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Abstract

Most knowledge graphs (KGs) are incomplete, which motivates one important
research topic on automatically complementing knowledge graphs. However,
evaluation of knowledge graph completion (KGC) models often ignores the
incompleteness—facts in the test set are ranked against all unknown triplets which
may contain a large number of missing facts not included in the KG yet. Treating all
unknown triplets as false is called the closed-world assumption. This closed-world
assumption might negatively affect the fairness and consistency of the evaluation
metrics. In this paper, we study KGC evaluation under a more realistic setting,
namely the open-world assumption, where unknown triplets are considered to
include many missing facts not included in the training or test sets. For the cur-
rently most used metrics such as mean reciprocal rank (MRR) and Hits@K, we
point out that their behavior may be unexpected under the open-world assumption.
Specifically, with not many missing facts, their numbers show a logarithmic trend
with respect to the true strength of the model, and thus, the metric increase could be
insignificant in terms of reflecting the true model improvement. Further, consider-
ing the variance, we show that the degradation in the reported numbers may result
in incorrect comparisons between different models, where stronger models may
have lower metric numbers. We validate the phenomenon both theoretically and
experimentally. Finally, we suggest possible causes and solutions for this problem.
Our code and data are available at https://github.com/GraphPKU/Open-World-KG.

1 Introduction

Knowledge graph (KG) is a structural method to store facts about some field or the world. Because
most KGs are incomplete, the knowledge graph completion (KGC) task is proposed to automatically
complement the existing KG with missing facts. However, when we do not know the missing facts
in advance, we must manually evaluate whether each predicted completion is correct, which is an
impossible task for modern KGs. This problem is called the open-world problem and the assumption
that KGs are incomplete is called the open-world assumption. A general solution is to extract the
training, validation and test sets from the existing incomplete KG and then evaluate the trained models
on the test set. Then, a natural question is whether the conclusion drawn from the incomplete test set
is consistent with the true strength of the model, which should be measured on the complete KG.

To answer this question, we need to investigate the metrics used to evaluate KGC models. KGC
models are often evaluated by ranking-based metrics, such as mean reciprocal rank (MRR) and
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Table 1: The filtered ranking as well as the metric MRR. “w/o c”: without correction and “with c”:
with correction. Query: “What sports were included in the 1956 Summer Olympics?”

Test Answers Missing Answers
swimming sailing water polo boxing dressage show jumping canoe sprint cycling

ranking w/o c 5 5 1 2 3 4 7 9
ranking with c 1 1 1 1 1 1 3 4

Hits@K. Under the open-world assumption, when a missing fact that should have been included in
the test answers is predicted by the model, its ranking could be higher than some test answers,
which makes the rankings of these test answers drop. In this situation, despite actually recognizing
more right answers, the metrics drop instead.

To intuitively show the problem, we train BetaE [Ren and Leskovec, 2020], one state-of-the-art
multi-hop KGC model, on the FB15k-237 dataset [Toutanova and Chen, 2015]. One of the test
queries is “What sports were included in the 1956 Summer Olympics?”. The two test answers are
swimming and sailing, both with the filtered rankings (refer to Section 2) of 5, so the MRR on this
query is 20%. However, when we manually check the first 30 predictions , we found that many of
them are in fact sports included in the 1956 Summer Olympics but not included in the answer set.2
We present these missing answers in Table 1. We can see that all the four sports previously ranking
higher than the two test answers turn out to be missing true answers. Thus, if we correct the answer
set by adding these missing answers to the test set, the actual filtered rankings of the two test answers
are both 1, and the corrected MRR on the new test set becomes 82% which is much higher than the
reported 20%, indicating that the model strength on this query is significantly underestimated.

In this paper, we study the odd behavior of the ranking-based metrics under the open-world assump-
tion, and summarize two problems affecting the KGC evaluation: 1) Metric Degradation. It means
that with the increasing of the actual model strength, the increasing of the reported metric becomes
slower and slower. Thus, the reported metric might not be able to reflect the true model improvement.
2) Metric Inconsistency. It means that when comparing two models, the model with lower reported
metric may actually have better performance if we evaluate them on the complete KG.

