmax(∇θFθ0) ≤ ν
(F )
Jac and σmax(∇ϕGϕ0) ≤ ν

(G)
Jac .

Since L is (µθ, µϕ)-HSCSC, it satisfies 2-sided PŁ-condition with PŁ-moduli as per Fact 2.6. Thus,
we can obtain the following bound for W0:

W0 = L(θ0, ϕ∗(θ0))− L(θ0, ϕ0) (39)

≤
(
∇GϕL(Fθ0 , Gϕ0)

)⊤ (
Gϕ∗(θ0) −G(ϕ0)

)
(∵ hidden concavity) (40)

≤ ∥
(
∇GϕL(Fθ0 , Gϕ0

)
)⊤∥ · ∥Gϕ∗(θ0) −Gϕ0

∥ (41)

≤ ∥
(
∇GϕL(Fθ0 , Gϕ0)

)⊤∥ · (∥∇ϕGϕ0∥∥ϕ∗(θ0)− ϕ0∥+
βG
2
∥ϕ∗(θ0)− ϕ0∥2

)
(42)
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(∵ Gϕ is βG-smooth)

≤ ∥
(
∇GϕL(Fθ0 , Gϕ0

)
)⊤∥ · (ν(G)

Jac · ∥ϕ
∗(θ0)− ϕ0∥+

βG
2
∥ϕ∗(θ0)− ϕ0∥2

)
(43)

(∵ σ(∇θFθ0) ≤ ν
(F )
Jac )

≤ ∥
(
∇GϕL(Fθ0 , Gϕ0)

)⊤∥ · (ν(G)
Jac ·

√
2

µϕ(µ
(G)
Jac )2

·
√
L(θ0, ϕ∗(θ0))− L(θ0, ϕ0)

+
βG

µϕ(µ
(G)
Jac )2

(L(θ0, ϕ∗(θ0))− L(θ0, ϕ0))
)

(44)

(∵ quadratic growth condition and Fact 2.6)

=⇒ W0 ≤ ∥
(
∇GϕL(Fθ0 , Gϕ0)

)⊤∥ · ν(G)
Jac ·

1

µϕ(µ
(G)
Jac )2

· ∥∇ϕL(θ0, ϕ0)∥

+ ∥
(
∇GϕL(Fθ0 , Gϕ0)

)⊤∥ · βG 1

2µ2
ϕ(µ

(G)
Jac )4

· ∥∇ϕL(θ0, ϕ0)∥2 (45)

(using PŁ-condition and Fact 2.6)

Similarly, for U0, we can say that:

U0 = L(θ0, ϕ∗(θ0))− L(θ∗, ϕ∗) (46)
≤ L(θ0, ϕ∗(θ0))− L(θ∗, ϕ0) (∵ L(θ∗, ϕ) ≤ L(θ∗, ϕ∗) ∀ϕ) (47)
≤ L(θ0, ϕ∗(θ0))− L(θ∗(ϕ0), ϕ0) (∵ L(θ∗, ϕ0) ≥ L(θ∗(ϕ0), ϕ0)) (48)
= L(θ0, ϕ∗(θ0))− L(θ0, ϕ0)︸ ︷︷ ︸

1⃝

+ L(θ0, ϕ0)− L(θ∗(ϕ0), ϕ0)︸ ︷︷ ︸
2⃝

(49)

Noticing that 1⃝ is exactly equal to W0 and following similar arguments we used for W0 to get a
upper bound for 2⃝ but with hidden convexity instead, we obtain the following for U0:

U0 ≤ ∥
(
∇GϕL(Fθ0 , Gϕ0)

)⊤∥ · ν(G)
Jac ·

1

µϕ(µ
(G)
Jac )2

· ∥∇ϕL(θ0, ϕ0)∥

+ ∥
(
∇GϕL(Fθ0 , Gϕ0)

)⊤∥ · βG 1

2µ2
ϕ(µ

(G)
Jac )4

· ∥∇ϕL(θ0, ϕ0)∥2 (50)

+ ∥(∇FθL(Fθ0 , Gϕ0
))

⊤∥ · ν(F )
Jac ·

1

µθ(µ
(F )
Jac )2

· ∥∇θL(θ0, ϕ0)∥

+ ∥(∇FθL(Fθ0 , Gϕ0
))

⊤∥ · βF
1

2µ2
θ(µ

(F )
Jac )4

· ∥∇θL(θ0, ϕ0)∥2

By combining the upper bounds obtained for U0 and W0, we get the following upper bound on the
initial potential P0:

P0 ≤ ∥(∇FθL(Fθ0 , Gϕ0))
⊤∥ · ν(F )

Jac ·
1

µθ(µ
(F )
Jac )2

· ∥∇θL(θ0, ϕ0)∥

+ ∥(∇FθL(Fθ0 , Gϕ0
))

⊤∥ · βF
1

2µ2
θ(µ

(F )
Jac )4

· ∥∇θL(θ0, ϕ0)∥2

+ (1 + λ) · ∥
(
∇GϕL(Fθ0 , Gϕ0

)
)⊤∥ · ν(G)

Jac ·
1

µϕ(µ
(G)
Jac )2

· ∥∇ϕL(θ0, ϕ0)∥

+ (1 + λ) · ∥
(
∇GϕL(Fθ0 , Gϕ0

)
)⊤∥ · βG 1

2µ2
ϕ(µ

(G)
Jac )4

· ∥∇ϕL(θ0, ϕ0)∥2
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Remark E.5 (Path length bound for AltGDA). We know from Lemma 3.2 that the AltGDA path
length satisfies:

ℓ(T ) ≜
T−1∑
t=0

(∥θt+1 − θt∥+ ∥ϕt+1 − ϕt∥) ≤
√
2α1

1−
√
c
·
√
P0 (51)

≤
√
2α

1 +
√
c

1− c
√
P0 <

2
√
2α1

1− c
·
√
P0 (∵ c ∈ (0, 1)) (52)

where α1, L, and c are defined as

α1 =
2(1 + η2ϕL

2
∇L)η

2
θL

2

µθ
+

20(1 + η2ϕL
2
∇L)η

2
θL

2
∇L + 20L2

∇Lη
2
ϕ

µϕ
(53)

L = L∇L +
L2
∇L
µϕ

(54)

c = 1−
µθµ

2
ϕ

36(L∇L)3
(55)

Now, say we define T to be the first time instant when (θT , ϕT ) ̸∈ B((θ0, ϕ0), R) for an appropriate
R > 0. And now, say, we start with appropriate (θ0, ϕ0) such that ℓ(T ) < R. A sufficient condition
to ensure this would be to find (θ0, ϕ0) and a corresponding radius R > 0 such that

2
√
2α1

1− c
√
P0 < R (56)

⇐⇒ α1

(1− c)2
P0 <

R2

8
(57)

⇐⇒

(
1296L6

∇L
µ2
θµ

4
ϕ

· α1

)
· P0 <

R2

8
(58)

Remark E.6 (Simplification of α1 for AltGDA Path Length Bound). For the case of (µθ, µϕ)-
HSCSC and L∇L-smooth (w.r.t. (θ, ϕ)) min-max objective function L and for learning rates ηθ =
cθµ

2
ϕσ

4
min(∇ϕGϕ0 )
18L3

∇L
and ηϕ =

cϕ
L∇L

with 0 < cθ, cϕ ≤ 1, we can simplify α1 defined above in Equation
(53) for AltGDA path length bound as follows:

α1 =
2(1 + η2ϕL

2
∇L)η

2
θL

2

µθσ2
min(∇θFθ0)

+
20(1 + η2ϕL

2
∇L)η

2
θL

2
∇L + 20L2

∇Lη
2
ϕ

µϕσ2
min(∇ϕGϕ0)

(59)

≲
2c2ϕc

2
θµ

2
ϕσ

4
min(∇ϕGϕ0)

(18)2L2
∇Lµθσ

2
min(∇θFθ0)

+
20c2ϕc

2
θµ

3
ϕσ

6
min(∇ϕGϕ0)

182L4
∇L

(60)

In fact, 1296L6
∇L

µ2
θµ

4
ϕ
· α1 simplifies to the following:

1296L6
∇L

µ2
θµ

4
ϕ

· α1 =
8L4

∇Lc
2
θc

2
ϕ

µ3
θµ

2
ϕσ

6
min(∇θFθ0)σ4

min(∇ϕGϕ0
)

+
80c2θc

2
ϕL

2
∇L

µ2
θµϕσ

4
min(∇θFθ0)σ2

min(∇ϕGϕ0
)

(61)

Lemma E.7 (Simplified AltGDA path length bound condition). Consider the premise as defined
in Lemma 3.2 for (µθ, µϕ)-HSCSC and L∇L-smooth min-max objective with learning rates ηθ =
cθµ

