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Abstract—This work demonstrates real-world learning and
adaptation in the context of traversability estimation. We present
a system, Wild Visual Navigation (WVN), which relies on pre-
trained high-dimensional features from a self-supervised visual
transformer with an online supervision scheme, to achieve on-
the-fly traversability learning from a few samples collected in the
field. We validate our system with offline experiments and real-
world navigation deployments, showing that pre-trained features
are fundamental to achieve fast and robust adaptation to new
environments. For more comprehensive details, please refer to
the full-paper version.

I. INTRODUCTION

Traversability estimation is a core capability needed by
ground robots to autonomously navigate in field environ-
ments. Traditionally, occupancy has been used as a proxy
for traversability in structured environments, as most of the
obstacles can be determined via geometric sensing [13]. How-
ever, to achieve navigation in outdoor environments, semantic
understanding is further required. Tasks such as following a
footpath or navigating through high grass require a high level
understanding of the areas that are traversable, which might
be challenging to define for each robotic platform.

Previous works in the field have built upon learned geomet-
ric models [3, 18, 4] or semantic segmentation [12], which
require large labeled datasets. Other approaches designed
strategies to label data automatically from previous robot
experiences via self-supervision Wellhausen et al. [15], Gas-
parino et al. [5], anomaly detection [16], or learning from
demonstrations Ratliff et al. [14], Wulfmeier et al. [17]. Never-
theless, such methods are still trained on robot-specific datasets
and subsequently deployed without further adaptation. The
Learning Applied to Ground Vehicles (LAGR) program [8, 6]
aimed to overcome this challenge, by showing first examples
of systems able to self-supervise machine learning models
trained online. While previous work [5, 16] have focused
on fine-tuning Convolutional Neural Network (CNN) pre-
trained on ImageNet, a recent trend is leveraging expressive
features from vision transformer models pre-trained in a self-
supervised manner [2]. Recent work by Hamilton et al. [7]
showed that the learned features by [2] strongly correlate to
the underlying semantics of the scene and linear probing can
be leveraged to accurately predict the semantics of the scene.

∗Denotes equal contribution. Correspondence to:
jonfrey@ethz.ch, matias@robots.ox.ac.uk.

Learning

Inference

Feature

Extractor

Traversability

score 

MLP

Learning

thread

Proprio-

ception

Input

image

Predicted

traversability

Updated

weights

Segment

features

Supervision

signal

Segment

features 

Mission Graph

Training

batch 

Fig. 1: Wild Visual Navigation (WVN) overview: The system requires
monocular RGB images, which are processed by a pre-trained visual
transformer to extract high-dimensional features. Proprioceptive data
is used to generate supervision signals during operation. Both are
used for online learning and inference of traversability (see Sec. II).

This suggests that such features can be exploited for other
tasks – in particular traversability estimation.

In this work we present Wild Visual Navigation (WVN), a
vision system capable of learning which terrain is traversable
by a robot after a few minutes of manual demonstrations in
the wild. To achieve this, we leverage two main contributions:

• A self-supervision system designed for real-time oper-
ation, which concurrently generates supervision signals
from vision and traversability measurements from pro-
prioception and control performance.

• A learning approach that leverages high-dimensional,
self-supervised visual features extracted using pre-trained
vision transformer models, which are fed into a small
neural network and efficiently trained online.

We validated our approach with ablation studies which com-
pare against similar approaches that are trained in an offline
fashion, demonstrating that we achieve comparable or better
performance in spite of training online. Further, we deployed
our system on the ANYbotics ANYmal C platform to achieve
navigation tasks that are otherwise harder to define by geom-
etry alone.

II. METHOD

A. System Overview

WVN estimates dense traversability from RGB images us-
ing a neural network model learned online, in a self-supervised



Fig. 2: Supervision and mission graphs: (a) The Supervision Graph only stores information about the robot’s footprint in a sliding window;
nodes separated by dsup meters. The Mission Graph stores the data required for online learning over the full mission, nodes apart by dmis.
(b) Supervision is generated by reprojecting the robot’s footprint and traversability scores (indicated by different color) on the images stored
in the Mission Graph.

manner, using labels generated by a robot interacting with its
environment. Our system only requires a brief demonstration
from a human operator for data collection and learning, given
that we leverage visual features from a pre-trained feature
extraction network. The system overview is shown in Fig. 1.

B. Feature Extraction
Given an RGB image I, we first extract dense, pixel-wise

visual feature maps (embeddings) F. In contrast to previous
works based on fine-tuned CNNs, we rely on recent self-
supervised network architectures to leverage a Vision Trans-
former (ViT) trained using the DINO method [2] – DINO-ViT.