Our main contributions include that: For the first time, we theoretically analyze the evaluation of
KGC under the open-world assumption and point out the degradation and inconsistency problems.
Furthermore, we suggest that the degradation and inconsistency may be related to the focus-on-top
behavior of the metrics, and provide a solution to relieve the two problems. Finally, we verify the
theoretical analysis through experiments on an artificial closed-world KG.

2 Background and related work

Knowledge graph completion Current KGC models can be mainly categorized into three classes:
logic-based, embedding-based, and neural-based. Logic-based models [Joseph and Riley, 1998,
Richardson and Domingos, 2006] use some explicit rules for KGC, which are manually provided or
mined by some rule-mining methods, such as [Galárraga et al., 2013, Yang et al., 2017, Sadeghian
et al., 2019]. These models search through the existing KG and deduce missing facts according to the
given rules. However, this process can be time-consuming and noise-sensitive. At the same time, if
the KGs are highly incomplete, the performance could be poor. Embedding-based models [Bordes
et al., 2013, Yang et al., 2015, Trouillon et al., 2016, Sun et al., 2019] represent entities and relations
by learned vectors or tensors, where the possibility of a fact is measured by a score function. These
models have good scalability and can be applied to large and sparse KGs. Some works aim to
generalize embedding-based models to more patterns [Trouillon et al., 2016, Abboud et al., 2020]
and more assumptions (such as multiple answers) [Vilnis et al., 2018, Ren et al., 2020, Abboud et al.,
2020]. One of the interesting directions is to consider multi-hop reasoning [Ren et al., 2020, Ren and
Leskovec, 2020, Zhang et al., 2021], where a query can be composed by several conditions, such
as “Who is the Canadian and won the Turing Award ?” Note that the open-world problem could be
more severe in the multi-hop setting, because missing in any condition leads to missing in the final
results. Neural-based models combine neural networks with embeddings. Dettmers et al. [2018]
and Nguyen et al. [2018] use a convolution networks as the score function to enlarge the capacity of

2All sports held at this Olympics are in: https://en.wikipedia.org/wiki/1956_Summer_Olympics.
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the models. Nathani et al. [2019], Vashishth et al. [2020] and Wang et al. [2021] use graph neural
networks on the KGs to learn the embeddings or directly predict the links.

KG evaluation Current KGC evaluation resorts to manually split training, validation and test sets
from the incomplete KG. Given a test query r(eh, ?) (which entities have the relation r with the
head entity eh?), a typical method is to predict a score for all entities as the tail entity, rank all the
entities, and then measure the average of a ranking-based function h(r) on the test answers. Here, the
most-used metrics are MRR h(r) = 1/r and the Hits@K h(r) = I(r ≤ K). Because there could be
multiple answers for a query, the metrics should be filtered, which means the answers in the training
and test sets do not occupy a position so that the number of training and test answers does not affect
the metrics. The details of the filtering can be found in [Bordes et al., 2013]. Due to the nonlinearity
of most ranking-based metrics, some works have theoretically investigated their behavior. Wang
et al. [2013] point out some ranking-based metrics always converge to 1 on different models as the
number of objects to rank goes to infinity, so that the performance of models is indistinguishable.
Krichene and Rendle [2020] analyze the behavior of ranking-based metrics under negative sampling.
They point out the sampled metrics can be inconsistent with exact metrics and all metrics lose their
focus-on-top feature and collapse to a linear one, AUC-ROC, in the small sample limit. Sun et al.
[2020] focus on the unfair tie-breaking methods. Akrami et al. [2020] find some data argumentation
such as adding inverse relations could be a kind of excessive data leakage during evaluation.