2
ϕ/18L

2
∇L and ηϕ = cϕ/L∇L with cθ, cϕ ∈ (0, 1] along with the premise of Lemma E.4. Let T

be the first time instant when (θT , ϕT ) ̸∈ B((θ0, ϕ0), R) for an appropriate R > 0. Then to ensure
(θt, ϕt) ∈ B((θ0, ϕ0), R) ∀t ≤ T as discussed in Remark E.5 (Equation (58)), the following is a
sufficient condition:

∥∇θL(Fθ0 , Gϕ0
)∥+ ∥∇ϕL(Fθ0 , Gϕ0

)∥ ≲ R2

8
(62)
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given that cθ and cϕ are chosen such that:

cθ =

√
1

4 ·Aθ ·Bϕ
and cϕ = 1 (63)

where

Aθ =

(
(1 + ∥∇FθL(Fθ0 , Gϕ0

)∥) ·
(
1 + 8L4

∇Lν
(F )
Jac

)
·

(
1 +

1

µ3
θ(µ

(F )
Jac )

6

)
· (1 + ∥∇θL(Fθ0 , Gϕ0

)∥)

·
(
1 + 80L2

∇Lν
(F )
Jac

)
·

(
1 +

1

µ3
θ(µ

(F )
Jac )

4

)
·
(
1 + 8L4

∇LβF
)
·

(
1 +

1

2µ5
θ(µ

(F )
Jac )

10

)
·
(
1 + 80L2

∇LβF
)

·

(
1 +

1

2µ4
θ(µ

(F )
Jac )

8

)
·

(
1 +

1

µ2
θ(µ

(F )
Jac )

4

)
·

(
1 +

1

2µ3
θ(µ

(F )
Jac )

6

))
and

Bϕ =

((
1 + ∥∇GϕL(Fθ0 , Gϕ0

)∥
)
·

(
1 +

1

µ3
ϕ(µ

(G)
Jac )

6

)
·

(
1 +

1

µϕ(µ
(G)
Jac )

4

)
·

(
1 +

1

µ2
ϕ(µ

(G)
Jac )

4

)

·

(
1 +

1

µϕ(µ
(G)
Jac )

2

)
· (1 + λ) · (1 + ∥∇ϕL(Fθ0 , Gϕ0)∥) ·

(
1 + 80L2

∇Lν
(G)
Jac

)
·
(
1 + 8L4

∇LβG
)

·

(
1 +

1

µ4
ϕ(µ

(G)
Jac )

8

)
·
(
1 + 80L2

∇LβG
)
·

(
1 +

1

µ3
ϕ(µ

(G)
Jac )

8

))

Proof. By choosing cθ and cϕ as specified above and using observations from Remark E.6 (Equation
(61)), a sufficient condition to ensure the iterates never leave as derived in Remark E.5 (Equation
(58)) can be further simplified as follows:(

1296L6
∇L

µ2
θµ

4
ϕ

· α1

)
· P0 <

R2

8

∴

(
8L4

∇Lc
2
θc

2
ϕ

µ3
θµ

2
ϕσ

6
min(∇θFθ0)σ4

min(∇ϕGϕ0)
+

80c2θc
2
ϕL

2
∇L

µ2
θµϕσ

4
min(∇θFθ0)σ2

min(∇ϕGϕ0)

)
· P0 <

R2

8

∴ T1∥∇θL(θ0, ϕ0)∥+ T2∥∇θL(θ0, ϕ0)∥2 + T3∥∇ϕL(θ0, ϕ0)∥+ T4∥∇ϕL(θ0, ϕ0)∥2 <
R2

8

where Tj’s are coefficients of the gradient norms as per Equations (61) and (58). Notice that both T2
and T4 contain c2θ and as per our choice of cθ, c2θ contains 1

1+∥∇θL(Fθ0 ,Gϕ0 )∥
and 1

1+∥∇ϕL(Fθ0 ,Gϕ0 )∥
terms which can help absorb one of the powers of the gradient norms ∥∇θL(Fθ0 , Gϕ0

)∥ or
∥∇ϕL(Fθ0 , Gϕ0

)∥ in terms corresponding to T2 and T4. This will help constructing (as shown
below) a simpler sufficient condition that would require only the norm of the loss’ gradient w.r.t.
parameters θ, ϕ to be small. Furthermore, by construction, cθ ≤ 1/2, cϕ = 1. Therefore, we have
that Ti ≤ 1 ∀i ∈ [4]. Combining all of the above, what we require for ensuring iterates never leave
the ball of radius R is as follows:

∥∇θL(Fθ0 , Gϕ0
)∥+ ∥∇ϕL(Fθ0 , Gϕ0

)∥ ≲ R2

8
(64)

Remark E.8 (Local-smoothness constant). If the iterates (θt, ϕt) ∀t stay within the ball
B((θ0, ϕ0), R), by invoking H.3, we can use the local-Lipschitz constant derived Lemma E.3 along
with the smoothness of the neural network maps (βF , βG) to obtain the exact value of the smoothness
constant for the HSCSC and smooth loss as L∇L = Lact

L max{βF , βG}.
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F Proofs for Input-Optimization Min-Max Games

The following result characterizes the lower and upper bounds on the singular values of the
Jacobian for the case of Input-Optimization Min-Max Games. In particular, we bring out the
dependence of these lower and upper bounds on the size of the hidden layer, d(F )

1 and d(G)
1 ,

and variances for random Gaussian initializations of the neural network layers, {σ(F )
k }k∈[2]

and {σ(G)
k }k∈[2], for both the players F and G. Computing the lower bound on singular

values is important as it’s used in defining the radius around the initial parameters to ensure
the neural network Jacobian remains non-singular within the entire ball. Moreover, these
lower and upper bounds will be helpful in determining a set of sufficient conditions on the
variances for ensuring the AltGDA trajectory reaches the saddle point.

Lemma F.1 (Lemma 3.4 in Main Paper). Consider a neural network F with parameters θ ∈
Rd

(F )
0 defined as F (θ) = W

(F )
2 ψ(W

(F )
1 θ) where W (F )

k ∈ Rd
(F )
k ×d(F )

k−1 (k ∈ {1, 2}), (W (F )
1 )i,j ∼

N (0, (σ
(F )
1 )2) ∀i, j , (W (F )

2 )k,l ∼ N (0, (σ
(F )
2 )2) ∀k, l and ψ is the GeLU activation function with

d
(F )
1 ≥ 256d

(F )
0 , d(F )

1 ≥ 256d
(F )
2 and (σ

(F )
1 )2 < π

4Cd
(F )
1 ∥θ∥2

. Then the minimum singular value of

the Jacobian ∇θFθ is lower bounded as

σmin(∇θFθ) >
σ
(F )
1 σ

(F )
2 d

(F )
1

16
·

1

2
− σ(F )

1 ∥θ∥

√
Cd

(F )
1

π

 (65)

w.p ≥ 1− 2e−
d
(F )
1
64 − e−Cd

(F )
1 . The maximum singular value of ∇θFθ is upper bounded as

σmax(∇θFθ) < 3.47σ
(F )
1 σ

(F )
2 d

(F )
1 (66)

w.p. ≥ 1− 2e−
d
(F )
1
64 .

Proof. By Theorem 4.6.1 in [110], we get w.p. ≥ 1− 2e−t
2

:

σ1(

√
d
(F )
1 −4(

√
d
(F )
0 +t)) ≤ σmin(W

(F )
1 ) ≤ σmax(W

(F )
1 ) ≤ σ(F )

1 (

√
d
(F )
1 +4(

√
d
(F )
0 +t)). (67)

By choosing t = 1
8

√
d
(F )
1 , we get w.p. ≥ 1− 2e−d

(F )
1 /64

σ
(F )
1 (

1

2

√
d
(F )
1 − 4

√
d
(F )
0 ) ≤ σmin(W

(F )
1 ) ≤ σmax(W

(F )
1 ) ≤ σ(F )

1 (
3

2

√
d
(F )
1 + 4

√
d
(F )
0 ). (68)

If we set d(F )
1 ≥ 256d

(F )
0 , we get

(
1

2

√
d
(F )
1 − 4

√
d
(F )
0 ) ≥ 1

4

√
d
(F )
1 (69)

and
3

2

√
d
(F )
1 + 4

√
d
(F )
0 ≤ 7

4

√
d
(F )
1 . (70)

Therefore, we get that w.p. ≥ 1− 2e−
d
(F )
1
64 ,

1

4
σ
(F )
1

√
d
(F )
1 ≤ σmin(W

(F )
1 ) ≤ σmax(W

(F )
1 ) ≤ 7

4
σ
(F )
1

√
d
(F )
1 . (71)

For the case of W (F )
2 , because we have d(F )

