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ABSTRACT

Diffusion models have demonstrated significant potential for generating high-
quality images, audio, and videos. However, their iterative inference process
entails substantial computational costs, limiting practical applications. Recently,
researchers have introduced accelerated sampling methods that enable diffusion
models to generate samples with far fewer timesteps than those used during train-
ing. Nonetheless, as the number of sampling steps decreases, the prediction errors
significantly degrade the quality of generated outputs. Additionally, the exposure
bias in diffusion models further amplifies these errors. To address these chal-
lenges, we leverage a manifold hypothesis to explore the exposure bias problem
in depth. Based on this geometric perspective, we propose a manifold constraint
that effectively reduces exposure bias during accelerated sampling of diffusion
models. Notably, our method involves no additional training and requires only
minimal hyperparameter tuning. Extensive experiments demonstrate the effec-
tiveness of our approach, achieving a FID score of 15.60 with 10-step SDXL on
MS-COCO, surpassing the baseline by a reduction of 2.57 in FID.

1 INTRODUCTION

Diffusion models (DMs) Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021; 2020);
Nichol & Dhariwal (2021) have emerged as powerful generative models for various applications,
including image generation (Rombach et al., 2022; Li et al., 2024b), video synthesis (Ho et al.,
2022), and audio generation (Kong et al., 2021). DMs are able to generate images of high fidelity
and high diversity, when compared to generative adversarial networks (GANs) (Heusel et al., 2017;
Goodfellow et al., 2014), variational autoencoders (VAEs) (Kingma & Welling, 2022; Vahdat &
Kautz, 2020) and flow models (Lipman et al., 2023; Papamakarios et al., 2017; Kingma et al., 2016).
However, DMs necessitate an iterative process to synthesize high-quality results (Ho et al., 2020).

Figure 1: Samples generated with 5, 10, 20, 50,
and 1k steps (from left to right). Prompt: ”A pro-
paganda poster depicting a cat dressed as French
emperor Napoleon holding a piece of cheese”.

In response to the computational demands of
diffusion models, Song et al. (2021) propose
an accelerated sampling method. Given a pre-
trained diffusion model, during generation, in-
stead of sampling all latent variables on the
sampling trajectory, Song et al. (2021) sample
along a trajectory shorter than that used during
training, significantly accelerating the genera-
tion. Nevertheless, Kim et al. (2024) find that
during the accelerated generation, the error in-
troduced to the sample at every timestep is proportional to the step size. Therefore, reducing the

∗This work was partly completed during the internship at SGIT AI Lab, State Grid Corporation of China.
†Corresponding Author.

1



Published as a conference paper at ICLR 2025.

Manifold of 𝑥𝑡
Accelerated Sampling
Complete Sampling
Data on Manifold
Data outside of Manifold

(a) Exposure bias in accelerated sampling

Manifold of 𝑥0
(𝑡)

Manifold of 𝑥𝑡
Prediction for 𝑥0

(𝑡)

Prediction for 𝑥𝑡−𝑘
Manifold Constraint
Data on Manifold
Data outside of Manifold

(b) Manifold Constraint on Denoising Observation

Figure 2: In both (a) and (b), the blue manifolds represent noisy data manifolds. In (a), small step
sizes allow diffusion models to transport xt accurately between manifolds. However, with large
step intervals (accelerated sampling), the noisy prediction transports data away from the manifolds,
reducing accuracy in the next step. In (b), the green manifolds are manifolds of denoising observa-
tions (Equation 6). The yellow arrow represents the manifold constraint, which projects x̂

′(t)
0 toward

M(t)
0 , allowing error correction in noise estimation and bringing xt−k closer to Mt−k.

number of sampling steps, while improving efficiency, can introduce substantial noise and degrade
the sample quality (Rombach et al., 2022). To illustrate how the prediction errors affect sample qual-
ity, we utilized Stable Diffusion XL (Podell et al., 2024) to generate images with varying sampling
steps. The results, shown in Figure 1, demonstrate that as the number of sampling steps decreases,
the generated images exhibit a noticeable loss of detail and increased distortion of objects.

We propose that another issue contributes to the degradation of sample quality during accelerated
generation: exposure bias (Schmidt, 2019). This training-inference discrepancy, commonly ob-
served in auto-regressive models, also affects diffusion models (Ning et al., 2023; Li & van der
Schaar, 2024; Li et al., 2024a; Ning et al., 2024; Ren et al., 2024). During training, diffusion models
are only exposed to ground truth inputs; however, when the input is significantly corrupted (e.g.,
during accelerated sampling), the models may generate increasingly inaccurate predictions. This
cumulative effect is illustrated in Figure 2a.
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Figure 3: Variation in pixel variance for a single
sample across sampling settings: 5, 10, 20, 50,
and 1000 steps.

Li et al. (2024a) evaluate exposure bias us-
ing the concept of pixel variance within a sam-
ple and propose a simple yet effective method
based on it. Since pixel variance differs sig-
nificantly from the sample variance used in
prior works (Ho et al., 2020; Song et al., 2021;
Nichol & Dhariwal, 2021; Dhariwal & Nichol,
2021), we are particularly interested in its im-
plications, especially in accelerated sampling.

To explore this, we collected the pixel variance
for different sampling step settings in the gen-
eration of Figure 1 and visualized it in Figure 3.
The results show that with larger step sizes, the
pixel variance deviates significantly from that
observed with smaller step sizes. Inspired by
prior works (Song et al., 2021; Chung et al.,
2022; Chen et al., 2023; Yu et al., 2023; Humayun et al., 2024; Su et al., 2024), we aim to explore
the relation between exposure bias and pixel variance of a sample under the manifold hypothesis.

In this work, we focus on addressing exposure bias in the accelerated sampling process of diffusion
models. Our contributions are summarized as follows:

• We identify exposure bias as a key challenge in accelerated sampling for diffusion models
and introduce the manifold hypothesis, offering a geometric perspective on this issue.
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• Based on the manifold hypothesis, we propose a manifold constraint on the denoising ob-
servation in diffusion models. This method is training-free, nearly hyperparameter-free,
and effectively reduces exposure bias by correcting prediction errors during accelerated
sampling.

• Extensive experiments across various image generation tasks and base models demonstrate
consistent and substantial improvements with our approach.

2 RELATED WORK

Diffusion Models represent a significant advancement in generative modeling. Initially introduced
by Sohl-Dickstein et al. (2015), these models iteratively refine data through denoising. Key enhance-
ments were made by Ho et al. (2020), who incorporated a weighted variational bound in training.
Song et al. (2021) introduced a more efficient class of iterative implicit probabilistic models with the
same training objective as DDPMs. Further developments include Nichol & Dhariwal (2021), who
optimized model architecture. Additionally, Ho & Salimans (2022) offers a method to jointly train
a conditional and an unconditional diffusion model. Additionally, works on accelerating sampling
methods (Song et al., 2023; Zhou et al., 2023; Chen et al., 2024; Lu et al., 2022a;b; Zhang & Chen,
2023; Liu et al., 2022) have contributed to their practical use in various domains.