Open-world assumption Some recent works have noticed the gap between the actual open-
world situation and the closed-world assumption. Cao et al. [2021] point out that the closed-world
assumption leads to a trivial evaluation on the triple classification task. They offer their manually-
labeled positive-negative-unknown ternary triple classification datasets following the open-world
assumption and point out the lack of capacity for current models to distinguish unknown from negative.
However, the unknown part in the dataset is only on the triple classification task, while we focus
on the link prediction task here. Additionally, Das et al. [2020] analyze the open-world setting as
an evolving world that continuously adds new entities and facts to KGs. Under this setting, their
work focuses on the inductive or case learning capacity, i.e., the capacity of models to generalize on
unobserved entities. Here, we aim to analyze the possible inconsistent comparison in evaluation with
missing facts instead of a specific framework with a larger inductive capacity.

3 Open-world problem

In this section, we formally define the open-world problem that will be analyzed in our paper.

Definition 3.1 (Knowledge Graph). A knowledge graph is a relational graph G = (E,F,R) where
E is the vertex set containing entities, F is the edge set containing facts, and R is the relation set.
Each edge f ∈ F is labeled by a relation. If an edge f between entities eh and et is labeled by
relation r ∈ R, we denote the edge f as r(eh, et) where eh is the head entity and et is the tail entity.

In this paper, we assume E and R are fixed. Therefore, we sometimes directly use G to denote the
fact set F , and r(eh, et) ∈ G means there is relation r between eh and et in the KG G.

A set of KGs with the same entities E and relations R but different facts F is called a world and
denoted by W (E,R). An (open-world) KG can be considered as an observation or understanding of
the world where there could be unobserved or unknown facts, while the closed-world KG contains all
the true facts of the world. Formally, the closed-world and open-world KGs are defined as follows:

Definition 3.2 (Closed-World KG and Open-World KG). For a world W (E,R), the closed-world
KG G is the closure of the world.

G =
⋃

G′∈W

G′,

where the union is defined on the fact set. And for a KG G′ ∈ W , if G′ ̸= G, G′ is open-world.3

Some property of closed-world KGs: 1) There is a one-to-one correspondence between closed-world
KGs and worlds W (E,R). 2) All the KGs in a world are subgraphs of the closed-world one. 3) If G
is the closed-world KG of the world W , we have f ̸∈ G ⇒ ∀G′ ∈ W, f ̸∈ G′.

3Some works use open-world to refer to not only facts but also entities may be incomplete.
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The third property is critical. It means with the closed-world G, we know there is no such a relation
r between eh and et in the world when r(eh, et) ̸∈ G. Given the closed-world KG, we have all
knowledge of the world, including both the positive and negative one. Conversely, if a KG is open-
world, we do not know whether the triplet is false or unknown when r(eh, et) ̸∈ G. In other words,
an open-world KG only contains positive knowledge.

In the rest of the paper, we denote the closed-world KG as Gfull. Because we want to study the
evaluation, we denote the existing open-world dataset as Gtest, and extract the training set Gtrain

from Gtest. Here, Gtrain ⊆ Gtest ⊆ Gfull and the facts in Gtrain, Gtest \ Gtrain, Gfull \ Gtest

are training facts, test facts and missing facts respectively. In addition, we also call the facts in
Gfull \Gtrain full test facts and Gtest \Gtrain sparse test facts.

Now, we can formally define the open-world problem. We believe the actual strength of a model
should be evaluated on the full test facts Gfull \ Gtrain. However, because the closed-world KG
Gfull is unavailable, the evaluation is often performed over Gtest \Gtrain. The question is:

Whether the conclusions from evaluation on the sparse test facts Gtest \Gtrain

lead to consistent conclusions from evaluation on the full test facts Gfull \Gtrain.

4 Theoretical analysis on metric degradation and inconsistency

To study the open-world problem, we theoretically analyze the behavior of ranking-based metrics
with missing facts. All the proofs are in Appendix A.1. The randomness comes from two sources:
the missing of facts and the predictions of the model. We model them as two random events.

