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ABSTRACT

We introduce Hydra-MDP++ , a novel end-to-end autonomous driving framework
that integrates rule-based and neural planners by learning from human demonstra-
tions and distilling knowledge from rule-based experts. We propose a teacher-
student knowledge distillation framework with a multi-head student decoder that
integrates feedback from rule-based expert teachers. The student model achieves
state-of-the-art performance on the NAVSIM benchmark with a tiny image en-
coder. Moreover, to address limitations in existing evaluation metrics, we expand
the teacher model to include traffic light compliance, lane-keeping ability, and
extended comfort. This is intended to ensure a more robust decision synthesis
in driving. Hydra-MDP++ demonstrates robust and efficient performance across
diverse driving scenarios, achieving a 91.0% drive score on NAVSIM by simply
scaling the image encoder. Our work contributes to developing more reliable and
adaptable autonomous driving systems that combine the strengths of rule-based
and neural planning approaches.

1 INTRODUCTION

Developing reliable and robust motion planning systems remains a critical challenge in the rapidly
evolving field of autonomous driving. Traditional rule-based planners (Treiber et al., 2000; Thrun
et al., 2006; Bacha et al., 2008; Leonard et al., 2008; Fan et al., 2018; Dauner et al., 2023) have long
been a cornerstone of autonomous driving systems. These planners rely on predefined rules and
heuristics to make decisions, offering transparency and interpretability. They excel in handling
well-defined scenarios and can be easily adjusted to comply with traffic regulations. However, they
often struggle with the unpredictability and complexity of real-world driving situations.

On the other hand, there is a well-established history of using neural networks for vision-based
steering control and autonomous driving (Pomerleau, 1988; Lecun et al., 2004; Bojarski et al., 2016).
Neural planners (Bansal et al., 2018; Qureshi et al., 2019) and their applications in end-to-end
autonomous driving (Codevilla et al., 2018; Zeng et al., 2019; Wu et al., 2022; Hu et al., 2022;
2023; Jiang et al., 2023; Wang et al., 2023b; Chen et al., 2024) have gained significant attention in
recent years. These data-driven approaches can learn from vast amounts of driving data, potentially
capturing nuances of driving behavior that are difficult to encode in rule-based systems. End-to-end
autonomous driving are noteworthy for their ability to process all available image features directly
through to the planning stage, enabling them to capture and respond to subtle cues and complex
interactions in driving scenarios. This capability allows them to potentially make more nuanced
and context-aware decisions, enhancing the overall performance and safety of autonomous vehicles.
While these planners promise adaptability to more diverse scenarios, they can sometimes be opaque
in their decision-making process.

Rule-based and neural planners have long been viewed as occupying the opposite ends of the au-
tonomous driving spectrum. However, we argue that this perceived dichotomy may be overstated.
The gap between these approaches can be bridged by expanding the capabilities of neural planners
beyond mere imitation of human demonstrations to knowledge distillation from interpretable
rule-based experts. While imitation learning excels at replicating human actions in specific scenar-
ios, it often overlooks critical safety considerations (Dauner et al., 2023; Li et al., 2023). In contrast,
those rule-based experts focus on the key components essential to safe and efficient driving: adher-
ence to traffic rules, collision avoidance, and driving comfort.
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Figure 1: Comparisons between three paradigms for autonomous driving solutions.

Therefore, we propose a novel end-to-end autonomous driving framework that learns to incorpo-
rate both human demonstrations and expert-guided decision analysis, namely Hydra-MDP++ . This
framework utilizes a teacher-student knowledge distillation (KD) architecture to capture the essence
of human-like driving behavior. The student model generates diverse trajectory candidates, while
teacher models, derived from human demonstrations and rule-based systems, validate these propos-
als based on various aspects of expert driving knowledge. We implement this multi-target validation
using a multi-head decoder, enabling the integration of feedback from specialized teachers that rep-
resent different components of safe and efficient driving, namely Hydra-Distillation. We compare
our proposed approach, the previous neural planners, and rule-base planners in Fig. 1.