2 < d
(F )
1 , we will use analogous reasoning as that for

W
(F )
1 above for (W (F )

2 )⊤ with t = 1
8

√
d
(F )
1 which yields w.p. ≥ 1− 2e−

d
(F )
1
64 ,

σ
(F )
2 (

1

2

√
d
(F )
1 − 4

√
d
(F )
2 ) ≤ σmin((W

(F )
2 )⊤) = σmin(W

(F )
2 ) (72)
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≤ σmax((W
(F )
2 )⊤) = σmax(W

(F )
2 ) ≤ σ(F )

2 (
3

2

√
d
(F )
1 + 4

√
d
(F )
2 ) (73)

Then, by setting d(F )
1 ≥ 256d

(F )
2 , we get

1

4
σ
(F )
2

√
d
(F )
1 ≤ σmin(W

(F )
2 ) ≤ σmax(W

(F )
2 ) ≤ 7

4
σ
(F )
2

√
d
(F )
1

Note that the Jacobian for the neural network F (θ) can be computed as

∇θFθ =
∂F (θ)

∂θ
=W

(F )
2

∂

∂z
ψ(z)W

(F )
1 =W

(F )
2 Ψ(W

(F )
1 θ)W

(F )
1 (74)

where z := W
(F )
1 θ and Ψ(W

(F )
1 θ) = diag(ψ′((W

(F )
1 θ)1), . . . , ψ

′((W
(F )
1 θ)

d
(F )
1

)). Therefore, we
can compute the minimum and maximum singular values for this Jacobian∇θFθ by looking at its
operator norm: ∥∇θFθ∥ = ∥W (F )

2 Ψ(W
(F )
1 θ)W

(F )
1 ∥. Then, by properties of the operator norm, we

see that
∥∇θFθ∥ ≥ σmin(W

(F )
2 )∥Ψ(W

(F )
1 θ)∥σmin(W

(F )
1 ) (75)

∥∇θFθ∥ ≤ σmax(W
(F )
2 )∥Ψ(W

(F )
1 θ)∥σmax(W

(F )
1 ) (76)

This further tells us that
σmin(∇θFθ) ≥ σmin(W

(F )
2 )σmin(Ψ(W

(F )
1 θ))σmin(W

(F )
1 ) (77)

σmax(∇θFθ) ≤ σmax(W
(F )
2 )σmax(Ψ(W

(F )
1 θ))σmax(W

(F )
1 ) (78)

We can further simplify these lower and upper bounds for the Jacobian singular values by
noting that since Ψ(W

(F )
1 θ) is a diagonal matrix, σmin(Ψ(W

(F )
1 θ)) = min

1≤i≤d(F )
1

ψ′(zi) and

σmax(Ψ(W
(F )
1 θ)) = max

1≤i≤d(F )
1

ψ′(zi) where zi = (W
(F )
1 θ)i ∀i ∈ [d

(F )
1 ].

Now, notice that z =W
(F )
1 θ ∼ N (0, (σ

(F )
1 )2∥θ∥22Id(F )

1 ×d(F )
1

). Using the fact that GeLU’s derivative,

ψ′, is Lψ′ -Lipschitz with Lψ′ = supx∈R |ψ′′(x)| = φ(0) = 2√
π

(φ is standard normal PDF), we can
appeal to concentration inequality for Lipschitz functions of Gaussian random variables and infer for
0 < ϵ < 1/2:

P [σmin(Ψ(W
(F )
1 θ)) > ϵ] = P [∀i : ψ′((W

(F )
1 θ)i) > ϵ] = (P [ψ′((W

(F )
1 θ)1) > ϵ])d

(F )
1 (79)

= (P [ψ′((W
(F )
1 θ)1)− 1/2 > ϵ− 1/2])d

(F )
1 (80)

= (P [ψ′((W
(F )
1 θ)1)− E[ψ′((W

(F )
1 θ)1)] > ϵ− 1/2])d

(F )
1 (81)

(∵ E[ψ′((W
(F )
1 θ)1)] = E[(W

(F )
1 θ)1φ((W

(F )
1 θ)1)] + E[Φ((W

(F )
1 θ)1)] = 0 + 1/2) (82)

(φ,Φ are standard normal PDF & CDF, resp.) (83)

≥ 1− e
− (1/2−ϵ)2

2L2
ψ′ (σ

(F )
1 )2∥θ∥2 (84)

(∵ P [ψ′(z) ≤ 1/2− t] ≤ e
− πt2

(σ
(F )
1 )2∥θ∥2 ; choose t = 1/2− ϵ) (85)

= 1− e−Cd
(F )
1 (if we set ϵ = 1/2− (σ

(F )
1 ∥θ∥

√
Cd

(F )
1 /π)) (86)

Therefore, as long as we have (σ
(F )
1 )2 < π

4Cd
(F )
1 ∥θ∥2

, we have w.p. ≥ 1− e−Cd
(F )
1 that

σmin(Ψ(W
(F )
1 θ)) >

1

2
− σ(F )

1 ∥θ∥

√
Cd

(F )
1

π
(87)

Combining all of this, we can say w.p. ≥ 1− 2e−
d
(F )
1
64 − e−Cd

(F )
1 , we have:

σmin(∇θFθ) >
σ
(F )
1 σ

(F )
2 d

(F )
1

16
·

1

2
− σ(F )

1 ∥θ∥

√
Cd

(F )
1

π

 . (88)
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And w.p. ≥ 1−2e−
d
(F )
1
64 , we have: σmax(∇θFθ) <

(
7

√
d
(F )
1

4

)2

·1.13σ(F )
1 σ

(F )
2 < 3.47σ

(F )
1 σ

(F )
2 d

(F )
1

where we used the fact that maxx∈R ψ
′(x) = ψ′(

√
2) ≈ 1.1289.

Before we present the following lemma, we provide some intuition: In addition to the
previous lemma for high probability lower and upper bounds on singular values of the neural
network Jacobian, we also need to check whether the networks in input-optimization games
are smooth or not. Towards that, the following result proves that it is so and provides the
exact smoothness constant. Computing this smoothness constant is important for another
reason: It is used in defining the radius around the initial parameters to ensure the neural
network Jacobian remains non-singular within the entire ball.

Lemma F.2 (Lemma 3.4 in Main Paper). Consider a neural network F with parameters θ ∈ Rd
(F )
0

as defined in Lemma F.1 above. Then, w.p. ≥ 1− 2e−
d
(F )
1
64 the neural network F is βF -smooth where

βF = 1√
2π
· 343(σ

(F )
1 )2σ

(F )
2 (d

(F )
1 )3/2

32 .

Proof. In order to prove that F is βF -smooth, we need to show that Equation 2 holds true. For
θ, θ′ ∈ Rd

(F )
0 , we write

∥∇θFθ −∇θFθ′∥ ≤ ∥W (F )
2 ∥∥Ψ(W

(F )
1 θ)−Ψ(W

(F )
1 θ′)∥∥W (F )

1 ∥ (89)

≤ ∥W (F )
2 ∥Lψ′∥W (F )

1 θ −W (F )
1 θ′∥∥W (F )

1 ∥ (∵ ψ′ is Lψ′ − Lipschitz)
(90)

= Lψ′∥W (F )
2 ∥∥W (F )

1 ∥∥θ − θ′∥∥W (F )
1 ∥ (91)

=⇒ σmax(∇θFθ −∇θFθ′) ≤
2√
2π
σmax(W

(F )
2 ) · σ2

max(W
(F )
1 )∥θ − θ′∥ (92)

where Lψ′ = 2√
2π

for derivative of GeLU activation function. Using Lemma F.1 results for singular

values of the random matrices W (F )
1 and W (F )

2 , we get that w.p. ≥ 1− 2e−
d
(F )
1
64

σmax(∇θFθ −∇θFθ′) ≤
343(σ

(F )
1 )2σ

(F )
2 (d

(F )
1 )3/2

32
√
2π

∥θ − θ′∥ (93)

The result in the main paper offers an average-case analysis under Gaussian sampling with
variance scaled as poly(1/d1). Here, we provide a more detailed version that explicitly
states the assumptions and technical conditions required to ensure convergence to equilibrium.
While the high-level complexity perspective remains unchanged, we believe this finer analysis
may be of independent interest, particularly for applications in adversarial attack design.