Exposure Bias refers to the discrepancy between inputs during training and inference in sequential
prediction models (Schmidt, 2019; Wang & Sennrich, 2020; Zhang et al., 2024). This issue also
arises in diffusion models, where ground truth inputs are used during training, but previous predic-
tions are fed into the model during inference (Li & van der Schaar, 2024; Ning et al., 2024; 2023;
Ren et al., 2024; Yao et al., 2024; Everaert et al., 2024). This discrepancy can lead to cumulative
errors in the generation process. Various strategies have been proposed to mitigate exposure bias in
diffusion models. Ning et al. (2023) suggest perturbing training data to reflect potential input varia-
tions during inference, while Li & van der Schaar (2024) analyze error propagation and recommend
using the upper bound of cumulative error as a regularization term during training. Although these
approaches enhance robustness, they necessitate model retraining. In contrast, Li et al. (2024a)
observe that the pixel variance of noisy samples is not always aligned with the schedule during
inference, prompting them to adjust the timestep accordingly. Additionally, Ning et al. (2024) iden-
tify noise prediction error as a key source of exposure bias and propose scaling noise estimation to
address magnitude discrepancies, although direction errors remain unaddressed.

3 BACKGROUND

Diffusion Models In the forward diffusion process, Gaussian noise is added to samples from the
data distribution q(x0), over a series of time steps t ∈ {0, 1, . . . , T}, resulting in increasingly noisy
versions of the data:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt is a variance schedule that controls the amount of noise added at each step. The overall
forward process is described as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1). (2)

In the reverse process, diffusion models denoise xT back to the original data distribution:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σ), (3)

where µθ is the mean predicted by a neural network with parameters θ, and Σ is the predicted
variance. Ho et al. (2020) found that in practice, using a fixed variance schedule Σt leads to simpler
and more stable training. Diffusion models can be trained by minimizing the Kullback-Leibler
divergence:

L = Eq(x0:T )

[
T∑

t=1

KL(q(xt−1|xt,x0)∥pθ(xt−1|xt))

]
. (4)
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An alternative, often simpler, loss function involves predicting the added noise directly:

Lsimple = Et,x0,ϵt

[
∥ϵt − ϵ

(t)
θ (xt)∥2

]
, (5)

where ϵθ denotes the noise estimation network in diffusion model.

After training, diffusion models can generate data by sampling from the standard normal prior
p(xT ), iteratively refining these samples through the reverse process defined in Equation 3. When
employing the DDIM sampler (Song et al., 2021), the model proceeds as follows at each timestep t.

First, the model predicts the denoising observation using noise estimation:

x̂
(t)
0 =

xt −
√
1− ᾱt ϵ

(t)
θ (xt)√

ᾱt
, (6)

where x̂
(t)
0 represents the estimated clean image at timestep t, xt is the noisy image at timestep t,

and ϵ
(t)
θ (xt) is the model’s prediction of noise.

Next, the latent variable for timestep t− 1 is predicted:

x̂t−1 =
√
ᾱt−1x̂

(t)
0 +

√
1− ᾱt−1 − σ2

t ϵ
(t)
θ (xt) + σtϵ

′
t, ϵ′t ∼ N (0, I) , (7)

where αt := 1−βt, ᾱt :=
∏t

s=1 αs, and σt controls the stochasticity of the generation. The term ϵ′t
is sampled from a standard normal distribution, introducing stochasticity into the generation process.

Prediction Error in Accelerated Sampling Given a diffusion model trained with a forward pro-
cess of T steps, during generation, instead of sampling all latent variables {xT ,xT−1, . . . ,x1} itera-
tively, Song et al. (2021) propose to sample along a trajectory of length T ′: {xτT ′ ,xτT ′−1

, . . . ,xτ1},
where τ is defined as an increasing subsequence of {0, 1, . . . , T}. Since T ′ < T , the proposed
method significantly accelerates the sampling.

However, the prediction error tends to increase as the sampling interval grows. Kim et al. (2024)
derive that the error introduced to the latent variable xt during the transition from time t to t−∆t:

et =
∆t

t
O(∆t), (8)

where ∆t denotes the timestep interval. Equation 8 shows an inherent trade-off between accuracy
and efficiency in the sampling process in diffusion models.

Exposure Bias in Diffusion Models During training, diffusion models are trained on noisy data
sampled from the real data distribution x0:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (9)

On the contrary, models are only exposed to their previously prediction x̂t during inference. The
input discrepancy, xt − x̂t, disrupts the model’s prediction in subsequent timesteps.

The exposure bias is exacerbated in accelerated sampling, where errors at each timestep are signif-
icantly amplified, as shown in Equation 8. Therefore, we identify the combined effect of exposure
bias and enlarged prediction error as the main challenge in accelerated diffusion model sampling.

4 METHOD

Inspired by previous work (Song & Ermon, 2019; Chung et al., 2022; Chen et al., 2024; He et al.,
2024), we are interested in understanding the exposure bias problem under the geometric view of
diffusion models. In this section, we first provide the geometric view of the exposure bias problem.
Then, based on the geometrical analysis, we introduce Manifold Constraint on Denoising Obser-
vation (MCDO), a training-free and almost hyperparameter tuning-free method that mitigates the
exposure bias in the accelerated sampling of diffusion models.
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4.1 GEOMETRIC VIEW OF EXPOSURE BIAS

To better understand the training-inference discrepancy in diffusion models, we borrow a geometric
view of the data manifold.

Assumption 1 (Chung et al., 2022) Let M0 ⊂ Rn be the clean data manifold. The distribution of
the ground truth noisy data p(xt) is concentrated on an (n− 1)-dimensional manifold Mt.

Under Assumption 1, for a diffusion model trained with T sampling steps, its ground truth noisy
samples obtained with Equation 9 form a series of manifolds M1,M2, . . . ,MT . The model is
trained to smoothly map the data from Mt to Mt−1 (Chung et al., 2022). During the inference,
pure noises from MT are gradually mapped towards the target manifold M0. The perfect generation
process can be formulated as follows:

MT
ΛT−−→ · · · Λ3−−→ M2

Λ2−−→ M1
Λ1−−→ M0, (10)

where Λi, i ∈ {1, 2, . . . , T}, denotes a series of smooth maps.

However, the perfect mapping is only applicable to data concentrated on the manifold.

Assumption 2 (Extended from He et al. (2024)) Define the distance from a data point to a given
manifold as: d(x, ν,M) := infz∈M ∥x− νz∥, for ν > 0. For a given timestep t, diffusion models
only make accurate noise predictions for data concentrated on the manifold: Xt := {xt ∈ Rn |
d(xt, 1,Mt) < rt}, where rt > 0 is the radius.

While prediction errors are inevitable, it is possible that, for a given timestep t+1, data from Mt+1

is mapped to points away from Mt such that d (xt, 1,Mt) > rt. With Assumption 2, models’ noise
estimation for data x̂t /∈ Xt will degrade. Based on Equation 8, we argue that the large deviation
from the manifold is the main reason for exposure bias in the accelerated sampling of diffusion
models. We illustrate this problem in Figure 2a.

4.2 RELATION BETWEEN DISTANCE TO MANIFOLD AND THE PIXEL VARIANCE OF DATA

Under Assumptions 1 and 2, we relate the pixel variance of a sample x̂t, to its L2 distance to Mt.

