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ABSTRACT

Landmark universal function approximation results for neural networks with
trained weights and biases provided the impetus for the ubiquitous use of neu-
ral networks as learning models in neuroscience and Artificial Intelligence (AI).
Recent work has extended these results to networks in which a smaller subset of
weights (e.g., output weights) are tuned, leaving other parameters random. How-
ever, it remains an open question whether universal approximation holds when
only biases are learned, despite evidence from neuroscience and AI that biases
significantly shape neural responses. The current paper answers this question. We
provide theoretical and numerical evidence demonstrating that feedforward neu-
ral networks with fixed random weights can approximate any continuous func-
tion on compact sets. We further show an analogous result for the approximation
of dynamical systems with recurrent neural networks. Our findings are relevant
to neuroscience, where they demonstrate the potential for behaviourally relevant
changes in dynamics without modifying synaptic weights, as well as for AI, where
they shed light on recent fine-tuning methods for large language models, like bias
and prefix-based approaches.

1 INTRODUCTION

The universal approximation theorems Hornik et al. (1989); Funahashi (1989); Hornik (1991) of
the late 1900s highlighted the expressivity of neural network models, i.e. their ability to approxi-
mate or express a broad class of functions through the tuning of weights and biases, heralding the
central role that neural networks play in Machine Learning (ML) and neuroscience today. Since
these foundational studies, a rich literature has explored the limits of this expressivity by finding
smaller parameter subsets that, when optimized, can still support the approximation of wide classes
of functions or dynamics. Prior work has explored the approximation capabilities of Feedforward
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Neural Networks (FNNs) and Recurrent Neural Networks (RNNs) where only the output weights are
trained Rosenblatt et al. (1962); Rahimi & Recht (2008); Ding et al. (2014); Neufeld & Schmocker
(2023); Jaeger & Haas (2004); Sussillo & Abbott (2009); Gonon et al. (2023); Hart et al. (2021), and
deep FNNs where only subsets of parameters Rosenfeld & Tsotsos (2019), normalization parame-
ters Burkholz (2023); Giannou et al. (2023), or binary masks–either over units or parameters–are
trained Malach et al. (2020).

In this work, we study the expressivity of neural networks where only biases–which can be inter-
preted as constant inputs to neural units–are learned. While this may seem like an odd pursuit,
bias-related learning is central to several active areas of research. In AI, modern sequence models
such as transformers can have their outputs reshaped based on examples or instructions presented
in an unchanging prefix sequence. No changes of weights are performed in this case, only distinct
inputs carrying information about the context are passed to pre-trained but fixed neural network
components Li & Liang (2021); Marvin et al. (2023); Garg et al. (2022); Von Oswald et al. (2023).
Even more closely related, training only biases is a strategy that has been used recently Zaken et al.
(2021) for more efficient fine-tuning. In neuroscience, there is growing evidence that animals can
leverage inputs–via long-range projections from higher cortical areas or neuromodulatory nuclei–
in order to rapidly and flexibly adapt network dynamics to multiple tasks Mazzucato et al. (2019);
Ogawa et al. (2023); Perich et al. (2018); Remington et al. (2018). These tonic inputs mediating
the effects of projections from other brain areas to the given, local, circuit are typically modelled
as biases (see Supplementary Table 1). Consequently, input-based learning is a conceptually crucial
yet poorly understood component of both modern AI systems as well as of brain functions.

Quantifying the expressivity of bias learning would show the degree to which the brain or neural
networks can rely on the adaptation of bias-related parameters to structure their dynamics for new
tasks, thus providing critical theoretical grounding to this growing literature. If tuning the biases
of a neural network will only span a reduced set of functions, or output dynamics, then this would
solidify the role of synaptic plasticity as the critical component in biological and artificial learning.
Conversely, if one can express arbitrary dynamics solely by changing biases, this would motivate
deeper investigation of when and how non-synaptic mechanisms might shoulder some of the effort
of learning. In this paper, we take a first step towards characterizing the expressivity of bias learning
by studying the arguably worst-case scenario of a neural network with unstructured weights. In
a regime where all weight parameters are randomly initialized and frozen, and only hidden-layer
biases are optimized–which we term bias learning–we give theoretical guarantees demonstrating
that:

1. bias-learning FNNs with wide hidden layers are universal function approximators with high
probability;

2. bias-learning RNNs with wide hidden layers can arbitrarily approximate finite-time trajec-
tories from smooth dynamical systems with high probability.

We further provide empirical support for, and a deeper interrogation of, these results with numerical
experiments exploring multi-task learning, motor-control, and dynamical system forecasting.

1.1 RELATED WORKS

Machine Learning. Many efforts have explored neural networks that are trained to quickly meta-
learn new tasks via dynamics in activation space alone, without any adaptation of weights (see
Feldkamp et al. (1997); Klos et al. (2020); Cotter & Conwell (1990; 1991); Hochreiter et al. (2001);
Subramoney et al. (2024)). Like our work, this research proposes a mechanism by which a network
might “learn” any new task without changing weights. However, prior work differs from the current
study in that it requires an initial meta-training of all parameters in a network, weights included,
before operating in the ”fast learning” regime where network variables maintain context information
that allow the networks to rapidly adapt to new tasks. In some cases, these context variables can be
thought of as biases Cotter & Conwell (1991).

From a mathematical perspective, our work is closely related to masking, particularly the Strong
Lottery Ticket Hypothesis (SLTH). This hypothesis conjectures that a desired network parameteri-
zation could be found as a sub-network in a larger, appropriately-initialized, network Ramanujan
et al. (2020). SLTH is typically formulated with respect to weights, i.e., a subnetwork is defined
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by deleting weights from the full network. However, a few studies have investigated SLTH where
subnetworks are constructed by deleting units Malach et al. (2020), which we term SLTH over units.
While our study is different for its focus on function approximation via bias optimization, rather
than finding “lottery ticket” subnetworks, a key step in our analytic derivations relies on masking
in a fashion analogous to proofs of SLTH over units. Thus, our work also provides two results that
may be of interest to the SLTH theory: a novel proof of SLTH over units in single-layer FNNs,
complementing the work of Malach et al. (2020) (see Connections with Malach et al. 2020 in §B.2
for details), and a first proof of SLTH for RNNs (see Section §2 for more details). Flavours of the
lottery ticket hypothesis for RNNs have been explored empirically Yu et al. (2019); Garcı́a-Arias
et al. (2021); Schlake et al. (2022) but we have not encountered its proof, neither over weights nor
units, in the literature.

Neuroscience. Changes in input biases, which mediate a change in the input-output transfer func-
tions of neurons, can explain the context-dependent effects of expectation Mazzucato et al. (2019),
movements Wyrick & Mazzucato (2021) and arousal Papadopoulos et al. (2024) on sensory process-
ing across modalities and brain areas. Some of these effects occur by plasticity-driven changes in
amygdalar projections to cortex, induced by associative learning Vincis & Fontanini (2016); Haley
et al. (2020). Changes in neural firing threshold and network inputs, similar to bias modulations,
were shown to shape network dynamics: threshold heterogeneity can improve network capacity
Gast et al. (2024; 2023) and reconfigure circuit dynamics on fast timescales Perich et al. (2018);
Remington et al. (2018). A recent study showed that, in RNNs trained to perform neuroscience
tasks, learning biases via language model embedding leads to zero-shot generalization to new tasks
Riveland & Pouget (2024). Within the reservoir computing approach to modelling in neuroscience,
where recurrent weights are random and fixed, bias modulations can toggle between multiple phases
(including fixed point, chaos, and multistable regimes) and, strikingly, enable RNN multi-tasking in
the absence of any parameter optimization Ogawa et al. (2023). While slightly different than bias
parameters, a repertoire of dynamical motifs can also be generated in RNN reservoirs with dynamic
feedback loops Logiaco et al. (2021) and by modulating inputs in pre-trained networks Driscoll et al.
(2024).

2 THEORY RESULTS

2.1 FEEDFORWARD NEURAL NETWORKS

This section studies the single-layer FNN, whose output is given by:

yn(x, θ) =

n∑
i=1

A:iϕ(Bi:x+ bi), (1)

with A ∈ Rl×n, B ∈ Rn×d, b ∈ Rn, and θ = {A,B, b}. Note that here, and throughout the paper,
we adopt the notation Xi: and X:j to denote the ith row and jth column, respectively, of a matrix
X . We shall investigate the approximation properties of this neural network when all the weights in
B and A are fixed and sampled uniformly from the n(l+d)-dimensional centered hypercube, where
the half-edges are of length γ and only b is tuned. We begin by outlining the activation function
assumptions necessary for our theoretical results.
Definition 1. The function ϕ is a suitable activation if, when employed in the neural network of
Eq. 1, it allows for universal approximation of the following kind: for any continuous h : U → Rl

and any ϵ > 0, ∃n ∈ N and parameters θ s.t. supx∈U ||h(x) − yn(x, θ)|| ≤ ϵ, where U ⊂ Rd is
compact and || · || is the 1-norm and will be throughout the paper.