To enable real-time operation, we follow previous
works [10] and compute a weak segmentation mask M of the
input image I using superpixels. We use SLIC [1] to extract
100 segments per image. We then average the feature maps
segment-wise resulting in a single embedding fn per segment.

C. Traversability Score Generation
Defining which terrain is traversable or not depends on the

capabilities of the specific platform. We define a continuous
traversability score τ ∈ [0, 1], where 0 is untraversable and
1 fully traversable. The traversability score is given by the
discrepancy between the robot’s current linear (x, y) velocity
as estimated by the robot v, and the reference velocity
command v̄ given by an external human operator or planning
systems. When the robot moves on terrain that is easily
traversable it should closely track the reference command; if it
struggles to track the reference the discrepancy grows, and we
interpret it as a less traversable terrain. Our WVN framework
is independent of the exact implementation of the traversability
score measure and we chose the velocity tracking error based
on its simplicity and interpretability.

D. Supervision and Mission Graphs
To generate online supervision, we accumulate information

about the recent history of operation. Our approach relies on
a short-horizon graph that works as a buffer for traversability
data (Supervision Graph), and a mission-long graph that stores
the training data generated during a mission (Mission Graph);
this is shown in Fig. 2.

1) Supervision Graph: The supervision graph is a ring
buffer that keeps data within a distance dsup. Each node stores
the current time, robot pose, and estimated traversability score
τ (Sec. II-C). This graph generates a footprint track with
traversability scores τ, as shown in Fig. 2a.

2) Mission Graph: The mission graph works as a memory
of the full mission, storing the data required to train the system
online. Each mission node contains the RGB image I, the
weak segmentation mask M and per-segment features fn with
their corresponding traversability supervision τn.

3) Supervision generation: Upon the creation of a new
mission node, we reproject the footprint track and correspond-
ing traversability scores τ onto all the images of the mission
nodes that are within the range of the supervision graph.
The reprojected path is associated to the image segments to
generate per-segment features and traversability score used for
training (Fig. 2b).

E. Traversability and Anomaly Learning

We train a small neural network that regresses the
traversability score τn from a given segment feature fn. It is
implemented as two-layer Multi-Layer Perceptron (MLP) with
[256, 32] unit dense layers and ReLU non-linear activation
functions, with a head that reconstructs the input feature fn,
and another one that predicts the traversability score fn. The
network is trained optimize the following loss:

Ltotal(f) = wtravLtrav(f) + wreco Lreco(f). (1)

where Lreco(f) is defined as the Mean Squared Error (MSE) of
the input and reconstructed feature, Ltrav(f) is the MSE of the
traversability score weighted by an anomaly detection score,
and wtrav and wreco balance the reconstruction and traversabil-
ity regression tasks. We train the network using Adam [9] with
a fixed constant learning rate of 0.001, by sampling random
batches from the Mission Graph, which provides enough
diversity to avoid forgetting during the mission. For more
details about the exact formulation of the training objective and
interaction of anomaly detection and traversability regression,
we refer the reader to the Appendix A.



Fig. 3: Adaptation on real hardware: We tested the online adaptation
capabilities of our system by driving the robot to complete 3 loops
in a park environment (top, route shown in ■). The columns show
different parts of the loop (a,b,c); each row displays the improvement
of the traversability estimate over time and training steps.

III. EXPERIMENTS

We evaluated WVN through online and offline experiments.
The online experiments were executed on a Jetson Orin board,
mounted on an ANYbotics ANYmal C quadruped robot. On
the other hand, we ran the offline experiments on a Nvidia
RTX3080 Laptop GPU with Intel i7-11800H CPU.

A. Fast adaptation on hardware

We first evaluated the fast adaptation capabilities of WVN
while running on the robot. The experiment involved teleoper-
ating the robot around 3 loops of a park environment walking
on grass and dirt, on open areas and around trees.

Fig. 3 illustrates the main outcomes of the experiment,
showing that the system learned to predict robot-specific
traversability over the 3 loops. In particular, section (a) shows
how the robot starts with a very poor segmentation after 9
steps of training (21 s), this greatly improves after 800 steps
(2 min) where it can correctly segment the dirt as traversable
terrain while keeping the tree untraversable. Similar behavior
occurs in section (b) in which the segmentation is conservative
at the beginning but it extends across the other grass patches in
later iterations. Section (c) also illustrates some issues related
to the SLIC segmentation, as some segments of the wooden
wall (step 1186) are incorrectly clustered with patches of the
grass, which is not observed in the other captures.