• Missing Fact Model: For a full test fact r(eh, et) ∈ Gfull \ Gtrain, X means it is a missing
fact with P (X) = β while X means it is included in the sparse test set Gtest \ Gtrain with
P (X) = 1− β = α. β is called the sparsity of the KG.

• Prediction Model: For simplicity of analysis, we model KGC as a classification task. In fact,
an ideal (oracle) KGC model is exactly a classification model, which identifies all the correct
facts. Here, for a full test fact r(eh, et) ∈ Gfull \Gtrain, Y means the answer et is correctly
classified as positive with P (Y ) = ℓ. ℓ is called the strength of a model. We break ties uniformly
at random for entities classified into the same class.

Note that one of our basic assumptions is ‘set answer’ followed [Ren et al., 2020], where we believe
the answer for a query should be a set or concept instead of exactly one entity. For the open-world
problems we care about, we assume that the number of elements in the answer set should be larger
than one.

4.1 Expectation degradation

We first assume the independence of the random events X and Y . We show that the expectation
of the metrics will degrade with missing facts. Specifically, the increasing of the metrics shows a
logarithmic trend, so that it could be too flat to reflect the true increasing of the model strength.

Assume the number of entities is Nentity in the KG. For a given query r(eh, ?), let N be the number
of full test answers. The random variant m is the number of missing answers Gfull \Gtest, and it
follows the binomial distribution B(N, β). The other N −m answers are test answers. We denote
the filtered ranking of the entity e as r(e). Then we have the lemma.

Lemma 4.1 (Expectation of ranking-based metrics). With the modeling of missing fact and prediction
as above, the expectation of ranking-based metric M = 1

N−m

∑N−m
i=1

1
f(r(ei))

can be expressed as

E(M) =
1

β(N + 1)

N∑
k=0

1

f(k + 1)

(
1− Φ̂(k)

)
+ δ, (1)

where Φ̂ is the cumulative distribution function (cdf) of binomial distribution B(N + 1, lβ) and
0 < δ ≤ (1− l)

ln(Nentity−N)
Nentity−N .

4



Generally, the Nentity is large and the answer rate N/Nentity < 10% in almost all queries, so the
item δ is negligible. In the rest of the paper, we denote Ê = 1

β(N+1)

∑N
k=0(1 − Φ̂(k))/f(k + 1)

which is a good approximation of E.

With this lemma, we get a closed-form expression of the expectation of the ranking-based metric M.
However, this expression cannot explain why the metrics will degrade. Next, we derive the form of
derivative of the expectation Ê w.r.t the model strength l to account for its degradation.
Corollary 4.1 (Derivative of Expectation w.r.t Model Strength). Let g(r) = r/f(r), r ∈ N+ and
g(0) = 0. Under the condition of 4.1, the derivative of the expectation w.r.t the model strength ℓ is

dÊ(M)

dℓ
=

1

lβ(N + 1)
Ek∼B(N+1,ℓβ) g(k). (2)

And for the most-used metrics MRR and Hits@K, their derivative are expressed as follows.
Corollary 4.2 (Derivative of MRR w.r.t strength ℓ). For MRR where f(r) = r,∀r ∈ N+, its
derivative w.r.t. ℓ is

dÊ(MRR)

dℓ
=

1− ε

ℓβ(N + 1)
. (3)

where ε = (1− ℓβ)N+1.

When ℓβ and N are not too small, the term ε is negligible. In this situation, the derivative of the
metric MRR w.r.t the model strength is approximately of O(1/Nℓ), which will result in insignificant
changes in the metric with the increasing of the model strength.
Corollary 4.3 (Derivative of Hits@K w.r.t strength ℓ). For Hits@K where f = 1 for r ≤ k and
f = +∞ otherwise, the derivative is

dÊ(Hits@K)

dℓ
= Φ(K − 1), (4)

where Φ is the cdf of the binomial distribution B(N, ℓβ).

The behavior of Hits@K is similar to MRR when K ≪ N . When ℓβ is not too small and K is not
too large, the derivative Φ(K − 1) is so small that the increase could be insignificant.