From the universal approximation theorems of 1993 Leshno et al. (1993); Hornik (1993), a sufficient
condition for ϕ to be a suitable activation is that it is non-polynomial. In this paper we conceptualize
universal approximation as the approximation of continuous functions on compact sets with respect
to an L∞ functional norm, but we remark that the literature has also studied other conditions on
h (for example measurability) and other forms of convergence. For a review of the literature, see
Pinkus (1999).
Definition 2. A suitable activation ϕ is referred to as a γ-parameter bounding activation if it allows
for universal approximation even when each individual parameter, e.g. an element of a weight
matrix or bias vector, is bounded by γ.
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Proposition 1. The ReLU and the Heaviside step function are γ-parameter bounding activations
for any γ > 0.

The proof is in Appendix §B.2. A key subtlety of parameter-bounding is that it is a bound on individ-
ual, scalar, parameters. Thus, as a network grows in width the bias vector and weight matrix norms
will still grow accordingly. This may be important, as research suggests band-limited parameters
cannot universally approximate, at least for certain activation types Li et al. (2023). We leave it to
future work to determine which other activations are parameter-bounding.

We make one final definition:

Definition 3. If ϕ is a γ-parameter bounding activation, is continuous, and if ∃τ ∈ R such that for
x < τ ϕ(x) = 0, then we say that ϕ is a γ-bias-learning activation.

Obviously, the ReLU is a bias-learning activation. We leave the study of discontinuous functions
like the Heaviside to future work. We conclude with the main result of this section. Define pR to be
a uniform distribution on [−R,+R], where γ < R < ∞.

Theorem 1. Assume that ϕ is γ-bias-learning and, for compact U ⊂ Rd, h : U → Rl is continuous.
Then, for any degree of accuracy ϵ > 0 and probability of error δ ∈ (0, 1), there exists a hidden-
layer width m ∈ N and bias vector b ∈ Rm such that, with a probability of 1− δ, a neural network
given by Eq.1 with each individual weight sampled from pR approximates h with error less than ϵ.

Corollary 1. Assume that d = l, i.e. the input and output spaces of the network have the same
dimension. Then the results of Theorem 1 also hold for single-hidden-layer ResNets.

Proof Intuition: We provide intuition about the proof of Theorem 1 and its Corollary, whose details
can be found in the Appendix (also see Fig. E.1 for visual proof intuition). According to the universal
approximation theorem, given a continuous function, we can find a one-hidden-layer network, N1,
that is close to that function in the L∞ norm on the (compact) space of its inputs. If N1 has been
constructed using γ-parameter bounding activation functions, then we know that each parameter
will be on the interval [−γ, γ]. Next, we construct a second network, N2, to approximate N1 by
randomly sampling each of its parameters, weight or bias, from pR. For N2 to approximate N1, each
parameter of N2 should fall within a tiny window of an analogous parameter in N1. This window
must have half-length less than ϵ to yield the desired error bound. Without loss of generality, we
can assume ϵ < R − γ. Then, if we sample parameters uniformly on [−R,R], there will be a
non-zero probability that a given parameter of N2 will end up within the tiny ϵ-window centered
at a corresponding parameter value in N1; because ϵ < R − γ we know that the ϵ-window won’t
stretch outside the distribution support. If we randomly sample a very large number of units to
construct the hidden layer of N2 the probability of finding a subnetwork of N2 corresponding to N1

can be made arbitrarily close to 1. If the activation function is bias-learning we can use biases to
pick out this subnetwork by setting them appropriately smaller than the threshold given in Definition
3. We remark that this proof estimates exceedingly massive hidden-layer widths that, based on our
numerical results, over-estimate the scaling of bias learning by orders of magnitude (see Remark 2 on
Lemma 3). We thus view this proof not as a statement about scaling but as a statement of existence:
for some sufficiently large but finite layer width, one can approximate the desired function with bias
learning.

2.2 RECURRENT NEURAL NETWORKS

Here, we study a discrete-time RNN given by:

rt = αrt−1 + βϕ(Wrt−1 +Bxt−1 + b), ŷt = Crt, (2)

where rt ∈ Rm for all 0 ≤ t ≤ T for some T ∈ N, α and β control the time scale of the dynamics,
W ∈ Rm×m, C ∈ Rl×m, and B and b are as in the previous section. The parameters are now
θ = {W,B,C, b}. The time-dependent input xt belongs to a compact subset Ux ⊂ Rd for all t.
Note that when α = 0, β = 1 one gets the standard vanilla RNN formulation; alternatively, α and β
can be set to approximate continuous-time dynamics using Euler’s method.

We will approximate the following class of dynamical systems by learning only biases:

zt+1 = F (zt, xt), yt = Qzt, z0 ∈ Uz, (3)
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where t and xt are as defined for the RNN, F : Uz × Ux → Rs is continuous, and Q ∈ Rl×s.
Because we build from the classic universal approximation results, we must be working with func-
tions operating on compact sets. To guarantee that this will be the case we must make several more
assumptions about the dynamical system. First, Uz ⊂ Rs is assumed to be a compact invariant
set of the dynamical system: if the system is in Uz it remains there for all t and for all inputs in
Ux. Second, we assume that the dynamical system is well-defined on a slightly larger compact set
Ũz × Ux, where Ũz = {z0 + c0 : z0 ∈ Uz, ||c0|| < c} for some c > 0, with Ũz ⊃ Uz .

To generalize the approximation in L∞ norm in our analysis of FNNs to dynamical systems we
consider an infinity norm over finite trajectories: supz0∈Uz,xt∈Ux

∑T
t=1 ||yt(z0,xt) − ŷt(r0,xt)||,

where xt ≡ [x0, . . . , xt−1], r0 ≡ r0(z0) is a continuous map from Uz into the hidden state space of
the RNN, and Ux is the t-times product space of Ux. Letting pR be defined as in Section 2.1, the
main result of this section is:
Theorem 2. Consider the RNN in Eq.2 with ϕ a γ-bias-learning activation, and input, output, and
recurrent weight parameters for each hidden unit sampled from pR. We can find a hidden-layer
width, m, a bias vector, and a continuous hidden-state initial condition map r0 : Uz 7→ Rm such
that, with a probability that is arbitrarily close to 1, the RNN approximates the dynamical system
defined in Eq.3 to below any positive, non-zero, error in the inifinity norm over trajectories.

Proof Intuition: We provide a high-level description here while the detailed proof and a schematic
(Fig. E.1) can be found in the Appendix. As in Theorem 1 the proof proceeds in two steps. First, the
dynamical system is approximated by an RNN, R1, using universal approximation theory for RNNs
(see e.g., Schäfer & Zimmermann (2006)). R1 is then approximated by a much wider, random
RNN, R2, with parameters sampled from pR. Analogous to Theorem 1, we show that one can find
a sub-network of hidden units in R2 that approximates R1 for very large hidden widths of R2..

3 NUMERICAL RESULTS

3.1 MULTI-TASK LEARNING WITH BIAS-LEARNED FNNS

We first validated the theory by checking whether a single-hidden-layer bias-learned FNN could
perform classification on the Fashion MNIST dataset Deng (2012) increasingly well as its hidden
layer was widened. We compared fully-trained networks, matching the number of trained parame-
ters, with bias-learned networks where the frozen weights were sampled from a uniform distribution
on [−0.1, 0.1] or a zero-mean Gaussian with standard deviation 1√

d
, where d is the input dimension.

The networks successfully learned the task and validation error decreased with the number of trained
parameters (Fig. 1A) which, for bias-learned networks, is equal to the number of hidden units. The
largest gains in performance occurred before 5 × 103 units, with bias-learning achieving compara-
ble, but slightly worse, performance compared to fully-trained models. We speculate that this gap
in performance for large network sizes is due either to current deep learning training conventions
being optimized for weight training, or to bias learning requiring even larger hidden layer sizes to
match fully-trained performance. Interestingly, for very low parameter counts bias-learning out-
performed fully trained networks (more visible with log-log axis scaling E.2.A). Because weights
scale quadratically with layer width, a fully-trained network will have a smaller width than a bias-
learned network with the same number of trained parameters (see Fig.E.2.B for the error scaling plot
with layer width on the x-axis).