We evaluate our approach on NAVSIM, a data-driven non-reactive autonomous vehicle simulation
and benchmarking tool. NAVSIM provides a middle ground between open-loop and closed-loop
evaluations using large datasets combined with a non-reactive simulator. It gathers simulation-based
metrics such as progress and time-to-collision by unrolling bird’s eye view abstractions of test scenes
for a short simulation horizon. This non-reactive simulation allows for efficient, open-loop metric
computation while aligning better with closed-loop evaluations than traditional displacement errors.
As an extension of the NAVSIM challenge-winning solution Hydra-MDP (Li et al., 2024), Hydra-
MDP++ leverages a simple encoder-decoder architecture. For the encoder, it simply uses classic
pretrained vision encoders, such as ResNet-34 (He et al., 2016) or VoVNet-99 (Lee & Park, 2020).
The decoder employs a lightweight and simple transformer network. Hydra-MDP++ achieved state-
of-the-art performance on NAVSIM using only a lightweight ResNet-34 network without additional
complex components. Hydra-MDP++ can easily outperform and achieve a 91.0% PDM Score by
simply scaling the image encoder.

Moreover, we found that the NAVSIM-derived teachers do not sufficiently capture the full spectrum
of driving decision-making, potentially leading to unsafe behaviors. To address this, we expand
the original teacher by incorporating traffic light compliance (TL), lane-keeping ability (LK), and
extended comfort (EC).

We summarize our contributions as follows:

1. We introduce Hydra-MDP++ , a novel end-to-end autonomous driving framework that in-
corporates both human demonstrations and rule-based experts.

2. Our proposed approach achieves top performance on NAVSIM using only a lightweight
ResNet-34 network. Hydra-MDP++ achieves a 91.0% drive score by scaling the image
encoder to V2-99.

3. We address the issues in the NAVSIM-derived teachers by incorporating traffic light com-
pliance (TL), lane-keeping ability (LK), and extended comfort (EC) teachers to reflect
better-driving decision-making.
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2 RELATED WORK

2.1 END-TO-END AUTONOMOUS DRIVING

End-to-end autonomous driving streamlines the entire stack from perception to planning into a single
optimizable network. This eliminates the need for manually designing intermediate representations.
Following pioneering work (Lyu et al., 2019; Bojarski et al., 2016; Kendall et al., 2019), a diverse
landscape of end-to-end models has emerged. For example, many end-to-end approaches focus on
closed-loop simulators that use single-frame cameras, LiDAR point clouds, or a combination of both
to mimic expert behaviour in autonomous driving, namely imitation learning (IL). Expert behaviour
typically takes two forms, trajectories and control actions. Transfuser and its variants (Prakash et al.,
2021; Chitta et al., 2022) use a simple GRU to auto-regressively predict waypoints for autonomous
driving. LAV (Chen & Krähenbühl, 2022) adopts a temporal GRU module to further refine the tra-
jectory. UniAD (Hu et al., 2023) first integrates perception, prediction, and planning into a unified
transfomer network. VAD (Jiang et al., 2023) models the driving scene using vectorized represen-
tations for efficiency. The recent work PARA-Drive (Weng et al., 2024) implements a fully parallel
end-to-end autonomous driving architecture, surpassing the performance of VAD and tripling the
processing speed. While they all perform impressively on the NAVSIM benchmark (Contributors,
2024; Dauner et al., 2024), we found that these methods still do not fully mimic human behaviour
and score low on certain metrics. This suggests that imitation learning still has limitations.

2.2 RULE-BASED AUTONOMOUS DRIVING

Rule-based planners offer a structured, interpretable decision-making framework (Treiber et al.,
2000; Thrun et al., 2006; Bacha et al., 2008; Leonard et al., 2008; Fan et al., 2018; Dauner et al.,
2023). They have been foundational in ensuring safety and predictability by encoding explicit traf-
fic rules and heuristics into the driving system (e.g., apply a hard brake when an object is straight
ahead). One widely used framework is the Intelligent Driver Model (IDM (Treiber et al., 2000)),
which governs vehicle acceleration and braking behavior based on relative distances and speeds, en-
abling safe and efficient car-following in various traffic conditions. Extensions of IDM (Fan et al.,
2018) further build on rule-based principles by integrating explicit traffic laws and driving heuristics
to guide decision-making in complex environments like urban traffic, leveraging a modular archi-
tecture for tasks such as lane-changing and intersection handling. The recent study (Dauner et al.,
2023) proposes a rule-based planner named PDM-Planner. It assesses the current state of closed-
loop planning in the field, revealing the limitations of learning-based methods in complex real-world
scenarios and the value of simple rule-based priors such as centerline-following and collision avoid-
ance.