Finally, we further approximate Equation (1) by a more intuitive expression with a tolerable error.
Theorem 4.1 (Expectation of MRR). For MRR, we can further approximate its expectation by

Ê(MRR) ≈ ln(ℓ) + ln(β) + ln(N + 2) + γ

β(N + 1)
:= Ẽ,

where γ ≈ 0.577 is the Euler’s constant and the error e = |Ẽ− Ê| ≤ max{ 1
2β(N+1)2 ,

(1−ℓβ)N+1

1−(1−ℓβ)N+1 ·
ln(1/(ℓβ))
β(N+1) }.

Firstly, we explain the rationales of the approximation Ẽ as follows.
• N is large enough. For many KGs, especially those commonsense KGs which are not limited to

a certain field, the number of answers is often quite large. In the experiment conducted by Ren
and Leskovec [2020], there are many tests queries with dozens or hundreds of answers.

• Sparsity β is not too small. For most real-world KGs, although we do not exactly know their
sparsity, we expect many of them could have a rather high sparsity β due to the incompleteness
of knowledge extraction and the long-tail distribution of commonsense knowledge.

• Model strength ℓ is not too small. Here we are more concerned with how to select and evaluate
those models that perform well.

Under the above conditions, the relative error e is negligible. To further show that our approximation
is reliable, we do numerical simulations as shown in Figure 1. For 1 − α ≥ 0.2 and ℓ > 0.3, the
analytical and numerical curves almost overlap, which means the log approximation is accurate. At
the same time, we point out the log trend is just the reason why the curve becomes flatter and flatter.
The details of the simulation is in Appendix A.2.
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Figure 1: Theoretical log approxima-
tion (a) and numerical simulation (s).
The shadow shows the [−2σ, 2σ] inter-
val, where σ is the numerical std.

Theorem 4.1 illustrates the metric degradation intuitively.
There are some conclusions about the MRR under the
open-world assumption: 1) Although the theoretical maxi-
mum of MRR is 1, the expectation of the MRR of a perfect
model ℓ = 1 is still much lower than 1 and depends on the
sparsity of the KG. 2) With the sparsity β not very small,
the MRR will be a log function of the strength ℓ times
the answer number N which means that as the model gets
stronger, the increase of the metric MRR will be less and
less significant. The sparser the KG is, the more severe
the degradation problem is. Note that in the closed-world
KG, the curve should be very closed to y = x.

4.2 Inconsistency due to high variance

In Figure 1, another notable phenomenon is the vibrated
curves, which suggests instability of the metric and relatively high variance. This phenomenon
combined with the flattening of the expectation can lead to inconsistency, which means higher MRR
might not mean stronger models unless the difference of the metric is large enough, because the
increasing of expectation could be easily overwhelmed by the variance.

One trivial method to solve the problem is to use more test queries. Here we show the number of
queries required to ensure the reliability of conclusions can be very large.
Theorem 4.2 (Consistence with High Probability). Assuming the number of test queries Nq is large
enough (Nq > 50), we can approximate the average MRR M = 1

Nq

∑Nq

i=1 MRR(qi) to follow a
normal distribution. Given two independent models M1 and M2 whose strength is ℓ and ℓ+∆ℓ
respectively. The probability of inconsistency between two models can be approximated as follows.

P [M(M1) ≥ M(M2)] = Ψ

(
−

√
Nq ln(1 +

∆ℓ
ℓ )

β(N + 1)
√

V (β, ℓ) + V (β, ℓ+∆ℓ)

)
, (5)

where Ψ is the cdf of the standard normal distribution.

Note for a given KG, the sparsity β and the answer number N are fixed. Assuming 0 < ∆ℓ
ℓ ≪ 1, we

have V (β, ℓ) ≈ V (β, ℓ+∆ℓ) := V and ln(1 + ∆ℓ
ℓ ) ≈ ∆ℓ

ℓ . Then we have the following corollary.