Intuitively, bias learning should allow a single random set of weights to be used to learn multi-
ple tasks by simply optimizing task-specific bias vectors. We confirmed this by training a single-
hidden-layer FNN with 3.2 × 104 hidden units on 7 different tasks: MNIST Deng (2012), KM-
NIST Clanuwat et al. (2018), Fashion MNIST Xiao et al. (2017), Ethiopic-MNIST, Vai-MNIST, and
Osmanya-MNIST from Afro-MNIST Wu et al. (2020), and Kannada-MNIST Prabhu (2019). All
tasks involved classifying 28×28 grayscale images into 10 classes. The random weights were fixed
across tasks while different biases were learned. We compared bias learning against a fully-trained
neural network with the same size and architecture (Fig. 1B). We found that the bias-only network
achieved similar performance to the fully-trained network on most tasks (only significantly worse on
KMNIST). An important difference here is that the networks had matched size and architecture, so
that the number of trainable parameters in the bias-only network (3.2× 104 parameters) was several
orders of magnitude smaller than in the fully-trained case (≈ 2.5 × 107 parameters). Notably, a
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Figure 1: A. Validation accuracy on fashion MNIST vs. number of trained parameters for fully-
trained (blue), bias-learned with uniformly distributed weights (light orange), and bias-learned with
Gaussian weights (dark orange) networks. B. Validation accuracy on multiple image classification
tasks for bias-learned (orange) and fully-trained (blue) networks. Errors for 5 random seeds are
barely visible as the shaded regions in A, and are omitted in B because the standard errors are of
order 10−3. C. Top: K-mean clustering of Task Variance (TV) reveals task-selective clusters (see
Fig.E.3 for fully-trained network selectivity). Bottom: Spearman correlation between TV and bias
vectors (mean across neurons in each cluster).

different set of biases was learned for each task. We conclude that bias-only learning in FNNs could
be a viable avenue to perform multi-tasking with randomly initialized and fixed weights, but that it
requires a much wider hidden layer than fully trained networks. Lastly, we note that the networks
of Fig. 1B were trained with uniformly initialized weights, but that one can achieve similar, or even
better performance with different weight initializations (see Fig. E.2C).

Next, we investigated the task-specific responses of hidden units by estimating single-unit Task
Variances (TV) Yang et al. (2019), defined as the variance of a hidden unit activation across the test
set for each task. The TV provides a measure of the extent that a given hidden unit contributes to
the given task: a unit with high TV in one task and low TV for all others is seen as selective for
its high-TV task. We clustered the hidden-unit TVs using K-means clustering (K chosen by cross-
validation) on the vectors of TVs for each unit and found that distinct clusters of units emerged
(Fig. 1C). Some units reflected strong task selectivity (ex: cluster 3 for KMNIST and cluster 10 for
Osmanya). Others responded to many, or all, tasks (ex: clusters 1 and 8), although a smaller fraction
of clusters exhibited such non-selective activation patterns. Overall, we conclude that multi-task bias
learning leads to the emergence of task-specific organization. We note, however, that task selectivity
does not necessarily mean task utility: for example, a neuron could have a high variance for a single
task but that variance could be picking up on noise and thus not functionally useful. We leave a
deeper investigation of the functional significance of task-selectivity to future work.

Finally, we explored the relationship between the bias of a hidden unit and its TV. If the neural
networks are using biases to shut-off units, analogous to the intuition in our theory (Section 2.1),
then the units that do not actively participate in a task should be quiet due to a low bias value learned
during training on that particular task. In other words, this intuition would suggest that units should
exhibit a correlation between bias and TV, especially in task-specific clusters. In our experiments,
all clusters did exhibit the statistical trend of a positive correlation between bias and TV, although to
a varying degree across clusters (see numbers at the bottom of Fig. 1C).
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Figure 2: Comparing bias and mask learning on same weights. A. Learning curves for bias
(orange) and mask (black) learning on MNIST. Inset: bias learning achieved roughly 1% higher test
accuracy over mask learning (0.934 ± 0.001SD bias vs. 0.919 ± 0.002SD mask). B. Probability
(y-axis) of the same unit being ON in both the bias-learning and mask-learning networks (orange
line). A unit is ‘ON’ in mask learning if it is not masked out, and in bias learning if it has task
variance above a given threshold (x-axis). Also shown is the probability of a unit being ON in two
different training runs for mask-learning (black dashed line), and a null model giving the expected
overlap if the probability of a unit being ON in the bias-trained network is independent of whether
it is ON in the mask network (see Appendix §C.2 for more details) C. Histograms of hidden unit
variances, calculated over 104 test set MNIST samples, for bias-trained (orange) and mask-trained
(black). Unit variances below 0.1 are not shown. All curves, and histograms, are means, with shaded
regions being 1SD over 5 training runs.

3.2 RELATIONSHIP BETWEEN BIAS LEARNING AND MASK LEARNING IN FNNS

As our theory shows that bias learning networks can universally approximate simply by turning
units off, we wished to test whether bias learning performs similarly to learning masks, and to what
extent solutions learned by these approaches are different from each other. We compared training
mask to bias learning on networks with the same random input/output weight matrices. For mask-
training, we approximated binary masks using ‘soft’ sigmoid masks with learned gain parameters
(see Methods). The approximation of a discontinuity with a differentiable function was done to
allow optimization with gradient descent, a strategy with a history of use in ML Jang et al. (2016)
and computational neuroscience Zenke & Ganguli (2018). The sigmoid was steepened over the
course of training to approximate the binary mask that was used at test time. We compared masks
learned in this fashion with learned biases on single-hidden-layer ReLU networks with 104 units.
We observed a trend of bias-training slightly improving upon mask-training (Fig.2A), which was
expected given that biases can be tuned over a continuous range of values, including 0 and 1, while
masks can only take 0 or 1. Further research is needed to determine if this trend is reliable across
datasets and different network parametrizations, and whether there might be scenarios where one
style of learning works better or worse.

Next, we compared the solutions found via bias and mask learning on the same set of randomly
initialized weights. We calculated the variance of each hidden unit across 104 MNIST test images,
in both the bias and mask-trained paradigms, as a measure of hidden layer representation. To inves-
tigate whether the same units were active during the task regardless of training style, we looked at
which units were ‘ON’ in mask versus bias-trained networks. For mask learning a unit was consid-
ered ON if its mask was 1; for bias learning a unit was ON if its task variance was above a given
threshold. We observed that neurons with higher task variances contributed more to solving the
task (Fig. E.4A). For a range of thresholds, we calculated the probability that a given unit was ON
for both mask and bias learning (Fig.2B). We found that, for low thresholds, this match probabil-
ity was intermediate between chance (grey line) and the high probability of a match between two
mask-learned training runs on the same set of weights (black dashed line). We further noted that, on
average, mask learning used 4527± 44 ‘ON’ units (in this section all reported values are mean±SD
over 5 samples) to solve the task. For bias learning, when the task variance threshold was moved
from 0 to 0.1 test accuracy dropped about 1% and the number of ON units went from 104 (all units)
to 6226±47. Thus mask learning, found a sparser solution than bias learning. To further investigate
the differences and similarities between unmasked units, we plotted the histograms of unit variances
above the 0.1 threshold, and observed that bias learning used higher variances to accomplish the
task (Fig.2C). Finally, we found a moderate correlation between the task variances of units that were
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Figure 3: Learning autonomous dynamical systems. A. Cosine generated by a bias-learning RNN
(dashed orange) and its target (solid black). B. Eigenvalue spectra for the recurrent weights (left)
and the Jacobian at the start of training (right, grey squares) and mid-training (right, orange circles),
when the network produced a decaying oscillation with period 23.75, close to the target period of
25. Neural activity then approached a fixed point with respect to which the Jacobian was computed.
C. Van der Pol oscillator (target in solid black) generated by the bias-learning RNN for a recurrent
gain of 1 (dashed orange; see panel D) and a gain of 0.9 (dashed dark orange). Output represents
the oscillator’s position, rescaled to [-1, 1]. D. (Left) Sensitivity to distribution of recurrent weights.
The fully-trained and bias-learning networks had the same number of learnable parameters. Initial
recurrent weight matrix had elements sampled from (g/

√
m)N (0, 1), where g is the gain (Gain

recurrent init.). Error bars denote SEM for n = 10. (Right) Schematics of the fully-trained (top)
and bias-learning (bottom) autonomous RNNs. Colored links denote trained weights.

ON for both mask and bias learning (0.5030 ± 0.0087) (Fig E.4C). In summary, we observe that,
relative to mask learning, bias learning finds a different, but overlapping, solution to MNIST.

3.3 BIAS LEARNING AUTONOMOUS DYNAMICAL SYSTEMS WITH RNNS

We studied the expressivity of bias learning in RNNs trained to generate linear and nonlinear dynam-
ical systems autonomously (i.e., with xt ≡ 0 in Eq. 2). We found that RNNs with fixed and random
Gaussian weights and trained biases were able to generate a simple cosine function (Fig. 3A). We
then elucidated the mechanism underlying RNN bias learning by comparing the Jacobian matrix
after learning with the random recurrent weight matrix (which was held fixed during learning). We
found that although the random weight matrix maintained a fixed and circular eigenvalue distribution
(Fig. 3B, left), learning the biases shaped the Jacobian matrix to develop complex conjugate pairs
of large eigenvalues underlying the oscillations (Fig. 3B, right). Therefore, bias learning strongly
relies on the ability to shape the “effective connectivity matrix”, i.e. the Jacobian, which involves
the derivative of the activation and the recurrent weight matrix.