2.3 CLOSED-LOOP BENCHMARKING WITH SIMULATION

Closed-loop benchmarking with simulation is essential for evaluating autonomous driving systems
by measuring key aspects like safety, rule compliance, and comfort. Tools such as CARLA (Doso-
vitskiy et al., 2017) and Metadrive (Li et al., 2022) focus on sensor-based simulations, mimicking the
real world through virtual cameras and LiDAR. In contrast, platforms like nuPlan (Karnchanachari
et al., 2024) and Waymax (Gulino et al., 2024) utilize data-driven approaches to simulate urban en-
vironments with real-world data, providing a more dynamic and realistic evaluation of autonomous
agents. Despite advancements, replicating accurate traffic behaviors and realistic sensor data re-
mains challenging. Achieving high fidelity in environmental interactions and vehicle dynamics is
crucial for ensuring reliability in autonomous systems. Existing data-driven sensor simulations at-
tempt to bridge this gap by adapting real sensor data for new driving scenarios, but they still fall
short in rendering quality. For instance, many simulations depend on graphical-based rendering to
replicate sensor input like LiDAR, often resulting in discrepancies when compared to real-world
conditions. Simulators integrating more realistic sensor behavior, like CARLA and Metadrive, still
face hurdles in domain gaps related to visual fidelity and sensor precision. The latest NAVSIM
benchmark (Contributors, 2024; Dauner et al., 2024) addresses some of these challenges by eval-
uating planners with extended metrics, such as driving consistency and safety, that better reflect
real-world driving performance. However, it assumes a non-reactive environment, where agents do
not influence their surroundings over a short horizon, simplifying real-world dynamics in its assess-
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Figure 2: The Overall Architecture of Hydra-MDP++ .

ment framework. While NAVSIM provides more accurate simulation-based evaluation, closing the
gap between simulated and real-world conditions remains an ongoing area of research.

3 METHODOLOGY

3.1 PRELIMINARIES

Imitation-based End-to-end Neural planners. Neural planners utilize deep learning to predict
driving trajectories or control commands directly from raw sensory inputs, such as camera images
and LiDAR data. They can automatically extract relevant patterns and adapt to complex environ-
ments after being trained on extensive datasets. Specifically, the neural planner learns to replicate
human driving behavior by predicting a trajectory T or a sequence of control actions (a1, a2, ..., aT ),
supervised by human demonstrations. Nevertheless, these approaches may lack interpretability seen
in rule-based systems.

Rule-based planners. On the other hand, rule-based planners adhere to predefined rules and ex-
pert knowledge to ensure safe and efficient driving. As the state-of-the-art planner on the nuPlan
dataset (Caesar et al., 2021b), the PDM-Planner (Dauner et al., 2023) integrates the Intelligent Driver
Model (IDM Treiber et al. (2000)) with various hyperparameters to enhance performance. This ap-
proach evaluates multiple planning proposals through a comprehensive metric known as the PDM
Score (PDMS):

PDMS =

 ∏
m∈{NC,DAC}

Sm


︸ ︷︷ ︸

penalties

×

(∑
w∈{EP,TTC,C} weight w × Sw∑

w∈{EP,TTC,C} weight w

)
︸ ︷︷ ︸

weighted average

, (1)

which addresses various aspects of driving performance, including safety, comfort, and progress. In
our framework, we utilize the metric system of the PDM-Planner as teachers, which broaden the
learning objective of the planner.

3.2 OVERALL FRAMEWORK

As shown in Fig. 2, Hydra-MDP++ consists of two networks: a Perception Network and a Tra-
jectory Decoder.

Perception Network. Our perception network consists of an image backbone and a temporal
Squeeze-and-Excitation (SE) network for temporal fusion. The temporal SE network builds on
the classic SE network (Hu et al., 2018), which performs channel-wise attention, but in our case,
it is adapted to operate across the temporal dimension. This mechanism aggregates both historical
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(F pre
img) and current (F cur

img) image features through a squeeze operation, compressing temporal in-
formation. The excitation step then learns weights that highlight important temporal dependencies,
improving the model’s ability to adapt to dynamic environments. The environmental tokens Fenv ,
encoding rich temporal and semantic information, are computed as follows:

Fenv = Conv(TemporalSE(Concat(F pre
img, F

cur
img)). (2)

By applying attention across time, the Temporal SE module enhances the performance when pro-
cessing sequential data. We detach the gradient of historical tokens for faster convergence (Wang
et al., 2023a; Yuan et al., 2024b).

