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ABSTRACT

Average-reward Markov decision processes (MDPs) provide a foundational
framework for sequential decision-making under uncertainty. However, average-
reward MDPs have remained largely unexplored in reinforcement learning (RL)
settings, with the majority of RL-based efforts having been allocated to episodic
and discounted MDPs. In this work, we study a unique structural property of
average-reward MDPs and utilize it to introduce Reward-Extended Differential
(or RED) reinforcement learning: a novel RL framework that can be used to
effectively and efficiently solve various subtasks simultaneously in the average-
reward setting. We introduce a family of RED learning algorithms for prediction
and control, including proven-convergent algorithms for the tabular case. We then
showcase the power of these algorithms by demonstrating how they can be used to
learn a policy that optimizes, for the first time, the well-known conditional value-
at-risk (CVaR) risk measure in a fully-online manner, without the use of an explicit
bi-level optimization scheme or an augmented state-space.

1 INTRODUCTION

Markov decision processes (MDPs) (Puterman, 1994) are a long-established framework for sequen-
tial decision-making under uncertainty. Episodic and discounted MDPs, which aim to optimize a
sum of rewards over time, have enjoyed success in recent years when utilizing reinforcement learn-
ing (RL) solution methods (Sutton and Barto, 2018) to tackle certain problems of interest in various
domains. Despite this success however, these MDP-based methods have yet to be fully embraced in
real-world applications due to the various intricacies and implications of real-world operation that
often trump the ability of current state-of-the-art methods (Dulac-Arnold et al., 2021). We therefore
turn to the less-explored average-reward MDP, which aims to optimize the reward received per time-
step, to see how its unique structural properties can be leveraged to tackle challenging problems that
have evaded its episodic and discounted counterparts.

In particular, we present results that show how the average-reward MDP’s unique structural prop-
erties can be leveraged to enable a more subtask-driven approach to reinforcement learning, where
various learning problems, or subtasks, are solved simultaneously (and in a fully-online manner)
to help solve a larger, central learning problem. Importantly, we find compelling case-study in the
realm of risk-aware decision-making that demonstrates how this subtask-driven approach can greatly
simplify problems that have proven to be challenging to solve in episodic and discounted MDPs.

More formally, we introduce Reward-Extended Differential (or RED) reinforcement learning: a
first-of-its-kind RL framework that makes it possible to solve various subtasks simultaneously in
the average-reward setting. At the heart of this framework is the novel concept of the reward-
extended temporal-difference (TD) error, an extension of the celebrated TD error (Sutton, 1988),
which we leverage in combination with a unique structural property of the average-reward MDP
to solve various subtasks simultaneously. We first present the RED RL framework in a generalized
way, then adopt it to successfully tackle a problem that has exceeded the capabilities of current state-
of-the-art methods in risk-aware decision-making: learning a policy that optimizes the well-known
conditional value-at-risk (CVaR) risk measure (Rockafellar and Uryasev, 2000) in a fully-online
manner without the use of an explicit bi-level optimization scheme or an augmented state-space.
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Our work is organized as follows: in Section 2 we provide a brief overview of relevant work done on
average-reward RL as well as risk-aware learning and optimization in MDP-based settings. In Sec-
tion 3 we give an overview of the fundamental concepts related to average-reward RL and CVaR.
In Section 4, we motivate the need and opportunity for a subtask-driven approach to RL through
the lens of CVaR optimization. In Section 5, we introduce the RED RL framework, including the
concept of the reward-extended TD error. We also introduce a family of RED RL algorithms for pre-
diction and control, and highlight their convergence properties (with full convergence proofs in Ap-
pendix C). In Section 6, we empirically show how RED RL can be used to successfully learn a policy
that optimizes the CVaR risk measure. Finally, in Section 7 we emphasize our framework’s poten-
tial usefulness towards tackling other challenging problems outside the realm of risk-awareness,
highlight some of its limitations, and suggest some directions for future research.

2 RELATED WORK

Average-Reward Reinforcement Learning: Average-reward (or average-cost) MDPs, despite be-
ing one of the most well-studied frameworks for sequential decision-making under uncertainty (Put-
erman, 1994), have remained relatively unexplored in reinforcement learning (RL) settings. To
date, notable works on the subject (in the context of RL) include Mahadevan (1996), Tsitsiklis
and Van Roy (1999), Abounadi et al. (2001), Bhatnagar et al. (2009), and Wan et al. (2021). Most
relevant to our work is Wan et al. (2021), which provided a rigorous theoretical treatment of average-
reward MDPs in the context of RL, and proposed the proven-convergent ‘Differential Q-learning’
and (off-policy) ‘Differential TD-learning’ algorithms for the tabular case. Our work primarily
builds on Wan et al. (2021), and we utilize their proof technique when formulating the conver-
gence proofs for our algorithms. We note that the notion of a ‘subtask’, as explored in our work, is
different to that of hierarchical RL (e.g. Sutton et al. (1999)), where the focus is on using temporally-
abstracted actions, known as ‘options’ or ‘skills’, such that the agent learns a policy for each option,
as well as an inter-option policy. By contrast, in our work we learn a single policy, and the subtasks
are not part of the action-space. In the episodic and discounted settings, the notion of solving mul-
tiple objectives in parallel has been explored in various works (e.g. McLeod et al. (2021)), although
much of this work focuses on learning multiple features, options, policies, and/or value functions.
By contrast, in our work we learn a single policy and value function, and the subtasks are not part
of the state or action-spaces. To the best of our knowledge, our work is the first to explore solving
subtasks simultaneously in the average-reward setting.

Risk-Aware Learning and Optimization in MDPs: The notion of risk-aware learning and opti-
mization in MDP-based settings has been long-studied, from the well-established expected utility
framework (Howard and Matheson, 1972), to the more contemporary framework of coherent risk
measures (Artzner et al., 1999). To date, these risk-based efforts have almost exclusively focused on
the episodic and discounted settings. Critically, optimizing the CVaR risk measure in these settings
typically requires augmenting the state-space and/or having to utilize an explicit bi-level optimiza-
tion scheme, which can, for example, involve solving multiple MDPs. Seminal works that have
looked at CVaR optimization in the standard discounted and episodic settings include Bäuerle and
Ott (2011) and Chow et al. (2015); Hau et al. (2023a). In the distributional setting, works such as
Dabney et al. (2018) have proposed a CVaR optimization approach that does not require an aug-
mented state-space or an explicit bi-level optimization, however it was later shown by Lim and
Malik (2022) that such an approach converges to neither the optimal dynamic-CVaR nor the optimal
static-CVaR policies (Lim and Malik (2022) then proposed a valid approach that utilizes an aug-
mented state-space). Some works have looked at optimizing a time-consistent (Ruszczyński, 2010)
interpretation of CVaR, however this only approximates CVaR, as CVaR is not a time-consistent risk
measure (Boda and Filar, 2006). Other works have looked at optimizing similar objectives to CVaR
that are more computationally tractable, such as the entropic value-at-risk (Hau et al., 2023b).

Most similar to our work (in non average-reward settings) are Stanko and Macek (2019) and Miller
and Yang (2017). In Stanko and Macek (2019), the authors use a vaguely similar update to the
one derived in our work, however all of the methods proposed in Stanko and Macek (2019) require
either an augmented state-space or an explicit bi-level optimization. Similarly, while the approach
presented in Miller and Yang (2017) does not require an augmented state-space, it requires an ex-
plicit bi-level optimization. In the average-reward setting, Xia et al. (2023) recently proposed a set
of algorithms for optimizing the CVaR risk measure, however their methods require the use of an
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augmented state-space and a sensitivity-based bi-level optimization. By contrast, our work, to the
best of our knowledge, is the first to optimize the CVaR risk measure in an MDP-based setting with-
out the use of an explicit bi-level optimization scheme or an augmented state-space. We note that
other works have looked at optimizing other risk measures in the average-reward setting, such as the
exponential cost (Murthy et al., 2023), and variance (Prashanth and Ghavamzadeh, 2016).

3 PRELIMINARIES

3.1 AVERAGE-REWARD REINFORCEMENT LEARNING

A finite average-reward MDP is the tuple M .
= ⟨S,A,R, p⟩, where S is a finite set of states, A

is a finite set of actions, R ⊂ R is a finite set of rewards, and p : S × A × R × S → [0, 1] is
a probabilistic transition function that describes the dynamics of the environment. At each discrete
time step, t = 0, 1, 2, . . ., an agent chooses an action, At ∈ A, based on its current state, St ∈ S,
and receives a reward, Rt+1 ∈ R, while transitioning to a (potentially) new state, St+1, such that
p(s′, r | s, a) = P(St+1 = s′, Rt+1 = r | St = s,At = a). In an average-reward MDP, an agent
aims to find a policy, π : S → A, that optimizes the long-run (or limiting) average-reward, r̄, which
is defined as follows for a given policy, π:

r̄π(s)
.
= lim

n→∞

1

n

n∑
t=1

E[Rt | S0 = s,A0:t−1 ∼ π]. (1)

In this work, we limit our discussion to stationary Markov policies, which are time-independent
policies that satisfy the Markov property. The underlying process by which average-reward MDPs
operate is depicted in Fig. A.1 (in Appendix A).

Equation 1 can be simplified into a more workable form by making certain assumptions about the
Markov chain, {St}, induced by following policy π. To this end, a unichain assumption is typically
used when doing prediction (learning) because it ensures the existence of a unique limiting distri-
bution of states, µπ(s)

.
= limt→∞ P(St = s | A0:t−1 ∼ π), that is independent of the initial state,

thereby simplifying Equation 1 to the following:

r̄π =
∑
s∈S

µπ(s)
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)r. (2)

Similarly, a communicating assumption is typically used for control (optimization) because it en-
sures the existence of a unique optimal average-reward, r̄∗, that is independent of the initial state.

To solve an average-reward MDP, solution methods such as dynamic programming or RL can be
used, in conjunction with the following Bellman (or Poisson) equations:

vπ(s) =
∑
a

π(a | s)
∑
s′

∑
r

p(s′, r | s, a)[r − r̄π + vπ(s
′)], (3)

qπ(s, a) =
∑
s′

∑
r

p(s′, r | s, a)[r − r̄π +max
a′

qπ(s
′, a′)], (4)

where, vπ(s) is the state-value function and qπ(s, a) is the state-action value function for a given pol-
icy, π. Solution methods for average-reward MDPs are typically referred to as differential methods
because of the reward difference (i.e., r − r̄π) operation that occurs in Equations 3 and 4. Note that
solution methods typically find solutions to Equations 3 and 4 up to a constant, c. This is typically
not a concern, given that the relative ordering of policies is usually what is of interest.

In the context of RL, Wan et al. (2021) proposed the tabular ‘Differential TD-learning’ and ‘Dif-
ferential Q-learning’ algorithms, which are able to learn and/or optimize the value function and
average-reward simultaneously using only the TD error. The ‘Differential TD-learning’ algorithm
is shown below:

Vt+1(St)
.
= Vt(St) + αtρtδt (5a)

Vt+1(s)
.
= Vt(s), ∀s ̸= St (5b)

δt
.
= Rt+1 − R̄t + Vt(St+1)− Vt(St) (5c)

R̄t+1
.
= R̄t + ηαtρtδt (5d)
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where, Vt : S → R is a table of state-value function estimates, αt is the step size, δt is the TD
error, ρt

.
= π(At|St)/B(At|St) is the importance sampling ratio (with behavior policy, B), R̄t is an

estimate of the average-reward, r̄π , and η is a positive scalar.

We end by noting that the average-reward criterion (Equation 1) can also be optimized using dis-
counted MDPs (e.g. Grand-Clément and Petrik (2023)). In such cases, the solution is said to be
Blackwell-optimal because it takes into account the limiting and transient behavior of the system. In
this work however, we employ methods that utilize the standard average-reward MDP formulation,
because, as we will see in Sections 5 and 6, it enables a subtask-driven approach to RL that can
alleviate computational challenges and non-trivialities that arise in discounted MDPs.

3.2 CONDITIONAL VALUE-AT-RISK (CVAR)

Consider a random variable X with a finite mean on a probability space (Ω,F ,P), and with a
cumulative distribution function F (x) = P(X ≤ x). The (left-tail) value-at-risk (VaR) of X with
parameter τ ∈ (0, 1) represents the τ -quantile of X , such that VaRτ (X) = sup{x | F (x) ≤ τ}.
The (left-tail) conditional value-at-risk (CVaR) of X with parameter τ is defined as follows:

CVaRτ (X) =
1

τ

∫ τ

0

VaRu(X)du. (6)

When F (X) is continuous at x = VaRτ (X), the conditional value-at-risk can be interpreted as the
expected value of the τ left quantile of the distribution of X , such that CVaRτ (X) = E[X | X ≤
VaRτ (X)]. Fig. A.2 (in Appendix A) depicts this interpretation of CVaR.

Importantly, CVaR can be formulated as follows (Rockafellar and Uryasev, 2000):

CVaRτ (X) = sup
b∈R

E[b− 1

τ
(b−X)+] = E[VaRτ (X)− 1

τ
(VaRτ (X)−X)+], (7)

where, (y)+ = max(y, 0). Existing MDP-based methods typically leverage the above formulation
when optimizing for CVaR, by augmenting the state-space with an estimate of VaRτ (X) (in this
case, b), and solving the following bi-level optimization:

sup
π

CVaRτ (X) = sup
π

sup
b∈R

E[b− 1

τ
(b−X)+] = sup

b∈R
(b− 1

τ
sup
π

E[(b−X)+]), (8)

where the ‘inner’ optimization problem can be solved using standard MDP solution methods.

In discounted and episodic MDPs, the random variable X corresponds to a (potentially-discounted)
sum of rewards. In average-reward MDPs, X corresponds to the (limiting) per-step reward. In other
words, the natural interpretation of CVaR in the average-reward setting is that of the CVaR of the
limiting reward distribution, as shown below (for a given policy, π) (Xia et al., 2023):

CVaRτ,π(s)
.
= lim

n→∞

1

n

n∑
t=1

CVaRτ [Rt | S0 = s,A0:t−1 ∼ π]. (9)

As with the average-reward (Equation 1), a unichain assumption (or similar) makes this CVaR objec-
tive independent of the initial state. In recent years, CVaR has emerged as a popular risk measure,
in-part because it is a ‘coherent’ risk measure (Artzner et al., 1999), meaning that it satisfies key
mathematical properties which can be meaningful in safety-critical and risk-related applications.