We next investigated whether bias learning relied on the statistics of the fixed recurrent weights.
In light of Fig. 3B, we thus hypothesized that bias learning would be affected by changes in the
weight distribution, because bias learning can only control the derivative. We initialized an i.i.d.
Gaussian distributed weight matrix Wij ∼ N (0, g2/N), where g is referred to as its ‘gain’. We
then trained bias-learning networks to generate a van der Pol oscillator (Fig. 3C). We found that
bias learning required a large enough gain (at least g = 1) and failed for g < 1 (Fig. 3D). This was
not purely due to a restricted dynamic range for the network activity since the network was able
to reproduce the first peak of the oscillator and then flatlined (Fig. 3C). In contrast, fully-trained
networks with the same number of training parameters (Fig. 3D) were not sensitive to the value of
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Figure 4: Learning non-autonomous dynamical systems. A. Validation R2 vs.number of trainable
model parameters for fully-trained (blue) and bias-learned (orange) RNNs. Training RNNs with bias
learning became unstable below a network width of 64. B. Predictions from the fully-trained and
bias-learned networks (both with a hidden layer width of 1024) on a trajectory of the Lorenz system
unseen during training. Standard deviation error bars were computed over 5 seeds, but are not visible
due to their small magnitudes. C. Predictions of both the fully-trained and bias-learned networks
diverge from the ground truth signal when one starts feeding back their own outputs as their inputs,
in place of the ground-truth time-series (self-sustained, starting from the grey line).

the gain at initialization. This result thus highlights that, when the hidden-layer size is fixed, the
initial distribution of weights limits the capability of bias-learning networks.

3.4 BIAS LEARNING NON-AUTONOMOUS DYNAMICAL SYSTEMS WITH RNNS

To further test bias learning in RNNs, we trained a RNN to predict future time-steps of a partially ob-
served dynamical system, namely a single dimension of the Lorenz attractor (see Appendix §C.4for
details). As in the autonomous DS case, only the biases of the input layer were trained and the
weights were random and frozen. However, here the network received the observed dimension of
the Lorenz system as an input. Given the observed dimension at time-point t, and its value at previ-
ous time-steps encoded in the RNN’s hidden state, the objective of the task was to predict the future
value at t+ τ , where τ = 27 was chosen to be the half-width at the half-max of the auto-correlation
of the observed dimension of the Lorenz system.

The performance of the bias-learned RNNs scaled, as a function of trainable model parameters, in
a qualitatively similar fashion to the bias-trained FNNs (Fig. 4A; see Fig. E.2D for scaling as func-
tion of layer width). Both the fully-trained and sufficiently wide bias-learned networks accurately
predicted future points of the Lorenz system, evidenced by a consistent R2 metric of > 0.99 (n=5)
achieved by networks with a hidden-layer width of 1024 on a window of the Lorenz time-series held
out during training (Fig. 4B). However, when the networks were fed their own previous predictions
as input, in place of the ground-truth time series, in an autoregressive, ‘self-sustained’ fashion, their
prediction accuracy decreased, demonstrating the damaging effect of small compounding deviations
propagated through time (Fig. 4C).

3.5 BIAS-LEARNED MOTOR CONTROL WITH RNNS

Finally, we tested whether bias learning could solve a center-out reaching task, a paradigm routinely
used to study motor control in human and non-human primates Ashe & Georgopoulos (1994); Shad-
mehr & Mussa-Ivaldi (1994). Starting from the center of the workspace, the subject must move the
selected end effector (e.g., their right hand) to reach several peripheral targets placed equidistantly
on a circle. We modelled this task using an RNN with random weights and learned biases, where
linear readouts controlled a point-mass arm (a unit mass modeling the arm’s behavior; see Methods).
The task objective was to reach the peripheral targets in 1 second, with near-zero velocity and force
at the end of movement, which were imposed using regularization terms in the loss function. A
1,024-units network required approximately 104 training epochs—where one epoch involved pre-
senting all targets once—to solve the task (Fig. 5A). (Note that a parameter-matched, fully-trained
RNN can also solve this task, in ∼ 103 epochs (Fig. E.5).) Importantly, a single set of biases was
used to reach all 6 targets for each trained network. The resulting trajectories successfully reached
the targets (Fig. 5B, dark curves and black targets), and exhibited the characteristic bell-shaped ve-
locity profile Harris & Wolpert (1998) (Fig. 5C, top). Crucially, the trained network generalized
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Figure 5: Center-out reaching task. A. Training loss for 3 network initializations. B. Trajectories
for the trained (black) and tested (grey) targets. C. Speeds ((ẋ2 + ẏ2)1/2) for the trained (top) and
tested (bottom) targets (mean ± SD across targets).

decently to new targets on the circle (Fig. 5B, light curves and grey targets; Fig. 5C, bottom). To
achieve this, the network had to produce both acceleration and deceleration when given information
about the Cartesian position of a target never seen in the training period. These results highlight the
flexibility of bias learning in generating diverse open-loop controls.

4 DISCUSSION

In this paper, we presented theoretical results demonstrating that FNNs and RNNs with fixed ran-
dom weights but learnable biases can approximate arbitrary functions with high probability. We
showcased the expressivity of bias-learned networks in multi-task, times-series, and motor control
tasks, and interrogated their learned representations by analyzing task selectivity and comparing
with mask-learning in FNNs, and by analyzing eigenvalues in RNNs.

We underline four limitations of our study that might inspire future research. First, the convergence
results for dynamical systems were only for finite-time trajectories. One could overcome this limi-
tation by studying convergence in stationary distribution. Second, a potential confounding factor in
our comparison of bias and mask learning is that the latter approach used a learning schedule in the
steepness parameter for the soft masks. It is possible that the altered learning dynamics due to this
scheduling contributed to mask and bias learning finding different solutions. Addressing this con-
found is an important direction for future work. Third, a better grasp of bias learning scaling–how
layer width or parameter count increases as a function of performance–is needed. Our theory does
not shed light here as it significantly overestimates how a bias-learned network should scale (Re-
mark 2 on Lemma 3 in Appendix). Some insight can be gleaned by noting that, with bias-learning
activations, tuned biases can express any mask-learned solution. Thus, results showing that mask
learning layer widths scale polynomially in the inverse error and the size of a performance-matched
random feature model (see Malach et al. (2020) Theorem 3.2) represent a worst-case scaling for
bias learning. Whether bias learning scales better than mask learning could be a good starting point
for addressing scaling. Fourth, while our results appeared to generalize beyond one-layer networks
(Fig. E.2E), a more detailed study of bias-learned deep FNNs is left to future work.

We lastly highlight the need for greater biological detail in future studies of bias learning. Past
experimental Ferguson & Cardin (2020) and theoretical work Wyrick & Mazzucato (2021); Ogawa
et al. (2023) showed that neural mechanisms modulating biases, like firing threshold or tonic inputs,
may effect other neuronal properties, like neuron input-output gain. As our proofs rely on masking,
they demonstrate universal approximation not just for bias learning but for any learned mechanism
that can mask neurons. Exploring paradigms where gain (Stroud et al. (2018)) and biases are learned
in concert could be an interesting direction to exploit this. Finally, the observed distribution of
synaptic weights in the brain is not uniform but long-tailed Song et al. (2005), highlighting the need
for bias learning models with more structured weight initializations. We hypothesize that structure in
the weights intermediate between fully random and fully learned might yield an optimal combination
of performance and training efficiency. If such structure improves hidden-layer scaling, this could
enable bias learning to support temporal credit assignment algorithms that struggle in weight space
due to the N2 scaling of synapses. A fascinating alternative is that the same number of parameters
could achieve a given task performance, regardless of whether they are weights or biases.
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A BIOLOGICAL BIAS-RELATED MECHANISMS

System Bias model Mechanism Effect Refs

Working
memory

Dopamine
projections to
cortical circuit

Bias of NMDA
or GABA
conductances

Enhance
memory
signal-to-noise
ratio and
resistance to
distractors

Brunel & Wang
(2001)

Behavioral
modulation of
visual responses

Thalamic
projections to
visual cortex

Bias to
pyramidal and
somatostatin
cells

Paradoxical
reversal of
somatostatin
cell responses to
running

Garcia del
Molino et al.
(2017)

Motor
sequences

Basal ganglia
projections to
thalamus

Inhibitory
biases of
thalamic
neurons

Toggle on/off
different motor
primitives

Logiaco et al.
(2021)

Motor
sequences

Secondary
motor cortex
projections to
primary motor
cortex (M1)

Biases of M1
neurons

Select initial
conditions
(anticipatory
activity) for
motor
primitives

Recanatesi et al.
(2022);
Mazzucato
(2022)

Short-term
motor
adaptation

Premotor cortex
projections to
primary motor
cortex (M1)

Recruitment of
M1 neurons

Shift
pre-movement
preparatory
states

Perich et al.
(2018); Feulner
et al. (2022)

Expectation and
taste processing

Amygdalar
projections to
gustatory cortex

Biases of
cortical neurons

Acceleration of
taste coding via
gain modulation

Mazzucato et al.
(2019); Vincis
& Fontanini
(2016); Haley
et al. (2020)

Movements and
visual
processing

Thalamic
projections to
visual cortex

Biases of
cortical neurons

Acceleration of
visual coding
via gain
modulation

Wyrick &
Mazzucato
(2021)

Arousal and
auditory
processing

Neuromodula-
tory projections
to auditory
cortex

Biases of
cortical neurons

Optimal
encoding of
auditory stimuli
at intermediate
arousal

Papadopoulos
et al. (2024)

Table 1: Potential biological mechanisms for bias-related plasticity in the brain.