For a prediction x̂t, let x∗
t = argminzt∈Mt

∥x̂t − zt∥. The distance between x̂t and Mt satisfies:

d(x̂t, 1,Mt) = ∥x̂t − x∗
t ∥ ≥ |∥x∗

t ∥ − ∥x̂t∥| . (11)

Given that xT ∼ N (0, I), all pixels in xT follows a normal distribution, such that E[ 1nΣ
n
i=0xT ] =

0. According to Equation 4, we have E[ 1nΣ
n
i=0ϵt] = 0, when the diffusion models are well-trained.

As a consequence, the expectation of pixel mean of a single noisy sample approaches 0 as well:
E[ 1nΣ

n
i=0xt] = 0, according to Equations 6 and 7 (more details in Appendix A.1). Then the L2

norm of x̂t and its pixel variance satisfy:

Var(x̂t) =
1

n
Σn

i=1(x̂ti −
1

n
Σn

j=1x̂tj )
2 ≈ 1

n
Σn

i=1x̂
2
ti =

1

n
∥x̂t∥2, (12)

where n is the data dimension. We show the evolution of L2 norm of a sample as well as its
pixel variance in Figure 4. It is shown that the curve of the L2 norm and pixel variance are highly
overlapped for most of the time. Therefore, we use Equation 12 to approximate the L2 norm of
noisy data with its pixel variance.

Plugging Equations 9 and 12 into Equation 11, we have:

d(x̂t, 1,Mt) ⪆
∣∣∣∥√ᾱtx0 +

√
1− ᾱtϵt∥ −

√
nVar(x̂t)

∣∣∣ . (13)

According to Wegner (2024), for data ϵ ∼ N (0, I), ϵ ∈ Rn, one has:

|E[∥ϵ∥]−
√
n| ≤ 1√

n
. (14)

Given that the dimension n of the latent space is usually large for diffusion models (e.g., n = 12288
for LDM-4 trained on CelebA-HQ), with high probability, ∥ϵt∥ ≈

√
n.
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In addition, since ϵt is a random noise independent of x0, when n is large, ϵt and x0 are almost
orthogonal with high probability (Wegner, 2024). Therefore, we have:

Ex0∼q(x0),ϵt∼N (0,I)[∥
√
ᾱtx0+

√
1− ᾱtϵt∥2] = Ex0∼q(x0),ϵt∼N (0,I)[∥

√
ᾱtx0∥2+∥

√
1− ᾱtϵt∥2].

(15)
Plugging Equations 12, 14, and 15 into Equation 13, the following inequality holds with high prob-
ability:

d(x̂t, 1,Mt) ⪆
∣∣∣√ᾱt∥x0∥2 + n (1− ᾱt)−

√
nVar(x̂t)

∣∣∣ , (16)

where equality holds if and only if x̂t, x∗
t and the origin are collinear.
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Figure 4: Evolution of L2 norm and pixel variance
of the noisy data. We plot the average statistics of
6,400 samples in 100-steps generation on CelebA-
HQ.

Equation 16 indicates that the devia-
tion in Var(x̂t) could potentially make
d(x̂t, 1,Mt) > rt, resulting in exposure
bias problem under Assumption 2. This is
consistent with Figures 1 and 3.

From this perspective, the timestep-shifting
strategy proposed by Li et al. (2024a), which
determines timestep ts within range w: ts =

argmint′
(√

1− ᾱt′ −
√
Var (x̂t)

)
, t′ ∈ {t−

w/2, . . . , t+w/2}, can be interpreted as locat-
ing the manifold Mi, i ∈ {t − w/2, . . . , t +
w/2}, where the lower bound of samples-to-
manifold distance is potentially reduced ac-
cording to Equation 16.

As this strategy provides valuable insights, the
inaccessibility of the L2 norm of the clean data
x0 in Equation 16 presents an opportunity for
further refinement of the approach.

Inspired by prior studies (Bao et al., 2022; Chen et al., 2023; 2024), we delve into the model’s
predictions for noisy data and the corresponding denoising observations. Specifically, when the
model is given the ground truth input at t + 1, the analytical form of x̂(t)

0 and x̂t can be expressed
as (see Appendix A.2):

x̂
(t)
0 = x0 + dte

(t)
θ , x̂t = xt + nte

(t)
θ , (17)
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Figure 5: Comparison between error scale on de-
noising observation (dt) and on noisy data (nt).

Here, x0 denotes the clean data, xt the ground
truth noisy data, e(t)θ the noise estimation er-
ror. The scaling factors dt and nt vary with t.
We find that while nt remains within a small
range near 0, dt is hundreds or even thousands
of times larger than nt when t is large (see Fig-
ure 5).

This substantial magnitude of dt suggests that
x̂
(t)
0 is predominantly influenced by the scaled

noise prediction error term dte
(t)
θ at most

timesteps. As a consequence, we propose to
rectify the noise estimation error e(t)θ by incor-
porating information from the denoising obser-
vation x̂

(t)
0 .
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4.3 MANIFOLD
CONSTRAINT ON DENOISING OBSERVATION

Chung et al. (2022) view the diffusion process as an interpolation between M0 and MT . Inspired
by this, we substitute ϵ̂

(t)
θ (x) in Equation 7 with Equation 6:

(

√
1− ᾱt−1 − σ2

t

√
ᾱt√

1− ᾱt
−
√
ᾱt−1)x̂

(t)
0 =

√
1− ᾱt−1 − σ2

t√
1− ᾱt

xt−x̂t−1+σtϵ
′
t, ϵ

′
t ∼ N (0, I) . (18)

Equation 18 suggests that x̂(t)
0 can be interpreted as interpolating between two noisy data. Based on

this, we assume that the denoising observation x̂
(t)
0 also concentrates on a series of manifolds.

Assumption 3 (Extended from Chung et al. (2022)) Denote X(t)
0 as the set of denoising observations

of xt, xt ∈ Xt. There exists a series of manifolds: M(T )
0 ,M(T−1)

0 , . . . ,M(1)
0 ,M(0)

0 , where X(t)
0 ,

for t ∈ {T, T − 1, . . . , 0}, concentrates on: d(x̂(t)
0 , 1,M(t)

0 ) < r
(t)
0 , ∀x̂(t)

0 ∈ X(t)
0 . Where r

(t)
0 > 0

is the radius.

Under Assumption 3, when a noisy data x̂t is distant from Mt, its denoising observation, calculated
using Equation 6, could potentially be mapped away from M(t)

0 . For clarity, we denote denoising
observations close to M(t)

0 as x̂(t)
0 , and those distant from M(t)

0 as x̂
′(t)
0 .

For a denoising observation x̂
′(t)
0 /∈ X(t)

0 . Let x̂∗(t)
0 := argmin

z
(t)
0 ∈M(t)

0
∥x̂

′(t)
0 − z

(t)
0 ∥.

As x̂
′(t)
0 is a linear combination of xt and ϵ

(t)
θ according to Equation 6, the expectation of pixel

mean for both x̂
′(t)
0 and x

∗(t)
0 is 0. We substitute x̂t and x∗

t in Equation 11 with x̂
′(t)
0 and x

∗(t)
0 :

d(x̂
′(t)
0 , 1,M(t)

0 ) ≥ |∥x̂
′(t)
0 ∥ − ∥x̂∗(t)

0 ∥| ≈
√
n

∣∣∣∣√Var(x̂
′(t)
0 )−

√
Var(x̂

∗(t)
0 )

∣∣∣∣ . (19)

Equation 19 indicates that the deviated x̂
′(t)
0 can be constrained to approach M(t)

0 , when its pixel
variance is scaled to Var(x̂

∗(t)
0 ).