Trajectory Decoder. Based on these environmental tokens, many end-to-end planners primarily
regress to a single target trajectory (Jiang et al., 2023; Hu et al., 2023; Wu et al., 2022), which only
imitates human behavior and fails to address the uncertainty in planning (Chen et al., 2024). This
approach is limited by its reliance on extrapolating historical ego status, leaving a significant action
space unexplored. On the other hand, a discretized action space (Philion & Fidler, 2020; Phan-Minh
et al., 2020; Chen et al., 2024) not only helps us avoid these problems but also enables the generation
of the ground-truth metric data for expert-guided knowledge distillation offline, as long as the action
space is fixed during training. To construct the action space, we first sample 700K trajectories
randomly from the original nuPlan database (Caesar et al., 2021a). Each trajectory Ti(i = 1, ..., k)
consists of 40 timestamps of (x, y, heading), corresponding to the desired 10Hz frequency and a
4-second future horizon. The planning vocabulary Vk is formed as K-means clustering centers of
the 700K trajectories, where k denotes the size of the vocabulary. Vk is then embedded as k latent
queries with an MLP, sent into layers of transformer encoders (Vaswani et al., 2017), and added to
the ego status E:

V ′
k = Transformer(Q,K, V = Mlp(Vk)) + E. (3)

To incorporate environmental clues in Fenv , transformer decoders are leveraged:

V ′′
k = Transformer(Q = V ′

k,K, V = Fenv). (4)

3.3 LEARNING AND INFERENCE

The learning process of this architecture consists of two key elements: Imitation Learning and
Expert-guided Hydra-Distillation, as illustrated in Fig. 2. Through Imitation Learning, the model
learns from human demonstrations. Expert-guided Hydra-Distillation provides additional guidance
from a rule-based expert, ensuring the model to adhere to driving rules and safety standards. This
approach combines the flexibility of learning from demonstrations with the reliability of rule-based
corrections, leading to improved driving performance in real-world scenarios.

Imitation Learning. With a classification-based trajectory decoder, the primary objective is to esti-
mate the confidence of each trajectory. To reward trajectory proposals that are close to human driving
behaviors, we implement a distance-based cross-entropy loss to imitate the log-replay trajectory T̂
derived from humans:

Lim = −
k∑

i=1

yi log(Sim
i ), (5)

where Sim
i is the i-th softmax score of V ′′

k , and yi is the imitation target produced by L2 distances
between log-replays and the vocabulary. Softmax is applied on L2 distances to produce a probability
distribution:

yi =
e−(T̂−Ti)

2∑k
j=1 e

−(T̂−Tj)2
. (6)

Expert-guided Hydra-Distillation. Though the imitation target provides certain clues for the plan-
ner, it is insufficient for the model to associate the planning decision with the driving environment,
leading to failures such as collisions and leaving drivable areas (Li et al., 2023). Therefore, to
improve the closed-loop performance of our end-to-end planner, we propose Expert-guided Hydra-
Distillation, a learning strategy that aligns the planner with simulation-based metrics in NAVSIM.

The distillation process expands the learning target through two steps: (1) running offline simula-
tions (Dauner et al., 2023) of the planning vocabulary Vk for the entire training dataset; (2) intro-
ducing supervision from simulation scores for each trajectory in Vk during the training process. For
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a given scenario, step 1 generates ground truth simulation scores {Ŝm
i |i = 1, ..., k}|M |

m=1 for each
metric m ∈ M and the i-th trajectory, where M represents the set of metrics metioned in Sec. 3.1
and Sec. 3.4, excluding extended comfort metric. For score predictions, latent vectors V ′′

k are pro-
cessed with a set of Hydra Prediction Heads, yielding predicted scores {Sm

i |i = 1, ..., k}|M |
m=1. With

a binary cross-entropy loss, we distill rule-based driving knowledge into the end-to-end planner:

Lkd = −
∑
m,i

Ŝm
i logSm

i + (1− Ŝm
i ) log(1− Sm

i ). (7)

For a trajectory Ti, its distillation loss of each sub-score acts as a learned cost value, measuring the
violation of particular traffic rules associated with that metric. The overall loss L can be expressed
as follows:

L = Lim + Lkd. (8)

Inference. Given the predicted imitation scores {Sim
i |i = 1, ..., k} and metric sub-scores {Sm

i |i =
1, ..., k}|M |

m=1, we calculate an assembled cost measuring the likelihood of each trajectory being se-
lected in the given scenario as follows:

f̃(Ti, O) = −(kim logSim
i +

∑
m∈Mpenalties

km logSm
i + kw log

∑
w∈Mweighted

weightwSw
i ), (9)

where {kim, km, kw} represent confidence weighting parameters to mitigate the imperfect fitting
of different teachers. Mpenalties and Mweighted represent penalty and weighted metrics used in the
PDM-Planner (see Eq. 1) and the extended metrics we propose in Sec. 3.4. The optimal combination
of weights is obtained via grid search. Finally, the trajectory with the lowest overall cost is chosen.