Training Hilly Forest Grass

Hilly 81.05 ±1.11 82.14 ± 1.78 82.14 ± 0.63
Forest 75.86 ± 2.18 82.45 ±1.10 75.80 ± 2.80
Grass 77.49 ± 4.36 73.22 ± 6.38 78.21 ±2.39

TABLE I: Scene Adaptation: Traversability Accuracy with respect
to the GT labels. Each row corresponds to training on a specific
environment.

B. Kilometer-scale autonomous navigation in the park

In our second hardware experiment we demonstrated that
the system can also be used to achieve preference-aware path-
following behavior as a result of the human demonstrations
and the online learning capabilities of the system. To achieve
this, we used the traversability output of WVN to generate a
traversability map and a local goal in traversable space. Then
a local planner [11] was commanded to follow the proposed
goals while staying in traversable space – consequently fol-
lowing the goal staying areas that were designed as traversable
during the demonstration.

We executed 3 experiments. In all of them we trained the
system for less than 2 min along a footpath, and then we
disabled the learning thread. This ensured that the predicted
traversability only mimicked the human preference learned
during the demonstration run. In the 3 runs the robot was able
to follow the path for hundreds of meters — mostly staying
in the center of the path, avoiding grass, bushes, benches, and
pedestrians. Fig. 4 shows the trajectories followed in each
run, starting from different points in the footpath. For runs
1 and 3 we used the same parameters; in run 2 we tested
relaxing the learning parameters to achieve a less conservative
traversability estimate that required manual interventions.

Overall, we achieved autonomous behavior that would have
been difficult to achieve using only geometry, as the path
boundaries were often geometrically not distinguishable. On
the other hand, instead of training and using a semantic seg-
mentation system to learn all the possible traversable classes
in the park (pavement, gravel path, roadway or grass), we
showed that this short teleoperated demonstration of the gravel
footpath was enough for WVN to generate semantic cues to
achieve the desired path following behavior.

C. Scene Adaptation

For the subsequent 2 experiments, we used an offline
dataset described in the Appendix B. It was collected with
a similar robot in different natural environments involving
roads, footpaths, grass, bushes, and forests; we named them
Hilly, Forest, and Grass. The datasets were split into training,
validation, and testing sets. We used an offline version of
WVN to generate the training labels from self-supervision.
The testing set was hand-labeled into binary classes, based on
expert knowledge driving the robot in such environments.

We first evaluated the performance of WVN when trained
on one environment and tested on all the others, to test the
necessity for online adaptation. Tab. I shows the resulting
accuracy for each scene combination. We observed that in



Fig. 4: Kilometer-scale navigation: We deployed our system to learn to segment the footpath of a park after training for a few steps. We
executed 3 runs starting from different points in the park: ■ run 1 (0.55 km), ■ run 2 (0.5 km), and ■ run 3 (1.4 km). Minor interventions
were applied to guide the robot in intersections; major interventions (⋆) were required for some areas when the robot miss-classified muddy
patches for the path.

Fig. 5: Adaptation Speed vs Dataset Size: The performance measured by the accuracy increases over training as expected. In the limit case
of training for a few steps (50), the performance is equally degraded — independent of the dataset size. A small dataset size is sufficient
for good performance. Please observe the different color scales for each environment. In the Grass environment the color scale is distorted
by an outlier when using 100% of the data after 70 steps.

general the best performance is achieved when testing on the
same training environment as expected, dropping otherwise.

In general, we remark that even though the robot was
deployed within scenes featuring similar semantic classes
(e.g. trees or high grass), on the same day and within a
few kilometers radius, the performance still degraded. This
suggests even worse performance drops for changing seasons
or urban to natural environment scene changes. We argue that
even though this can be hypothetically mitigated by increasing
the amount of training data, this is costly, and online adaptation
in combination with a pre-trained feature extractor provides a
practical solution to enable the deployment of robots in new
or changing environments.

D. Adaptation Speed & Dataset Size

For our final study we investigated how fast can WVN adapt
to the new environments and how many data samples are
needed. To examine this we designed an experiment in which
we trained the network for 1000 steps for different training
dataset sizes, ranging from 10% to 100% of the original size.
We measured the accuracy each 2nd step and every 10%
increment of the dataset size.

As a result, we obtained heatmaps displaying the perfor-
mance evolution across these 2 variables, shown in Fig. 5. For
all environments starting from a randomly initialized network,
we observed that good performance can be achieved within

200 steps. We argue that this is due to use of segments:
adding a single image provides 100 new training samples for
the network. During continuous training, we also observed
some slight fluctuation with respect to the test accuracy. In the
Appendix C the training loss, training accuracy, and example
outputs are illustrated.