B MATHEMATICAL PROOFS

Throughout the appendix the proofs are restated for ease of reference. We will always take || · || to
be the 1-norm unless stated otherwise.

B.1 RANDOM NEURAL NETWORK FORMULATION

The proofs of this section revolve around masked, random, neural networks:
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r̃Mm = αr0 +M⊙ βϕ(Wr0 +Bx+ b), ỹMm = Ar̃Mm , (4)

where α ∈ R, 0 < β < ∞, m ∈ N, r0, r̃Mm ∈ Rm, x ∈ Rd, ỹMm ∈ Rl, M ∈ {0, 1}m, and all other
matrices and vectors have real elements with the dimensions required by the above definitions. We
assume that ϕ is γ-parameter bounding and that each individual (scalar) parameter, be it weight or
bias, is sampled randomly–before masking–from a uniform distribution on [−γ̄, γ̄] (note that here
we are using γ̄ where we used R in the main text). In this way the parameters are random variables
with compact support. If M = 1 then we drop the superscript. To account for feed-forward neural
networks we simply set W to the zero matrix and α, β = 0, 1 (this is assumed in Section B.2).

W.l.o.g. assume there are n non-zero elements in M. We construct WM ∈ Rn×n–the recurrent
matrix restricted to participating (non-masked) hidden units–by beginning with W and deleting the
ith row and ith column of the matrix if Mi = 0. We construct BM ∈ Rn×d, AM ∈ Rl×n, and
bM ∈ Rn by deleting the ith row of B, A, and ith element of b if Mi = 0.

Consider the case where the ith element of r0 is 0 whenever Mi = 0. Then, regardless of whether
Eq.4 represents a feed-forward network or the transition function for an RNN, the masked units will
always be zero. We can thus simply track the n units that correspond with 1’s in M as the outputs,
yM will depend solely on these. We observe that the behaviour of these units can be described by
the following network:

rMm = αr0 + βϕ(WMr0 +BMx+ bM), yMm = AMrMm . (5)

It is networks of the form of Eq.5 that will be the primary subject of study in what follows. Note that
the ‘∼’, over the r, is dropped to denote the fact that r is a different vector on account of dropping
the zero units. In the feed-forward case we use subscripts, as we have done above, to denote hidden
layer width. Whenever we discuss RNNs or dynamical systems we will instead use the subscript to
denote time.

B.2 PROOFS FROM SECTION 2.1

Proposition 1. The ReLU and the Heaviside step function are γ-parameter bounding activations
for any γ > 0.

Proof. We prove this solely for the ReLU, as the logic for the Heaviside is effectively the same. Let ϕ
thus be a ReLU. First, observe the following useful property: for all a > 0 we have aϕ(x) = ϕ(ax).
From this, consider the neural network of hidden layer width n with ReLU activations, yn(θ), and
observe:

yn(θ) = a2
n∑

i=1

A:i

a
ϕ

(
Bi:

a
x+

bi
a

)
= a2yn

(θ
a

)
. (6)

Moreover, if a ∈ N we have

yn(θ) =

a2n∑
i=1

Ã:iϕ
(
B̃i:x+ b̃i

)
= ya2n(θ̃), (7)

where θ̃ = [ θ1a , . . . , θn
a , . . . θ1

a , . . . , θn
a ] so that each element is simply a re-scaled and repeated

version of the original parameters; we have a2 repeats for each term to replace the a2 factor in the
LHS of Eq. 6.

Now, given an arbitrary compact set U ∈ Rd, continuous function h : Rd → Rl, and ε > 0, by the
universal approximator theory (see e.g. Leshno et al. (1993); Hornik (1993)) we can find n such that

sup
x∈U

||h(x)− yn(x, θ)|| ≤ ϵ (8)
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holds. Because n is finite we can bound every individual (scalar) parameter by M , for some suffi-
ciently large M . Suppose we want the parameters to be bounded instead by γ with M > γ > 0. If
we select a ∈ N s.t. a > M

γ then we can find ya2n(x, θ̃) such that ya2n(x, θ̃) = yn(x, θ). Thus we
have found a parameter-bounding ReLU neural network satisfying Eq.8, completing the proof.

Remark: The intuition behind this result, for the ReLU, is credited to a reply to the Universal
Approximation Theorem with Bounded Parameters question on Mathematics Stack Exchange.

The following lemma constitutes the core of Theorem 1. It shows that one can achieve universal
approximation, in the sense needed for the theorem, using masking. The theorem then follows by
manipulating biases to achieve masking.

Lemma 1. Let h : U → Rl be a continuous function on compact support U ⊂ Rd. Then for
any ϵ > 0, δ ∈ (0, 1), we can find a layer width m ∈ N such that with probability at least 1 − δ
∃M ∈ {0, 1}m satisfying the following:

sup
x∈U

||h(x)− yMm (x)|| ≤ ϵ. (9)

Proof. First, we find a neural network with parameters that approximate the desired function h.
Given the assumptions on ϕ, we can use Proposition 2 to find n and parameters θ∗ = {A∗, B∗, b∗}
such that

sup
x∈U

||h(x)− yn(x, θ
∗)|| ≤ ϵ

2
, (10)

because U is compact and h is continuous.

We now make two observations: first, all choices of x are from a compact set, U , by assumption
and the parameters of a given random or non-random neural net are also from a compact set–the n
dimensional hyper-cube with edge length 2γ̄. Second, the function yn is a continuous function of
x and the parameters. By these two observations the function yn is a continuous function on the
compact product space of inputs and parameters, and thus admits a Lipshitz constant, Kn. This will
come in handy momentarily.

Next, we construct a masked random network that approximates yn with high probability. By
Lemma 3, we can find a random feed-forward neural network of hidden layer width m such that
a mask, M, exists satisfying |θ∗i − θMi | < ε for some arbitrarily ε > 0. In particular, we can choose
ε as:

|θ∗i − θMi | < ε =
ϵ

2Knn(d+ l + 1)
(11)

for all i with probability at least 1− δ. If we are in the regime of probability 1− δ where the mask
satisfying the above error bound exists then we get

||yMm (x)− yn(x, θ
∗)|| ≤ Kn

(
||θM − θ∗||+ ||x− x||

)
≤ Knn(d+ l + 1)ε ≤ ϵ

2
, (12)

where, in addition to Eq.11, we used the fact that yMm (x) = yn(x, θ
M), the continuity and compact-

ness mentioned above, and repeated application of the triangle inequality. Importantly, this bound
holds for all x ∈ U . Because ϕ is assumed continuous, the function f(x) = ||yMm (x) − yn(x)|| is
also continuous. By the extreme value theorem ∃ x⋆ ∈ U such that supx∈U f(x) = f(x⋆). Since
x⋆ ∈ U the bound from Eq.12 applies and we have:

sup
x∈U

||yMm (x)− yn(x)|| = ||yMm (x⋆)− yn(x
⋆)|| ≤ ϵ

2
. (13)
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Using the triangle inequality, Eq.10, and Eq.13 gives supx∈U ||h(x)−yMm (x)|| ≤ ϵ with probability
1− δ.

Connections with Malach et al. 2020: As mentioned in the main text, the previous lemma is closely
related to past results on the SLTH over units for MLPs with one hidden layer. In Theorem 3.2 of
Malach et al. (2020), it is proven that one can match the performance of a random feature model (an
MLP where only the output layer is trained) by scaling the output of a mask-learned network. This
theorem differs from ours in three important ways. First, it proves a result for a potentially different
class of activation functions, second, it requires a scaling of the output of the network–unlike our
proof which does not require this–and, third, it compares the performance of mask-learned networks
to random feature models, rather than directly proving that mask-learned networks can approximate
wide classes of functions. We believe that one should be able to achieve a result similar to ours by
combining Malach et al.’s Theorem 3.2 with Theorem 1 of Rahimi & Recht (2008) (or a similar
result on learning with random networks), but we leave the details of this to future studies.
Theorem 1. Assume that ϕ is γ-bias-learning and, for compact U ⊂ Rd, h : U → Rl is continuous.
Then, for any degree of accuracy ϵ > 0 and probability of error δ ∈ (0, 1), there exists a hidden-
layer width m ∈ N and bias vector b ∈ Rm such that, with a probability of 1− δ, a neural network
given by Eq.1 with each individual weight sampled from pR approximates h with error less than ϵ.