3.4 EXTENDED RULE-BASED TEACHERS

Hydra-MDP++ exhibits strong performance on the NAVSIM benchmark. Nevertheless, we observe
certain issues in planned trajectories of the model, which are not perfectly covered by existing met-
rics used by NAVSIM. These issues include traffic rule violations, deviation from the centerline,
and inconsistent predictions between consecutive frames, which can result in oscillation. In light of
these observations, we expand the original teacher by incorporating Traffic Lights Compliance (TL),
Lane Keeping Ability (LK), and Extended Comfort (EC). Furthermore, our framework is capable of
integrating additional rule-based teachers in the event that new rules are designed.

Traffic Lights Compliance. It is essential for all vehicles to follow traffic signals, represented
by the metric STL. This metric evaluates whether a vehicle runs a red light. Specifically, for the
upcoming four seconds, if the vehicle crosses a crosswalk while the light is red, it will be flagged
for running the red light. In such an event, STL is set to 0. However, if the vehicle complies and
avoids crossing during the red light, STL is assigned a value of 1.

Driving Direction Compliance. The SDDC metric is employed to determine whether the trajectory
of the vehicle between two consecutive time steps remains aligned with the centreline’s positive
direction, within an allowable distance deviation of τD. In the context of time steps i and i+ 1, the
vehicle’s positions are defined as (xi, yi) and (xi+1, yi+1), respectively. The closest lane segment,
vj , is then identified, and the projections of these two positions onto the positive direction of vj
are calculated. The distance between the two projected points is subsequently defined as dpi . The
subscore SDDC = 1 if, for every time steps i, the condition: dpi ≤ τD holds.

Lane Keeping Ability. The lane keeping subscore SLK assesses a vehicle’s ability to stay within
a lateral deviation limit τD from the lane. This subscore reflects how effectively the vehicle can
maintain its intended path during navigation. At each time step i, we calculate the minimum per-
pendicular distance di between the ego vehicle (xi, yi) and nearby lane segments vj :

di = min
vj∈m

{d ((xi, yi) , vj)} . (10)

The subscore SLK = 1 if, for every time steps i, the condition: di ≤ τD holds.

Extended Comfort. We find that the previous metrics were insufficient in addressing inconsis-
tencies arising from the model’s own predictions. For example, if the trajectory predicted in the
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previous frame shifts to the left while the current frame’s prediction shifts to the right, this can cause
vehicle to oscillate, negatively affecting passenger comfort. Accordingly, the extended comfort sub-
score SEC is calculated by comparing the discrepancies in acceleration, jerk, yaw rate, and yaw
acceleration between the projected trajectories of the preceding and current frames with respect to
predefined thresholds τA, τJ , τRY and τAY . The discrepancies are calculated as follows:

dA =

√√√√ 1

T

T∑
t=1

(acurrent,t − apreceding,t)
2
, dJ =

√√√√ 1

T

T∑
t=1

(jcurrent,t − jpreceding,t)
2
, (11)

dRY =

√√√√ 1

T

T∑
t=1

(
yrcurrent,t − yrpreceding,t

)2
, dAY =

√√√√ 1

T

T∑
t=1

(
yacurrent,t − yapreceding,t

)2
. (12)

The subscore SEC = 1 if the condition dA ≤ τA, dJ ≤ τJ , dRY ≤ τRY , and dAY ≤ τAY holds.

In light of the aforementioned four new metrics, the Extended PDM Score can be described as
follows:

EPDMS =

 ∏
m∈{NC,DAC,DDC,TL}

Sm


︸ ︷︷ ︸

penalties

×

(∑
w∈{EP,TTC,C,LK,EC} weight w × Sw∑

w∈{EP,TTC,C,LK,EC} weight w

)
︸ ︷︷ ︸

weighted average

. (13)

4 EXPERIMENTS

4.1 DATASET AND METRICS

Dataset. The NAVSIM dataset builds on the existing OpenScene (Contributors, 2023) dataset, a
compact version of nuPlan (Caesar et al., 2021b) with only relevant annotations and sensor data
sampled at 2 Hz. The dataset primarily focuses on scenarios involving changes in intention, where
the ego vehicle’s historical data cannot be extrapolated into a future plan. The dataset provides
annotated 2D high-definition maps with semantic categories and 3D bounding boxes for objects.
The dataset is split into two parts: Navtrain and Navtest, which respectively contain 1192 and 136
scenarios for training/validation and testing.