Corollary 4.4 (Lower Bound of the Number of Queries). Under the above assumption of ∆ℓ
ℓ ≪ 1,

with the upper bound of inconsistency probability p, the number of test queries required Nq has a
lower-bound as follows.

Nq ≥ c(β, ℓ,N, p)

(∆ℓ)2
, (6)

where c(β, ℓ,N, p) = 2(βℓ(N + 1)Ψ−1(p))2V .

Note that the required number is of the second order O((1/∆ℓ)2), which means one should be
particularly careful when comparing two models with close strength. For example, when we set
β = 0.35, ℓ = 0.7, N = 43 and p = 5% we have c ≈ 2.85 where we use the numerical variance
V = 7.4 × 10−3. In this situation, when ∆ℓ = 0.05, Nq ≥ 1140, while when ∆ℓ = 0.01,
Nq ≥ 28500 which cannot be easily satisfied.

4.3 Correlation between missing and misclassification

In the previous two subsections, we analyze the degradation and inconsistency with independence
assumption between missing facts and model predictions. In some conditions, there could be
correlation between the missing data and the trained models. Let us give some examples:

• The missing facts in closed-world KG Gfull follow some non-uniform distribution. For example,
in some KGs, the missing facts are more frequently related to some certain entities. The model
could be under-trained on these entities because there are more missing facts related to them
when training. And when the model is tested, the queries with more missing test answers
correspond to the lower predicting capacity.

6
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Figure 2: Theoretical approximation (a) and numerical simulation (s) of the expectation with
correlation coefficient ρ. Details of the figures are the same as in Figure 1.

• The target KG has been preliminarily complemented by some models. In this situation, the
missing facts show a negative correlation with the predictive power of this type of models.

Next, we will extend the previous analysis to the situation without the independence assumption. For
this goal, we use the correlation efficient to model the correlation between random event X: a fact is
missing and Y : this fact is predicted by the model.
Definition 4.1 (Correlation between fact missing and model prediction). The correlation coefficient
r between two random events X and Y can be defined as follows.

ρ =
P (XY )− P (X)P (Y )√
P (X)P (X)P (Y )P (Y )

. (7)

With the correlation coefficient ρ, the prediction accuracy on missing answers e ∈ Gfull \Gtest and
on test answers e ∈ Gtest \Gtrain can be calculated as the conditional probability as P (Y |X) =

ℓ+
√
ℓ(1− ℓ)α/β ·ρ and P (Y |X) = ℓ−

√
ℓ(1− ℓ)β/α·ρ. We denote them as ℓ1 and ℓ2 respectively.

Theorem 4.1 can then be generalized as follows:
Theorem 4.3. We have the approximation for MRR

E(MRR) ≈ ℓ2
ℓ1

· ln(ℓ1) + ln(β) + ln(N + 2) + γ

β(N + 1)
:= Ẽ. (8)

The theoretical error analysis is in Appendix A.1. We also evaluate the approximation by numerical
simulation and the results are shown in Figure 2. The approximation fits the numerical simulation
well. Comparing different models with the same model strength ℓ but different correlation coefficient
ρ, the models with smaller ρ have the higher MRR. The phenomenon is consistent with Corollary 4.5.

Corollary 4.5 (The derivative w.r.t ρ with correlation). If we have the inequality ℓ1β(N + 2) ≥
exp(α+

√
αβ(1−ℓ)

ℓ − γ), then the derivative ∂Ẽ(MRR)
∂ρ < 0.

The condition in Corollary 4.5 has requirements for lower bound ℓ1 and ρ. If ℓ1 is close to 0, the
condition can be violated. This corollary suggests more severe inconsistency. In a reasonable range,
the expectation of MRR is monotonically decreasing w.r.t ρ. This conclusion suggests that the metric
MRR may favor the models with smaller ρ instead of larger ℓ. Note that the inconsistency is of
expectation, which cannot be solved by more test queries.