4 A SUBTASK-DRIVEN APPROACH

In this section, we motivate the need and opportunity for a subtask-driven approach to RL through
the lens of CVaR optimization. Let us begin by considering the standard approach used by exist-
ing MDP-based methods for optimizing CVaR, which requires an explicit bi-level optimization, as
described in Equation 8. In words, Equation 8 says that to optimize CVaR, we need to pick a wide
range of guesses for VaR, and for each guess, b, we need to solve an MDP. Then, out of all of the
MDP solutions, we pick the best one as our final solution. To further compound the computational
costs, this approach typically requires that the state-space be augmented with a state that corresponds
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to the VaR guess, b. Importantly, this computationally-expensive process would not be needed if we
somehow knew what the optimal value for b (i.e., VaR) was. In fact, in the average-reward setting,
if we knew VaR, then optimizing for CVaR ultimately amounts to optimizing an average (as per
Equation 7), which can be done trivially using the standard average-reward MDP.

As such, it would appear that, to optimize CVaR, we are stuck between two extremes: a significantly
computationally-expensive process if we don’t know VaR, and a trivial process if we do. But what
if we could estimate VaR along the way? That is, keep some sort of running estimate of VaR that we
optimize simultaneously as we optimize CVaR. Indeed, such an approach has been proposed in the
discounted and episodic settings (e.g. Stanko and Macek (2019)), however, no approach has been
able to successfully remove both the augmented state-space and the explicit bi-level optimization
requirements. The primary difficulty lies in how one updates the estimate of VaR along the way.

Critically, this is where the findings from Wan et al. (2021) come into play. In particular, Wan et al.
(2021) proposed proven-convergent algorithms for the average-reward setting that can learn and/or
optimize the value function and average-reward simultaneously using only the TD error. In other
words, these algorithms are able to solve two learning objectives simultaneously using only the TD
error. Yet, the focus in Wan et al. (2021) was on proving the convergence of such algorithms, without
exploring the underlying structural properties of the average-reward MDP that made such a process
possible to begin with. In this work, we formalize these underlying properties, and utilize them to
show that if one modifies, or extends, the reward from the MDP with various learning objectives,
then these objectives, or subtasks, can be solved simultaneously using a modified version of the TD
error. Consequently, in terms of CVaR optimization, this allows us to develop appropriate learning
updates for the VaR and CVaR estimates based solely on the TD error, such that we no longer need
to augment the state-space or perform an explicit bi-level optimization.

In Section 5, we present the theoretical framework that enables the aforementioned subtask-driven
approach. Then, in Section 6, we adapt this general-purpose framework for CVaR optimization.

5 REWARD-EXTENDED DIFFERENTIAL (RED) REINFORCEMENT LEARNING

In this section, we present our primary contribution: a framework for solving various learning ob-
jectives, or subtasks, simultaneously in the average-reward setting. We call this framework reward-
extended differential (or RED) reinforcement learning. The ‘differential’ part of the name comes
from the use of the differential algorithms from average-reward MDPs. The ‘reward-extended’ part
of the name comes from the use of the reward-extended TD error, a novel concept that we will intro-
duce shortly. Through this framework, we show how the average-reward MDP’s unique structural
properties can be leveraged to solve various subtasks simultaneously in a fully-online manner. We
first provide a formal definition for a (generic) subtask, then proceed to derive a learning frame-
work that allows us to simultaneously solve any given subtask that satisfies this definition. In the
subsequent section, we utilize this framework to tackle the CVaR optimization problem.

Definition 5.1 (Subtask). A subtask, zi, is any scalar prediction or control objective belonging to
a corresponding finite set Zi ⊂ R, such that there exists a linear (or piecewise linear) subtask
function, f : R × Z1 × Z2 × · · · × Zi × · · · × Zn → R̃, whereR is the finite set of observed
per-step rewards from the MDP M, R̃ ⊂ R is a finite set of ‘extended’ per-step rewards whose
long-run average is the primary prediction or control objective of the MDP, M̃ .

= ⟨S,A, R̃, p⟩, and
Z = {z1 ∈ Z1, z2 ∈ Z2, . . . , zn ∈ Zn} is the set of n subtasks that we wish to solve, such that:

i) f is invertible with respect to each input given all other inputs; and

ii) each subtask zi ∈ Z in f is independent of the states and actions, and hence independent of the
observed per-step reward, Rt ∈ R, such that E[f(Rt, z1, z2, . . . , zn)] = f(E[Rt], z1, z2, . . . , zn),
where E denotes any expectation taken with respect to the states and actions.

With this definition in mind, we now proceed by providing the basic intuition behind our framework
by using the average-reward itself, r̄π , as a blueprint of sorts for how we will derive the update
rules in our learning algorithms for our subtasks. In particular, we will show how the process for
deriving the update rule for the average-reward estimate, R̄t, in Equation 5 can be adapted to derive
equivalent update rules for estimates corresponding to any subtask that satisfies Definition 5.1.

5
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Consider the Bellman equation 3. We begin by pointing out that the average-reward satisfies many
of the key properties of a subtask. In particular, we can see that r̄π satisfies

∑
[r − r̄π + vπ(s

′)] =∑
[r + vπ(s

′)] − r̄π , where we use
∑

as shorthand for the sums in the Bellman equation 3. This
allows us to rewrite the Bellman equation 3 as follows:

r̄π =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)[r + vπ(s
′)− vπ(s)]. (10)

Now, if we wanted to learn r̄π from experience, we can utilize the common RL update rule of the
form: NewEstimate ← OldEstimate + StepSize [Target − OldEstimate] (Sutton and Barto, 2018)
to do so. In this case, the ‘target’ is the term inside the expectation (i.e., the sums) in Equation
10. This yields the update in Equation 5d: R̄t+1 = R̄t + ηαtδt. Hence, we are able to learn r̄π
using the TD error, δ. This highlights a unique structural property of average-reward MDPs: we
are able to simultaneously predict (learn) the value function and the average-reward using the TD
error. Similarly, in the control case we are able to simultaneously control (optimize) these same
two objectives using the TD error. We will now show, through the RED RL framework, how this
structural property can be utilized to simultaneously predict or control any subtask that satisfies
Definition 5.1. More specifically, we will show how we can replicate what we just did for the
average-reward for any arbitrary subtask:
Theorem 5.1 (The RED Theorem). An average-reward MDP can simultaneously predict or control
any arbitrary number of subtasks (within a single subtask function that satisfies Definition 5.1) using
the TD error.

Proof. Let R̃t = f(Rt, z1, z2, . . . , zn) = f(·) be a linear subtask function (as per Definition 5.1)
corresponding to n subtasks, where Rt ∈ R is the observed per-step reward, and R̃t ∈ R̃ is the
extended per-step reward whose long-run average, r̄π , is the primary prediction or control objective.

We first note that without a loss in generality, the subtask function can be written as follows:

R̃t = Rt + a0 + a1z1 + a2z2 + . . .+ anzn, (11)
for some constant a0 ∈ R and a1, a2, . . . , an ∈ R \ {0}.
We can then write the TD error for the prediction case as follows:

δt = R̃t − R̄t + Vt(St+1)− Vt(St) (12a)

= Rt + a0 + a1Z1,t + a2Z2,t + . . .+ anZn,t − R̄t + Vt(St+1)− Vt(St), (12b)

where Vt : S → R denotes a table of state-value function estimates, R̄t denotes an estimate of the
average-reward, r̄π , and Zi,t denotes an estimate of subtask zi ∀i = 1, 2, . . . , n.

Similarly, we can write the Bellman equation 3 for the MDP M̃ and solve for an arbitrary subtask,
zi, as follows:

vπ(s) = Eπ[R̃t − r̄π + vπ(St+1) | St = s] (13a)
0 = Eπ[Rt + a0 + a1z1 + a2z2 + . . .+ anzn − r̄π + vπ(St+1)− vπ(s) | St = s] (13b)
0 = Eπ[Rt + a0 + . . .+ ai−1zi−1 + ai+1zi+1 + . . .

. . .+ anzn − r̄π + vπ(St+1)− vπ(s) | St = s] + aizi
(13c)

=⇒ zi = Eπ[−
1

ai
(Rt + a0 + . . .+ ai−1zi−1 + ai+1zi+1 + . . .

. . .+ anzn − r̄π + vπ(St+1)− vπ(s)) | St = s]
(13d)

.
= Eπ[ϕi,t | St = s], (13e)

where we used the fact that zi is independent of the states and actions to pull it out of the expectation.
Here, we use ϕi,t to denote the expression inside the expectation in Equation 13d.

Hence, to learn zi from experience, we can utilize the common RL update rule (in a similar fashion
to what we did with Equation 10 for the average-reward), using the term inside the expectation in
Equation 13d, ϕi,t, as the target, which yields the update:

Zi,t+1 = Zi,t + ηαt[ϕi,t − Zi,t] (14a)
= Zi,t + ηαt(−1/ai)δt (when combining Equations 12 and 13d) (14b)
.
= Zi,t + ηαtβi,t, (14c)
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where, Zi,t is the estimate of subtask zi at time t, and ηαt is the step size.

Here, we define βi,t
.
= (−1/ai)δt as the reward-extended TD error for subtask zi. Importantly, this

term satisfies a TD error-dependent property: it goes to zero as the TD error, δt, goes to zero. This
implies that, like the average-reward update in Equation 5d, the arbitrary subtask update is dependent
on the TD error, such that the subtask estimate will only cease to update once the TD error is zero.
Hence, minimizing the TD error allows us to solve the arbitrary subtask simultaneously.

As such, we have derived an update rule based on the TD error for our arbitrary subtask, zi. Finally,
because we picked zi arbitrarily, it follows that we can derive an update rule for every subtask in f(·)
based on the TD error. This means that we can perform prediction for all our subtasks simultaneously
by minimizing the (regular) TD error. The same logic can be applied in the control case to derive
equivalent updates, where we note that it directly follows from Definition 5.1 that the existence
of an optimal average-reward, r̄∗, implies the existence of corresponding optimal subtask values,
z∗i ∀zi ∈ Z . In a similar fashion, these results can trivially be extended for piecewise linear subtask
functions by applying the above logic for each linear segment separately, such that the resulting
subtask updates are also piecewise linear. This completes the proof of Theorem 5.1.

Having derived the update rules for the subtasks, we now present our family of RED RL algorithms.
The full set of algorithms, including algorithms that utilize function approximation, are included in
Appendix B. We provide full convergence proofs for the tabular algorithms in Appendix C.

RED TD-learning algorithm (tabular): We update a table of estimates, Vt : S → R as follows:

R̃t+1 = f(Rt+1, Z1,t, Z2,t, . . . , Zn,t) (15a)

δt = R̃t+1 − R̄t + Vt(St+1)− Vt(St) (15b)
Vt+1(St) = Vt(St) + αtρtδt (15c)
Vt+1(s) = Vt(s), ∀s ̸= St (15d)

R̄t+1 = R̄t + ηrαtρtδt (15e)
Zi,t+1 = Zi,t + ηziαtρtβi,t, ∀zi ∈ Z (15f)

where, Rt is the observed reward, Zi,t is an estimate of subtask zi, βi,t is the reward-extended TD
error for subtask zi, αt is the step size, δt is the TD error, ρt is the importance sampling ratio,
R̄t is an estimate of the long-run average-reward of R̃t, r̄π , and ηr, ηzi are positive scalars. Wan
et al. (2021) showed for their Differential TD-learning algorithm that Rt converges to r̄π , and Vt

converges to a solution of v in Equation 3 for a given policy, π. We now provide an equivalent
theorem for our RED TD-learning algorithm, which also shows that Zi,t converges to zi,π ∀zi ∈ Z ,
where zi,π denotes the subtask value when following policy π:

Theorem 5.2 (informal). The RED TD-learning algorithm 15 converges, almost surely, R̄t to r̄π ,
Zi,t to zi,π ∀zi ∈ Z , and Vt to a solution of v in the Bellman Equation 3, up to an additive
constant, c, if the following assumptions hold: 1) the Markov chain induced by the target policy, π,
is unichain, 2) every state–action pair for which π(a | s) > 0 occurs an infinite number of times
under the behavior policy, 3) the step sizes are decreased appropriately, 4) the ratio of the update
frequency of the most-updated state to the least-updated state is finite, and 5) the subtasks are in
accordance with Definition 5.1.

Proof. See Appendix C for the full proof.

RED Q-learning algorithm (tabular): We update a table of estimates, Qt : S × A → R as
follows:

R̃t+1 = f(Rt+1, Z1,t, Z2,t, . . . , Zn,t) (16a)

δt = R̃t+1 − R̄t +max
a

Qt(St+1, a)−Qt(St, At) (16b)

Qt+1(St, At) = Qt(St, At) + αtδt (16c)
Qt+1(s, a) = Qt(s, a), ∀s, a ̸= St, At (16d)

R̄t+1 = R̄t + ηrαtδt (16e)
Zi,t+1 = Zi,t + ηziαtβi,t, ∀zi ∈ Z (16f)
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where, Rt is the observed reward, Zi,t is an estimate of subtask zi, βi,t is the reward-extended TD
error for subtask zi, αt is the step size, δt is the TD error, R̄t is an estimate of the long-run average-
reward of R̃t, r̄π , and ηr, ηzi are positive scalars. Wan et al. (2021) showed for their Differential
Q-learning algorithm that Rt converges to r̄∗, and Qt converges to a solution of q in Equation 4. We
now provide an equivalent theorem for our RED Q-learning algorithm, which also shows that Zi,t

converges to the corresponding optimal subtask value z∗i ∀zi ∈ Z:
Theorem 5.3 (informal). The RED Q-learning algorithm 16 converges, almost surely, R̄t to r̄∗, Zi,t

to z∗i ∀zi ∈ Z , r̄πt
to r̄∗, zi,πt

to z∗i ∀zi ∈ Z , and Qt to a solution of q in the Bellman Equation
4, up to an additive constant, c, where πt is any greedy policy with respect to Qt, if the following
assumptions hold: 1) the MDP is communicating, 2) the solution of q in 4 is unique up to a constant,
3) the step sizes are decreased appropriately, 4) all the state–action pairs are updated an infinite
number of times, 5) the ratio of the update frequency of the most-updated state–action pair to the
least-updated state–action pair is finite, and 6) the subtasks are in accordance with Definition 5.1.