Theorem F.3 (Theorem 3.5 in Main Paper). Consider two neural networks F,G with parameters
θ ∈ Rd

(F )
0 and ϕ ∈ Rd

(G)
0 , respectively, as defined in Lemma F.1 above. Then for the ε-regularized

bilinear min-max objective L(θ, ϕ) as defined in Equation (3) with the neural networks F and G
defined above, alternating gradient-descent-ascent with appropriate fixed learning rates ηθ, ηϕ (see

Lemma E.7) reaches the desired saddle point w.p. ≥ 1− 4e−
d
(F )
1
64 − 4e−

d
(G)
1
64 − e−Cd

(F )
1 − e−Cd

(G)
1

(C are some universal constants) if the initial parameters (θ0, ϕ0) and standard deviations σ(F )
k and

σ
(G)
k , k ∈ {1, 2} are chosen such that:

(σ
(F )
1 )2 <

π

4Cd
(F )
1 ∥θ0∥2

& (σ
(G)
1 )2 <

π

4Cd
(G)
1 ∥ϕ0∥2

(94)
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(σ
(F )
1 )4 · (σ(F )

2 )2 · ∥θ0∥(
1
2 − (σ

(F )
1 )∥θ0∥

√
Cd

(F )
1

π

)2 ≲
π

ε · (d(F )
1 )3.5

(95)

(σ
(G)
1 )4 · (σ(G)

2 )2 · ∥ϕ0∥(
1
2 − (σ

(G)
1 )∥ϕ0∥

√
Cd

(G)
1

π

)2 ≲
π

ε · (d(G)
1 )3.5

(96)

(σ
(G)
1 σ

(G)
2 )((σ

(F )
1 )3σ

(F )
2 )∥θ0∥(

1
2 − (σ

(F )
1 )∥θ0∥

√
Cd

(F )
1

π

)2 ≲
π

σmax(A)(d
(F )
1 )2.5

(97)

(σ
(F )
1 σ

(F )
2 )((σ

(G)
1 )3σ

(G)
2 )∥ϕ0∥(

1
2 − (σ

(G)
1 )∥ϕ0∥

√
Cd

(G)
1

π

)2 ≲
π

σmax(A)(d
(G)
1 )2.5

(98)

Proof. Since L(θ, ϕ) is ε-hidden-strongly-convex-strongly-concave, by Fact 2.6 it also satisfies the 2-
sided PŁ-condition with (µθ = ε · σ2

min(∇θFθ), µϕ = ε · σ2
min(∇ϕGϕ)) w.p. ≥ 1− 2e−

d1
64 − e−Cd1 ,

we can utilise path-length bound as derived in Lemma 3.2 which leaves us with controlling the
potential P0 for ensuring convergence to the saddle point. Thus, computing loss gradients (Equation
(4)) and using the sufficient condition for ensuring iterates do not leave the ball B((θ0, ϕ0), R) (where

R =
max{µ(F )

Jac ,µ
(G)
Jac }

min{βF ,βG} as defined in Section 3) thus ensuring non-singular Jacobian inside the ball for
both the neural networks (Lemma E.7), we require the following:(

∥F (θ0)∥ · (εσmax(∇θFθ0) + σmax(∇ϕGϕ0
)σmax(A))

+∥G(ϕ0)∥ · (σmax(∇θFθ0)σmax(A) + εσmax(∇ϕGϕ0))

)
≲
R2

8
(99)

Thus, we want(
(3.47εσ

(F )
1 σ

(F )
2 d

(F )
1 )∥F (θ0)∥+ (3.47σ

(G)
1 σ

(G)
2 d

(G)
1 σmax(A))∥F (θ0)∥

+(3.47σ
(F )
1 σ

(F )
2 d

(F )
1 σmax(A)) · ∥G(ϕ0)∥+ (3.47εσ

(G)
1 σ

(G)
2 d

(G)
1 )∥G(ϕ0)∥

)
≲
R2

8
(100)

(∵ σmax(∇θFθ0) < 3.47σ
(F )
1 σ

(F )
2 d

(F )
1 , σmax(∇ϕGϕ0

) < 3.47σ
(G)
1 σ

(G)
2 d

(G)
1 )

Therefore, we want the following to hold true:

1. (3.47εσ
(F )
1 σ

(F )
2 d

(F )
1 )∥F (θ0)∥ ≲ R2

32

2. (3.47σmax(A)σ
(G)
1 σ

(G)
2 d

(G)
1 )∥F (θ0)∥ ≲ R2

32

3. (3.47σmax(A)σ
(F )
1 σ

(F )
2 d

(F )
1 )∥G(ϕ0)∥ ≲ R2

32

4. (3.47εσ
(G)
1 σ

(G)
2 d

(G)
1 )∥G(ϕ0)∥ ≲ R2

32

Since ∥F (θ0)∥ ≤ σmax(W
(F )
2 )σmax(ψ(W

(F )
1 θ0)), we can use Lemma F.1 for maximum singular

values of W (F )
2 and the following calculation for upper bounding ψ(W (F )

1 θ):

∥ψ((W (F )
1 θ))∥ ≤

√
d
(F )
1 max

i
|ψ((W (F )

1 θ)i)| (101)

=⇒ P [∥ψ(W (F )
1 θ)∥ > t] ≤ P [

√
d
(F )
1 max

i
|(W (F )

1 θ)i| > t] (102)
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Also, P [max
i
|(W (F )

1 θ)i| > t] ≤ 2d1e
−t2/(2σ2

1,F ∥θ∥2) (103)

(∵ ψ(x) ≤ x ∀x,W (F )
1 θ ∼ N (0, σ2

1,F ∥θ∥2Id(F )
1

))

(104)

=⇒ P [max
i
|(W (F )

1 θ)i| > t] ≤ δ (105)

(Set δ = 2d1e
−t2/(2σ2

1,F ∥θ0∥2) = e−Cd1)
(106)

=⇒ P [

√
d
(F )
1 max

i
|(W (F )

1 θ)i| ≤ C ′σ
(F )
1 ∥θ∥d

(F )
1 ] > 1− e−Cd1 (107)

Thus, for ensuring 1.) holds, we will demand the following: (3.47εσ(F )
1 σ

(F )
2 d

(F )
1 ) ·

(
7
4σ

(F )
2

√
d
(F )
1

)
·(

C ′σ
(F )
1 ∥θ0∥d

(F )
1

)
≲ R2

32 . This will yield the following sufficient condition on σ(F )
1 and σ(F )

2 :

(σ
(F )
1 )2 · (σ(F )

2 )2 ≲
R2

195εC ′∥θ0|(d(F )
1 )2.5

(108)

By definition the radius R ≥ µ
(F )
Jac

2βF
. Substituting the lower bound for minimum singular value and

Lipschitzness constant for Jacobian of network F from Lemmas F.1-F.2, we obtain:

(σ
(F )
1 )4 · (σ(F )

2 )2 · ∥θ0∥(
1
2 − (σ

(F )
1 )∥θ0∥

√
Cd

(F )
1

π

)2 ≲
π

ε · (d(F )
1 )3.5

(109)

Analogous reasoning with R ≥ µ
(G)
Jac

2βG
for ensuring 4.) holds true in case of G(ϕ0) gives us a similar

condition on σ(G)
1 and σ(G)

2 :

(σ
(G)
1 )4 · (σ(G)

2 )2 · ∥ϕ0∥(
1
2 − (σ

(G)
1 )∥ϕ0∥

√
Cd

(G)
1

π

)2 ≲
π

ε · (d(G)
1 )3.5

(110)

For ensuring 2.), by Lemmas F.1-F.2 and using R ≥ µ
(F )
Jac

2βF
, we see that we need

(3.47σmax(A)σ
(G)
1 σ

(G)
2 d

(G)
1 ) ·

(
7
4σ

(F )
2

√
d
(F )
1

)
·
(
C ′σ

(F )
1 ∥θ0∥d

(F )
1

)
≲ R2

32 which yields the fol-

lowing sufficient condition:

(3.47σ
(G)
1 σ

(G)
2 d

(G)
1 )

(
7

4
σ
(F )
2

√
d
(F )
1

)(
C ′σ

(F )
1 ∥θ0∥d

(F )
1

)
≲

R2

32σmax(A))
(111)

=
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(F )
Jac )2
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F
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1 )∥θ0∥

√
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· π
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(113)
(By Lemma F.1− F.2)
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2 )∥θ0∥(

1
2 − (σ
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1 )∥θ0∥

√
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(114)
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Similarly, for ensuring 3.), we see that we need (3.47σmax(A)σ
(F )
1 σ

(F )
2 d

(F )
1 ) ·

(
7
4σ

(G)
2

√
d
(G)
1

)
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C ′σ
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(G)
1

)
≲ R2

32 which yields the following sufficient conditions when we use R ≥ µ
(G)
Jac
2βg
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(G)
1 )3σ

(G)
2 )∥ϕ0∥(

1
2 − (σ

(G)
1 )∥ϕ0∥

√
Cd

(G)
1

π

)2 ≲
π

σmax(A)(d
(G)
1 )2.5

(115)

(116)

Thus, w.p. ≥ 1− 4e−
d
(F )
1
64 − 4e−

d
(G)
1
64 − e−Cd

(F )
1 − e−Cd

(G)
1 , we stay within a ball around the random

initializations B((θ0, ϕ0), R) thereby ensuring min-max objective satisfies 2-sided PŁ-condition. By
Lemma 3.2, given that we have chosen appropriate fixed learning rates as per Lemma E.7, we are
now guaranteed to reach the saddle point.
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G Proofs for Neural-Parameters Min-Max Games

The following lemma establishes a sharp connection between the spectral properties of the
input data and the initial conditioning of the neural network’s Jacobian, highlighting how
data diversity directly influences the minimum singular value at initialization.