Given that x̂∗(t)
0 is inaccessible in generation process, we introduce the reference pixel variance:

vt = ExT∼N (0,I),y∼YVar(x̂
(t)
0 |xT ,y), where Y denotes the set of conditions. We approximate:

Var(x̂
∗(t)
0 ) ≈ vt, ∀x̂∗(t)

0 ∈ M(t)
0 . In practice, the pixel variance used for estimating vt is collected

during generation with large sampling steps (e.g., T = 1000), such that the denoising observations
are close to their corresponding manifolds. The pre-computation process is detailed in Algorithm 1.

During accelerated sampling, we first align the pixel variance of x̂
′(t)
0 to approach vt:

ct = Var(x̂
′(t)
0 ), x̃

(t)
0 =

√
vt
ct

[
x̂

′(t)
0 − Mean

(
x̂

′(t)
0

)]
+ Mean

(
x̂

′(t)
0

)
. (20)

Then, we correct the noise estimation, by inverting Equation 6:

ϵ̃
(t)
θ (xt) =

xt −
√
ᾱtx̃

(t)
0√

1− ᾱt
. (21)

By substituting Equations 20 and 21 into Equation 7, we obtain a refined prediction for xt−1:

x̃t−1 =
√
ᾱt−1x̃

(t)
0 +

√
1− ᾱt−1 − σ2

t ϵ̃
(t)
θ (xt) + σtϵ

′
t, ϵ

′
t ∼ N (0, I) . (22)

The correction is applied for t ∈ {T, . . . , tthre}, where tthre is a timestep threshold. The proposed
method is illustrated in Figure 2b and detailed in Algorithm 2.

We refer to the proposed method as Manifold Constraint on Denoising Observation (MCDO), as its
key idea is to constrain the denoising observation to approach its corresponding manifold.

7



Published as a conference paper at ICLR 2025.

Algorithm 1 Pre-Computation for vt
1: Initialize nt = list()
2: for i = 1, 2, . . . , N do
3: xT ∼ N (0, I), y ∼ Y
4: for t = T, . . . , 2, 1 do
5: x̂

(t)
0 =

xt−
√
1−ᾱtϵ

(t)
θ (xt,y)√

ᾱt

6: nt.append
(
Var

(
x̂
(t)
0

))
7: −→xt =

√
1− ᾱt−1 − σ2

t ϵ
(t)
θ (xt, y)

8: ϵ′t ∼ N (0, I)

9: xt−1 =
√
ᾱt−1x̂

(t)
0 +−→xt + σtϵ

′
t

10: end for
11: end for
12: for t = T, . . . , 2, 1 do
13: vt = Mean(nt)
14: end for

A distinction between reducing the lower
bound of d(x̂t, 1,Mt) by scaling Var(x̂t)

and that of d(x̂
′(t)
0 , 1,M(t)

0 ) by correcting
Var(x

′(t)
0 ) is that the former modifies xt, while

the latter refines the noise estimation when xt

is preserved (see Appendix A.3).

Estimating vt requires few samples (e.g., N =
20 for SDXL on MS-COCO). Once computed,
vt can be directly used to correct Var(x̂

′(t)
0 )

during accelerated sampling without additional
computational overhead. Since vt depends
only on the pre-trained model, when accurately
estimated, the only tunable hyperparameter is
tthre, which often works well at tthre = 0.
Thus, DDIM-MCDO requires minimal hyper-
parameter tuning.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

Algorithm 2 MCDO Sampling

1: xT ∼ N (0, I), y ∼ Y
2: for i = T ′, T ′ − 1, . . . , 1 do

3: x̂
′(τi)
0 =

xτi
−
√
1−ᾱtϵ

(τi)

θ (xτi
,y)√

ᾱτi

4: if τi ≥ tthre then
5: µτi = Mean

(
x̂

′(τi)
0

)
6: cτi = Var(x̂

′(τi)
0 )

7: x̃
(τi)
0 =

√
vτi

cτi

(
x̂

′(τi)
0 − µτi

)
+ µτi

8: ϵ̃
(τi)
θ =

xτi
−
√

ᾱτi
x̃

(τi)
0√

1−ᾱτi

9: else
10: ϵ̃

(τi)
θ = ϵ̂

(τi)
θ (xτi , y), x̃

(τi)
0 = x̂

(τi)
0

11: end if
12: −→xτi =

√
1− ᾱτi−1

− σ2
τ ϵ̃

(τi)
θ

13: ϵ′τ ∼ N (0, I)

14: x̃τi−1
=

√
ᾱτi−1

x̃
(τi)
0 +−→xτi + στϵ

′
τ

15: end for

We conduct experiments on high-resolution
datasets across various tasks. Specifically, we
evaluate MS-COCO (Lin et al., 2014) with
SDXL (Podell et al., 2024), and CelebA-
HQ (Karras et al., 2018), ImageNet-256 (Rus-
sakovsky et al., 2015), and LSUN-Bedroom
(256 × 256) with LDM-4 (Rombach et al.,
2022).

For text-to-image (T2I) generation, we gener-
ate 30k samples using MS-COCO prompts to
compute FID (Heusel et al., 2017) and CLIP
scores (Radford et al., 2021). For other tasks,
50k images are generated to evaluate FID, with
sFID and IS reported for ImageNet. We com-
pare our method with state-of-the-art training-
free approaches (Ning et al., 2024; Li et al.,
2024a), following Li et al. (2024a) to imple-
ment TS-DDIM and conducting a hyperparam-
eter search based on their range and qualitative
results. For Ning et al. (2024), a coarse-to-fine
search is used for the uniform schedule λ. We
visualize exposure bias reduction using Ning
et al. (2024)’s metric (see Appendix A.4). Results with DPM-Solver++ (Lu et al., 2022b) and Stable
Diffusion 3 (Esser et al., 2024) are in Appendices A.12 and A.13.

5.2 MAIN RESULTS ON TEXT-TO-IMAGE GENERATION

Results of T2I generation (Table 1, Figure 6) show that with few sampling steps, image details and
object shapes degrade significantly, suggesting deviation from the data manifold. The proposed
manifold constraint improves image quality, indicating more accurate inference.

To implement MCDO, we use N = 20, T = 1000 for pre-computation. Samples are conditioned
on different prompts from MS-COCO. While a larger N could improve vt estimation, we keep it
fixed for simplicity. For TS-DDIM (Li et al., 2024a) we use tc = 300, w = 4 for cutoff timestep
and window size. A uniform epsilon scale: λ = 1.008 is applied for DDIM-ES (Ning et al., 2024).
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Table 1: Results on Text-to-Image generation (1024× 1024) on MS-COCO with SDXL.

Model Method Steps FID↓ CLIP Score↑ tthre
DDIM 10 18.17 31.58 –
DDIM-ES Ning et al. (2024) 10 18.91 31.59 –
TS-DDIM Li et al. (2024a) 10 23.82 31.31 –SDXL

DDIM-MCDO 10 15.60 31.75 0

(a) ”Three people on horse back at a rural road intersection.”

(b) ”A baby next to a stuffed bear of some sort.”