Proof. See Appendix C for the full proof.

6 CASE STUDY: RED RL FOR CVAR OPTIMIZATION

In the previous section, we derived a general-purpose framework and a corresponding set of algo-
rithms that enable a more subtask-driven approach to reinforcement learning, where various learning
problems, or subtasks, are solved simultaneously to help solve a larger, central learning problem. In
this section, we provide a compelling case-study which illustrates how this subtask-driven approach
can be used to successfully tackle the CVaR optimization problem without the use of an explicit
bi-level optimization scheme (as in Equation 8), or an augmented state-space.

First, in order to leverage the RED RL framework for CVaR optimization, we need to derive a valid
subtask function for CVaR that satisfies the requirements of Definition 5.1. It turns out that we can
use a modified version of Equation 7 as the subtask function. The details of the adaptation of Equa-
tion 7 into a subtask function are presented in Appendix D. Critically, as discussed in Appendix D,
optimizing the long-run average of the extended reward (R̃t) from this subtask function corresponds
to optimizing the long-run CVaR of the observed reward (Rt). Hence, we can utilize CVaR-specific
versions of the RED algorithms presented in Equations 15 and 16 (or their non-tabular equivalents)
to optimize VaR and CVaR, such that CVaR corresponds to the primary control objective (i.e., the
r̄π that we want to optimize), and VaR is the (single) subtask. We call the resulting algorithms, the
RED CVaR algorithms. These algorithms, which are shown in full in Appendix D, update CVaR in
an analogous way to the average-reward (i.e., CVaR corresponds to R̄t in Equations 15 or 16), and
update VaR using a VaR-specific version of Equation 15f or 16f as follows:

VaRt+1 =

{
VaRt − ηαtδt, Rt ≥ VaRt

VaRt + ηαt(
τ

1−τ )δt, Rt < VaRt
, (17)

where, VaRt is an estimate of VaR, ηαt is the step size, τ is the CVaR parameter, and δt is the
regular TD error. As such, we are able to optimize our subtask, VaR, and our primary objective,
CVaR, without the use of an explicit bi-level optimization scheme or an augmented state-space.

We now present empirical results when applying the RED CVaR algorithms on two learning tasks.
The first task is a two-state environment that we created for the purposes of testing our algorithms.
It is called the red-pill blue-pill environment (see Appendix F), where at every time step an agent
can take either a red pill, which takes them to the ‘red world’ state, or a blue pill, which takes them
to the ‘blue world’ state. Each state has its own characteristic reward distribution, and in this case,
for a sufficiently low CVaR parameter, τ , the red world state has a reward distribution with a lower
(worse) mean but higher (better) CVaR compared to the blue world state. Hence, we would expect
that the Differential Q-learning algorithm (from Wan et al. (2021)) learns a policy that prefers to
stay in the blue world, and that the RED CVaR Q-learning algorithm learns a policy that prefers to
stay in the red world. This task is illustrated in Fig. 1a).

The second learning task is the well-known inverted pendulum task, where an agent learns how to
optimally balance an inverted pendulum. We chose this task because it provides us with opportunity
to test our algorithm in an environment where: 1) we must use function approximation (given the

8
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large state and action spaces), and 2) where the policy for the optimal average-reward and the policy
for the optimal reward CVaR is the same policy (i.e., the policy that best balances the pendulum will
yield a limiting reward distribution with both the optimal average-reward and reward CVaR). This
hence allows us to directly compare the performance of our RED algorithms to the regular Differ-
ential learning algorithms, as well as to gauge how function approximation affects the performance
of our algorithms. For this task, we utilized a simple actor-critic architecture (Barto et al., 1983;
Sutton and Barto, 2018) as this allowed us to compare the performance of the (non-tabular) RED
TD-learning algorithm with a (non-tabular) Differential TD-learning algorithm. This task is illus-
trated in Fig. 1b). The full set of experimental details, including additional experiments performed,
can be found in Appendix E.

Figure 1: An illustration of the a) red-pill blue-pill, and b) inverted pendulum environments.

In terms of empirical results, Fig. 2 shows rolling averages of the average-reward and reward CVaR
as learning progresses in both tasks when using the regular Differential learning algorithms (to opti-
mize the average-reward) vs. the RED CVaR algorithms (to optimize the reward CVaR). As shown
in the figure, in the red-pill blue-pill task the RED CVaR algorithm is able to successfully learn a
policy that prioritizes maximizing the reward CVaR over the average-reward, thereby achieving a
sort of risk-awareness. In the inverted pendulum task, both methods converge to the same policy, as
expected. Fig. 3 shows typical convergence plots of the agent’s VaR and CVaR estimates as learning
progresses on the red-pill blue-pill task for various combinations of initial VaR and CVaR guesses.
We see that regardless of the initial guess, the estimates still converge. These estimates converge to
the correct VaR and CVaR values, up to a constant, thereby yielding the optimal CVaR policy, as in
Fig. 2a). See Appendix E for a more detailed discussion of the empirical results.

Figure 2: Rolling average-reward and reward CVaR as learning progresses when using the (risk-
neutral) Differential algorithms vs. the (risk-aware) RED CVaR algorithms in the a) red-pill blue-
pill, and b) inverted pendulum tasks. A solid line denotes the mean average-reward or reward CVaR,
and the corresponding shaded region denotes the 95% confidence interval over 50 runs.

9
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Figure 3: Convergence plots of the agent’s VaR and CVaR estimates as learning progresses when
using the RED CVaR Q-learning algorithm on the red-pill blue-pill task with a) various combinations
of initial VaR and CVaR guesses, and b) an initial guess of 0.0 for both the VaR and CVaR estimates.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

In this work, we introduced reward-extended differential (or RED) reinforcement learning: a novel
reinforcement learning framework that can be used to solve various subtasks simultaneously in the
average-reward setting. We introduced a family of RED RL algorithms for prediction and control,
and then showcased how these algorithms could be adopted to effectively and efficiently tackle the
CVaR optimization problem. More specifically, we were able to use the RED RL framework to
successfully learn a policy that optimized the CVaR risk measure without using an explicit bi-level
optimization scheme or an augmented state-space, thereby alleviating some of the computational
challenges and non-trivialities that arise when performing risk-based optimization in the episodic
and discounted settings. Empirically, we showed that the RED-based CVaR algorithms fared well
both in tabular and linear function approximation settings. Moreover, our experiments suggest that
these algorithms are robust to the initial guesses for the subtasks and primary learning objective.

More broadly, our work has introduced a theoretically-sound framework that allows for a subtask-
driven approach to reinforcement learning, where various learning problems (or subtasks) are solved
simultaneously to help solve a larger, central learning problem. In this work, we showed (both
theoretically and empirically) how this framework can be utilized to predict and/or optimize any
arbitrary number of subtasks simultaneously in the average-reward setting. Central to this result is
the novel concept of the reward-extended TD error, which is utilized in our framework to develop
learning rules for the subtasks, and satisfies key theoretical properties that make it possible to solve
any given subtask in a fully-online manner by minimizing the regular TD error. Moreover, we
built-upon existing results from Wan et al. (2021) to show the almost sure convergence of tabular
algorithms derived from our framework. While we have only begun to grasp the implications of our
framework, we have already seen some promising indications in the CVaR case study: the ability
to turn explicit bi-level optimization problems into implicit bi-level optimizations that can be solved
in a fully-online manner, as well as the potential to turn certain states (that meet certain conditions)
into subtasks, thereby reducing the size of the state-space.

Nonetheless, while these results are encouraging, they are subject to a number of limitations. Firstly,
by nature of operating in the average-reward setting, we are subject to the somewhat-strict assump-
tions made about the Markov chain induced by the policy (e.g. unichain or communicating). These
assumptions could restrict the applicability of our framework, as they may not always hold in prac-
tice. Similarly, our definition for a subtask requires that the associated subtask function be linear,
which may also limit the applicability of our framework to simpler functions. Finally, it remains to
be seen empirically how our framework performs when dealing with multiple subtasks, when taking
on more complex tasks, and/or when utilizing nonlinear function approximation.

In future work, we hope to address many of these limitations, as well as explore how these promising
results can be extended to other domains, beyond the risk-awareness problem. In particular, we
believe that the ability to optimize various subtasks simultaneously, as well as the potential to reduce
the size of the state-space, by converting certain states to subtasks (where appropriate), could help
alleviate significant computational challenges in other areas moving forward.
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Nicole Bäuerle and Jonathan Ott. Markov decision processes with average-value-at-risk criteria.
Math. Methods Oper. Res., 74(3):361–379, December 2011.

Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a CVaR optimization approach. In Advances in Neural Information Processing Systems
28, 2015.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
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A ADDITIONAL FIGURES

In this appendix, we provide figures that present average-reward MDPs and the CVaR risk measure
in a more visual manner.

A.1 AVERAGE-REWARD MDPS

Fig. A.1 depicts the underlying process by which average-reward MDPs operate, where a given
policy, π, induces a Markov chain, {St}π , that yields a stationary reward distribution, whose mean
corresponds to the long-run average-reward r̄π . Different policies can then be compared based on
their r̄π values to find the policy that yields the optimal average-reward.

Figure A.1: Visual depiction of the underlying process by which average-reward MDPs operate.
Here, following policy π induces a Markov chain, {St}π . As t → ∞, this yields a stationary (or
steady-state) reward distribution with an average reward, r̄π . It is this long-run (or steady-state)
average-reward that the standard average-reward MDP formulation aims to optimize.

A.2 CVAR

Fig. A.2a) depicts the interpretation of CVaR as the expected value of the τ left quantile of the
distribution corresponding to a random variable. Fig. A.2b) depicts two limiting reward distributions
that have the same long-run average-reward, but different CVaR values (assuming a sufficiently low
CVaR parameter, τ ).

Figure A.2: a) The left-tail conditional value-at-risk (CVaR) of a probability distribution; b) The
limiting reward distributions induced by two policies, π1 and π2. Both distributions have the same
long-run average-reward, but different CVaR values (assuming a sufficiently low CVaR τ ).
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B RED RL ALGORITHMS

In this appendix, we provide pseudocode for our RED RL algorithms. We first present tabular
algorithms, whose convergence proofs are included in Appendix C, and then provide equivalent
algorithms that utilize function approximation.

Algorithm 1 RED TD-Learning (Tabular)
Input: the policy π to be evaluated, policy B to be used, subtask function f with constants
a1, a2, . . . , an
Algorithm parameters: step size parameters α, ηr, ηz1 , ηz2 , . . . , ηzn
Initialize V (s) ∀s; R̄ arbitrarily (e.g. to zero)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by B for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)

δ = R̃− R̄+ V (S′)− V (S)
ρ = π(A | S)/B(A | S)
V (S) = V (S) + αρδ
R̄ = R̄+ ηrαρδ
βi = (−1/ai)δ, ∀i = 1, 2, . . . , n
Zi = Zi + ηziαρβi, ∀i = 1, 2, . . . , n
S = S′

end while
return V

Algorithm 2 RED Q-Learning (Tabular)
Input: the policy π to be used (e.g., ϵ-greedy), subtask function f with constants a1, a2, . . . , an
Algorithm parameters: step size parameters α, ηr, ηz1 , ηz2 , . . . , ηzn
Initialize Q(s, a) ∀s, a; R̄ arbitrarily (e.g. to zero)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)

δ = R̃− R̄+maxa Q(S′, a)−Q(S,A)
Q(S,A) = Q(S,A) + αδ
R̄ = R̄+ ηrαδ
βi = (−1/ai)δ, ∀i = 1, 2, . . . , n
Zi = Zi + ηziαβi, ∀i = 1, 2, . . . , n
S = S′

end while
return Q
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Algorithm 3 RED TD-Learning (Function Approximation)
Input: the policy π to be evaluated, policy B to be used, a differentiable state-value function
parameterization: v̂(s,w), subtask function f with constants a1, a2, . . . , an
Algorithm parameters: step size parameters α, ηr, ηz1 , ηz2 , . . . , ηzn
Initialize state-value weights w ∈ Rd arbitrarily (e.g. to 0)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by B for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)

δ = R̃− R̄+ v̂(S′,w)− v̂(S,w)
ρ = π(A | S)/B(A | S)
w = w + αρδ∇v̂(S,w)
R̄ = R̄+ ηrαρδ
βi = (−1/ai)δ, ∀i = 1, 2, . . . , n
Zi = Zi + ηziαρβi, ∀i = 1, 2, . . . , n
S = S′

end while
return w

Algorithm 4 RED Q-Learning (Function Approximation)
Input: the policy π to be used (e.g., ϵ-greedy), a differentiable state-action value function param-
eterization: q̂(s, a,w), subtask function f with constants a1, a2, . . . , an
Algorithm parameters: step size parameters α, ηr, ηz1 , ηz2 , . . . , ηzn
Initialize state-action value weights w ∈ Rd arbitrarily (e.g. to 0)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)

δ = R̃− R̄+maxa q̂(S
′, a,w)− q̂(S,A,w)

w = w + αδ∇q̂(S,A,w)
R̄ = R̄+ ηrαδ
βi = (−1/ai)δ, ∀i = 1, 2, . . . , n
Zi = Zi + ηziαβi, ∀i = 1, 2, . . . , n
S = S′

end while
return w
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C CONVERGENCE PROOFS

In this appendix, we present the full convergence proofs for the tabular RED TD-learning and tabular
RED Q-learning algorithms. Our general strategy is as follows: we first show that the results from
Wan et al. (2021), which show the a.s. convergence of the value function and average-reward esti-
mates of differential algorithms, are applicable to our algorithms. We then build upon these results
to show that the subtask estimates of our algorithms converge as well.