Metrics. For NAVSIM dataset, we evaluate our models based on the PDM score (PDMS) and the
Extended PDM Score (EPDMS), which can be formulated as follows:

PDMscore = NC ×DAC × (5×TTC+2×C+5×EP )
12 , (14)

EPDMscore = NC ×DAC ×DDC × TL× (5×TTC+2×C+5×EP+5×LK+5×EC)
22 , (15)

where sub-metrics NC, DAC, TTC, C, EP , DDC, TL, LK and EC correspond to the No
at-fault Collision, Drivable Area Compliance, Time-to-Collision, Comfort, Ego Progress, Traffic
Lights Compliance, Lane Keeping Ability and Extended Comfort. In regard to the PDM score, we
calculate EPDMS following the NAVSIM Benchmark (Contributors, 2024; Dauner et al., 2024) by
expanding the original penalty and weighted terms with our proposed metrics.

4.2 IMPLEMENTATION DETAILS

We train our models on the Navtrain split (Contributors, 2024) using 8 NVIDIA V100 GPUs, with
a total batch size of 256 across 20 epochs. The learning rate and weight decay are set to 1 × 10−4

and 0.0, following the official baseline using the AdamW (Loshchilov, 2017) optimizer. For images,
the front-view image is concatenated with the center-cropped front-left-view and front-right-view
images, yielding an input resolution of 256 × 1024 by default. ResNet34 is applied for feature
extraction unless otherwise specified. Although the dataset provides four past frames, our model
only utilizes the two most recent ones. No data or test-time augmentations are used. Our input data
includes the current status of the ego vehicle, such as velocity, acceleration, and driving commands
from the navigation module, including turning, lane changing, and following. The final output is a
40-waypoint trajectory over 4 seconds, sampled at 10 Hz, with each waypoint defined by x, y, and
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heading coordinates. In the case of extended rule-based metrics, the value of τD was set at 0.5m
for both Driving Direction Compliance (DDC) and Lane Keeping Ability (LK). Besides, thresholds
are set to τA = 0.7m/s2, τJ = 0.5m/s3, τA = 0.7m/s2, τRY = 0.1rad/s, and τAY = 0.1rad/s2 in
Extended Comfort (EC).

Method Inputs Img. Backbone Params (MB) ↓ NC ↑ DAC ↑ EP ↑ TTC ↑ C ↑ PDMS ↑
PDM-closed (Dauner et al., 2023)* GT Perception - - 94.6 99.8 89.9 86.9 99.9 89.1

Transfuser (Chitta et al., 2022) Img.+LiDAR ResNet34 56.0 97.7 92.8 79.2 92.8 100 84.0
UniAD (Hu et al., 2023) Img. ResNet34 - 97.8 91.9 78.8 92.9 100 83.4
PARA-Drive (Weng et al., 2024) Img. ResNet34 - 97.9 92.4 79.3 93.0 99.8 84.0
VADv2 (Chen et al., 2024)† Img.+LiDAR ResNet34 60.5 97.9 91.7 77.6 92.9 100 83.0
DRAMA (Yuan et al., 2024a) Img.+LiDAR ResNet34 50.6 98.0 93.1 80.1 94.8 100 85.5

Hydra-MDP++ (Ours) Img. ResNet34 40.6 97.6 96.0 80.4 93.1 100 86.6
Hydra-MDP++ (Ours) Img. V2-99 89.0 98.6 98.6 85.7 95.1 100 91.0

Table 1: Performance on the Navtest Benchmark with original metrics. The table displays the
percentages of the No at-fault Collision (NC), Drivable Area Compliance (DAC), Time-to-Collision
(TTC), Comfort (C), and Ego Progress (EP) subscores, as well as the PDM Score (PDMS). *PDM-
Closed is provided for reference only due to limitations in the brake implementation, which poten-
tially leads to more collisions. † VADv2 is our implementation based on Transfuser, incorporating a
classification-based trajectory decoder.

Method Backbone NC ↑ DAC ↑ EP ↑ TTC ↑ C ↑ TL ↑ DDC ↑ LK ↑ EC ↑ EPDMS ↑
PDM-closed (Dauner et al., 2023)* - 94.6 99.8 89.9 86.9 99.9 100 98.7 66.7 98.0 82.8

Transfuser (Chitta et al., 2022) ResNet34 97.7 92.8 78.4 93.0 100 99.9 98.3 67.6 95.3 77.8
VADv2 (Chen et al., 2024)† ResNet34 97.3 91.7 77.6 92.7 100 99.9 98.2 66.0 97.4 76.6

Hydra-MDP++(Ours) ResNet34 97.9 96.5 79.2 93.4 100 100 98.9 67.2 97.7 80.6
Hydra-MDP++(Ours) V2-99 98.8 97.8 84.0 95.3 100 100 99.1 70.1 96.8 84.1

Table 2: Performance on the Navtest Benchmark with extended metrics. The table shows per-
centages of the original metrics and our proposed metrics Traffic Lights Compliance (TL), Driving
Direction Compliance (DDC), Lane Keeping Ability (LK), Extended Comfort (EC), and the Ex-
tended PDM score (EPDMS). * and † have the same meaning as in the previous table.