Figure 6: Images generated using 10 steps SDXL with DDIM sampler. From left to right: SDXL,
TS-DDIM (Li et al., 2024a), LDM-ES (Ning et al., 2024), and DDIM-MCDO (ours).

5.3 RESULTS ON UNCONDITIONAL GENERATION

Table 2: Results on CelebA-HQ 256 × 256 with
DDIM Sampler. η = 0.0. Bold indicates the best
results, and underlined indicates the second-best.

Method T ′ FID↓ λ
DDIM 20 10.59 –
TS-DDIM (Li et al., 2024a) 20 8.29 –
LDM-ES (Ning et al., 2024) 20 18.39 1.001
LDM-ES (Ning et al., 2024) 20 11.73 0.999
DDIM-MCDO 20 9.49 –
DDIM-MCDO† 20 10.59 1.001
DDIM-MCDO† 20 10.53 0.999
DDIM 10 21.08 –
TS-DDIM (Li et al., 2024a) 10 15.71 –
LDM-ES (Ning et al., 2024) 10 18.56 1.002
DDIM-MCDO 10 15.63 –
DDIM-MCDO† 10 13.36 1.002
DDIM 5 54.99 –
TS-DDIM (Li et al., 2024a) 5 50.69 –
LDM-ES (Ning et al., 2024) 5 49.40 1.005
DDIM-MCDO 5 30.76 –
DDIM-MCDO† 5 27.39 1.005

Considering that both LDM-ES (Ning et al.,
2024) and DDIM-MCDO aim to reduce noise
estimation error, we investigate their orthog-
onality. We conduct experiments combin-
ing DDIM-MCDO with LDM-ES using the
same hyperparameters, denoted as DDIM-
MCDO†.1

We compare DDIM-MCDO and DDIM-
MCDO†with state-of-the-art methods (Ning
et al., 2024; Li et al., 2024a) on the CelebA-
HQ dataset (Karras et al., 2018) using LDM-
4. Results under the recommended setting
(η = 0.0) (Rombach et al., 2022) are shown
in Table 2, with λ representing the epsilon
scaling factor from Ning et al. (2024). For
TS-DDIM (Li et al., 2024a), we set tc = 100,
w = 60 for 20 and 10 steps sampling, and
tc = 200, w = 30 for 5 steps. Qualitative
results are in Appendix A.6.

DDIM-MCDO significantly enhances perfor-
mance across all three accelerated generation settings, attributed to its correction of both magnitude

1†DDIM-MCDO combined with LDM-ES using the same hyperparameters.
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and direction errors in noise estimation. It is worth noting that as T ′ decreases, the DDIM-MCDO
yields more improvement, compared to other methods. Notably, DDIM-MCDO†outperforms either
component method alone, both exceeding the baseline. Additionally, at T ′ = 20, LDM-ES (Ning
et al., 2024) shows sensitivity to hyperparameters (e.g., a large FID difference when λ varies from
0.999 to 1.001), but performance stabilizes when combined with DDIM-MCDO.

Table 3: Results on LSUN-Bedroom
256 × 256, with LDM-4 and DDIM
sampler, η = 0.0, tthre = 0.

Method T ′ FID↓
DDIM 20 4.26
DDIM-MCDO 20 4.20
DDIM 10 9.33
DDIM-MCDO 10 6.25
DDIM 6 25.94
DDIM-MCDO 6 12.34
DDIM 5 44.91
DDIM-MCDO 5 19.31
DDIM 4 78.70
DDIM-MCDO 4 33.79

To maintain consistency with (Ning et al., 2024), we report
results under the DDPM setting (η = 1.0) in Table 8 (see
Appendix A.8). Additionally, we provide quantitative re-
sults for LSUN-Bedroom 256 × 256 (Yu et al., 2015) in
Table 3, with corresponding qualitative results available in
Appendix A.9.

For implementing DDIM-MCDO, variance statistics from
64 samples are collected during 500 steps of DDIM sam-
pling. In all experiments on CelebA-HQ and LSUN-
Bedroom, we set the threshold timestep tthre to 0. Given
that DDIM-MCDO consistently improves performance
across all experiments, we consider it a hyperparameter
tuning-free.

5.4 RESULTS ON CLASS-CONDITIONAL GENERATION

Table 4: Results on ImageNet-256, with LDM-
4 and DDIM sampler. η = 0.0, guidance scale
s = 3.0, tthre = 0.

Method T ′ FID↓ sFID↓ IS↑
DDIM 20 11.01 7.69 69.44
DDIM-MCDO 20 11.29 6.03 69.47
DDIM 10 9.78 12.35 66.30
DDIM-MCDO 10 10.22 7.13 67.95
DDIM 5 16.81 36.07 49.92
DDIM-MCDO 5 8.30 10.89 62.15

We conduct class-conditional image generation
on ImageNet-256 (Russakovsky et al., 2015).
To show the hyperparameter tuning-free feature
of DDIM-MCDO, we employ the same hyper-
parameters in Section 5.3: N = 64, tthre = 0.
The pixel variance of 64 samples from different
classes (1 sample per class) is collected during
a 500-step DDIM sampling. Quantitative and
qualitative results are shown in Table 4 and Ap-
pendix A.10, respectively.

5.5 ABLATION STUDY

Table 5: Result on ImageNet-256 with LDM-4.
T = 5, η = 0.0, s = 3.0

Method FID↓ sFID↓ IS↑ tthre
16.81 36.07 49.92 1000
13.45 26.72 54.64 800
10.67 19.14 58.29 600
9.38 15.32 60.29 400
8.48 11.76 61.82 200

DDIM-MCDO

8.30 10.89 62.15 0

In this section, we investigate how the number
of constraints affects image quality by varying
the hyperparameter tthre from 1000 to 0. We
evaluate the FID, sFID, and IS scores of 50,000
images generated with each tthre on ImageNet-
256 (Russakovsky et al., 2015) using LDM-4
and 5-step DDIM samplers (Song et al., 2021).

Results in Table 5 show consistent improve-
ments as tthre decreases. While increasing dis-
crepancy in x

(t)
0 |y at lower t may introduce er-

rors in pixel variance correction, the benefits of DDIM-MCDO in later stages outweigh this issue,
leading to better results than its early-stopping version (e.g., tthre = 200).

6 CONCLUSION

In this paper, we address exposure bias in accelerated sampling of diffusion models. By analyzing
this bias through the manifold hypothesis, we propose a manifold constraint that aligns deviated de-
noising observations with the manifold, enhancing both magnitude and direction accuracy in noise
estimation. Our experiments on several large-resolution datasets demonstrate significant effective-
ness. Furthermore, the method is training-free and requires minimal hyperparameter tuning, making
it a simple plug-and-play module for other sampling methods.
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A APPENDIX

A.1 ZERO MEAN ASSUMPTION AND ERROR ANALYSIS

The noise added to clean data during the training phase follows normal distribution: ϵt ∼ N (0, I),
which implies E[ϵt] = 0. According to Equation 5, assuming E[ϵtθ] = 0 is reasonable for well-
trained diffusion models. According to Equation 7, the predicted noisy data at timestep t − 1 can

be expressed as x̂t−1 =
√
ᾱt

x̂t−
√

1−ᾱtϵ
(t)
θ (xt)√

ᾱt
+

√
1− ᾱt−1 − σ2

t ϵ
(t)
θ (xt) + σtϵ

′
t, ϵ

′
t ∼ N (0, I).