Lemma G.1 (Lemma 3.7 in Main Paper; Lemma 3 & Appendix E.1–E.4 in [106]). Suppose
that a two-layer neural network, Fθ, as defined in Definition 2.3, satisfies Assumption 2.4 and
τ r1 |ψ(a)| ≤ |ψ(τa)| ≤ τ r2 |ψ(a)|, respectively for all a, 0 < τ < 1, and some constants r1, r2.
Then the neural network Jacobian for a random Gaussian initialization θ0 = ((W

(F )
1 )0, (W

(G)
2 )0)

has the following lower bounds on its smallest singular value w.p. ≥ 1− (p1 + p2):

µ
(F )
Jac ≥ (σ

(F )
1 )r1

√
(1− δ1)

c2t
t!
d
(F )
1 · σmin(X

∗t) (117)

We have the following upper bound on its largest singular value w.p. ≥ 1− (p1 + p3 + p4):

ν
(F )
Jac ≲ σ

(F )
2 ψ̇maxσmax(X)

√
d
(F )
1 + (σ

(F )
1 )r1

√
(1 + δ2)(c21 + c2∞)d

(F )
1 σmax(X)

+ (σ
(F )
1 )r2 |c0|

√
(1 + δ2)d

(F )
1 n (118)

And the smoothness constant for the neural network can be computed as

βF =
√
2σmax(X)(ψ̇max + ψ̈maxχmax) (119)

where χmax = sup
W

(F )
2

σmax(W
(F )
2 ). Here {ci}i denote Hermite expansion coefficients correspond-

ing to ψ((W (F )
1 )0X), δj > 0 ∀j ∈ [4], p1 = (d

(F )
1 )−Ck1d

(F )
0 + (d

(F )
1 )−Ck2d

(F )
2 for universal con-

stant C with sufficiently large k1, k2, p2 = exp

−( δ1σmin(E[M0])

4ψ̇2
maxσ

2
max(X)k1σ

(F )
1

√
d
(F )
0 log d

(F )
1

)2
 where

M0 = ψ(X⊤((W
(F )
1 )⊤0 )ψ((W

(F )
1 )0X), p3 = exp

−( δ2σmax(E[M0])

4ψ̇2
maxσ

2
max(X)k1σ

(F )
1

√
d
(F )
0 log d

(F )
1

)2
 &

p4 = e−C
′d

(F )
1 for a universal constant C’.

Before we present the following lemma, we offer some context and motivation: In input-
optimization games, the gradient norm structure naturally arises from the formulation of
hidden bilinear zero-sum games. In more general settings, the relevant properties are detailed
in Appendix D. The lemma below demonstrates that, under appropriate initialization and
sufficient overparameterization, the neural network output remains bounded from above in
terms of spectral properties of the data matrix with high probability. This property will
play a critical role in ensuring that the optimization trajectory remains confined within the
well-conditioned region (the ball).

Lemma G.2 (Lemma 3.7 in Main Paper; Neural network output is bounded w.h.p.; Appendix E.5 in
[106]). Consider a neural network Fθ with parameters θ = (W

(F )
1 ,W

(F )
2 ) as defined in Lemma G.1

above. Suppose we randomly initialize the neural network at θ0 by choosing σ(F )
1 and σ(G)

2 such that

σ
(F )
1 σ

(F )
2 ≲

1√
d
(F )
0 d

(F )
1

Then w.p. ≥ 1 − p1 − p5, the neural network output at this random initialization θ0 for the given
training data DF (as described in Assumption 2.4) is bounded from above as follows:

∥Fθ0(DF )∥ ≲ δ3k1k2σmax(X) (120)

where p1 = (d
(F )
1 )−Ck1d

(F )
0 + (d

(F )
1 )−Ck2d

(F )
2 for universal constant C with sufficiently large k1, k2,

δ3 > 0, and p5 = e−Cδ
2
3 for some universal constant C.
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Theorem G.3 (Theorem 3.8 in Main Paper; HSCSC Games with AltGDA). Suppose there are two
two-layer neural networks, Fθ, Gϕ as defined in Definition 2.3 which satisfy Assumption 2.4 and
τ r1 |ψ(a)| ≤ |ψ(τa)| ≤ τ r2 |ψ(a)|, respectively for all a, 0 < τ < 1, and some constants r1, r2.
Suppose the network parameters θ0 and ϕ0 are randomly initialized as in Assumption 3.6 with
(σ

(F )
1 , σ

(F )
2 ) and (σ

(G)
1 , σ

(G)
2 ), respectively, which satisfy

σ
(F )
1 σ

(F )
2 ≲

1√
d
(F )
0 d

(F )
1

and σ
(G)
1 σ

(G)
2 ≲

1√
d
(G)
0 d

(G)
1

(121)

and suppose that the hidden layer widths d(F )
1 and d(G)

1 for the two networks F and G satisfy

d
(F )
1 = Ω̃

(
µ2
θ

n3

d
(F )
0

)
& d

(G)
1 = Ω̃

(
µ2
ϕ

n3

d
(G)
0

)
(122)

where the datasets (DF ,DG) for both the players are assumed to be of size n. Then Alternating
Gradient-Descent-Ascent procedure with appropriate fixed learning rates ηθ, ηϕ (see Lemma E.7)
for an (µθ, µϕ)-HSCSC and L∇L-smooth min-max objective LD(Fθ, Gϕ) as defined in Equation 1
satisfying Assumption 2.1 converges to the saddle point (θ∗, ϕ∗) exponentially fast with probability
at least 1− (p1 + p2 + p3 + p4 + p5)− (p1 + p′2 + p′3 + p′4 + p′5) (Here, the failure probabilities
pj’s and p′j’s are defined for networks Fθ and Gϕ, respectively, as per Lemmas G.1-G.2).

Proof. If we randomly initialize the neural network at θ0 = ((W
(F )
1 )0, (W

(G)
2 )0) as per the stated

initialization scheme in Assumption 3.6 with Equation (121), we have by Lemma G.2 that w.p.
≥ 1− p1 − p5:

∥Fθ0(DF )∥ ≲ δ3k1k2σmax(X) (123)

where p1, p5 are as defined in Lemma G.2. Analogous reasoning gives a similar bound for the output
of initialization condition for the neural network Gϕ with data DG.

Since our min-max objective LD(Fθ, Gϕ) is separable as defined in Equation 1, we can start by
rewriting the bilinear component ID2 (Fθ, Gϕ) = (Fθ(DF ))⊤A(Gϕ(DG)). Firstly, we can compute
the gradients for the min-max objective as follows given data D = (DF ,DG):

∇θLD(Fθ, Gϕ) = ∇θ(IDF1 (Fθ) + ID2 (Fθ, Gϕ)) (124)

= (∇θFθ(DF ))⊤(∇z=Fθ(DF )I
DF
1 (z)) + (∇θFθ(DF ))⊤AGϕ(DG) (125)

∇ϕLD(Fθ, Gϕ) = ∇ϕ(−IDG3 (Gϕ) + ID2 (Fθ, Gϕ)) (126)

= −(∇ϕGϕ(DG))⊤(∇z=Gϕ(DG)I
DG
3 (z)) + (∇ϕGϕ(DG))⊤AFθ(DF ) (127)

By Assumption 2.1(iv) on the gradient norm of strongly-convex functions, triangle inequality, and
submultiplicativity of operator norm, we can say that the gradient norms of our separable min-max
objective can be upper bounded as follows:

∥∇θLD(Fθ, Gϕ)∥ ≤ ∥(∇θFθ(DF ))⊤∥
(
A

(F )
1 ∥Fθ0(DF )∥+A

(F )
2 diam(Y(F )) +A

(F )
3

)
+ ∥(∇θFθ(DF ))⊤∥∥A∥∥Gϕ(DG)∥ (128)