Proof. Observe that, once we have choosen an m satisfying the desiderata of Lemma 1, because ϕ
is assumed to be γ-bias-learning, m is some finite value and all variables that make up the input
of ϕ are bounded, we can implement the mask by setting bi to be very negative for every i such
that Mi = 0. For every bi such that M = 1 we simply leave bi at its original randomly chosen
value.

Corollary 2. Assume d = l, that is, the output and input spaces are the same. Then the results
of Lemma 1 and Theorem 1 also hold for res-nets; that is, networks whose output is of the form
x+ yMm (x).

Proof. This follows by observing that h(x) + x is also a continuous function and then replacing
h(x) with h(x) + x in Eq.9 and rearranging.

Remark: While the error can be made arbitrarily small, the limit of zero error itself is undefined.
This is because our proof relies on first approximating the given smooth function with a neural
network with all parameters tuned and then approximating this second network using bias-learning
to pick-out a matching sub-network from a large random reservoir; the probability of perfectly
matching the fully tuned network with the bias-learned network is zero. This could be addressed
by using an integral representation for continuous functions instead of directly using a finite-width
neural network to approximate the given function (see e.g. Rahimi & Recht (2008); Li et al. (2023)).
As one will see below, this remark also applies to the recurrent neural network result.

B.3 PROOF FROM SECTION 2.2

Analogous to the section containing the feed-forward proofs, we first state and prove a lemma which
comprises the core of the proof for recurrent neural networks. This lemma shows that one can
achieve universal approximation in the L∞ norm over trajectories sense (see section §2.2) with
high probability using masking in a randomly initialized RNN, and in this way provides a proof of
the SLTH over units for RNNs. The proof of the main theorem in this section then follows quite
straightforwardly.
Lemma 2. Consider a discrete time, partially observed dynamical system of the form of, and satis-
fying the same conditions as, the one in Eq.3. Let 0 < T < ∞, xt ∈ Ux ∀t, ϵ > 0 and δ ∈ (0, 1).
Then we can find an RNN with appropriately chosen initial conditions and a layer width m ∈ N
such that with probability at least 1− δ ∃M ∈ {0, 1}m satisfying the following:

sup
z0∈Ur,x0:(T−1)∈Ux⃗

T∑
t=1

||yt − yMt || < ϵ. (14)
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Proof. It is well known that we can arbitrarily approximate this dynamical system with an RNN
Schäfer & Zimmermann (2006); we provide a simple proof of this in Proposition 3. In particular,
for arbitrary ϵ > 0 we can find an RNN of the form in Eq.2, with hidden layer width n ∈ N and
output ŷ, satisfying:

sup
z0∈Ur,x0:(T−1)∈Ux⃗

T∑
t=1

||ŷt − yt|| <
ϵ

2
, (15)

Consider an n-width RNN of the form of Eq.2 with parameter-bounding activation functions and
with initial conditions r0(z0), for z0 ∈ Uz , determined by Eq.30. This will result in yt =
yt(z0, x0:(t−1), θ) being a continuous function in all of its arguments. Moreover, all of its argu-
ments are from compact sets: Uz is compact, Ux⃗ is compact, and θ can be chosen to be on the
hypercube with half-edges of length γ̄. Thus yt admits a Lipschitz constant Kn. We make use of
this below.

Let the parameters of the above-defined approximating RNN, from Eq.15, be given by θ∗ =
{A∗,W ∗, B∗, b∗}. Then by Lemma 3 we can find a random RNN of hidden width m and with
parameters θ such that a mask, M, exists satisfying

|θ∗i − θMi | < ε =
ϵ

2KnTn(n+ l + d+ 1)
, (16)

for all i with probability at least 1− δ. Then, by the Lipshitz property of yt, we get

T∑
t=1

||yMt − ŷt|| ≤
T∑

t=1

Kn

(
||θM − θ∗||+ ||x0:(t−1) − x0:(t−1)||+ ||z0 − z0||

)
(17)

≤ KnTn(n+ l + d+ 1)ε. (18)

This follows from yMt = yt(r
M
0 , x0:(t−1), θ

M)–where we have defined rM0 to be equal to r0i for
all i such that Mi = 1 and 0 for all other indices–and the fact that both r0 and rM0 are continuous
functions of z0. This bound is independent of both inputs and initial condition, and, for any param-
eters within the hypercube defined by γ̄, holds for all z0 ∈ Uz and inputs x0:(T−1) ∈ Ux⃗. By the
continuity assumptions on the activation function, f(z0, x0:(t−1)) ≡

∑T
t=1 ||yMt − ŷt|| is a contin-

uous function of z0 and x0:(T−1) for any θ∗ and θM meaning that, analogous to the feed-forward
case studied previously, we can use the extreme value theorem to find maximal values z⋆0 ∈ Uz and
x⋆
0:(t−1) ∈ Ux⃗ such that supz0∈Uz,x0:(t−1)∈Ux⃗

f(z0, x0:(t−1)) = f(z⋆0 , x
⋆
0:(t−1)). It thus follows that

supz0∈Ur,x0:(T−1)∈Ux⃗

∑T
t=1 ||yM − ŷt|| < ϵ

2 , by Eq’s 16 and 18. The triangle inequality along with
Eq.15 completes the proof.

Theorem 2. Consider the RNN in Eq.2 with ϕ a γ-bias-learning activation, and input, output, and
recurrent weight parameters for each hidden unit sampled from pR. We can find a hidden-layer
width, m, a bias vector, and a continuous hidden-state initial condition map r0 : Uz 7→ Rm such
that, with a probability that is arbitrarily close to 1, the RNN approximates the dynamical system
defined in Eq.3 to below any positive, non-zero, error in the inifinity norm over trajectories.

Proof. This follows directly from Lemma 2, by observing that one can replace the mask by simply
setting biases to some sufficiently low value.

B.4 SUPPLEMENTARY LEMMAS

The following result is well known in the literature; see e.g. Proposition 1 of Leshno et al. (1993).

19



Published as a conference paper at ICLR 2025

Proposition 2. For any ϵ > 0 ∃n ∈ N s.t.

sup
x∈U

||h(x)− yn(x, θ
∗)|| ≤ ϵ (19)

Corollary 3. The above holds if we restrict the output weight matrix of the neural network to have
rank equal to the output dimension.

Proof. This is because the set of full rank matrices is dense in Rm×n for m,n ∈ N.

Consider matrices W ∗ ∈ Rn×n, B∗ ∈ Rn×d, A∗ ∈ Rl×n, and vector b∗ ∈ Rn. We can vectorize
and concatenate their elements into the single long vector θ ∈ Rπ , where π = n(n + d + l + 1).
Assume that |θ∗i | < γ for all i.

Next, construct W ∈ Rm×m, B ∈ Rm×d, A ∈ Rl×m, and vector b ∈ Rm, by sampling each element
randomly from a uniform distribution on [−γ̄, γ̄] where γ̄ = γ +∆γ for ∆γ > 0. We analogously
group these into a single vector, θ ∈ Rm(m+d+l+1) Observe that for each M ∈ {0, 1}m, we can
construct sub-matrices of W , B, A, and sub-vector of b by deleting column and row pairs in W ,
rows in B, columns in A, and elements of b whose indices correspond to i ∈ {1, . . . ,m} such that
Mi = 0. For a given M, we define θM to be the vector constructed by flattening and concatenating
these sub-matrices and vector. We then have the following lemma:

Lemma 3. For θ∗, defined above, and arbitrary ε > 0, δ ∈ (0, 1), we can find m > n such that with
probability at least 1− δ ∃M ∈ {0, 1}m with only n non-zero elements such that |θ∗i − θMi | < ε for
all i ∈ {1, . . . , π}. In particular, any m ≥ n log δ

log[1−( ϵ
γ̄ )π ] will satisfy the result, where ϵ = min(ε,∆γ).

Proof. In what follows we set ϵ = min(ε,∆γ). This simplifies the below probability bound that we
derive because it means the probability of falling within an ϵ window of a desired parameter will not
change, even if the desired parameter is very close to its bound, ±γ. We will refer to the event that
the desiderata of the lemma are satisfied for ϵ, rather than ε, as A1; that is: ∃M ∈ {0, 1}m with only
n non-zero elements such that |θ∗i − θMi | < ϵ for all i ∈ {1, . . . , n}. The event that the desiderata
are not satisfied is Ac

1.