For consistency, we adopt similar notation as Wan et al. (2021) for our proofs:

• For a given vector x, let
∑

x denote the sum of all elements in x, such that
∑

x
.
=

∑
i x(i).

• Let r̄∗ denote the optimal average-reward.
• Let zi∗ denote the corresponding optimal subtask value for subtask zi ∈ Z .

C.1 CONVERGENCE PROOF FOR THE TABULAR RED TD-LEARNING ALGORITHM

In this section, we present the proof for the convergence of the value function, average-reward, and
subtask estimates of the RED TD-learning algorithm. Similar to what was done in Wan et al. (2021),
we will begin by considering a general algorithm, called General RED TD. We will first define
General RED TD, then show how the RED TD-learning algorithm is a special case of this algorithm.
We will then provide necessary assumptions, state the convergence theorem of General RED TD,
and then provide a proof for the theorem, where we show that the value function, average-reward,
and subtask estimates converge, thereby showing that the RED TD-learning algorithm converges.
We begin by introducing the General RED TD algorithm:

Consider an MDPM .
= ⟨S,A,R, p⟩, a behavior policy, B, and a target policy, π. Given a state s ∈

S and discrete step n ≥ 0, let An(s) ∼ B(· | s) denote the action selected using the behavior policy,
let Rn(s,An(s)) ∈ R denote a sample of the resulting reward, and let S′

n(s,An(s)) ∼ p(·, · | s, a)
denote a sample of the resulting state. Let {Yn} be a set-valued process taking values in the set
of nonempty subsets of S, such that: Yn = {s : s component of the |S|-sized table of state-value
estimates, V , that was updated at step n}. Let ν(n, s) .

=
∑n

j=0 I{s ∈ Yj}, where I is the indicator
function, such that ν(n, s) represents the number of times V (s) was updated up to step n.

Now, let f be a valid subtask function (see Definition 5.1), such that R̃n(s,An(s))
.
=

f(Rn(s,An(s)), Z1,n, Z2,n, . . . , Zk,n) for k subtasks ∈ Z , where R̃n(s,An(s)) is the extended
reward, Z is the set of subtasks, and Zi,n denotes the estimate of subtask zi ∈ Z at step n. Consider
an MDP with the extended reward: M̃ .

= ⟨S,A, R̃, p⟩, such that R̃n(s,An(s)) ∈ R̃. The update
rules of General RED TD for this MDP are as follows, for n ≥ 0:

Vn+1(s)
.
= Vn(s) + αν(n,s)ρn(s)δn(s)I{s ∈ Yn}, ∀s ∈ S, (C.1)

R̄n+1
.
= R̄n + ηr

∑
s

αν(n,s)ρn(s)δn(s)I{s ∈ Yn}, (C.2)

Zi,n+1
.
= Zi,n + ηzi

∑
s

αν(n,s)ρn(s)βi,n(s)I{s ∈ Yn}, ∀zi ∈ Z, (C.3)

where,

δn(s)
.
= R̃n(s,An(s))− R̄n + Vn(S

′
n(s,An(s)))− Vn(s)

= f(Rn(s,An(s)), Z1,n, Z2,n, . . . , Zk,n)− R̄n + Vn(S
′
n(s,An(s)))− Vn(s),

(C.4)

and,

βi,n(s)
.
= ϕzi,n − Zi,n, ∀zi ∈ Z. (C.5)

Here, ρn(s)
.
= π(An(s) | s) /B(An(s) | s) denotes the importance sampling ratio (with behavior

policy, B), R̄n denotes the estimate of the average-reward (see Equation 2), δn(s) denotes the TD
error, ηr and ηzi are positive scalars, ϕzi,n denotes the inverse of the TD error (i.e., Equation C.4)
with respect to subtask estimate Zi,n given all other inputs when δn(s) = 0, and αν(n,s) denotes the
step size at time step n for state s. In this case, the step size depends on the sequence {αn}, as well
as the number of visitations to state s, which is denoted by ν(n, s).
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We now show that the RED TD-learning algorithm is a special case of the General RED TD algo-
rithm. Consider a sequence of experience from our MDP M̃: St, At(St), R̃t+1, St+1, . . . . Now
recall the set-valued process {Yn}. If we let n = time step t, we have:

Yt(s) =

{
1, s = St,

0, otherwise,

as well as S′
n(St, At(St)) = St+1, Rn(St, At) = Rt+1, R̃n(St, At(St)) = R̃t+1.

Hence, update rules C.1, C.2, C.3, C.4, and C.5 become:
Vt+1(St)

.
= Vt(St) + αν(t,St)ρt(St)δt , and Vt+1(s)

.
= Vt(s),∀s ̸= St, (C.6)

R̄t+1
.
= R̄t + ηrαν(t,St)ρt(St)δt, (C.7)

Zi,t+1
.
= Zi,t + ηziαν(t,St)ρt(St)βi,t, ∀zi ∈ Z, (C.8)

δt
.
= R̃t+1 − R̄t + Vt(St+1)− Vt(St),

= f(Rt+1, Z1,t, Z2,t, . . . , Zk,t)− R̄t + Vt(St+1)− Vt(St),
(C.9)

βi,t
.
= ϕzi,t − Zi,t, ∀zi ∈ Z, (C.10)

which are RED TD-learning’s update rules with αν(t,St) denoting the step size at time t.

We now specify the assumptions on General RED TD that are needed to ensure convergence. Please
refer to Wan et al. (2021) for an in-depth discussion on Assumptions C.1 – C.5:

Assumption C.1 (Unichain Assumption). The Markov chain induced by the target policy is
unichain.

Assumption C.2 (Coverage Assumption). B(a | s) > 0 if π(a | s) > 0 for all s ∈ S, a ∈ A.

Assumption C.3 (Step Size Assumption). αn > 0,
∑∞

n=0 αn =∞,
∑∞

n=0 α
2
n <∞.

Assumption C.4 (Asynchronous Step Size Assumption 1). Let [·] denote the integer part of (·). For
x ∈ (0, 1),

sup
i

α[xi]

αi
<∞

and ∑[yi]
j=0 αj∑i
j=0 αj

→ 1

uniformly in y ∈ [x, 1].

Assumption C.5 (Asynchronous step size Assumption 2). There exists ∆ > 0 such that

lim inf
n→∞

ν(n, s)

n+ 1
≥ ∆,

a.s., for all s ∈ S. Furthermore, for all x > 0, and

N(n, x) = min

{
m ≥ n :

m∑
i=n+1

αi ≥ x

}
,

the limit

lim
n→∞

∑ν(N(n,x),s)
i=ν(n,s) αi∑ν(N(n,x),s′)
i=ν(n,s′) αi

exists a.s. for all s, s′.
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Assumptions C.3, C.4, and C.5, which originate from Borkar (1998), outline the step size require-
ments needed to show the convergence of stochastic approximation algorithms. Assumptions C.3
and C.4 can be satisfied with step size sequences that decrease to 0 appropriately, including 1/n,
1/(n log n), and log n/n (Abounadi et al., 2001). Assumption C.5 first requires that the limiting
ratio of visits to any given state, compared to the total number of visits to all states, is greater than or
equal to some fixed positive value. The assumption then requires that the relative update frequency
between any two states is finite. For instance, Assumption C.5 can be satisfied with αn = 1/n (see
page 403 of Bertsekas and Tsitsiklis (1996) for more information).

Assumption C.6 (Subtask Function Assumption). The subtask function, f , is 1) linear or piecewise
linear, and 2) is invertible with respect to each input given all other inputs.

Assumption C.7 (Subtask Independence Assumption). Each subtask zi ∈ Z in f is indepen-
dent of the states and actions, and hence independent of the observed reward, Rn(s, a), such that
E[f(Rn(s, a), Z1,n, Z2,n, . . . , Zk,n)] = f(E[Rn(s, a)], Z1,n, Z2,n, . . . , Zk,n), where E denotes any
expectation taken with respect to the states and actions.

Assumptions C.6 and C.7 outline the subtask-related requirements. Assumption C.6 ensures that
we can explicitly write out the update C.3, and Assumption C.7 ensures that we do not break the
Markov property in the process (i.e., we preserve the Markov property by ensuring that the subtasks
are independent of the states and actions, and thereby also independent of the observed reward).

We next point out that it is easy to verify that under Assumption C.1, the following system of
equations:

vπ(s) =
∑
a

π(a | s)
∑
s′,r̃

p(s′, r̃ | s, a)(r̃ − r̄π + vπ(s
′)), for all s ∈ S,

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)(f(r, z1, z2, . . . , zk)− r̄π + vπ(s
′)),

(C.11)

and,

r̄π − R̄0 = ηr

(∑
vπ −

∑
V0

)
, (C.12)

zi,π − Zi,0 = ηi

(∑
vπ −

∑
V0

)
, for all zi ∈ Z, (C.13)

has a unique solution of vπ , where r̄π denotes the average-reward induced by following a given
policy, π, and zi,π denotes the corresponding subtask value for subtask zi ∈ Z . Denote this unique
solution of vπ as v∞.

We are now ready to state the convergence theorem:

Theorem C.1.1 (Convergence of General RED TD). If Assumptions C.1 – C.7 hold, then General
RED TD (Equations C.1 – C.5) converges a.s., R̄n to r̄π , Zi,n to zi,π ∀zi ∈ Z , and Vn to v∞.

We prove this theorem in the following section. To do so, we first show that General RED TD is
of the same form as General Differential TD from Wan et al. (2021), which consequently allows us
to apply their convergence results for the value function and average-reward estimates of General
Differential TD to General RED TD. We then build upon these results, using similar techniques as
Wan et al. (2021), to show that the subtask estimates converge as well.

C.1.1 PROOF OF THEOREM C.1.1

Convergence of the average-reward and state-value function estimates:

Consider the increment to R̄n at each step. We can see from Equation C.2 that the increment is ηr
times the increment to Vn. As such, as was done in Wan et al. (2021), we can write the cumulative
increment as follows:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

R̄n − R̄0 = ηr

n−1∑
j=0

∑
s

αν(j,s)ρj(s)δj(s)I{s ∈ Yj}

= ηr

(∑
Vn −

∑
V0

)
=⇒ R̄n = ηr

∑
Vn − ηr

∑
V0 + R̄0 = ηr

∑
Vn − c, (C.14)

where c
.
= ηr

∑
V0 − R̄0. (C.15)

We can then substitute R̄n in C.1 with C.14 ∀s ∈ S, which yields:

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̃n(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− η

∑
Vn + c

)
I{s ∈ Yn}

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̂n(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− η

∑
Vn

)
I{s ∈ Yn},

(C.16)

where R̂n(s,An(s))
.
= R̃n(s,An(s)) + c = f(Rn(s,An(s)), Z1,n, Z2,n, . . . , Zk,n) + c.

Equation C.16 is now in the same form as Equation (B.37) (i.e., General Differential TD) from Wan
et al. (2021), who showed that the equation converges a.s. Vn to v∞ as n → ∞. Moreover, from
this result, Wan et al. (2021) showed that R̄n converges a.s. to r̄π as n → ∞. Given that General
RED TD adheres to all the assumptions listed for General Differential TD in Wan et al. (2021),
these convergence results apply to General RED TD.

Convergence of the subtask estimates:

Consider the increment to Zi,n (for an arbitrary subtask zi ∈ Z) at each step. Given Equation 14, we
can write the increment in Equation C.3 as some constant, subtask-specific fraction of the increment
to Vn. Consequently, we can write the cumulative increment as follows:

Zi,n − Zi,0 = ηzi

n−1∑
j=0

∑
s

αν(j,s)ρj(s)βi,j(s)I{s ∈ Yj}

= ηzi

n−1∑
j=0

∑
s

αν(j,s)ρj(s)biδj(s)I{s ∈ Yj}

= ηi

(∑
Vn −

∑
V0

)

=⇒ Zi,n = ηi
∑

Vn − ηi
∑

V0 + Zi,0 = ηi
∑

Vn − c, (C.17)

where,

c
.
= ηi

∑
V0 − Zi,0, and (C.18)

ηi
.
= ηzibi. (C.19)

Now, let f(Zi,n) be shorthand for the subtask function (i.e., R̃n(s,An(s))). We can substitute Zi,n

in C.1 with C.17 ∀s ∈ S as follows:
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Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̃n(s,An(s))− R̄+ Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn}

=⇒ Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
f(Zi,n)− R̄+ Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn}

=⇒ Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)

f(ηi
∑

Vn︸ ︷︷ ︸
Ẑi,n

−c)− R̄+ Vn(S
′
n(s,An(s)))− Vn(s)

 I{s ∈ Yn}

=⇒ Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
f̂(Ẑi,n)− R̄+ Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn}

=⇒ Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̂n − R̄+ Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn},

(C.20)

where, R̂n
.
= f̂(Ẑi,n) = f(Zi,n+c) = h(R̃n). Here, h(R̃n) corresponds to the change in R̃n due to

shifting subtask Zi,n by c. Denote the inverse of h(R̃n) (which exists given Assumption C.6) as h−1.

Now consider an MDP, M̂, which has rewards, R̂, corresponding to rewards modified by h from the
MDP M̃, has the same state and action spaces as M̃, and has the transition probabilities defined as:

p̂(s′, h(r̂) | s, a) .
= p(s′, r̃ | s, a), (C.21)

such that M̂ .
= ⟨S,A, R̂, p̂⟩. It is easy to check that the unichain assumption holds for the trans-

formed MDP M̂. As such, and given Assumptions C.6 and C.7, the average-reward induced by
following policy π for the MDP M̂, ˆ̄rπ , can be written as follows:

ˆ̄rπ = h(r̄π). (C.22)

Now, because

v∞(s) =
∑
a

π(a | s)
∑
s′,r̃

p(s′, r̃ | s, a)(r̃ + v∞(s′)− r̄π) (from C.11)

=
∑
a

π(a | s)
∑
s′,r̃

p(s′, r̃ | s, a)(r̃ + v∞(s′)− h−1(ˆ̄rπ)) (from C.22)

=
∑
a

π(a | s)
∑
s′,r̃

p(s′, r̃ | s, a)(h(r̃) + v∞(s′)− ˆ̄rπ) (by linearity of h)

=
∑
a

π(a | s)
∑
s′,r̃

p̂(s′, r̃ | s, a)(r̃ + v∞(s′)− ˆ̄rπ) (from C.21),

we can see that v∞ is a solution of not just the state-value Bellman equation for the MDP M̃, but
also the state-value Bellman equation for the transformed MDP M̂.