4.3 QUANTITATIVE RESULTS

Tab. 1 shows the performance of different planners on the Navtest Benchmark with PDM score. We
see that: i) Neural planners score low on Drivable Area Compliance (DAC) as the aforementioned
methods are unable to accurately determine the extent of the drivable area, leading to potential
misclassification of road boundaries and off-road regions. ii) Our method eliminates the use of lidar
inputs, relying solely on image data and a lightweight ResNet34 backbone with fewer parameters,
while still achieving state-of-the-art performance. Notably, the Drivable Area Compliance (DAC)
score improved by 2.9% over the previous best method. Overall, the PDM score increased by
1.1%, representing a significant advancement in navigation accuracy. iii) We scale up the image
backbone using the V2-99 (Lee et al., 2019) architecture, and observe that with a larger backbone,
our method surpasses the rule-based teacher PDM-Planner by 1.9% and improves upon the ResNet-
based backbone by 3.4%. In contrast to the findings in Hu et al. (2023), which suggests that larger
backbones yield only minor enhancements in planning performance, our results show a particularly
notable improvement in the EP, LK, and DAC metrics. This underscores the significant scalability
of our approach when utilizing a larger backbone.

Tab. 2 illustrates the performance of various planners on the Navtest Benchmark with an Extended
PDM Score. As illustrated in Tab. 1, the identical pattern is evident. Moreover, the method continues
to perform exceptionally well on the new metrics, particularly in Extended Comfort. This indicates
that the vehicle rarely exhibits inconsistencies in its behaviours over time. Furthermore, it is evident
that the incorporation of the pre-designed rule-based teacher (DDC, LK, and EC) during distillation
has a negligible effect on the original metrics, namely NC, DAC, EP, TTC, and C.

4.4 ABLATION STUDY

Tab. 3 and Tab. 4 illustrate the results of the ablation study on various modules employed in our net-
work. W employs weighted confidence during inference, as discussed in Sec. 3.3. TS integrates the
Temporal SE module, while P utilizes extra perception tasks for auxiliary supervision (Chitta et al.,
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W TS P Backbone NC ↑ DAC ↑ EP ↑ TTC ↑ C ↑ PDMS ↑
- - - Resnet34 97.5 92.0 80.4 91.8 100 85.0

✓ - - Resnet34 97.4 96.0 81.0 92.8 100 86.5
✓ ✓ - Resnet34 97.6 96.0 80.4 93.1 100 86.6
✓ ✓ ✓ Resnet34 97.6 95.6 80.1 93.3 100 86.1

Table 3: Ablation study on the Navtest Benchmark with original metrics. W: Weighted con-
fidence during inference. TS: Temporal SE module in perception network. P: Perception tasks are
used for auxiliary supervision.

W TS P Backbone NC ↑ DAC ↑ EP ↑ TTC ↑ C ↑ TL ↑ DDC ↑ LK ↑ EC ↑ EPDMS ↑
- - - Resnet34 97.7 92.1 80.5 92.6 100 100 98.1 67.0 92.3 76.8

✓ - - Resnet34 97.9 96.5 80.3 93.7 100 100 98.8 66.2 92.3 79.8
✓ ✓ - Resnet34 97.9 96.5 79.2 93.4 100 100 98.9 67.2 97.7 80.6
✓ ✓ ✓ Resnet34 97.9 96.2 78.6 93.4 100 100 98.6 67.1 97.5 80.3

Table 4: Ablation study on the Navtest Benchmark with extended metrics. W: Weighted
confidence during inference. TS: Temporal SE module in perception network. P: Perception tasks
are used for auxiliary supervision.

2022). We observe that the weighted confidence leads to an enhanced PDM Score and Extended
PDM Score, which suggests that weighted confidence during inference is a crucial step. Intuitively,
the movement of a vehicle is more susceptible to collisions and drivable areas, and therefore the
weights need to be larger in these contexts. The inclusion of Temporal SE further improves the
score, particularly the Extended Comfort (EC) subscore, which rises from 92.3 to 97.7. This un-
derscores its effectiveness in capturing temporal features that enhance overall smoothness of model
predictions. Additionally, we find that auxiliary training of perception worsens the planning perfor-
mance, suggesting that perception does not positively impact the performance within our framework.