Then as long as E[ 1nΣ
n
i=0xti ] = 0, one has E[ 1nΣ

n
i=0x̂t−1i ] = 0,∀t ∈ [1, T ].

We illustrate the evolution of the average absolute pixel mean (E[|Σn
i=0

1
n · |]) for the noisy data

prediction, denoising observation, and noise estimation in Figure 9. The statistics were collected
from 6,400 samples generated using a 100-step LDM on CelebA-HQ. It can be observed that the
average absolute pixel mean values for x̂t, x̂

(t)
0 and ϵ

(t)
θ all remain close to zero throughout the

generation process. This suggests that the pixel mean for all variables exhibits only minor deviations
from 0 across timesteps.

In Equations 12 and 19, the square root of the pixel variance for x̂t and x̂
(t)
0 is used to approximate

their L2 norm:
√
nVar(x̂t) → ∥x̂t∥,

√
nVar(x̂

(t)
0 ) → ∥x̂(t)

0 ∥. We present the evolution of the
L2 norm alongside the pixel variance for the denoising observation in Figure 7. The relative error
of this approximation is presented in Figure 8. The results demonstrate that throughout the entire
generation process, the approximation error remains very small (less than 0.045). This indicates
that using the pixel variance of x̂t or x̂(t)

0 as an approximation for their L2 norm introduces only
minimal error, which is acceptable for practical applications.
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Figure 7: Evolution of the L2 norm and pixel variance for the denoising observation, based on
average statistics from 6,400 samples generated using 100-step LDM on CelebA-HQ.
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Figure 8: Relative error of using square root of pixel variance to approximate the L2 norm of x̂t and
x̂
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0 . Statistics are collected from 6,400 samples generated using 100-step LDM on CelebA-HQ.
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Figure 9: Evolution of the average absolute pixel mean for the noisy data prediction, denoising
observation, and noise estimation. Statistics are collected from 6,400 samples generated using 100-
step LDM on CelebA-HQ.
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A.2 DERIVATION OF NOISY RATIO IN A SINGLE STEP FOR DDIM

In the forward process of DDIM, we have:
√
ᾱtx0 +

√
1− ᾱtϵ = xt, ϵ ∈ N (0, I). (23)

In the reverse process, when given the ground truth input xt+1 , the model’s prediction of xt is:

x̂t =
√
ᾱtx̂

(t+1)
0 +

√
1− ᾱt − σ2

t+1ϵ
(t+1)
θ (xt+1) + σt+1ϵ

′
t+1, ϵ

′
t+1 ∼ N (0, I) . (24)

When σt = 0 for all t, the sampling process become deterministic, and Equation 24 is simplified as:

x̂t =
√
ᾱtx̂

(t+1)
0 +

√
1− ᾱtϵ

(t+1)
θ (xt+1) . (25)

For timestep t, by denoting the prediction error on the noise as e(t)θ , we have:

ϵ
(t)
θ (xt) = ϵt + e

(t)
θ . (26)

We now derive the error on denoising observation with respect to the error on the noise estimation.
By plugging Eq 26 into Equation 6, we have:

x̂
(t+1)
0 =

xt+1 −
√
1− ᾱt+1ϵ

(t+1)
θ (xt+1)√

ᾱt+1

=
xt+1 −

√
1− ᾱt+1ϵt+1√
ᾱt+1

−
√
1− ᾱt+1√
ᾱt+1

e
(t+1)
θ

= x0 −
√
1− ᾱt+1√
ᾱt+1

e
(t+1)
θ . (27)

It is worth noting that in the early stage of generation, e.g., when t = T , ᾱt approaches 0. Therefore,

according to Equation 27, the error coefficient on the denoising observation: dt =
√

1−ᾱt+1√
ᾱt

is non-
negligible.

As x̂(0)
t is notably influenced by the amplified noise prediction error term dte

(t)
θ at most timesteps,

it is possible to correct the noise estimation error by correcting the denoising observation.

With the same manner, we derive the error on the noisy data prediction with respect to the noise
estimation error. By plugging X Equations 26 and 27 into Equation 25, we have:

x̂t =
√
ᾱt

(
x0 −

√
1− ᾱt+1√
ᾱt+1

e
(t+1)
θ

)
+

√
1− ᾱtϵ

(t+1)
θ (xt+1)

=
√
ᾱtx0 −

√
ᾱt

√
1− ᾱt+1√
ᾱt+1

e
(t+1)
θ +

√
1− ᾱtϵt+1 +

√
1− ᾱte

(t+1)
θ

=
(√

ᾱtx0 +
√
1− ᾱtϵt+1

)
+

(√
1− ᾱt −

√
ᾱt

√
1− ᾱt+1√
ᾱt+1

)
e
(t+1)
θ

= xt +

(√
1− ᾱt −

√
ᾱt

√
1− ᾱt+1√
ᾱt+1

)
e
(t+1)
θ . (28)

We denote the scaling factor for xt as nt, nt =
√
1− ᾱt −

√
ᾱt

√
1−ᾱt+1√
ᾱt+1

. The value of both dt and

nt during denoising process are shown in Figures 10 and 11. It is illustrated that while e(t)θ is scaled
down for xt, the same error is scaled up for x(t)

0 .

Correcting the pixel variance of x̂t using a scale factor (directly correcting the pixel variance of the
noisy data prediction) will eventually scale the entire term xt + ntϵ

(t)
θ , which leads to distortion of

the xt component in x̂t. When correcting the pixel variance of x̂(t)
0 using the proposed method, one

corrects x0 + dte
(t)
θ . While the x

(t)
0 term is also influenced, it is important to note that by recal-

culating the noise estimation with the corrected denoising observation in Equation 6, the prediction
error is reduced while the original xt is preserved.
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Figure 10: Error scale for denoising observation
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A.3 COMPARISON BETWEEN NOISY DATA AND DENOISING OBSERVATION CORRECTION

According to Equation. 16, adjusting the pixel variance of noisy data x̂t during the accelerated
sampling process to variance collected from sampling process with large enough T , could potentially
reduce the exposure bias and improve the generation results. For clarity, we refer to this method as
Noisy Data Variance Adjustment (NDVA). We provide the results of NDVA in Tables 6 and 7.

In Table 6, it can be observed that NDVA outperforms the baseline method, and exhibits performance
comparable to TS-DDIM when T = 20. However, it is notably worse than MCDO as the number of
timesteps further decreases.

Table 6: Results on CelebA-HQ dataset.

Method Steps FID↓
DDIM 20 10.59
TS-DDIM 20 8.29
DDIM-NVDA 20 9.21
DDIM-MCDO 20 9.49
DDIM 10 21.08
TS-DDIM 10 15.71
DDIM-NVDA 10 16.45
DDIM-MCDO 10 15.63
DDIM 5 54.99
TS-DDIM 5 50.69
DDIM-NVDA 5 47.52
DDIM-MCDO 5 30.76

Table 7: Results on MS-COCO.