5 Relationship between focus-on-top and degradation

We have pointed out the degradation and inconsistency under the open-world assumption for some
most-used ranking-based metrics. Specifically, the derivative of the metrics w.r.t ℓ can be too small
to reflect the increasing of the true improvement of the model strength (degradation). According
to Corollary 4.1, the derivative is related to the expectation of g(r) = r/f(r) where r follows a
binomial distribution. We point out the degradation is due to the too small expectation of g relative to
the denominator N , which is inherently caused by a property of the metrics called focus-on-top.

The focus-on-top property means that the metrics are more sensitive to ranking change in top places.
For example, MRR changes from 1 to 0.5 when the ranking changes from 1 to 2, but only changes
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from 1e-2 to 0.99e-2 when the ranking changes from 100 to 101. This property can simulate the
human behavior that people pay more attention to the top answers. However, under the open-world
assumption, the focus-on-top property causes negative impacts by making the function 1/f(r)
decrease too fast so that the expectation of g is too small relative to N . For example, according to
Corollary 4.3, a smaller K means more focus-on-top and smaller derivative.

We can also understand the relationship intuitively. Focusing-on-top means that a few missing
answers can have a large impact on the metric, especially when the model performance is already
good and the rankings of the rest answers fall into the sensitive range. It is also consistent with our
observation that the flatting problem is more severe when the strength ℓ increases.

There is a trade-off between focus-on-top and consistency. Therefore, one solution to the degradation
and inconsistency is to add in some less focus-on-top metrics as a verification when evaluating, which
have a relatively slower descending rate. For example, the log-MRR where f(r) = log2(r + 1) and
p-MRR where f(r) = rp , 0 < p < 1 are less focus-on-top than the standard MRR. If the conclusions
of these less focus-on-top metrics are consistent with the MRR or Hits@K, the credibility of the
conclusions will be greatly enhanced.

6 Experiments on an artificial KG

In this section, we aim to conduct experiments with practical KGC models on a meaningful closed-
world KG to further verify our conclusions. The reason we want a closed-world KG is for comparing
the reported MRR with the true model strength which should be measured on the full test set. To find
a closed-world KG, however, it is impractical to resort to existing real-world ones since we have no
guarantee that the KG has no missing facts. Therefore, we must resort to some artificial KGs.

For this purpose, we generate an artificial family tree KG, which contains 6,004 entities, 23 relations,
and 192,532 facts. The relation set contains all common family relations such as parent, child,
husband, wife, sister, and brother. The details are included in Appendix A.3. The generated KG is
closed-world since all the facts can be deduced by a symbolic reasoning tool called DLV system
[Leone et al., 2006] (free for academic use). With the closed-world KG, we can simulate the practical
open-world setting by artificially controlling the degree of random fact missing, which is measured
by density d = |Gtest|/|Gfull|. The relation between d and α is explained in Appendix A.3.

The generated KG may be representative of a class of real-world KGs with rich rules and simple
relations. However, we admit that for Wiki-KGs such as Freebase[Bollacker et al., 2008], there may
be a certain interval, but the closed-form solution KG corresponding to the latter is impossible to
obtain.

With the closed-world KG, we aim to verify our previous conclusions restated below:

1. There is metric degradation which means the curves of metric increasing become flatter
and flatter with the increasing of model strength ℓ. Further, the degradation may result in
inconsistency, where stronger models report lower metric numbers.

2. Considering the correlation between fact missing and model prediction, if the correlation
degrees vary among different models, the inconsistency problem may become more severe.

3. The degrees of degradation and inconsistency are related to the focus-on-top property of the
metrics. With less focus-on-top metrics, these problems could be relieved.

Our code and data are available at https://github.com/GraphPKU/Open-World-KG. The experiments
were run on two clusters with four NVIDIA A40 and six NVIDIA GeForce 3090 GPUs respectively.