Method Backbone NC ↑ DAC ↑ EP ↑ TTC ↑ C ↑ TL ↑ DDC ↑ LK ↑ EC ↑ EPDMS ↑
Hydra-MDP++ ResNet34 97.6 96.0 80.4 93.1 100 99.9 97.5 65.5 97.4 79.5
Hydra-MDP++* ResNet34 97.9 96.5 79.2 93.4 100 100 98.9 67.2 97.7 80.6

Hydra-MDP++ V2-99 98.6 98.6 85.7 95.1 100 100 97.8 67.6 96.7 83.4
Hydra-MDP++* V2-99 98.8 97.8 84.0 95.3 100 100 99.1 70.1 96.8 84.1

Table 5: Ablation Study on the Navtest Benchmark with extended metrics. *Extended metrics
act as rule-based teachers during Hydra-Distillation.

Tab. 5 presents an ablation analysis of distillation with extended rule-based teachers. Models marked
with * indicate that the new metrics were incorporated as additional distillation targets. As shown,
Hydra-MDP++ * achieved significant improvements in metrics like Driving Direction Compliance
(DDC), Lane Keeping (LK), and Extended Comfort (EC), confirming the successful integration of
rule-based knowledge from the new teachers. Furthermore, the considerable increase in the Ex-
tended PDM Score (EPDMS) highlights the overall advantages of adding these metrics, reflecting
better alignment between model predictions and ideal driving behaviors. This improvement not only
enhances rule-compliance but also provides a more robust framework for safe, human-like driving.

4.5 QUALITATIVE RESULTS.

In Fig. 3, three representative driving scenarios are displayed, showcasing how our Hydra-MDP++
model performs end-to-end trajectory planning. The left-hand side compares the ground truth tra-
jectory (green) and the planned trajectory (red). The top image shows a right turn where the model
accurately follows the curve. The middle image displays straight driving in a dense urban environ-
ment, maintaining a safe distance from other vehicles. The bottom image depicts the car coming to
a stop at a red light, demonstrating proper deceleration and safety compliance.

On the right-hand side, we offer the evaluation of 8192 candidate trajectories scored across five met-
rics: NC (No at-fault Collision), DAC (Drivable Area Compliance), TTC (Time-to-Collision), EP
(Ego Progress), and LK (Lane Keeping), with EPDMS being an aggregated score. The visualiza-
tion reveals the distribution of these scores, with higher scores indicating trajectories that balance
both safety and progress. These metrics are essential for the planning process of Hydra-MDP++ ,
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NC DAC TTC

EP LK EPDMS

NC DAC TTC

EP LK EPDMS

NC DAC TTC

EP LK EPDMS

Figure 3: Visualizations of our planned trajectory (red dots), ground-truth trajectory (green dots),
and predicted scores for different metrics. Trajectories scoring less than 0.1 are omitted.

ensuring it selects optimal trajectories that align with both safety constraints and efficient driving
behaviors. The color gradients represent the evaluation of the candidate trajectories based on dif-
ferent metrics. Lighter colors (e.g. yellow or green) correspond to higher scores, indicating more
optimal trajectories according to the specific metric. In contrast, darker colors (e.g. purple or blue)
correspond to lower scores, representing less favorable trajectories.

5 CONCLUSION

We present Hydra-MDP++ , a state-of-the-art end-to-end motion planner designed to synergize the
strengths of rule-based and neural planning methodologies. By learning from extensive human driv-
ing demonstrations and the insights provided by rule-based experts, Hydra-MDP++ can navigate
complex environments more effectively. Our expert-guided hydra-distillation paradigm aligns the
planner with simulation-based metrics in NAVSIM, enhancing its reliability and performance. To
address the shortcomings of existing evaluation metrics, we have expanded the teacher model to
include crucial aspects such as Traffic Lights Compliance, Lane Keeping Ability, and Extended
Comfort. This comprehensive approach ensures that the decision-making process in driving sce-
narios is robust, adaptable, and adheres to safety standards. The evaluation of Hydra-MDP++ us-
ing the public NAVSIM dataset reveals its superior performance compared to traditional methods,
demonstrating that it achieves high levels of accuracy and compliance with fewer parameters, which
highlights its efficiency and effectiveness in real-world applications. This advancement not only
improves driving performance but also contributes to the ongoing development of safer and more
intelligent autonomous vehicles.
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