∥∇ϕLD(Fθ, Gϕ)∥ ≤ ∥(∇ϕGϕ(DG))⊤∥
(
A

(G)
1 ∥Gϕ0(DG)∥+A

(G)
2 diam(Y(G)) +A

(G)
3

)
+ ∥(∇ϕGϕ(DG))⊤∥∥A∥∥Fθ(DF )∥

Since L(θ, ϕ) is (µθ, µϕ)-hidden-strongly-convex-strongly-concave, by Fact 2.6 it also satisfies the
2-sided PŁ-condition with (µθ · σ2

min(∇θFθ), µϕ · σ2
min(∇ϕGϕ)) PŁ-moduli w.p. ≥ 1 − p1 − p2

(where p1, p2 as defined in Lemma G.1). Thus we can utilise path-length bound as derived in Lemma
3.2 which leaves us with controlling the potential P0 for ensuring convergence to the saddle point.
Given the loss gradients above (Equation (128)) and using the sufficient condition for ensuring

iterates do not leave the ball B((θ0, ϕ0), R) (where R =
max{µ(F )

Jac ,µ
(G)
Jac }

min{βF ,βG} as defined in Section 3) thus
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ensuring non-singular Jacobian inside the ball for both the neural networks (Lemma E.7), we require
the following:(

∥(∇θFθ0(DF ))⊤∥ ·
(
A

(F )
1 ∥Fθ0(DF )∥+A

(F )
2 diam(Y(F )) +A

(F )
3

)
︸ ︷︷ ︸

T1

+∥(∇θFθ0(DF ))⊤∥∥A∥∥Gϕ0(DG)∥︸ ︷︷ ︸
T2

+∥(∇ϕGϕ0
(DG))⊤∥ ·

(
A

(G)
1 ∥Gϕ0

(DG)∥+A
(G)
2 diam(Y(G)) +A

(G)
3

)
︸ ︷︷ ︸

T3

+∥(∇ϕGϕ0
(DG))⊤∥∥A∥∥Fθ0(DF )∥︸ ︷︷ ︸

T4

)
≲
R2

8

In order to ensure the above, we will demand the following:

1. T1 ≲ R2

32

2. T2 ≲ R2

32

3. T3 ≲ R2

32

4. T4 ≲ R2

32

We will show arguments for the case of the ‘min’ player (neural network Fθ) here. Exactly the same
arguments provide the analogous result for the ‘max’ player (neural network Gϕ).

For ensuring (1.)–(4.), we will use the fact that σmax(∇θFθ0(DF )) ≤ ν
(F )
Jac , σmax(∇ϕGϕ0

(DG)) ≤
ν
(G)
Jac , Lemma G.1 for upper bounds on ν(F )

Jac , and ν(G)
Jac and smoothness constants for two-layer neural

networks along with the upper bounds on neural network outputs for F and G as derived above in
Lemma G.2.

Thus, a sufficient condition for ensuring 1.) would be to use R ≥ µ
(F )
Jac

2βF
and see that w.p. ≥ 1− p1 −

p2 − p3 − p4 − p5 the following holds (assuming |c0| is sufficiently large s.t. |c0|
√
(1 + δ2)d

(F )
1 n

becomes the dominating term in ν(F )
Jac ):

C1 ·
(
|c0|
√
(1 + δ2)d

(F )
1 n

)
·
(
A

(F )
1 δ3k1k2σmax(X) +A

(F )
2 diam(Y(F )) +A

(F )
3

)
︸ ︷︷ ︸

(LHS)

≲
1

32

(
µ
(F )
Jac

2βF

)2

=⇒ (LHS) ≲
(σ

(F )
1 )2r1(1− δ1)(c2t/t!)d

(F )
1 σ2

min(X
∗t)

2(σmax(X))2(ψ̇max + ψ̈maxχmax)2
(By Lemma G.1) (129)

=⇒ d
(F )
1 ≳

(
|c0|2(1 + δ2)n

)
· (σmax(X))4(ψ̇max + ψ̈maxχmax)

4 · (A(F )
1 δ3k1k2σmax(X))2

(σ
(F )
1 )2+2r1(1− δ1)2(c4t/(t!)2)σ4

min(X
∗t)

(130)

=⇒ d
(F )
1 ≳

(
|c0|2(1 + δ2)n

)
· (σmax(X))4(ψ̇max + ψ̈maxχmax)

4 · (A(F )
1 δ3k1k2σmax(X))2

(σ
(F )
1 )2+2r1(1− δ1)2(c4t/(t!)2)σ4

min(X
∗t)

(131)

∴ d
(F )
1 ≳ ξ(Cδ, t, ψ, {ci}i≥0)

n(A
(F )
1 )2σ6

max(X)

σ4
min(X

∗t)
(132)
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where δ4 = max{k1, k2}, Cδ = {δ1, δ2, δ3, δ4}, and

ξ(Cδ, t, ψ, {ci}i≥0) =

(
|c0|2(1 + δ2)

)
· (ψ̇max + ψ̈maxχmax)

4 · (δ3k1k2)2

(σ
(F )
1 )2+2r1(1− δ1)2(c4t/(t!)2)

Here, as per our Assumption 2.4 on the data and arguing along the lines of Section 2.1 in Oymak and
Soltanolkotabi [86], when we use the fact that σmax(X) ≃

√
n

d
(F )
0

, σmin(X
∗t) ≃

√
n

(d
(F )
0 )t

≃ 19,

and n ≃ (d
(F )
0 )t where t ≥ 210, we get that:

d
(F )
1 = Ω̃

(
n · n3 · (A(F )

1 )2

(d
(F )
0 )3 · 1

)
= Ω̃

(
n3µ2

θ

d
(F )
0

)
(133)

In the second equality above, we used the observation from Appendix D that A1 = θ(µ) where µ is
the strong-convexity modulus. Thus, the amount of overparameterization we need for network Fθ is
as follows:

d
(F )
1 d

(F )
0 = Ω̃(n3µ2

θ) (134)

Analogous reasoning for ensuring (3.) with R ≥ µ
(G)
Jac

2βG
gives us w.p. 1− p′1 − p′2 − p′3 − p′4 − p′5:

d
(G)
1 ≳ ξ(LL, C

′
δ, t

′, ψ, {c′i}i≥0)
n(A

(G)
1 )2σ6

max(X)

σ4
min(X

∗t)
(135)

Using arguments from Oymak and Soltanolkotabi [86] as done above for the case of 1.), we get a
similar cubic overparameterization bound for the ‘max’ player, Gϕ, as well:

d
(G)
1 d

(G)
0 = Ω̃(n3µ2

ϕ) (136)

We get the following w.p. ≥ 1− (p′1 + p′5)− (p1 + p2 + p3 + p4) by similar reasoning as above for

ensuring 2.) holds along with using R ≥ µ
(F )
Jac

2βF
:(

|c0|
√

(1 + δ2)d
(F )
1 n

)
· σmax(A) · (δ′3k′1k′2σmax(X))︸ ︷︷ ︸
(LHS)

≲
1

32

(
µ
(F )
Jac

2βF

)2

=⇒ (LHS) ≲
(σ

(F )
1 )2r1(1− δ1)(c2t/t!)d

(F )
1 σ2

min(X
∗t)

2(σmax(X))2(ψ̇max + ψ̈maxχmax)2
(By Lemma G.1) (137)

∴ d
(F )
1 ≳

(
|c0|2(1 + δ2)n

)
· (σmax(X))4(ψ̇max + ψ̈maxχmax)

4 · σ2
max(A) · (δ′3k′1k′2σmax(X))2

(σ
(F )
1 )2+2r1(1− δ1)2(c4t/(t!)2)σ4

min(X
∗t)

(138)

=⇒ d
(F )
1 ≳ ξ(A,C(δ,δ′), t, ψ, {ci}i≥0)

nσ6
max(X)

σ4
min(X

∗t)
(139)

Again, using arguments from Oymak and Soltanolkotabi [86] above, we get a similar cubic overpa-
rameterization bound for the ‘min’ player, Fθ, as above:

d
(F )
1 d

(F )
0 = Ω̃(n3) (140)

Applying reasoning analogous to that for ensuring (2.) to the case of ensuring (4.) holds, by using

R ≥ µ
(G)
Jac

2βG
we get w.p. ≥ 1− (p1 + p5)− (p′1 + p′2 + p′3 + p′4):

d
(G)
1 ≳ ξ(A,LL, C

′
δ, t

′, ψ, {c′i}i≥0)
nσ6

max(X)

σ4
min(X

∗t)
(141)

9For a matrix W ∈ Rm×n and t ∈ Z≥1, the Khatri-Rao product is denoted as W ∗t ∈ Rmt×n with its j-th
column defined as vector(wj ⊗ · · · ⊗ wj) ∈ Rmt where ⊗ denotes Kronecker product.

10In practice, one typically has n ≃ (d
(F )
0 )t for t ≥ 2.
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Finally, as was done for the case of ensuring 1.), 3.) and 4.) above, we once again arguments from
Oymak and Soltanolkotabi [86] for spectral properties of the training data D and get a similar cubic
overparameterization bound for the ‘max’ player, Gϕ, as well:

d
(G)
1 d

(G)
0 = Ω̃(n3) (142)

Thus, w.p. ≥ 1 − (p′1 + p′5) − (p1 + p2 + p3 + p4), we stay within a ball around the random
initializations B((θ0, ϕ0), R) thereby ensuring min-max objective satisfies 2-sided PŁ-condition. By
Lemma 3.2, given that we have chosen appropriate fixed learning rates as per Lemma E.7, we are
now guaranteed to reach the saddle point.