Method Steps FID↓
DPM-Solver++(2M) 10 15.10
DPM-Solver++(2M) + NVDA 10 15.76
DPM-Solver++(2M) + MCDO 10 14.88
DPM-Solver++(2M) 8 15.57
DPM-Solver++(2M) + NVDA 8 15.76
DPM-Solver++(2M) + MCDO 8 15.32
DPM-Solver++(2M) 6 17.05
DPM-Solver++(2M) + NVDA 6 17.13
DPM-Solver++(2M) + MCDO 6 16.39
DPM-Solver++(2M) 5 19.16
DPM-Solver++(2M) + NVDA 5 19.02
DPM-Solver++(2M) + MCDO 5 18.51

A.4 EXPOSURE BIAS MEASUREMENT

In this section, we employ the exposure bias metric proposed by Ning et al. (2024) to evaluate
the single step variance discrepancy reduction when using our method. The statistics are collected
during the accelerated diffusion sampling (5, 10, 20 steps) on Stable Diffusion XL. The variance
deviation with respect to the fixed schedule 1 − ᾱt, as well as the standard deviation are illustrated
in Figure 13. Although our approach is based on the manifold hypothesis and the concept of pixel
variance, the results indicate that the proposed manifold constraint still reduces sample variance
error.
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Figure 13: Exposure bias measurement. We plot the variance error and standard deviation error in
single-step samplings.
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A.5 MORE QUALITATIVE RESULTS ON MS-COCO USING SDXL

We provide more qualitative results on text-to-image generation in Figure 14.

(a) ”A bunch of sheep are standing in a snowy field.”

(b) ”a woman walking along a sidewalk while holding a suitcase”

(c) ”A girl holding a foot long hot dog in a restaurant”

(d) ”A young man in a hat holding a cup of coffee and a pastry.”

Figure 14: Images generated using 10 steps SDXL with DDIM sampler. From left to right: SDXL,
TS-DDIM (Li et al., 2024a), LDM-ES (Ning et al., 2024), DDIM-MCDO (ours).

A.6 QUALITATIVE RESULTS ON CELEBA-HQ

We present qualitative results for unconditional generation on CelebA-HQ using LDM-4 in Fig-
ures 15, 16, and 17, with sampling steps of 5, 10, and 20, respectively. For the sampling settings,
we use the recommended value of η = 0.0 when the number of steps is low (Rombach et al., 2022).
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Figure 15: Samples on CelebA-HQ 256 × 256 using 5 steps LDM-4. From left to right: DDIM,
TS-DDIM (Li et al., 2024a), LDM-ES (Ning et al., 2024) with λ = 1.005, DDIM-MCDO, DDIM-
MCDO†with λ = 1.005. 22
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Figure 16: Samples on CelebA-HQ 256 × 256 using 10 steps LDM-4. From left to right: DDIM,
TS-DDIM (Li et al., 2024a), LDM-ES (Ning et al., 2024) with λ = 1.002, DDIM-MCDO, DDIM-
MCDO†with λ = 1.002. 23
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Figure 17: Samples on CelebA-HQ 256×256 using 20 steps LDM-4. From left to right: DDIM, TS-
DDIM (Li et al., 2024a), LDM-ES (Ning et al., 2024) with λ = 0.999, LDM-ES (Ning et al., 2024)
with λ = 1.001, DDIM-MCDO, DDIM-MCDO†with λ = 0.999, DDIM-MCDO with λ = 1.001.
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A.7 PIXEL-LEVEL CONSTRAINT FOR UNCONDITIONAL GENERATION

Considering that in unconditional generation, the similarity between samples within an inference
batch is higher than that in Text-to-Image generation, we propose a more fine-grained correction ap-
proach: to estimate the pixel-level variance of the denoising observation:vt,c,h,w = Var(x̂

(t)
0i,c,h,w

),

vt ∈ RC,H,W , x̂(t)
0 ∈ RB,C,H,W . Where B is the batch size, C is the channel number, H and W

are the latent’s height and weight, respectively. We denote this variant as DDIM-MCDO*. When
DDIM-MCDO* is coupled with LDM-ES (Ning et al., 2024), it is denoted as DDIM-MCDO‡2 The
batch size N used for implementing DDIM-MCDO* is 64 on CelebA-HQ.

A.8 QUANTITATIVE RESULTS ON CELEBA-HQ WITH DDPM SAMPLER

We provide results on CelebA-HQ using LDM-4 and DDPM sampler, where η = 1.0, in Table 8. We
notice that contrast to LDM-ES (Ning et al., 2024), our method yields more performance improve-
ment for DDIM than DDPM. Considering the DDIM setting is recommended under accelerated
generation (Rombach et al., 2022), results in Table 8 suggests that the proposed methods might be
easily combined with other fast sampling method in scenarios where T ′ is extremely low.

Table 8: Results on CelebA-HQ 256× 256 with LDM-4 and DDPM sampler, η = 1.0.

Method T ′ FID↓ λ
DDPM 20 29.61 –
LDM-ES (Ning et al., 2024) 20 15.68 1.01
DDPM-MCDO 20 26.83 –
DDPM-MCDO* 20 23.84 –
DDPM-MCDO† 20 16.47 1.01
DDPM-MCDO‡ 20 19.21 1.01
DDPM 10 56.22 –
LDM-ES (Ning et al., 2024) 10 33.36 1.03
DDPM-MCDO 10 47.29 –
DDPM-MCDO* 10 29.76 –
DDPM-MCDO† 10 19.87 1.03
DDPM-MCDO‡ 10 16.92 1.03
DDPM 5 102.1 –
LDM-ES (Ning et al., 2024) 5 73.49 1.04
DDPM-MCDO 5 78.12 –
DDPM-MCDO* 5 54.56 –
DDPM-MCDO† 5 56.40 1.04
DDPM-MCDO‡ 5 51.76 1.04

2‡DDIM-MCDO* combined with LDM-ES using the same hyperparameter.
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A.9 QUALITATIVE RESULTS ON LSUN-BEDROOM

We present qualitative results for unconditional generation on LSUN-Bedroom using LDM-4 in
Figures 18, 19, and 20, with sampling steps of 4, 5, and 10, respectively. For the sampling settings,
we use the recommended value of η = 0.0 when the number of steps is low (Rombach et al., 2022).

(a) DDIM (b) DDIM-MCDO

Figure 18: Samples on LSUN-bedroom 256× 256 using 4 steps LDM-4.

(a) DDIM (b) DDIM-MCDO

Figure 19: Samples on LSUN-bedroom 256× 256 using 5 steps LDM-4.

A.10 QUALITATIVE RESULTS ON IMAGENET-256

We present qualitative results of class-conditional generation on ImageNet-256 using LDM-4 in
Figures 21, 22, and 23, with sampling steps of 5, 10, and 20, respectively. For the sampling settings,
we use the recommended value of η = 0.0 when the number of steps is low (Rombach et al., 2022).
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(a) DDIM (b) DDIM-MCDO

Figure 20: Samples on LSUN-bedroom 256× 256 using 10 steps LDM-4.

(a) DDIM (b) DDIM-MCDO

Figure 21: Samples on ImageNet 256× 256 using 5 steps LDM-4.

27



Published as a conference paper at ICLR 2025.

(a) DDIM (b) DDIM-MCDO

Figure 22: Samples on ImageNet 256× 256 using 10 steps LDM-4.