Next, we can write the subtask value induced by following policy π for the MDP M̂, ẑi,π , as follows:

ẑi,π = zi,π + c. (C.23)
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We can then combine Equations C.13, C.18, and C.23, which yields:

ẑi,π = ηi
∑

v∞. (C.24)

Next, we can combine Equation C.17 with the result from Wan et al. (2021) which shows that
Vn → v∞, which yields:

Zi,n → ηi
∑

v∞ − c. (C.25)

Moreover, because ẑi,π = ηi
∑

v∞ (Equation C.24), we have:

Zi,n → ẑi,π − c. (C.26)

Finally, because ẑi,π = zi,π + c (Equation C.23), we have:

Zi,n → zi,π a.s. as n→∞. (C.27)

This completes the proof of Theorem C.1.1.

C.2 CONVERGENCE PROOF FOR THE TABULAR RED Q-LEARNING ALGORITHM

In this section, we present the proof for the convergence of the value function, average-reward,
and subtask estimates of the RED Q-learning algorithm. Similar to what was done in Wan et al.
(2021), we will begin by considering a general algorithm, called General RED Q. We will first define
General RED Q, then show how the RED Q-learning algorithm is a special case of this algorithm.
We will then provide necessary assumptions, state the convergence theorem of General RED Q,
and then provide a proof for the theorem, where we show that the value function, average-reward,
and subtask estimates converge, thereby showing that the RED Q-learning algorithm converges. We
begin by introducing the General RED Q algorithm:

First consider an MDP M .
= ⟨S,A,R, p⟩. Given a state s ∈ S, action a ∈ A, and discrete step

n ≥ 0, let Rn(s, a) ∈ R denote a sample of the resulting reward, and let S′
n(s, a) ∼ p(·, · | s, a)

denote a sample of the resulting state. Let {Yn} be a set-valued process taking values in the set of
nonempty subsets of S×A, such that: Yn = {(s, a) : (s, a) component of the |S ×A|-sized table of
state-action value estimates, Q, that was updated at step n}. Let ν(n, s, a) .

=
∑n

j=0 I{(s, a) ∈ Yj},
where I is the indicator function, such that ν(n, s, a) represents the number of times the (s, a)
component of Q was updated up to step n.

Now, let f be a valid subtask function (see Definition 5.1), such that R̃n(s, a)
.
=

f(Rn(s, a), Z1,n, Z2,n, . . . , Zn,k) for k subtasks ∈ Z , where R̃n(s, a) is the extended reward, Z
is the set of subtasks, and Zi,n denotes the estimate of subtask zi ∈ Z at step n. Consider an MDP
with the extended reward: M̃ .

= ⟨S,A, R̃, p⟩, such that R̃n(s, a) ∈ R̃. The update rules of General
RED Q for this MDP are as follows:

Qn+1(s, a)
.
= Qn(s, a) + αν(n,s,a)δn(s, a)I{(s, a) ∈ Yn}, ∀s ∈ S, a ∈ A, (C.28)

R̄n+1
.
= R̄n + ηr

∑
s,a

αν(n,s,a)δn(s, a)I{(s, a) ∈ Yn}, (C.29)

Zi,n+1
.
= Zi,n + ηzi

∑
s,a

αν(n,s,a)βi,n(s, a)I{(s, a) ∈ Yn}, ∀zi ∈ Z (C.30)

where,

δn(s, a)
.
= R̃n(s, a)− R̄n +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)

= f(Rn(s, a), Z1,n, Z2,n, . . . , Zk,n)− R̄n +max
a′

Qn(S
′
n(s, a), a

′)−Qn(s, a),
(C.31)

and,

βi,n(s, a)
.
= ϕzi,n − Zi,n, ∀zi ∈ Z. (C.32)
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Here, R̄n denotes the estimate of the average-reward (see Equation 2), δn(s, a) denotes the TD error,
ηr and ηzi are positive scalars, ϕzi,n denotes the inverse of the TD error (i.e., Equation C.31) with
respect to subtask estimate Zi,n given all other inputs when δn(s, a) = 0, and αν(n,s,a) denotes
the step size at time step n for state-action pair (s, a). In this case, the step size depends on the
sequence {αn}, as well as the number of visitations to the state-action pair (s, a), which is denoted
by ν(n, s, a).

We now show that the RED Q-learning algorithm is a special case of the General RED Q algorithm.
Consider a sequence of experience from our MDP M̃: St, At, R̃t+1, St+1, . . . . Now recall the
set-valued process {Yn}. If we let n = time step t, we have:

Yt(s, a) =

{
1, s = St and a = At,

0, otherwise,

as well as S′
n(St, At) = St+1, Rn(St, At) = Rt+1, and R̃n(St, At) = R̃t+1.

Hence, update rules C.28, C.29, C.30, C.31, and C.32 become:
Qt+1(St, At)

.
= Qt(St, At) + αν(t,St,At)δt (C.33)

Qt+1(s, a)
.
= Qt(s, a),∀s ̸= St, a ̸= At, (C.34)

R̄t+1
.
= R̄t + ηrαν(t,St,At)δt, (C.35)

Zi,t+1
.
= Zi,t + ηziαν(t,St,At)βi,t, ∀zi ∈ Z, (C.36)

δt
.
= R̃t+1 − R̄t +max

a′
Qt(St+1, a

′)−Qt(St, At),

= f(Rt+1, Z1,t, Z2,t, . . . , Zk,t)− R̄t +max
a′

Qt(St+1, a
′)−Qt(St, At),

(C.37)

βi,t
.
= ϕzi,t − Zi,t, ∀zi ∈ Z, (C.38)

which are RED Q-learning’s update rules with αν(t,St,At) denoting the step size at time t.

We now specify the assumptions on General RED Q that are needed to ensure convergence. Please
refer to Wan et al. (2021) for an in-depth discussion on these assumptions:

Assumption C.8 (Communicating Assumption). The MDP has a single communicating class. That
is, each state in the MDP is accessible from every other state under some deterministic stationary
policy.

Assumption C.9 (Action-Value Function Uniqueness). There exists a unique solution of q only up
to a constant in the Bellman equation 4.

Assumption C.10 (Asynchronous Step Size Assumption 3). There exists ∆ > 0 such that

lim inf
n→∞

ν(n, s, a)

n+ 1
≥ ∆,

a.s., for all s ∈ S, a ∈ A.

Furthermore, for all x > 0, and

N(n, x) = min

{
m > n :

m∑
i=n+1

αi ≥ x

}
,

the limit

lim
n→∞

∑ν(N(n,x),s,a)
i=ν(n,s,a) αi∑ν(N(n,x),s′,a′)
i=ν(n,s′,a′) αi

exists a.s. for all s, s′, a, a′.
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We next point out that it is easy to verify that under Assumption C.8, the following system of
equations:

qπ(s, a) =
∑
s′,r̃

p(s′, r̃ | s, a)(r̃ − r̄π +max
a′

qπ(s, a)), ∀s ∈ S, a ∈ A,

=
∑
s′,r

p(s′, r | s, a)(f(r, z1, z2, . . . , zk)− r̄π +max
a′

qπ(s, a)),
(C.39)

and,

r̄∗ − R̄0 = ηr

(∑
qπ −

∑
Q0

)
, (C.40)

zi∗ − Zi,0 = ηi

(∑
qπ −

∑
Q0

)
, ∀zi ∈ Z, (C.41)

has a unique solution for qπ , where r̄∗ denotes the optimal average-reward, and zi∗ denotes the
corresponding optimal subtask value for subtask zi ∈ Z . Denote this unique solution for qπ as q∗.

We are now ready to state the convergence theorem:

Theorem C.2.1 (Convergence of General RED Q). If Assumptions C.3, C.4, C.6, C.7, C.8, C.9, and
C.10 hold, then the General RED Q algorithm (Equations C.28–C.32) converges a.s. R̄n to r̄∗, Zi,n

to zi∗ ∀zi ∈ Z , Qn to q∗, r̄πt
to r̄∗, and zi,πt

to zi∗ ∀zi ∈ Z , where πt is any greedy policy with
respect to Qt, and zi,πt

denotes the subtask value induced by following policy πt.

We prove this theorem in the following section. To do so, we first show that General RED Q is
of the same form as General Differential Q from Wan et al. (2021), which consequently allows us
to apply their convergence results for the value function and average-reward estimates of General
Differential Q to General RED Q. We then build upon these results, using similar techniques as Wan
et al. (2021), to show that the subtask estimates converge as well.

C.2.1 PROOF OF THEOREM C.2.1

Convergence of the average-reward and state-action value function estimates:

Consider the increment to R̄n at each step. We can see from Equation C.29 that the increment is ηr
times the increment to Qn. As such, as was done in Wan et al. (2021), we can write the cumulative
increment as follows:

R̄n − R̄0 = ηr

n−1∑
j=0

∑
s,a

αν(j,s,a)δj(s, a)I{(s, a) ∈ Yj}

= ηr

(∑
Qn −

∑
Q0

)
=⇒ R̄n = ηr

∑
Qn − ηr

∑
Q0 + R̄0 = ηr

∑
Qn − c, (C.42)

where c
.
= ηr

∑
Q0 − R̄0. (C.43)

We can then substitute R̄n in C.28 with C.42 ∀s ∈ S, a ∈ A, which yields:

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̃n(s, a) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)− ηr
∑

Qn + c
)
I{(s, a) ∈ Yn}

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̂n(s, a) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)− ηr
∑

Qn

)
I{(s, a) ∈ Yn},

(C.44)
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where, R̂n(s, a)
.
= R̃n(s, a) + c = f(Rn(s, a), Z1,n, Z2,n, . . . , Zk,n) + c.

Equation C.44 is now in the same form as Equation (B.14) (i.e., General Differential Q) from Wan
et al. (2021), who showed that the equation converges a.s. Qn to q∗ as n→∞. Moreover, from this
result, Wan et al. (2021) showed that R̄n converges a.s. to r̄∗ as n→∞, and that r̄πt converges a.s.
to r̄∗, where πt is a greedy policy with respect to Qt. Given that General RED Q adheres to all the
assumptions listed for General Differential Q in Wan et al. (2021), these convergence results apply
to General RED Q.

Convergence of the subtask estimates:

Consider the increment to Zi,n (for an arbitrary subtask zi ∈ Z) at each step. Given Equation
14, we can write the increment in Equation C.30 as some constant, subtask-specific fraction of the
increment to Qn. Consequently, we can write the cumulative increment as follows:

Zi,n − Zi,0 = ηzi

n−1∑
j=0

∑
s,a

αν(j,s,a)βi,j(s, a)I{(s, a) ∈ Yj}

= ηzi

n−1∑
j=0

∑
s,a

αν(j,s,a)biδj(s, a)I{(s, a) ∈ Yj}

= ηi

(∑
Qn −

∑
Q0

)
=⇒ Zi,n = ηi

∑
Qn − ηi

∑
Q0 + Zi,0 = ηi

∑
Qn − c, (C.45)

where,

c
.
= ηi

∑
Q0 − Zi,0, and (C.46)

ηi
.
= ηzibi. (C.47)

Now, let f(Zi,n) be shorthand for the subtask function (i.e., R̃n(s, a)). We can substitute Zi,n in
C.28 with C.45 ∀s ∈ S, a ∈ A as follows:

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̃n(s, a)− R̄+max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn}

=⇒ Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
f(Zi,n)− R̄+max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn}

=⇒ Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

f(ηi
∑

Qn︸ ︷︷ ︸
Ẑi,n

−c)− R̄+max
a′

Qn(S
′
n(s, a), a

′)−Qn(s, a)

 I{(s, a) ∈ Yn}

=⇒ Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
f̂(Ẑi,n)− R̄+max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn}
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=⇒ Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̂n − R̄+max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn},

(C.48)

where, R̂n
.
= f̂(Ẑi,n) = f(Zi,n+c) = h(R̃n). Here, h(R̃n) corresponds to the change in R̃n due to

shifting subtask Zi,n by c. Denote the inverse of h(R̃n) (which exists given Assumption C.6) as h−1.

Now consider an MDP, M̂, which has rewards, R̂, corresponding to rewards modified by h from the
MDP M̃, has the same state and action spaces as M̃, and has the transition probabilities defined as:

p̂ (s′, h(r̃) | s, a) .
= p(s′, r̃ | s, a), (C.49)

such that M̂ .
= ⟨S,A, R̂, p̂⟩. It is easy to check that the communicating assumption holds for the

transformed MDP M̂. As such, and given Assumptions C.6 and C.7, the optimal average-reward
for the MDP M̂, ˆ̄r∗, can be written as follows:

ˆ̄r∗ = h(r̄∗). (C.50)

Now, because

q∗(s, a) =
∑
s′,r̃

p(s′, r̃ | s, a)(r̃ +max
a′

q∗(s
′, a′)− r̄∗) (from C.39)

=
∑
s′,r̃

p(s′, r̃ | s, a)(r̃ +max
a′

q∗(s
′, a′)− h−1(ˆ̄r∗)) (from C.50)

=
∑
s′,r̃

p(s′, r̃ | s, a)(h(r̃) + max
a′

q∗(s
′, a′)− ˆ̄r∗) (by linearity of h)

=
∑
s′,r̃

p̂(s′, r̃ | s, a)(r̃ +max
a′

q∗(s
′, a′)− ˆ̄r∗) (from C.49),

we can see that q∗ is a solution of not just the state-action value Bellman equation for the MDP M̃,
but also the state-action value Bellman equation for the transformed MDP M̂.