Assume that m⋆ = kn for some k ∈ N+. Consider the ‘block’ mask Mk1 s.t. Mk1
i = 1 only

for i ∈ {(k1 − 1)n + 1, . . . , k1n}, with 0 < k1 ≤ k. Note that the n elements selected by these
block masks are non-overlapping for two different k1. Let event A2 be the event that there is a
block mask that occurs satisfying the desiderata of the lemma with error ϵ. Clearly A2 ⊂ A1 =⇒
Ac

1 ⊂ Ac
2 =⇒ P (Ac

1) ≤ P (Ac
2). A

c
2 is the probability that there is no block mask satisfying the

desiderata. Observe that

P (Ac
2) = P

[ k⋂
k1=1

{kth1 block mask doesn′t work}
]
=

k∏
k1=1

P ({kth1 block mask doesn′t work})

=

k∏
k1=1

1− P ({kth1 block mask works}) =
[
1−

( ϵ

γ̄

)π
]m⋆

n

, (20)

which follows from the fact that the elements of the matrices are independently sampled and the
elements corresponding to sub-matrices selected by a given block mask are independent of those
associated with another block mask. By making m⋆ very large we can make P (Ac

2) arbitrarily
small. Because P (Ac

1) ≤ P (Ac
2)–and the desiderata of the lemma with error ϵ are not satisfied

solely on Ac
1–the result follows by selecting m⋆ = m such that P (Ac

2) ≤ δ. We thus see that
the probability of finding a sufficient mask occurs with probability at least 1 − δ. Lastly, because
we have found a mask that satisfies per-parameter error ϵ, and because ϵ ≤ ε, we have proved the
lemma.
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Remark 1: We note that, in Eq.20, n will likely also depend implicitly on γ. If γ is very small then
we will need to stack many ReLUs on top of each other to attain a large enough dynamic range to
approximate the desired function (see §2.1), leading to a larger number of units. Conversely, if γ is
very large we will need to sample a large number of units before we get parameters appropriately
close to the desired subnetwork configuration. This suggests the existence of some sweet spot in the
value γ, which we leave for future work to explore.

Remark 2: We observe that this bound appears to be very weak. For example, if one wished to use
it to find a masked network to match an MLP with input, hidden, and output dimensions of only 1, 3,
and 1 respectively, with a per-parameter error of ϵ = 0.05 an error probability of δ = 0.1, and with
γ = 0.1, this bound would suggest we need a hidden layer of m ≥ 8.34× 1012 neurons in the bias
learning network. In light of the numerical experiments, it is clear that while the math here provides
proofs of existence for bias learning it massively over-estimates the layer widths required in practice,
and thus does not say anything useful about the hidden layer scaling required by bias-learning.

For the following proposition we consider the discrete time dynamical system that we wish to ap-
proximate to be as in Eq.3.
Proposition 3. For finite 0 < T < ∞, ϵ > 0, and any |α| < ∞, β > 0 we can find an RNN of the
style of Eq. 2 of hidden width n ∈ N and a continuous mapping r0 : Uz 7→ Rn for the initial value
of the RNN such that:

sup
z0∈Uz,x0:(T−1)∈Ux⃗

T∑
t=1

||ŷt
(
r0(z0), x0:(T−1)

)
− yt(z0, x0:(T−1))|| < ϵ (21)

where ŷt is the output of the RNN and yt is that of the dynamical system.

The main portion of this result is well known, see e.g. Schäfer & Zimmermann (2006). For com-
pleteness, we provide an example proof below.

Proof. In what follows, W.L.O.G we will assume that the error is smaller than c. We want to
approximate the dynamical system:

zt+1 = F (zt, xt), yt = Czt, z0 ∈ Uz, (22)

defined, by assumption, on set Ũz = {z0 + c0 : z0 ∈ Uz, ||c0|| < c}, where Uz is an invariant set
(see §2.2).

We define the set:

Uzx = {[z + c0 x] : z ∈ Uz, x ∈ U, ||c0|| < c}. (23)

Importantly, this set is compact given the compactness assumptions on U and Uz . Also note that,
since F is assumed continuous, it will be KF -Lipschitz on this compact set for some constant KF .
By the compactness just discussed and the continuity of F , we can use the corollary to Proposition
2 to find a neural network of hidden dimension n ∈ N that approximates F with a maximum-rank
output matrix, A. We write this neural network:

ẑ = αz + βAϕ(Wz +Bx+ b) = F̂ (z, x), (24)

assuming z ∈ Uz and x ∈ U , with A ∈ Rs×n, W ∈ Rn×s, B ∈ Rn×d, and b ∈ Rn. In particular,
we can find arbitrary ϵ with 0 < ϵ < c such that:

||F̂ (z, x)− F (z, x)|| < ε =
ϵ

T max(RC

∑T−1
t=0 Kt

F , 1)
, (25)

where RC = ||C||. Fix T ≥ 1. To prove that we can approximate the underlying dynamical system,
we use induction starting at time t = 1. The base case will be
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||ẑ1 − z1|| = ||F̂ (z0, x0)− F (z0, x0)|| ≤ ε, (26)

by our choice of n and initial condition, and that [z0, x0] ∈ Uzx. Importantly, this implies also that
||ẑ1 − z1|| < ε. Because ε < c this means that [ẑ1 x1]

⊤ ∈ Uzx.

For t = 1, ε =
∑t−1

t′=0 K
t′

F ε. We thus make the induction hypothesis that ||ẑt − zt|| <
∑t−1

t′=0 K
t′

F ε
and that [ẑt xt]

⊤ ∈ Uzx. If T = 1 we are finished. If T > 1 we assume 1 < t < T and use this
hypothesis to prove the induction step:

||ẑt+1 − zt+1|| ≤ ||F̂ (ẑt, xt)− F (ẑt, xt)||+ ||F (ẑt, xt)− F (zt, xt)|| (27)

≤ ε+KF ||ẑt − zt|| = ε

t∑
t′=0

Kt′

F <
c

T
. (28)

Because c
T ≤ c, [ẑt+1 xt+1]

⊤ ∈ Uzx. Then

T∑
t=1

||ŷt − yt|| ≤ RCTε

T∑
t=0

Kt
F ≤ ϵ. (29)

While we have approximated the dynamical system it is not yet in the standard rate-style RNN form.
However, we can obtain the rate form by changing from tracking ẑ to a different dynamical variable,
rt ∈ Rn, that satisfies ẑt = Art. We will make a brief detour to characterize this variable.

Because A is full rank, col(A) = Rs so we can find an index ν ⊂ {1, . . . , n} such that {A:i}i∈ν

forms a basis for Rs. If we construct a matrix Aν ∈ Rs×s whose columns are simply the basis
vectors this matrix will have an inverse A−1

ν . We can then define the initial condition, r0, element-
wise as:

r0i(z0) =

{
A−1

ν i:z0 i ∈ ν

0 i ̸∈ ν.
(30)

This function is clearly continuous and satisfies Ar0 =
∑

i∈ν A:ir0i =
∑

i∈ν A:iA
−1
ν i:z0 =

AνA
−1
ν z0 = z0. If we then define rt = αrt−1 + ϕ(WArt−1 + Bxt−1 + b) for all 1 < t ≤ T

we see that rt is simply the state variable for an RNN of the style of Eq.2, and that it satisfies
ẑt = Art for all 0 ≤ t ≤ T . It follows that ŷt = CArt ∀t. Thus, this RNN approximates the
original partially observed dynamical system in the sense described in section §2.2.

C METHODS FOR NUMERICAL RESULTS SECTION

C.1 METHODS FOR SECTION 3.1

In this section all networks were single hidden layer FNNs. For figure 1A, networks with widths of
64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768 were trained, with the width being
indicated on the x-axis. For figures 1B and 1C, a width of 3.2× 104 was used.

For figure 1A, all networks were trained on FashionMNIST, with 5× 104 training samples and 104

test samples, using ADAM with a learning rate of 0.01. Training was run for 20 epochs with a batch
size of 512.

Xavier uniform initialization with a gain of 1.0 was used for the fully trained networks, while
the frozen weights for the bias-only networks were sampled from either a uniform distribution on
[−0.1, 0.1] or from a zero-mean Gaussian with standard deviation 1√

d
, where d is the input dimen-

sion.
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For Fig.E.3 a network with 3.2× 104 units was trained on 2× 105 random samples from a concate-
nation of the 8 MNIST style datasets used in Figure 1. Weights were initialized to Gaussians with
mean 0 and SD 1√

d
, biases were initialized uniformly on [−0.01, 0.01], and ADAM with a learning

rate of 1× 10−5, and batch size 512 was used to optimized a cross entropy loss for 15 epochs. The
network reached test accuracies of 0.9924 (Ethiopic) 0.8624 (Fashion), 0.8883 (Kannada), 0.0000
(KMNIST), 0.9354 (MNIST), 0.9995 (Nko), 0.9979 (Osmanya), and 0.9910 (Vai). Thus, it failed to
learn KMNIST, which we hypothesize to be due to interference with the other datasets. In this figure
and in Fig.1 we used the Kmeans from Scikit-Learn with 20 clusters. Before clustering/plotting we
normalized the variances by dividing each 8 dimensional vector of unit variances by the maximal
value plus a small constant to avoid division by zero.

C.2 METHODS FOR SECTION 3.2

In this section all networks were single hidden layer FNNs with 104 ReLU units. Weights were each
initialized to a Gaussian with mean 0 and standard deviation of 1/28–the inverse square root of the
input dimension–and were left unchanged during training.