(a) DDIM (b) DDIM-MCDO

Figure 23: Samples on ImageNet 256× 256 using 20 steps LDM-4.
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A.11 A MORE FINE-GRAINED MANIFOLD CONSTRAINT

In this section, based on the manifold analysis in Section 4.1, we provide a more fine-grained ver-
sion of MCOD. Which is denoted as DDIM-MCDO+. The statistics collection process of DDIM-
MCDO+ and DDIM-MCDO are shared, so DDIM-MCDO+ can be implemented by adding one
more line of code.

During inference, we first correct the pixel variance of the denosing observation x̂
(t)
0 like in DDIM-

MCDO:

x̃
(t)
0 |y2,xT2

=
√
ct

[
x̂
(t)
0 |y2,xT2

− Mean
(
x̂
(t)
0 |y2,xT2

)]
+ Mean

(
x̂
(t)
0 |y2,xT2

)
. (29)

Then, we calculate the transition coefficient dt−k between M(t)
0 and M(t−k)

0 :

dt−k =
Var(x

⋆(t−k)
0 |y2,xT2

)

Var(x
⋆(t)
0 |y2,xT2

)
. (30)

With dt−k, we can further correct the denoising observation, which will be used in predicting xt−k.

x̃
(t−k)
0 |y2,xT2

=
√
dt−kx̃

(t)
0 |y2,xT2

. (31)

The final expression of x̃t−k:

x̃t−k =
√
ᾱt−kx̃

(t−k)
0 +

√
1− ᾱt−k − σ2

t−kϵ̃θ (xt) + σt−kϵ
′
t−k, ϵ

′
t−k ∼ N (0, I) . (32)

The result on MS-COCO (Lin et al., 2014) dataset with Stable Diffusion XL (Podell et al., 2024)
are provided in Figure 24 and Table 9. We find that although DDIM-MCDO+ does not outperform
DDIM-MCDO on metrics like FID and CLIP score, the quantitative results of DDIM-MCDO+ might
be better.

Table 9: Results on Text-to-Image generation on MS-COCO val2014 with SDXL and DDIM sam-
pler. Image Resolution is 1024× 1024.

Model Method Steps FID↓ CLIP Score↑ tthre
DDIM 10 18.17 31.58 –
DDIM-MCDO 10 15.60 (-2.75) 31.75 (+0.18) 0
DDIM-MCDO+ 10 15.79 (-2.38) 31.72 (+0.14) 100SDXL

DDIM-MCDO+ 10 15.98 (-2.19) 31.71 (+0.13) 0
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(a) ”A beach area with several chairs and umbrellas.”

(b) ”A dog laying on the beach in the sand.”

Figure 24: Comparison between DDIM-MCDO+ (left) DDIM-MCDO (right) using 10 steps SDXL.
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A.12 RESULTS WITH DPM-SOLVER++

To further investigate the compatibility of MCOD with high-order solvers, we evaluate the proposed
method with DPM-Solver++ (Lu et al., 2022b). The pixel variance of 60 samples, collected from the
1000 steps SDE-DPM-Solver++(2M) sampling process, were used for vt estimation. We generated
10k images for each evaluation in Table 10. The corresponding qualitative results are provided in
Figures 25, 26, 27 and 28.

Table 10: Results on Text-to-Image generation on MS-COCO val2014 with SDXL and DPM-
Solver++. Image Resolution is 1024 × 1024

Method Steps FID↓ CLIP Score↑ tthre
DPM-Solver++(2M) 10 15.10 31.74 –
DPM-Solver++(2M)-MCDO 10 14.88 31.85 100
DPM-Solver++(2M) 8 15.57 31.74 –
DPM-Solver++(2M)-MCDO 8 15.32 31.79 100
DPM-Solver++(2M) 6 17.05 31.65 –
DPM-Solver++(2M)-MCDO 6 16.39 31.72 100
DPM-Solver++(2M) 5 19.16 31.52 –
DPM-Solver++(2M)-MCDO 5 18.51 31.62 100
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(a) ”A busy city street with many different vehicles.”

(b) ”Two men with glasses sitting at a table using laptops”

Figure 25: Comparison between DPM-Solver++(2M) (Lu et al., 2022b) (left) DPM-Solver++(2M)-
MCDO (right) using 10 steps SDXL.
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(a) ”A public transportation bus near a curb with a bicycle rack.”

(b) ”Two horses plowing the land as a man directs them.”

Figure 26: Comparison between DPM-Solver++(2M) (Lu et al., 2022b) (left) DPM-Solver++(2M)-
MCDO (right) using 8 steps SDXL.
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(a) ””A person walking across the street with a traffic light above.”

(b) A man in the ocean surfing holding on to a kite.”

Figure 27: Comparison between DPM-Solver++(2M) (Lu et al., 2022b) (left) DPM-Solver++(2M)-
MCDO (right) using 6 steps SDXL.
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(a) ”A bicyclist is riding past a bus that is parked.”

(b) ”A picture of an alter holding bananas, skeletons, candles and flowers.”

Figure 28: Comparison between DPM-Solver++(2M) (Lu et al., 2022b) (left) DPM-Solver++(2M)-
MCDO (right) using 5 steps SDXL.
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A.13 RESULTS ON STABLE DIFFUSION 3

We further evaluate the scalability on rectified flow model: Stable Diffusion 3 (Esser et al., 2024).
Quantitative results, computed using 10k images, are provided as follows.

Table 11: Results on Text-to-Image generation on MS-COCO val2014 with Stable Diffusion 3 (Esser
et al., 2024). Image Resolution is 1024× 1024.

Model Method Steps FID↓ CLIP Score↑ tthre
DDIM 6 33.31 30.56 –
DDIM-MCDO 6 27.57 31.18 0
DDIM 9 22.71 31.44 –Stable Diffusion 3

DDIM-MCDO 9 22.26 31.70 0

A.14 RESULTS WITH DIFFERENT CLASSIFIER-FREE GUIDANCE SCALE

Considering that large classifier-free guidance (CFG) scales might cause exposure bias (Chung et al.,
2025), we evaluate the proposed method, as the CFG scale varies. Quantitative results, computed
using 10k images, are provided in Table 12.

Table 12: Results on Text-to-Image generation on MS-COCO val2014 with SDXL (Podell et al.,
2024). Image Resolution is 1024× 1024.

Method CFG Scale FID↓ CLIP Score↑ tthre
DDIM 8 18.51 31.81 –
DDIM-MCDO 8 17.38 32.03 100
DDIM 10 18.99 31.82 –
DDIM-MCDO 10 17.49 32.13 100
DDIM 12 20.62 31.70 –
DDIM-MCDO 12 17.80 32.18 100

The results show that incorporating the proposed method into sampling significantly enhances per-
formance across varying CFG scales. Specifically, while higher CFG scales (e.g., 12) typically
exacerbate exposure bias, the DDIM-MCDO method effectively mitigates this issue, reducing the
FID score by 2.82.
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A.15 QUANTITATIVE COMPARISON WITH 1,000 STEPS RESULTS

We provide quantitative comparison between images generated using 10 steps DDIM, 10 steps
DDIM-MCDO, and 1,000 steps DDIM in Figure 29.

Figure 29: Comparison between 10 steps DDIM (left), DDIM-MCDO (middle) and 1000 steps
DDIM (right) with SDXL. Prompts used (from top to bottom): ”A street light that shows, horse
crossing on it”, ”There are people on the snow bank and snow lift chairs are above.”, ”Four people
gather around a table and smile for the picture.”, ”A small child with a kite walking on a beach.”
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