Next, we can write the optimal subtask value for the MDP M̂, ẑi∗ , as follows:
ẑi∗ = zi∗ + c. (C.51)

We can then combine Equations C.41, C.46, and C.51, which yields:

ẑi∗ = ηi
∑

q∗. (C.52)

Next, we can combine Equation C.45 with the result from Wan et al. (2021) which shows that
Qn → q∗, which yields:

Zi,n → ηi
∑

q∗ − c. (C.53)

Moreover, because ηi
∑

q∗ = ẑi∗ (Equation C.52), we have:
Zi,n → ẑi∗ − c. (C.54)

Finally, because ẑi∗ = zi∗ + c (Equation C.51), we have:
Zi,n → zi∗ a.s. as n→∞. (C.55)

We conclude by considering zi,πt ∀zi ∈ Z , where πt is a greedy policy with respect to Qt. Given
Definition 5.1, and that r̄πt → r̄∗ a.s., it directly follows that zi,πt → zi∗ ∀zi ∈ Z a.s.

This completes the proof of Theorem C.2.1.
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D LEVERAGING THE RED RL FRAMEWORK FOR CVAR OPTIMIZATION

This appendix contains details regarding the adaptation of the RED RL framework for CVaR opti-
mization. We first derive an appropriate subtask function, then use it to adapt the RED RL algorithms
(see Appendix B) for CVaR optimization. In doing so, we arrive at the RED CVaR algorithms, which
are presented in full at the end of this appendix. These RED CVaR algorithms allow us to optimize
CVaR (and VaR) without the use of an augmented state-space or an explicit bi-level optimization.
We also provide a convergence proof for the tabular RED CVaR Q-learning algorithm, which shows
that the VaR and CVaR estimates converge to the optimal long-run VaR and CVaR, respectively.

D.1 A SUBTASK-DRIVEN APPROACH FOR CVAR OPTIMIZATION

In this section, we use the RED RL framework to derive a subtask-driven approach for CVaR op-
timization that does not require an augmented state-space or an explicit bi-level optimization. To
begin, let us consider Equation 7, which is displayed below as Equation D.1 for convenience:

CVaRτ (Rt) = sup
b∈R

E[b− 1

τ
(b−Rt)

+] (D.1a)

= E[VaRτ (Rt)−
1

τ
(VaRτ (Rt)−Rt)

+], (D.1b)

where the CVaR parameter, τ ∈ (0, 1), represents the left τ -quantile of the random variable, Rt,
which corresponds to the observed per-step reward from the MDP.

We can see from Equation D.1 that CVaR can be interpreted as an expectation (or average) of sorts,
which suggests that it may be possible to leverage the average-reward MDP to optimize this expec-
tation, by treating the reward CVaR as the r̄π that we want to optimize. However, this requires that
we know the optimal value of the scalar b, because the expectation in Equation D.1b only holds for
this optimal value (which corresponds to the per-step reward VaR). Unfortunately, this optimal value
is typically not known beforehand, so in order to optimize CVaR, we also need to optimize b.

Importantly, we can utilize RED RL framework to turn the optimization of b into a subtask, such
that CVaR is the primary control objective (i.e., the r̄π that we want to optimize), and VaR (b in
Equation D.1), is the (single) subtask. This is in contrast to existing MDP-based methods, which
typically leverage Equation D.1 when optimizing for CVaR by augmenting the state-space with an
estimate of VaRτ (R) (in this case, b), and solving the bi-level optimization shown in Equation 8,
thereby increasing computational costs.

First, we need to derive a valid subtask function for CVaR that satisfies the requirements of Definition
5.1. As a starting point, let us consider Equation D.1. We can see that if we treat the expression
inside the expectation in Equation D.1 as our subtask function, f (see Definition 5.1), then we have
a piecewise linear subtask function that is invertible with respect to each input given all other inputs,
where the subtask, VaR, is independent of the observed per-step reward. Now, if we directly used
this expression as the subtask function and applied the RED RL framework, then we would have an
estimate of VaR, in this case b, that we would try to optimize in the hopes that we eventually find
our desired solution, such that b = VaR. However, there is nothing in this tentative subtask function
that incentivizes our algorithm to seek out an estimate of b that is close to the actual VaR value. This
means that, hypothetically, our algorithm could find some optimal solution such that b ̸= VaR.

Hence, we need to modify Equation D.1 in such a way that incentivizes our algorithm to seek out
an estimate of b that is close to the actual VaR value. It turns out that we can make the appropriate
modification to Equation D.1 by leveraging a concept from quantile regression (Koenker, 2005).
Quantile regression refers to the process of estimating a predetermined quantile of a probability
distribution from samples. More specifically, let τ ∈ (0, 1) be the τ th quantile (or percentile) that
we are trying to estimate from probability distribution w. Hence, the value that we are interested in
estimating is F−1

w (τ). Quantile regression maintains an estimate, θ, of this value, and updates the
estimate based on samples drawn from w (i.e., y ∼ w) as follows:

θ ←− θ + ηθ(τ − 1{y<θ}), (D.2)

where ηθ is the step size for the update. The estimate for θ will continue to adjust until the equilib-
rium point, θ∗, which corresponds to F−1

w (τ), is reached. In other words, we have:
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0 = E[(τ − 1{y<θ∗})] (D.3a)

= τ − E[1{y<θ∗})] (D.3b)

= τ − P(y < θ∗) (D.3c)

=⇒ θ∗ = F−1
w (τ). (D.3d)

Equivalently, we also have:

0 = E[((1− τ)− 1{y≥θ∗})] (D.4a)

= (1− τ)− E[1{y≥θ∗})] (D.4b)

= (1− τ)− P(y ≥ θ∗) (D.4c)

=⇒ θ∗ = F−1
w (τ). (D.4d)

In our case, we are not interested in performing quantile regression as described in Equation D.2 (as
we will show later in this section, the RED RL framework allows us to use the TD error to update
our estimate of the desired quantile, VaR). However, we can augment Equation D.1 with Equations
D.3 and D.4 as follows:

CVaRτ (Rt) = sup
b∈R

E[b− 1

τ
(b−Rt)

+] (D.5a)

= sup
b∈R

{
E[b− 1

τ
(b−Rt)

+]− 0− 0

}
(D.5b)

= sup
b∈R

{
E[b− 1

τ
(b−Rt)

+]− c10− c20

}
(D.5c)

= sup
b∈R

{
E[b− 1

τ
(b−Rt)

+]− c1E[(τ − 1{Rt<b})]− c2E[((1− τ)− 1{Rt≥b})]

}
(D.5d)

= sup
b∈R

{
E
[
b− 1

τ
(b−Rt)

+ − c1(τ − 1{Rt<b})− c2((1− τ)− 1{Rt≥b})

]}
(D.5e)

= E[VaRτ (Rt)−
1

τ
(VaRτ (Rt)−Rt)

+ − c1
(
τ − 1{Rt<VaRτ (Rt)}

)
. . .

− c2
(
(1− τ)− 1{Rt≥VaRτ (Rt)}

)
],

(D.5f)

where, c1 and c2 are positive scalars. Here, we have essentially added a ‘penalty’ into the expectation
for having a VaR estimate that does not equal the actual VaR value. With this, we have narrowed
the set of possible solutions that maximize the expectation, to those that have an acceptable VaR
estimate. Consequently, we can now adapt Equation D.5 as our subtask function, as follows:

R̃t = VaR− 1

τ
(VaR−Rt)

+ − c1
(
τ − 1{Rt<VaR}

)
− c2

(
(1− τ)− 1{Rt≥VaR}

)
, (D.6)

where, Rt is the observed per-step reward, R̃t is the extended per-step reward, VaR is the value-at-
risk of the observed per-step reward, τ is the CVaR parameter, and c1 and c2 are positive scalars.
Empirically, we found that setting c1 = 1.0 and c2 = (1 − τ ) yielded good results. Importantly,
this is a valid subtask function with the following properties: the average (or expected value) of the
extended reward corresponds to the CVaR of the observed reward, and the optimal average of the
extended reward corresponds to the optimal CVaR of the observed reward. This is formalized as
Corollaries D.1 - D.4 below:
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Corollary D.1. The function presented in Equation D.6 is a valid subtask function.

Proof. The function presented in Equation D.6 is clearly a piecewise linear function that is invertible
with respect to each input given all other inputs. Moreover, the subtask, VaR, is independent of the
observed per-step reward. Hence, this function satisfies Definition 5.1 for the subtask, VaR.

Corollary D.2. If the subtask, VaR (from Equation D.6) is estimated, and such an estimate is equal
to the long-run VaR of the observed reward, then the average (or expected value) of the extended
reward, R̃t, from Equation D.6 is equal to the long-run CVaR of the observed reward.

Proof. This follows directly from Equation D.5f.

Corollary D.3. If the subtask, VaR (from Equation D.6) is estimated, and the resulting average of
the extended reward from Equation D.6 is equal to the long-run CVaR of the observed reward, then
the VaR estimate is equal to the long-run VaR of the observed reward.

Proof. This follows directly from Equation D.5f.

Corollary D.4. A policy that yields an optimal long-run average of the extended reward, R̃t, from
Equation D.6 is a CVaR-optimal policy. In other words, the optimal long-run average of the extended
reward corresponds to the optimal long-run CVaR of the observed reward.

Proof. For a given policy, we know from Equation D.5e that, across a range of VaR estimates, the
best possible long-run average of the extended reward for that policy corresponds to the long-run
CVaR of the observed reward for that same policy. Hence, the best possible long-run average of the
extended reward that can be achieved across various policies and VaR estimates, corresponds to the
optimal long-run CVaR of the observed reward.

As such, we now have a valid subtask function with a subtask, VaR, and an extended reward average
that when optimized, corresponds to the optimal CVaR of the observed reward. We are now ready
to apply the RED RL framework. First, we derive the learning update for our subtask, VaR, using
the methods shown in Theorem 5.1. In particular, we provide a theorem, which is a CVaR-specific
version of Theorem 5.1, which shows that we can optimize our subtask, VaR, using the TD error.

Theorem D.1.1. Given the subtask function presented in Equation D.6, an average-reward MDP
can optimize the VaR estimate using the TD error.

Proof. From Corollary D.1, we know that R̃t = VaR − 1
τ (VaR − Rt)

+ − c1
(
τ − 1{Rt<VaR}

)
−

c2
(
(1− τ)− 1{Rt≥VaR}

)
is a valid subtask function (as per Definition 5.1), where Rt is the ob-

served per-step reward, R̃t is the extended per-step reward whose long-run average, r̄π , is the pri-
mary prediction or control objective, τ is the CVaR parameter, and c1 and c2 are positive scalars.

We can write the TD error for the control case as follows:

δt = R̃t − R̄t +max
a′

Qt(St+1, a
′)−Qt(St, At) (D.7a)

= VaRt −
1

τ
(VaRt −Rt)

+ − c1
(
τ − 1{Rt<VaRt}

)
. . .

− c2
(
(1− τ)− 1{Rt≥VaRt}

)
− R̄t +max

a′
Qt(St+1, a

′)−Qt(St, At).
(D.7b)

where Qt : S × A → R denotes a table of state-action value function estimates, R̄t denotes an
estimate of the average-reward, r̄π , and VaRt is the VaR estimate at time t.
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Similarly, we can incorporate the subtask function into the Bellman equation 4 and solve for VaR as
follows:

qπ(s, a) = Eπ[R̃t − r̄π +max
a′

qπ(St+1, a
′) | St = s,At = a] (D.8a)

= Eπ[VaR− 1

τ
(VaR−Rt)

+ − c1
(
τ − 1{Rt<VaR}

)
. . .

− c2
(
(1− τ)− 1{Rt≥VaR}

)
− r̄π +max

a′
qπ(St+1, a

′) | St = s,At = a]

(D.8b)

=⇒ VaR = E[ϕVaR,t | St = s,At = a], (D.8c)

where,

ϕVaR,t =


−(−c1τ + c2τ − r̄π +maxa′ qπ(St+1, a

′)− qπ(s, a)), Rt ≥ VaR

( τ
1−τ )(

1
τRt − c1(τ − 1)− c2(1− τ)− r̄π +maxa′ qπ(St+1, a

′)− qπ(s, a)), Rt < VaR.

(D.8d)

Here, we use ϕVaR,t to denote the (piecewise) expression inside the expectation in Equation D.8c.
Thus, as in Theorem 5.1, we can utilize the common RL update rule to learn VaR from experience,
which yields the update:

VaRt+1 = VaRt + ηαt[ϕVaR,t − VaRt], (D.9)
where, VaRt is the VaR estimate at time t, and ηαt is the step size. With some algebra, the above
expression can be re-written in terms of the TD error (see Equation D.7), as follows:

VaRt+1 =

{
VaRt − ηαtδt, Rt ≥ VaRt

VaRt + ηαt(
τ

1−τ )δt, Rt < VaRt
, (D.10)

where, Rt is the observed reward at time t, δt is the TD error, ηαt is the step size, and τ is the CVaR
parameter. Importantly, this implies that minimizing the TD error is equivalent to optimizing the
VaR estimate. This completes the proof of Theorem D.1.1.

Hence, we now have an update rule that allows us to optimize VaR using the TD error. Importantly,
this means that we now have all the components needed to utilize the RED algorithms in Appendix
B to optimize CVaR (where CVaR corresponds to the r̄π that we want to optimize). We call these
CVaR-specific algorithms, the RED CVaR algorithms. The full algorithms are included at the end of
this appendix. We now present the tabular RED CVaR Q-learning algorithm, along with a conver-
gence proof which shows that the VaR and CVaR estimates converge to the optimal long-run VaR
and CVaR of the observed reward, respectively.