6.1 Degradation and inconsistency under independence assumption

We train four KGC models with different hyperparameter settings (which results in 18 different models
in total) and test them on full test set Gfull \Gtrain and sparse test set Gtest \Gtrain respectively.
The full test metric can be considered as a measurement of model strength ℓ which is what we
really want to measure, while the sparse test metric is what we can observe in practice. We plot
the sparse-full test curve under different densities in Figure 3, where each curve represents a model
whose label is shown in the right legend, and the details of the models are given in Appendix A.4.
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Figure 3: Full test and sparse test MRR on the artificial family
tree KG. Note the ranges of y-axis are different.
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Figure 4: A zoom-in of two
curves 4 and 7 under density d =
0.75. The checkpoints of model
4 lying on the red segment all
have better full test MRR than the
checkpoint M of model 7, while
reporting worse sparse test MRR
under the open-world setting.

From the figure, we first observe that these curves are indeed shaped like log curves. The increasing
of the sparse test MRR is slower and slower with the increasing of the full test MRR. Due to the
flatting of the curves, the same sparse MRR has a rather broad interval of the corresponding full
metric. This phenomenon indicates the degradation of the metric MRR. And as the sparsity increases,
the range of the y-axis shrinks (i.e., the curves become flatter), which means the degradation is more
severe. Further, these results demonstrate the inconsistency problem of MRR. To illustrate this point
more clearly, we zoom in a part of the full figure with two curves as shown in Figure 4. For the model
checkpoint corresponding to point M on curve 7, any model checkpoint corresponding to a point on
the red segment of curve 4 is actually stronger than that model, but reports a lower sparse MRR.

6.2 Correlation between fact missing and model prediction

In this part, we will simulate the third example we provided in Section 4.3 to check our theory
considering the correlation between fact missing and model prediction. Here we use one of the trained
ComplEx model (labeled as 16) [Trouillon et al., 2016] to predict on the full test set Gfull \Gtrain

and use its predictions to choose the test set Gtest \ Gtrain and missing facts Gfull \ Gtest. The
missing facts are highly correlated with this ComplEx model and therefore could be correlated with
other models according to the correlation between different frameworks and model settings. Then we
test the other models except for this ComplEx model on the correlated test set. The results of density
d = 75% are shown in Figure 5a and others are shown in Appendix A.5. Though the correlation
coefficient is not available for these different models, we indeed observe the gaps between different
models become larger than the independent setting, which suggests the inconsistency is more severe.

6.3 Less focus-on-top metrics

The next conclusion is that with less focus-on-top metrics, the degradation and inconsistency can be
relieved. In Figure 5b, we show the sparse-full curves with some less focus-on-top metrics (log-MRR
and p-MRR) for the experiments from Section 6.1. Their curves are more close to y = x instead of
the log function. The flatting is less significant due to the wider range of y-axis. We also observe that
the gaps between different models become smaller, which indicates inconsistency is also relieved.
Additional results with more metrics, density d and correlation are shown in Appendix A.6.

7 Conclusion and future work

In this paper, we study KGC evaluation under the open-world assumption. Theoretically, we model
KGC as a positive-negative classification and then deduce an approximation of the expectation of the
ranking-based metrics with or without the independence assumption. According to the approximation,
we illustrate the degradation and inconsistency of these metrics under the open-world assumption.
Furthermore, we point out the focus-on-top property of ranking-based metrics worsen the degradation
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Figure 5: (a) Full test and sparse test MRR on independent (above) and correlated (bottom) family
tree KG. (b) MRR, and less focus-on-top metrics. Both are under density d = 75%

and inconsistency. Finally, we generate a closed-world family tree KG and do experiments to verify
our theoretical conclusions.

There is still some future work. First, our analysis is based on the positive-negative classification
model, which may be too idealistic. In practice, the ranking in positive and negative parts may not
be uniformly at random. A more realistic modeling of the KGC task is a direction for our future
research. In addition, the correlation between missing facts and prediction could be more complex
than our analysis. Finally, we are curious about the possibility to find a more fundamental solution to
the open-world problem, which we leave for future work.
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