Remark G.4. The proof above requires activation function to not be an odd function for ensuring
c0 ̸= 0.
Remark G.5 (Effects of assumption about σmax(X) on amount of overparameterization). As noted
in the footnote pertaining to σmax(X) for the data matrix X in Assumption 2.5, if all we know about
the data matrix is that it’s row-normalized and that it’s not a random matrix (e.g. random Gaussian
matrix), then we can conclude that σmax(X) = O(

√
n). Using this bound on the maximum singular

value of the data matrix instead, we can conclude from Equations (132), (135), (139), and (141) that

d
(F )
1 = Ω̃(n4) (143)

d
(G)
1 = Ω̃(n4) (144)

Since we have n ≃ (d
(F )
0 )t (t ≥ 2) in practice for the MIN player Fθ (analogously, n ≃ (d

(G)
0 )t for

the MAX player Gϕ), we can conclude that the amount of overparameterization needed for both the
players is more than the cubic overparameterization when the data matrix is, for example, an i.i.d.
random Gaussian matrix:

d
(F )
1 d

(F )
0 = Ω̃(n4+1/t) (145)

d
(G)
1 d

(G)
0 = Ω̃(n4+1/t) (146)
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H Clarifications

H.1 Smoothness on variables or Map

In the main paper, we state the following assumption regarding the objective function:

Assumption H.1 (Smoothness, Hidden Strong Convexity, and Gradient Control).

(i) Smoothness: Each sample-wise loss ℓ(y, h = Mapw(x)) is differentiable and L-smooth with respect to
h.

(ii) Coupling Structure: Each bilinear coupling matrix A(xi, xj , yi, yj) is known, fixed, and has bounded
operator norm.

(iii) Hidden Strong Convexity: Each sample-wise loss ℓ(y, h = Mapw(x)) is strongly convex with respect
to the neural network output h.

(iv) Gradient Growth Condition: There exist constants A1, A2, A3 > 0 such that for all h ∈ Rdout and
y ∈ Y , the latent gradient of each loss satisfies:

∥∇hℓ(y, h)∥ ≤ A1∥h∥+A2 diam(Y) +A3.

To compute the smoothness of the composition ℓ(y,Mapw(x)) with respect to w, we invoke the
following classical result11:

Lemma H.3 (Composition Smoothness, adapted from Proposition 2(c) in [131]). Let f : Rd → R
be a closed, convex function that is Lf -locally-Lipschitz on a Euclidean ball B(x0, R) for some fixed
x0 ∈ Rd and R > 0 and let g : Rn → Rd be an Lg-smooth function. Then, the composition f ◦ g is
LfLg-smooth in the Euclidean ball B(x0, R).

H.2 Refined Upper Bound Expression for Lyapunov Potential P0

For clarity and presentation purposes, the main paper presents a simplified—yet qualitatively ac-
curate—upper bound on the initial potential P0. In appendix, we provide the precise formulation
that captures the correct dependence on constants and exponents. For completeness, we restate both
results below:

The key distinction in the refined expression lies in the appearance of additional quadratic terms. As
we show in the accompanying proof, these higher-order contributions can be effectively controlled
through suitable initialization and appropriately chosen step sizes. Thus, the improved bound yields
tighter theoretical insight without compromising practical applicability.

11

Remark H.2. This adaptation is necessary, as a function cannot simultaneously be globally Lipschitz (bounded
gradients) and strongly convex (increasing gradient norm) in the unconstrained setting. However, under sufficient
overparameterization and appropriate random initialization, we show that the AltGDA iterates remain within a
bounded region where these properties hold locally. Thus, our assumption of local Lipschitzness of latent loss,
the induced smoothness and the hidden strong convexity within a Euclidean ball is both theoretically consistent
and empirically valid.
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Main Paper Version:

Lemma 3.3 (Upper Bound on Initial Potential P0). Suppose the min-
max objective L(θ, ϕ) is LL-Lipschitz and satisfies a two-sided PŁ con-
dition with constants (µθ, µϕ). Then the initial Lyapunov potential
P0 ≤ LL (C1 · ∥∇θL(θ0, ϕ0)∥+ C2 · ∥∇ϕL(θ0, ϕ0)∥) , where C1, C2 =
Θ
(
LL/µ

3
θ

)
.

Appendix Version (Refined):

Lemma E.4 (Upper Bound on Initial Potential P0; Lemma 3.3 in Main Text).
Let Fθ andGϕ be neural network mappings such that they are βF and βG smooth
as defined in Definition 2.3. Now let (θ0, ϕ0) be such that Jacobian singular
values for both the networks are strictly positive and bounded from above and
below, µ(F )

Jac ≤ σ(∇θFθ0) ≤ ν
(F )
Jac and µ(G)

Jac ≤ σ(∇ϕGϕ0
) ≤ ν

(G)
Jac . Suppose

the min-max objective L(θ, ϕ) is (µθ, µϕ)-HSCSC. Then the initial Lyapunov
potential P0 can be bounded from above as:

P0 ≤ ∥(∇FθL(Fθ0 , Gϕ0))
⊤∥ · ν(F )

Jac ·
1

µθ(µ
(F )
Jac )

2
· ∥∇θL(θ0, ϕ0)∥

+ ∥(∇FθL(Fθ0 , Gϕ0
))

⊤∥ · βF
1

2µ2
θ(µ

(F )
Jac )

4
· ∥∇θL(θ0, ϕ0)∥2 (36)

+ (1 + λ) · ∥
(
∇GϕL(Fθ0 , Gϕ0)

)⊤∥ · ν(G)
Jac ·

1

µϕ(µ
(G)
Jac )

2
· ∥∇ϕL(θ0, ϕ0)∥

+ (1 + λ) · ∥
(
∇GϕL(Fθ0 , Gϕ0)

)⊤∥ · βG 1

2µ2
ϕ(µ

(G)
Jac )

4
· ∥∇ϕL(θ0, ϕ0)∥2

H.3 Random Initialization: How restrictive are our results?

We note the following for both the input games and neural games regarding random initializations:

1. Neural Games: Our main result (Theorem 3.8) assumes a commonly used initialization
scheme (e.g., He or LeCun), with the only additional requirement being that the variances
satisfy Equation (9) in the main text. Of course, bridging the gap between practice and theory,
it remains an interesting open question whether the current polynomial overparameterization
requirement can be reduced to linear. However, we note that – prior to our work – there were
no existing theoretical results connecting initialization schemes with convergence guarantees
in neural min-max games.

2. Input Games: In this setting, our results are even less restrictive regarding initialization.
Specifically, we show that if the neural networks are randomly initialized from a standard
Gaussian distribution, then AltGDA can compute the min-max optimal inputs. As dis-
cussed above, this is an average-case result, in the spirit of smoothed analysis. While
it is theoretically expected that there exist neural architectures encoding hard min-max
landscapes—potentially close to PPAD-hard instances—in practice, our result suggests that
a randomly initialized neural min-max game is tractable under AltGDA.
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I Discussion & Future Work

This work initiates a principled framework for understanding optimization in hidden convex–concave
min-max games, a setting central to the theory and practice of modern machine learning. By bridging
overparameterization with spectral geometry and alternating dynamics, we show how convergence
and equilibrium stability can emerge from architectural design and initialization. Beyond offering
the first non-asymptotic guarantees for such hidden structures, our analysis reveals the potential of
min-max learning as a structured alternative to unconstrained overfitting. We hope these insights
inspire a broader rethinking of how optimization, architecture, and strategic interaction coalesce in
scalable intelligent systems.

In this last section, we reflect on our overparameterization bounds in comparison to known results
from single-agent minimization, and outline promising directions for future research.

While our analysis shares surface-level similarities with techniques from classical minimization prob-
lems, there are crucial structural differences. In the single-agent case, convergence is often guaranteed
by showing that the Neural Tangent Kernel (NTK) remains well-conditioned near initialization, and
that the loss is already small—a zero-order property.

By contrast, computing a Nash equilibrium in a min-max setting is inherently more subtle: the solution
concept is first & second-order. Rather than merely minimizing a loss, we seek to simultaneously
drive the gradients of both players to zero while respecting their opposing incentives—capturing the
saddle-point nature of equilibrium. Consequently, our notion of being “close to optimality” requires
the initialization to yield not only small gradient norms but also a geometric alignment between the
descent and ascent directions. This structural gap underpins the difference in overparameterization
requirements between the single-agent and multi-agent cases.