RED CVaR Q-learning algorithm (tabular): We update a table of estimates, Qt : S × A → R
as follows:

R̃t = VaRt −
1

τ
(VaRt −Rt)

+ − c1
(
τ − 1{Rt<VaRt}

)
− c2

(
(1− τ)− 1{Rt≥VaRt}

)
(D.11a)

δt = R̃t+1 − CVaRt +max
a

Qt(St+1, a)−Qt(St, At) (D.11b)

Qt+1(St, At) = Qt(St, At) + αtδt (D.11c)
Qt+1(s, a) = Qt(s, a), ∀s, a ̸= St, At (D.11d)
CVaRt+1 = CVaRt + ηCVaRαtρtδt (D.11e)

VaRt+1 =

{
VaRt − ηVaRαtδt, Rt ≥ VaRt

VaRt + ηVaRαt(
τ

1−τ )δt, Rt < VaRt
, (D.11f)

where, Rt is the observed reward, VaRt is the VaR estimate, αt is the step size, δt is the TD error,
CVaRt is the CVaR estimate, and ηCVaR , ηVaR are positive scalars.
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We now provide a theorem for our tabular RED CVaR Q-learning algorithm, which shows that
CVaRt converges to the optimal long-run CVaR of the observed reward, CVaR∗, VaRt converges
to the optimal long-run VaR of the observed reward, VaR∗, and Qt converges to a solution of q in
Equation 4, all up to an additive constant:
Theorem D.1.2. The RED CVaR Q-learning algorithm D.11 converges, almost surely, CVaRt to
CVaR∗, VaRt to VaR∗, CVaRπt

to CVaR∗, VaRπt
to VaR∗, and Qt to a solution of q in the Bellman

Equation 4, up to an additive constant, c, where πt is any greedy policy with respect to Qt, if the
following assumptions hold: 1) the MDP is communicating, 2) the solution of q in 4 is unique up to
a constant, 3) the step sizes are decreased appropriately, 4) all the state–action pairs are updated
an infinite number of times, 5) the ratio of the update frequency of the most-updated state–action
pair to the least-updated state–action pair is finite, and 6) the subtask function is in accordance with
Definition 5.1.

Proof. By definition, the RED CVaR Q-learning algorithm D.11 is of the form of the generic RED
Q-learning algorithm 16, where CVaRt corresponds to R̄t and VaRt corresponds to Zi,t for a single
subtask. We also know from Corollary D.1 that the subtask function used is valid. Hence, Theorem
5.3 applies, such that:

i) CVaRt and CVaRπt
converge a.s. to the optimal long-run average, r̄∗, of the extended reward

from the subtask function (i.e., the optimal long-run average of R̃t),

ii) VaRt and VaRπt
converge a.s. to the corresponding optimal subtask value, z∗, and

iii) Qt converges to a solution of q in the Bellman Equation 4,

all up to an additive constant, c.

Hence, to complete the proof, we need to show that r̄∗ = CVaR∗ and z∗ = VaR∗:

From Corollary D.4 we know that the optimal long-run average of the extended reward corresponds
to the optimal long-run CVaR of the observed reward, hence we can conclude that r̄∗ = CVaR∗.
Finally, from Corollary D.3 we can deduce that since CVaRt converges a.s. to CVaR∗, then z∗ must
correspond to VaR∗. This completes the proof.

As such, with the RED CVaR Q-learning algorithm, we now have a way to optimize the long-run
CVaR (and VaR) of the observed reward without the use of an augmented state-space, or an explicit
bi-level optimization.

A natural question to ask would be whether we can extend these convergence results to the prediction
case. In other words, can we show that a tabular RED CVaR TD-learning algorithm will converge to
the long-run VaR and CVaR of the observed reward induced by following a given policy? It turns out
that, because we are not optimizing the expectation in Equation D.5e when doing prediction (we are
only learning it), we cannot guarantee that we will eventually find the optimal VaR estimate, which
implies that we may not recover the CVaR value (since Equation D.5f only holds to the optimal VaR
value). However, this is not to say that a RED CVaR TD-learning algorithm has no use. In fact, we
do use such an algorithm as part of an actor-critic architecture for optimizing CVaR in the inverted
pendulum experiment (see Appendix E). Empirically, as discussed in Appendix E, we find that this
actor-critic approach is able to find the optimal CVaR policy.

We end this section by briefly noting that in the risk measure literature, risk measures are typically
classified into two categories: static or dynamic. This classification is based on the time consistency
of the risk measure that one aims to optimize (Boda and Filar, 2006). Curiously, in our case the CVaR
that we aim to optimize does not fit into either category perfectly. One could make the argument
that the CVaR that we aim to optimize most closely matches the static category, given that there is
some time inconsistency before t → ∞. Conversely, one could make a different argument that the
CVaR that we aim to optimize most closely resembles the dynamic category since the sum over t for
the average-reward is outside of the CVaR operator (see Theorem 1 of Xia et al. (2023)), such that
an optimal deterministic stationary policy exists (unlike the static case; see Bäuerle and Ott (2011)).
This does not affect the significance of our results, but rather suggests that a third category of risk
measures may be needed to capture such nuances that occur in the average-reward setting.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D.2 RED CVAR ALGORITHMS

Below is the pseudocode for the RED CVaR algorithms. Empirically, we found that setting c1 = 1.0
and c2 = (1− τ ) yielded good results.

Algorithm 5 RED CVaR Q-Learning (Tabular)
Input: the policy π to be used (e.g., ϵ-greedy)
Algorithm parameters: step size parameters α, ηCVaR , ηVaR , CVaR parameter τ , scalars c1, c2
Initialize Q(s, a) ∀s, a (e.g. to zero)
Initialize CVaR arbitrarily (e.g. to zero)
Initialize VaR arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = VaR− 1
τ max{VaR−R, 0} − c1(τ − 1{R<VaR})− c2

(
(1− τ)− 1{R≥VaR}

)
δ = R̃− CVaR +maxa Q(S′, a)−Q(S,A)
if R ≥ VaR then

VaR = VaR− ηVaRαδ
else

VaR = VaR + ηVaRα(
τ

1−τ )δ
end if
CVaR = CVaR + ηCVaRαδ
Q(S,A) = Q(S,A) + αδ
S = S′

end while
return Q

Algorithm 6 RED CVaR Actor-Critic
Input: a differentiable state-value function parameterization v̂(s,w); a differentiable policy pa-
rameterization π(a | s,θ)
Algorithm parameters: step size parameters α, ηπ , ηCVaR , ηVaR , CVaR parameter τ , scalars c1, c2
state-value weights w ∈ Rd and policy weights θ ∈ Rd′

(e.g. to 0)
Initialize CVaR arbitrarily (e.g. to zero)
Initialize VaR arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A ∼ π(· | S,θ)
Take action A, observe R,S′

R̃ = VaR− 1
τ max{VaR−R, 0} − c1(τ − 1{R<VaR})− c2

(
(1− τ)− 1{R≥VaR}

)
δ = R̃− CVaR + v̂(S′,w)− v̂(S,w)
if R ≥ VaR then

VaR = VaR− ηVaRαδ
else

VaR = VaR + ηVaRα(
τ

1−τ )δ
end if
CVaR = CVaR + ηCVaRαδ
w = w + αδ∇v̂(S,w)
θ = θ + ηπαδ∇lnπ(A | S,θ)
S = S′

end while
return w, θ
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E NUMERICAL EXPERIMENTS

This appendix contains details regarding the numerical experiments performed as part of this work.
We discuss the experiments performed in the red-pill blue-pill environment (see Appendix F for
more details on the red-pill blue-pill environment), as well as the experiments performed in the
inverted pendulum environment. The aim of the experiments was to contrast and compare the RED
RL algorithms (see Appendix D) with the Differential learning algorithms from Wan et al. (2021)
in the context of CVaR optimization. In particular, we aimed to show how the RED RL algorithms
could be utilized to optimize for CVaR (without the use of an augmented state-space or an explicit bi-
level optimization scheme), and contrast the results to those of the Differential learning algorithms,
which served as a sort of ‘baseline’ to illustrate how our risk-aware approach contrasts a risk-neutral
approach. In other words, we aimed to show whether our algorithms could successfully enable a
learning agent to act in a risk-aware manner instead of the usual risk-neutral manner.

In terms of the algorithms used, Algorithm 5 corresponds to the RED CVaR Q-learning algorithm
used in the red-pill blue-pill experiment, and Algorithm 6 corresponds to the RED CVaR Actor-
Critic algorithm used in the inverted pendulum experiment. In terms of the Differential learning
algorithms used for comparison (see Appendix E.5 for the full algorithms), Algorithm 7 corresponds
to the Differential Q-learning algorithm used in the red-pill blue-pill experiment, and Algorithm 8
corresponds to the Differential Actor-Critic algorithm used in the inverted pendulum experiment.
For all experiments, we set c1 = 1.0 and c2 = (1− τ ) in the RED CVaR algorithms.

E.1 RED-PILL BLUE-PILL EXPERIMENT

In the first experiment, we consider a two-state environment that we created for the purposes of
testing our algorithms. It is called the red-pill blue-pill environment (see Appendix E), where at
every time step an agent can take either a red pill, which takes them to the ‘red world’ state, or a
blue pill, which takes them to the ‘blue world’ state. Each state has its own characteristic reward
distribution, and in this case, the red world state has a reward distribution with a lower (worse) mean
but higher (better) CVaR compared to the blue world state. Hence, we would expect the regular
Differential Q-learning algorithm to learn a policy that prefers to stay in the blue world, and that the
RED CVaR Q-learning algorithm learns a policy that prefers to stay in the red world. This task is
illustrated in Fig. 1a).

For this experiment, we ran both algorithms using various combinations of step sizes for each algo-
rithm. We used an ϵ-greedy policy with a fixed epsilon of 0.1, and a CVaR parameter, τ , of 0.25.
We set all initial guesses to zero. We ran the algorithms for 100k time steps.

For the Differential Q-learning algorithm, we tested every combination of the value function step
size, α ∈ {2e-1, 2e-2, 2e-3, 2e-4, 1/n} (where 1/n refers to a step size sequence that decreases
the step size according to the time step, n), with the average-reward step size, ηα, where η ∈
{1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 30 unique combinations. Each combination was run
25 times using different random seeds, and the results were averaged across the runs. The resulting
(averaged) average-reward over the last 1,000 time steps is displayed in Fig. E.1. As shown in
the figure, a value function step size of 2e-4 and an average-reward η of 1.0 resulted in the highest
average-reward in the final 1,000 time steps in the red-pill blue-pill task. These are the parameters
used to generate the results displayed in Fig. 2a).

For the RED CVaR Q-learning algorithm, we tested every combination of the value function
step size, α ∈ {2e-1, 2e-2, 2e-3, 2e-4, 1/n}, with the average-reward (in this case CVaR) η ∈
{1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, and the VaR η ∈ {1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of
180 unique combinations. Each combination was run 25 times using different random seeds, and
the results were averaged across the runs. The resulting (averaged) reward CVaR over the last 1,000
time steps is displayed in Fig. E.2. As shown in the figure, combinations with larger step sizes con-
verged to the optimal policy within the 100k time steps, and combinations with smaller step sizes
did not (see Section E.3 for more discussion on this point). A value function step size of 2e-2, an
average-reward (CVaR) η of 1e-2, and a VaR η of 1e-2 were used to generate the results displayed
in Figs. 2a) and 3.
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Figure E.1: Step size tuning results for the red-pill blue-pill task when using the Differential Q-
learning algorithm. The average-reward in the final 1,000 steps is displayed for various combinations
of value function and average-reward step sizes.

Figure E.2: Step size tuning results for the red-pill blue-pill task when using the RED CVaR Q-
learning algorithm. Each plot represents a different ηVaR used: a) 2e-4; b) 2e-3; c) 2e-2; d) 2e-1;
e) 1.0; f) 2.0. Within each plot, the reward CVaR in the final 1,000 steps is displayed for various
combinations of value function and average-reward (in this case CVaR) step sizes.
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Fig. E.3a) shows the VaR and CVaR estimates as learning progresses when using the RED CVaR
Q-learning algorithm with the same step sizes used in Figures 2a) and 3. We see that the resulting
VaR and CVaR estimates generally track with what one would expect (similar values, with the VaR
value being slightly larger than the CVaR value). We can see however that these estimates do not
correspond to the actual VaR and CVaR values induced by the policy (as shown in Fig. 2a)). This
is because, as previously mentioned, the solutions to the average-reward MDP Bellman equations
(Equations 3, 4), which in this case include the VaR and CVaR estimates, are only correct up to
a constant. For comparison, we hard-coded the true VaR value and re-ran the same experiment,
and found that the agent still converged to the correct policy, this time with a CVaR estimate that
matched the actual CVaR value. Fig. E.3b) shows the results of this hard-coded VaR run.

Figure E.3: The VaR and CVaR estimates as learning progresses when using the RED CVaR Q-
learning algorithm: a) as per usual, and b) when hard-coding the VaR estimate to the true VaR.

Follow-up Experiment: Varying the CVaR Parameter

Given the results shown in Fig. 2a), we can see that, with proper hyperparameter tuning, the tab-
ular RED CVaR Q-learning algorithm is able to reliably find the optimal CVaR policy for a CVaR
parameter, τ , of 0.25. In the context of the red-pill blue-pill environment, this means that the agent
learns to stay in the red world state because the state has a characteristic reward distribution with
a better (higher) CVaR compared to the blue world state. By contrast, the risk-neutral differential
algorithm yields an average-reward optimal policy that dictates that the agent should stay in the blue
world state because the state has a better (higher) average reward compared to the red world state.

Now consider what would happen if we used the RED CVaR Q-learning algorithm with a τ of 0.99.
By definition, a CVaR corresponding to a τ ≈ 1.0 is equivalent to the average reward. Hence, with
a τ of 0.99, we would expect that the optimal CVaR policy corresponds to staying in the blue world
state (since it has the better average reward). This means that for some τ between 0.25 and 0.99,
there is a critical point where the CVaR-optimal policy changes from staying in the red world (let us
call this the red policy) to staying in the blue world state (let us call this the blue policy).

We can estimate this critical point using simple Monte Carlo (MC). We are able to use MC in this
case because both policies effectively stay in a single state (the red or blue world state), such that
the CVaR of the policies can be estimated by sampling the characteristic reward distribution of each
state, while accounting for the exploration ϵ. Fig. E.4 shows the MC estimate of the CVaR of the
red and blue policies for a range of CVaR parameters, assuming an exploration ϵ of 0.1. Note that
we used the same distribution parameters listed in Appendix F for the red-pill blue-pill environment.
As shown in Fig. E.4, this critical point occurs somewhere around τ ≈ 0.8.