Both bias and mask networks were trained on MNIST, with 5 × 104 training samples and 104

test samples, using ADAM with a learning rate of 0.01. Trained parameters were each initialized
uniformly on [−0.01, 0.01] (for the mask learned networks the bias vector was initialized in this way
and left untrained), and training was run for 30 epochs with a batch size of 512. For bias learning,
the trained parameters were the 104 element bias vector, b; for mask learning, trained parameters
were a 104 element vector of gains g.

The output of the ith unit in the mask-trained network was ReLU
(
Wi: · x+ b

)
Sigmoid

(
gi
τ

)
. Here,

x was the input, flattened, MNIST image, W the random hidden weight matrix and τ an annealing
parameter. Starting from τ0 = 1, at each epoch τ was decreased so that at epoch k τk = cτk−1,
with c chosen such that at the final epoch τ30 = 0.001. This scheme was chosen so that by the end
of training the sigmoid functions would be almost step functions, well-approximating the desired
binary mask. We found that this worked better than immediately setting τ = 0.001. For testing,
units were evaluated with the Sigmoid factor binarized (τ = ∞).

The null model used in Fig.2.B was calculated by drawing 104 samples from two, independent,
Bernoulli random variables whose probability of being ON (drawing a 1) were equal to the mean
fraction of ON units in the bias and mask-trained networks respectively.

C.3 METHODS FOR SECTION 3.3

C.3.1 COSINE GENERATION (FIG. 3A-B)

We used N = 200 hidden recurrent units with ReLU activations. Biases were initialized from
U(0, 1). The recurrent weights were sampled from N (0, N−1) and the output weights from
N (0, N−2). The target period of the cosine was 25 and the total duration to generate was 125.
Learning rates were 0.1 for bias learning and 0.001 for the fully-trained network; other parameters
for the Adam optimizer were left at their default values in Pytorch.

C.3.2 VAN DER POL OSCILLATOR (FIG. 3C-D)

We used 675 hidden ReLUs for the bias-learning network and 25 for the fully-trained network.
The recurrent weights were sampled from N (0, gN−1), where g is the “gain”; other weights were
initialized as in the previous subsection. The Van der Pol oscillator obeyed ẍ = µ(1−x2)ẋ−x, for
µ = 2. Learning rates were 0.1 for bias learning and 10−4 for the fully-trained network and other
optimization parameters were as above.
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C.4 METHODS FOR SECTION 3.4

C.4.1 RNN ARCHITECTURE AND HYPERPARAMETERS

The architecture is a single-layer one-dimensional input/output recurrent neural network with ReLU
activations. The training optimizer was Adam with a learning rate of 0.001 and a weight decay value
of 0.1.

C.4.2 LORENZ ATTRACTOR

The equations used to generate the partially-observed Lorenz attractor were the following:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz

where the initial point is (0, 1, 0) and σ, ρ, and β are 10, 28, and 8
3 , respectively. The trajectory was

generated using Euler’s method with a step size of 0.01.

C.5 METHODS FOR SECTION 3.5

We used N = 1,024 hidden ReLU units in a vanilla RNN (Eq. 2 with α = 0 and β = 1). The input
to the network was the 2D Cartesian position of the targets, which were 0.07 m away from the center
of the workspace. The point-mass arm obeyed a discrete-time version of the following dynamics

dx

dt
= ẋ(t),

dẋ

dt
=

f(t)

m
,

df

dt
=

u(t)− f(t)

τf

where x is the 2D arm position, ẋ its velocity and f the applied force. The initial conditions were
x(0) = ẋ(0) = f(0) = 0, i.e., the arm was initially at rest. The force was obtained from an
exponential filtering of the controls u(t) with time constant τf = 0.04 s. The network generated
the controls u(t) via a linear readout of its activity: u = Cr. The input (B), recurrent (W ) and
output (C) matrices were initialized as: Bij ∼ U(−1/

√
2, 1/

√
2), Wij ∼ N (0, 1.5625/N), and

Cij ∼ N (0, 0.5/N). The loss function was

L =

K−1∑
k=0

∥x(k)
T − dk∥2

δ2p
+ γv

∥ẋ(k)
T ∥2

δ2v
+ γf

∥f (k)
T ∥2

δ2f
, (31)

where dk = D[cos(2πk/K), sin(2πk/K)]⊤, k = 0, . . . ,K−1, represent the position of the K = 6

peripheral targets at a distance D = 0.07 m from the center target. Here, x(k)
T , ẋ(k)

T and f
(k)
T are

the final position, velocity and force for the kth target (T = 1s/0.01s = 100, where 0.01 s was our
integration time step). Therefore, the objective was to reach the target at the end of the trial (first
term) with near-zero velocity (second term) and force (third term). Parameters δp = 0.01, δv = 0.02
and δf = 0.08 were used to rescale the position, velocity and acceleration terms. Hyperparameters
γv = 0.2, and γf = 0.04 controlled the relative weight of the velocity and force costs with respect to
the position loss. The learning rate of the standard Adam optimizer was set to 3× 10−3 and training
was stopped when a loss of 5× 10−3 was reached.

D TRAINING TIME

We ran a brief experiment on training time, which we report as mean±1SD over 5 seeds. Training
a fully-trained single-layer MLP with 104 hidden units on MNIST for 5 epochs takes 69.17 ± 0.22
seconds. Training only biases for the same task and architecture takes 61.51± 0.92 seconds. Thus,
for matched layer widths training biases with standard Pytorch implementations provides a slight
advantage. Note that one can maintain performance and get faster training by simply reducing the
width of the fully-trained network: a 100 hidden unit fully trained net takes 37.77 ± 0.04 on the
same test.

E SUPPLEMENTARY FIGURES

24



Published as a conference paper at ICLR 2025

Figure E.1: Proof Intuition. Step 1. Consider a smooth, partially observed Dynamical System (DS)
on an invariant set, Ω (or a function y(x) on a compact set Ω). Step 2. Let 0 < t ≤ T . Approximate
DS on Ω using RNN R1 (or approximate y on Ω using FNN N1). Step 3. Randomly initialize
a larger RNN, R2 (or FNN N2). Check for a sub-network of units with parameters matching R1

(N1). Step 4. Adjust biases outside the sub-network to be very negative–thus shutting off the units
outside the sub-network–and those inside the sub-network to match those of R1 (N1).

Figure E.2: Supplementary Experiments. A. As in Fig.1.A except with x and y-axes log-scaled.
B. As in Fig.1.A except x-axis is layer width. C. Performance on MNIST (y-axis) of bias learned
MLPs as function of distribution from which each individual weight is initialized (x-axis). Orange:
uniform on [−γ, γ]; Blue: 0 mean Gaussian with standard deviation σ; Green: mixture of Gaussians
centred at ±µ each with standard deviation 0.015. Layer width is 10, 000 units. D. As in Fig.4.A
except x-axis is layer width. E. Performance (y-axis) of fully trained versus bias learned (uniform
initialized weights) MLPs on fashion MNIST as a function of depth (x-axis). Layer width is 2048
units for both learning types. All plots: plotted are means and ±SD over 5 random seeds.
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Figure E.3: Supplementary for Figure 1. Figure 1.C but for a single fully-trained network fit to a
meta-dataset containing the 8 MNIST style datasets used in Fig.1. The bottom row is cluster index.
We observe task selectivity that is qualitatively similar to bias-learning. See §C.1 for methods.

Figure E.4: Supplementary for Figure 2. A. Decrease in bias learning test accuracy as the task
variance threshold, above which units are ON, is increased. x-axis is number of ON units; y-axis is
test accuracy on MNIST. Threshold values are those used in Fig.2.B. Plotted is mean and SD over
3 training runs. B. Probability that a given unit is ON/OFF for versions of a network with the same
weights trained by bias versus mask learning. Left group of bars is probability of the unit being ON
for bias learning given that it is ON for mask learning, middle is the same but for OFF instead of
ON, right is the probability of either match occurring (OFF or ON in both training paradigms). Grey
is a null model (see section C.2 for details); orange is the bias-mask comparison; black is the same
comparison but between two mask-learning training runs. C. Scatter plot of hidden unit variances
taking only units that are ON for both mask and bias learning; bias-trained on x-axis and mask-
trained on y-axis. Error bars are over 5 training runs. We observe a mean correlation coefficient of
0.5030± 0.0087. We note that the correlation between two mask-learning runs on the same random
weights is 0.9999 ± 0.0000. Correlation coefficients are over 5 samples; plot data is from one,
representative, pair of bias/mask networks.

Figure E.5: Supplementary for Figure 5. Same figure as Fig. 5 in the main text, but for fully-
trained networks. The architecture and initial parameters (seeds) were the same as for the bias-
learning networks (see Methods). The only change was that the learning rate was 103 times smaller
than that for bias learning. For these matched parameter initializations (in particular, given the
high variance for the recurrent weights), the solutions found by the fully-trained network had more
temporal variations compared to bias learning.
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