These insights naturally give rise to several open questions from deep learning and game theory point
of view:

I.1 Deep Learning Perspective:

• Sharper Overparameterization Bounds:
– Can we tighten the width–depth trade-offs for hidden min-max games, especially in non-

bilinear or partially observable regimes?
– Our results suggest that overparameterization smooths the optimization landscape in simple

bilinear games, but the precise scaling with respect to hidden-layer width and depth in nonlin-
ear architectures remains unclear. A possible direction is to characterize phase transitions in
convergence when width exceeds a critical threshold that depends on the spectral complexity
or curvature of the game operator.

• Beyond Width and Smoothness:
– How does the depth of the architecture influence convergence in hidden games? Can we

extend current results to networks with non-smooth activations such as ReLU, using tools
beyond gradient-Lipschitz analysis?

– Smoothness assumptions simplify the analysis but obscure the behavior of realistic neural
dynamics. We could instead exploit techniques from non-smooth dynamical systems and
proximal envelope theory to handle non-smooth losses.

– Another open question is whether depth induces implicit averaging effects similar to stochastic
smoothing, thereby stabilizing the dynamics in min–max training.

• Structural Guarantees in Multi-Agent PŁ Games:
– What are the necessary structural properties of multi-agent PŁ-type games that ensure con-

vergence to a unique Nash equilibrium? The challenge lies in extending single-agent PŁ
conditions to multi-agent systems where gradients interact. Are there generalized PŁ inequali-
ties that capture cross-agent monotonicity?

– Investigating block-wise or coupled PŁ structures could reveal when independent gradient
updates mimic joint gradient descent–ascent in strongly monotone regimes.
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• Computational Complexity:
– What is the inherent hardness of solving hidden convex–concave games with overparameter-

ized models? Can we characterize tractable subclasses?
– The inversion or injectivity verification of neural networks is known to be NP- or coNP-

complete even for ReLU architectures (see, e.g., the COLT’25 paper “Complexity of Injec-
tivity and Verification of ReLU Neural Networks”). How do such barriers propagate to the
equilibrium computation problem when game payoffs are defined implicitly through network
mappings?

– The overparameterized setting often introduces implicit convexification. Can we formalize
when this leads to provable polynomial-time convergence versus when training remains PPAD-
or NP-hard?

• From Neural Networks to Transformers:
– What explains the observed differences in scaling laws between overparameterized feedfor-

ward networks and attention-based architectures in game-theoretic learning? Could these
insights inform AI alignment and debate frameworks?

– Transformers introduce dynamic reweighting of information through attention, which may
alter the effective conditioning of the game Jacobian.

– Understanding how self-attention layers modify optimization stability and expressivity could
illuminate why Transformers exhibit faster equilibration or better robustness to adversarial
perturbations.

• Beyond Full Gradient Feedback:
– Much of the current analysis, including ours, assumes full gradient information. It remains

an open and critical question whether similar benefits of overparameterization persist under
bandit or partial-information settings.

– A natural direction is to extend existing results to stochastic feedback or bandit-gradient
estimators using variance-controlled or mirror-descent methods.

– Another fundamental question: does overparameterization implicitly reduce the variance of
policy-gradient estimators by averaging across redundant feature paths?

I.2 Game Theory Perspective:

• CCE with Neural Parametrizations (Normal-Form):
– Representational question: For a class of neural correlating devices gθ(z) that map public

randomness z to joint actions, characterize when the induced set of implementable distributions
is dense in the CCE polytope. What overparameterization (width/depth) suffices for ε-dense
coverage uniformly across n-player games with bounded payoffs?

– Optimization vs. Calibration: Standard no-regret dynamics imply convergence to CCE in the
tabular case. With function approximation (shared neural critics/policies), give conditions
(e.g., uniform stability, gradient-calibration bounds) under which the averaged joint play
converges to an ε-CCE at rates that improve with network width (via better optimization
landscapes) without blowing up statistical complexity.

– Implicit bias: In the overparameterized (NTK) regime, training to minimize regret surrogates
biases the joint distribution toward low-complexity mixtures. Can we quantify the implicit
regularization toward “simple” CCEs (few extreme points in support) as a function of width,
depth, and training dynamics?

• CCE in Extensive-Form Games (EFG): EFCE, CEFCE, NFCCE via Nets.
– Sequential structure: Compare neural parameterizations for (i) NFCCE (normal-form coarse

CCE), (ii) EFCE (extensive-form CE), and (iii) CEFCE (coarse EFCE). Give width/depth
conditions under which sequence-form constraints (flow and realization-plan consistency) can
be enforced by differentiable layers with projection or Lagrangian penalties.

– Counterfactual losses: Can counterfactual regret minimization with neural policies/critics be
shown to converge to EFCE/CEFCE when critics are overparameterized but trained with regu-
larized Bellman residuals? Identify structural conditions (perfect recall, bounded branching,
Lipschitz counterfactual values) that guarantee Õ(1/

√
T ) exploitability while using batched,

partial counterfactual feedback.
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– Abstraction without tears: Overparameterized policies can represent rich information-set
strategies directly. Develop “learned abstraction” bounds: when does a deep policy with atten-
tion over histories match the exploitability of hand-crafted abstractions, and what width/depth
yields ε-EFCE support recovery?

• Markov (Stochastic) Games: Stationary CCE and Overparameterized Critics.
– Stationary CCE: Define a stationary CCE as a joint policy π with a correlating signal that

is time-consistent across states. Give conditions under which joint no-regret learning with
overparameterized Q-critics converges (in Cesàro average) to an ε-stationary CCE, with rates
that depend on mixing/concentrability constants and the critic class capacity.

– Depth helps bootstrapping: Hypothesis: deeper critics reduce the Bellman residual floor
achievable by gradient methods, improving optimization error; width controls realizability.
Provide a decomposition of the CCE gap into Approximation(FQ) + Optimization(θ) +
Statistical(FQ, data), and bound each term as a function of network depth/width and explo-
ration coverage.

– Temporal correlation: Analyze how correlating devices that are state-dependent (learned
correlation) interact with Markovian dynamics. When does limited-bandwidth correlation
(few bits per step) suffice for ε-CCE in ergodic MGs?

• Overparameterization vs. Bellman–Eluder (BE) / Bellman Rank Complexity.
– Function-class lens: Let FQ be the Q-function class realized by a network in the linearized

(NTK) regime. Its eluder dimension equals the feature dimension for linear classes; for deep
nets, the effective eluder dimension depends on width, depth, and implicit regularization. Con-
jecture: with proper norm control (weight decay/early stopping), the effective BE dimension
scales like the stable rank of the induced features, not the raw parameter count.

– Sample complexity for ε-CCE: In two-player zero-sum Markov games with realizable Q∗ ∈
FQ, the sample complexity to reach ε-CCE under fitted Q-type updates should scale as

Õ
(BE−dim(FQ) + log(1/δ)

(1− γ)p ε2
)
,

for a small integer p depending on the algorithm (e.g., p ∈ {2, 3}), assuming standard
concentrability/mixing. Overparameterization per se does not hurt if the BE dimension is
controlled by implicit/explicit regularization.

– Width–complexity trade: Identify regimes where increasing width improves optimization
(faster approach to θ∗) while keeping BE-dimension nearly constant via margin-based or
path-norm constraints, yielding strictly better time–sample trade-offs.

– Transformers vs. MLPs: Attention layers can implement dynamic state-action feature selection,
potentially lowering the BE dimension for tasks with sparse predictive structure (long-range
but low “intrinsic” rank). Formalize when attention reduces BE-dim relative to equally wide
MLPs, explaining empirical scaling differences in Markov game benchmarks.

• Bandit/Partial Information Extensions:
– Bandit CCE: For normal-form/Markov games with bandit feedback, derive ε-CCE rates when

both policies and correlating devices are neural. Key ingredient: variance-controlled gradient
surrogates (e.g., doubly-robust or control-variates) to keep estimation error compatible with a
bounded BE dimension.

– Information complexity of correlation: Quantify the information budget (bits of correlation,
episodes of exploration) required to learn ε-CCE as a function of BE dimension and mixing;
relate to communication complexity of implementing the equilibrium.

Conclusion. Our study sheds new light on the geometry of overparameterized min-max optimization
by establishing the first precise convergence guarantees in hidden bilinear games. We demonstrate how
overparameterization not only facilitates convergence but also implicitly regularizes the optimization
landscape, ensuring robustness through well-conditioned spectral structure. Crucially, we bridge
the gap between neural initialization and equilibrium computation, revealing that convergence in
adversarial training is governed by deeper geometric principles. These insights open new avenues
for understanding and designing scalable multi-agent learning systems, and we believe they mark a
significant step toward principled foundations for modern generative and strategic AI.
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