Hence, one way that we can further validate the tabular RED CVaR Q-learning algorithm, is by
re-running the red-pill blue-pill experiment for different CVaR parameters, and seeing if the optimal
CVaR policy indeed changes at a τ ≈ 0.8. Importantly, this allows us to empirically validate whether
the algorithm actually optimizes at the desired risk level. When running this experiment, we used
the same hyperparameters used to generate the results in Fig. 2a), with the exception of using a VaR
η of 1e-1, as this showed slightly better performance for a broader range of CVaR parameters. We
ran the experiment for τ ∈ {0.1, 0.25, 0.5, 0.75, 0.85, 0.9}. For each τ , we performed 10 runs using
different random seeds, and the results were averaged across the runs.
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Figure E.4: Monte Carlo estimates of the CVaR of the red and blue policies for a range of CVaR
parameters in the red-pill blue-pill environment.

Fig. E.5 shows the results of this experiment. In particular, the figure shows a rolling percent of time
that the agent stays in the blue world state as learning progresses (note that we used an exploration
ϵ of 0.1). From the figure, we can see that for τ ∈ {0.1, 0.25, 0.5, 0.75}, the agent learns to stay in
the red world state, and for τ ∈ {0.85, 0.9}, the agent learns to stay in the blue world state. This is
consistent with what we would expect, given that the critical point is τ ≈ 0.8. Hence, these results
further validate that our algorithm is able to optimize at the desired risk level. We end by noting that
for simplicity, we used the same step sizes across the various τ ’s, however, with more robust and τ -
specific hyperparameter tuning, more stable results can be obtained, especially for the experiments
corresponding to τ ∈ {0.85, 0.9}.

Figure E.5: Rolling percent of time that the agent stays in the blue world state as learning progresses
when using the RED CVaR Q-learning algorithm in the red-pill blue-pill tasks for a range of CVaR
parameters. A solid line denotes the mean percent of time spent in the blue world state, and the
corresponding shaded region denotes the 95% confidence interval over 10 runs.
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E.2 INVERTED PENDULUM EXPERIMENT

In the second experiment, we consider the well-known inverted pendulum task, where an agent
learns how to optimally balance an inverted pendulum. We chose this task because it provides us
with opportunity to test our algorithm in an environment where: 1) we must use function approxima-
tion (given the large state and action spaces), and 2) where the policy for the optimal average-reward
and the policy for the optimal reward CVaR is the same policy (i.e., the policy that best balances the
pendulum will yield a limiting reward distribution with both the optimal average-reward and reward
CVaR). This hence allows us to directly compare the performance of our RED algorithms to the
regular Differential learning algorithms, as well as to gauge how function approximation affects the
performance of our algorithms. For this task, we utilized a simple actor-critic architecture (Barto
et al., 1983; Sutton and Barto, 2018) as this allowed us to compare the performance of the (non-
tabular) RED TD-learning algorithm with a (non-tabular) Differential TD-learning algorithm. This
task is illustrated in Fig. 1b).

For this experiment, we ran both algorithms using various combinations of step sizes for each algo-
rithm. We used a fixed CVaR parameter, τ , of 0.1. We set all initial guesses to zero. We ran the
algorithms for 100k time steps. For simplicity, we used tile coding (Sutton and Barto, 2018) for both
the value function and policy parameterizations, where we parameterized a softmax policy. For each
parameterization, we used 32 tilings, each with 8 X 8 tiles. By using a linear function approximator
(i.e., tile coding), the gradients for the value function and policy parameterizations can be simplified
as follows:

∇v̂(s,w) = x(s), (E.1)

∇lnπ(a | s,θ) = xh(s, a)−
∑
ξ∈A

π(ξ | s,θ)xh(s, ξ), (E.2)

where s ∈ S, a ∈ A, x(s) is the state feature vector, and xh(s, a) is the softmax preference vector.

For the RED CVaR Actor-Critic algorithm, we tested every combination of the value function step
size, α ∈ {2e-2, 2e-3, 2e-4, 1/n} (where 1/n refers to a step size sequence that decreases the step
size according to the time step, n), with η’s for the average-reward, VaR, and policy step sizes, ηα,
where η ∈ {1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 500 unique combinations. Each combination
was run 10 times using different random seeds, and the results were averaged across the runs. The
resulting (averaged) reward CVaR over the last 1,000 time steps is displayed in Fig. E.6a) and
the resulting (averaged) average-reward over the last 1,000 time steps is displayed in Fig. E.6b).
As shown in the figure, most combinations allow the algorithm to converge to the optimal policy
that balances the pendulum (as indicated by a reward CVaR and average-reward of zero). A value
function step size of 2e-3, a policy η of 1.0, an average-reward (CVaR) η of 1e-2, and a VaR η of
1e-2 were used to generate the results displayed in Fig. 2b).

For the Differential Actor-Critic algorithm, we tested every combination of the value function step
size, α ∈ {2e-2, 2e-3, 2e-4, 1/n}, with η’s for the average-reward and policy step sizes, ηα, where
η ∈ {1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 100 unique combinations. Each combination was run
10 times using different random seeds, and the results were averaged across the runs. The resulting
(averaged) reward CVaR over the last 1,000 time steps is displayed in Fig. E.6c) and the resulting
(averaged) average-reward over the last 1,000 time steps is displayed in Fig. E.6d). As shown in the
figure, most combinations allow the algorithm to converge to the optimal policy that balances the
pendulum. A value function step size of 2e-3, a policy η of 1.0, and an average-reward η of 1e-3
were used to generate the results displayed in Fig. 2b).
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Figure E.6: Step size tuning results for the inverted pendulum task when using the RED CVaR TD-
learning and Differential TD-learning algorithms (through an actor-critic architecture). Each plot
shows a histogram of either the reward CVaR or average-reward in the last 1,000 steps. More specif-
ically, the histograms show: a) the reward CVaR when using the RED algorithm; b) the average-
reward when using the RED algorithm; c) the reward CVaR when using the Differential algorithm;
d) the average-reward when using the Differential algorithm.

Fig. E.7a) shows the VaR and CVaR estimates as learning progresses when using the RED CVaR
Actor-Critic algorithm with the same step sizes used in Fig. 2b). We see that the resulting VaR
and CVaR estimates generally track with what one would expect (similar values, with the VaR
value being slightly larger than the CVaR value). We can see however that these estimates do not
correspond to the actual VaR and CVaR values induced by the policy (as shown in Fig. 2b)). This
is because, as previously mentioned, the solutions to the average-reward MDP Bellman equations
(Equations 3, 4), which in this case include the VaR and CVaR estimates, are only correct up to a
constant. For comparison, we hard-coded the true VaR value and re-ran the same experiment, and
found that the agent still converged to the correct policy, this time with a CVaR estimate that more
closely matched the actual CVaR value (note that in the inverted pendulum environment, rewards
are capped at zero). Fig. E.7b) shows the results of this hard-coded VaR run.

Figure E.7: The VaR and CVaR estimates as learning progresses when using the RED CVaR TD-
learning algorithm (through an actor-critic architecture): a) as per usual, and b) when hard-coding
the VaR estimate to the true VaR value. Note that in the inverted pendulum environment, rewards
are capped at zero.
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E.3 ADDITIONAL COMMENTARY ON EXPERIMENTAL RESULTS

Red-Pill Blue-Pill: In the red-pill blue-pill task, we can see from Fig. E.2 that for combinations with
large step sizes, the RED CVaR Q-learning algorithm was able to successfully learn a policy, within
the 100k time steps, that prioritizes maximizing the reward CVaR over the average-reward, thereby
achieving a sort of risk-awareness. However, for combinations with smaller step sizes, particularly
for low VaR η’s, the algorithm did not converge in the allotted training period. We re-ran some of
the combinations with constant step sizes for longer training periods, and found that the algorithm
eventually converged to the risk-aware policy given enough training time. For combinations with
the 1/n step size, we found that if the other step sizes in the combination were sufficiently small, the
algorithm would not converge to the correct policy (even with more training time). This suggests
that a more slowly-decreasing step size sequence should be used instead so that the algorithm has
more time to find the correct policy before the step sizes in the sequence become too small.

Inverted Pendulum: In the inverted pendulum task, we can see from Fig. E.6 that both algorithms
achieved similar performance, as shown by the similar histograms for both the reward CVaR and
average-reward during the final 1,000 time steps. These results suggest that both algorithms con-
verged to the same set of (sometimes sub-optimal) policies, as expected.

Overall: In both experiments, we can see that with proper hyperparameter tuning, the RED CVaR
algorithms were able to consistently and reliably find the optimal CVaR policy. The VaR and CVaR
estimates generally tracked with what one would expect (similar values, with the VaR value being
slightly larger than the CVaR value). However, these estimates were not always the same as the
actual VaR and CVaR values induced by the policy because the solutions to the average-reward
MDP Bellman equations are only correct up to a constant. This is typically not a concern, given that
the relative ordering of the policies is usually what is of interest.

E.4 COMPUTE TIME AND RESOURCES

For the red-pill blue-pill hyperparameter tuning, each case (which encompassed a specific combina-
tion of step sizes) took roughly 1 minute (total) to compute all 25 random seed runs for the case on
a single CPU, for an approximate total of 4 CPU hours. For the inverted pendulum hyperparameter
tuning, each case took roughly 5 minutes (total) to compute all 10 random seed runs for the case on
a single CPU, for an approximate total of 50 CPU hours.
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E.5 RISK-NEUTRAL DIFFERENTIAL ALGORITHMS

Below is the pseudocode for the risk-neutral differential algorithms used for comparison in our
experiments.

Algorithm 7 Differential Q-Learning (Tabular)
Input: the policy π to be used (e.g., ϵ-greedy)
Algorithm parameters: step size parameters α, η
Initialize Q(s, a) ∀s, a (e.g. to zero)
Initialize R̄ arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

δ = R− R̄+maxa Q(S′, a)−Q(S,A)
R̄ = R̄+ ηαδ
Q(S,A) = Q(S,A) + αδ
S = S′

end while
return Q

Algorithm 8 Differential Actor-Critic
Input: a differentiable state-value function parameterization v̂(s,w); a differentiable policy pa-
rameterization π(a | s,θ)
Algorithm parameters: step size parameters α, ηπ , η

R̄

state-value weights w ∈ Rd and policy weights θ ∈ Rd′
(e.g. to 0)

Initialize R̄ arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A ∼ π(· | S,θ)
Take action A, observe R,S′

δ = R− R̄+ v̂(S′,w)− v̂(S,w)
R̄ = R̄+ η

R̄
αδ

w = w + αδ∇v̂(S,w)
θ = θ + ηπαδ∇lnπ(A | S,θ)
S = S′

end while
return w, θ
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F RED-PILL BLUE-PILL ENVIRONMENT

This appendix contains the code for the red-pill blue-pill environment introduced in this work. The
environment consists of a two-state MDP, where at every time step an agent can take either a red
pill, which takes them to the ‘red world’ state, or a blue pill, which takes them to the ‘blue world’
state. Each state has its own characteristic reward distribution, and in this case, the red world state
has a reward distribution with a lower (worse) mean but higher (better) CVaR compared to the
blue world state. More specifically, the red world state reward distribution is characterized as a
gaussian distribution with a mean of −0.7 and a standard deviation of 0.05. The blue world state is
characterized by a mixture of two gaussian distributions with means of−1.0 and−0.2, and standard
deviations of 0.05. We assume all rewards are non-positive.

The Python code for the environment is provided below:

import pandas as pd
import numpy as np

c l a s s E n v i r o n m e n t R e d P i l l B l u e P i l l :
def i n i t ( s e l f , d i s t 2 m i x c o e f f i c i e n t = 0 . 5 ) :

# s e t d i s t r i b u t i o n p a r a m e t e r s
s e l f . d i s t 1 = { ’ mean ’ : −0 .7 , ’ s t d e v ’ : 0 .05}
s e l f . d i s t 2 a = { ’ mean ’ : −1 .0 , ’ s t d e v ’ : 0 .05}
s e l f . d i s t 2 b = { ’ mean ’ : −0 .2 , ’ s t d e v ’ : 0 .05}
s e l f . d i s t 2 m i x c o e f f i c i e n t = d i s t 2 m i x c o e f f i c i e n t

# s t a r t s t a t e
s e l f . s t a r t s t a t e = np . random . c h o i c e (

[ ’ r e d w o r l d ’ ,
’ b l u e w o r l d ’ ]

)

def e n v s t a r t ( s e l f , s t a r t s t a t e =None ) :
# r e t u r n i n i t i a l s t a t e
i f pd . i s n u l l ( s t a r t s t a t e ) :

re turn s e l f . s t a r t s t a t e
e l s e :

re turn s t a r t s t a t e

def e n v s t e p ( s e l f , s t a t e , a c t i o n , t e r m i n a l = F a l s e ) :
i f a c t i o n == ’ r e d p i l l ’ :

n e x t s t a t e = ’ r e d w o r l d ’
e l i f a c t i o n == ’ b l u e p i l l ’ :

n e x t s t a t e = ’ b l u e w o r l d ’

i f s t a t e == ’ r e d w o r l d ’ :
r eward = np . random . normal ( l o c = s e l f . d i s t 1 [ ’ mean ’ ] ,

s c a l e = s e l f . d i s t 1 [ ’ s t d e v ’ ] )
e l i f s t a t e == ’ b l u e w o r l d ’ :

d i s t = np . random . c h o i c e ( [ ’ d i s t 2 a ’ , ’ d i s t 2 b ’ ] ,
p =[ s e l f . d i s t 2 m i x c o e f f i c i e n t ,

1 − s e l f . d i s t 2 m i x c o e f f i c i e n t ] )
i f d i s t == ’ d i s t 2 a ’ :

r eward = np . random . normal ( l o c = s e l f . d i s t 2 a [ ’ mean ’ ] ,
s c a l e = s e l f . d i s t 2 a [ ’ s t d e v ’ ] )

e l i f d i s t == ’ d i s t 2 b ’ :
r eward = np . random . normal ( l o c = s e l f . d i s t 2 b [ ’ mean ’ ] ,

s c a l e = s e l f . d i s t 2 b [ ’ s t d e v ’ ] )

re turn min ( 0 , r eward ) , n e x t s t a t e , t e r m i n a l
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