IV. CONCLUSION

We presented Wild Visual Navigation (WVN), a system
that leverages the latest advances in pre-trained self-supervised
networks with a scheme to generate supervision signals while a
robot operates, to achieve online, onboard visual traversability
estimation. We validated WVN through different ablation stud-
ies and real-world experiments, illustrating its fast adaptation
capabilities, and 1.4 km closed-loop navigation experiments in
natural scenes. We aim to tackle the current limitations of our
system by exploring data-driven self-supervised methods for
segment extraction, possibly mitigating artifacts induced by
segments containing traversable and untraversable terrain. For
future work specific to legged systems capable to negotiate
challenging terrain, we aim to further close the loop between
WVN’s traversability prediction and feedback provided di-
rectly by the locomotion policy about the traversability of the
terrain.
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Fig. 6: Aerial views of the 3 environments used for offline testing of our system, illustrating the paths used for data collection and scene
examples. The purple ■ trajectories are used for training and validation.

APPENDIX

A. Details: Traversability and Anomaly Learning
During demonstration, we are only capable to collect sparse

labels of the environment, where most areas are traversable.
We assume that all unlabeled (non-traversed areas) are un-
traversable. Additionally, we explicitly model the uncertainty
about the unvisited (and hence, unlabeled) areas by using
anomaly detection techniques to bootstrap a confidence es-
timate. Our formulation also deals with non-stationary data
distributions induced by continuously updating the training
data and model weights.

First, we will elaborate in detail on how a confidence
score for a segment is obtained; and then we will describe
the traversability estimation task which takes as input the
confidence and is jointly trained.

1) Confidence Estimation: To obtain a segment-wise con-
fidence estimate we aim to learn the distribution over all
traversed segment features fn. A encoder-decoder network
fθr

reco is trained to compress the segment feature fn into a
low dimensional latent space and consecutively reconstruct
the original input features fn. The reconstruction loss is given
by the MSE between the predicted features and the original
feature compute over all channels E:

Lreco(fn) = δτn ̸=0
1

E

∑
e

∥fθr
reco(fn,e)− fn,e∥2, (2)

where δτ ̸=0 is 1 if the segments feature traversability score
τn is not zero, and 0 otherwise. The trained network recon-
structs feature embeddings similar to the traversable segments
with small reconstruction loss, while feature embeddings of
unknown segments, i.e, the network was never tasked to
reconstruct (e.g. trees or sky), induce a high reconstruction
loss.

The unbounded reconstruction loss Lreco for a segment is
mapped to a confidence measure c(Lreco) ∈ [0, 1] by first
identifying the mode of the traversed segment losses. For
this we fit a Gaussian distribution N (µpos, σpos) over the

reconstruction losses per batch of the traversed segments (i.e,
positive samples):

ntrav =
∑
f

δτn ̸=0, (3)

µpos =
1

ntrav

∑
f : τn ̸=0

Lreco(fn), (4)

σpos =

√
1

ntrav

∑
f : τn ̸=0

(Lreco(fn)− µpos)
2 (5)

We set the segment confidence to 1 if the loss of the seg-
ment is smaller than µpos and otherwise to the unnormalized
Gaussian likelihood:

c(Lreco(fn)) = exp

(
(Lreco(fn)− µpos)

2

2(σpos kσ)2

)
, (6)

where we introduce the tuning parameter kσ , which allows to
scale the confidence.

2) Traversability Estimation: A small network fθt
trav with a

single channel output is trained to regress on the provided
segment traversability score τ. The loss for traversability
estimation is simply computed by the confidence-weighted
MSE:

Ltrav(f) = δτn=0

∑
n

(1− c(fn)) ∥fθt
trav(fn)− 0∥2+

δτn ̸=0

∑
n

∥fθt
trav(fn)− τn∥2.

Effectively, for segments where a traversability score is
available by interaction the MSE is computed. For unlabeled
segments, the traversability is assumed to be zero but weighted
based on the confidence score. Areas similar to the one
traversed should be assigned a c(f) close to 1, therefore
contributing insignificantly to the total loss. On the other hand
anomaly areas (never traversed before, low c(f) score) induce
a high loss if predicted with a high traversability score by ftrav.



Fig. 7: Training Process: We detail the incremental training process executed by WVN in terms of the loss (top left), accuracy (top right),
and visual examples (bottom).

B. Dataset Overview

TABLE II: Dataset Overview: SELF indicates that only sparse
positive labels are available where the robot walked; GT indicates
human-annotated ground truth segmentation into traversable and
untraversable areas.

Env Split Duration Distance # Traj # Image Label

Hilly Train 512.4 s 262 m 1 920 SELF
Val 121.1 s 66 m 1 230 SELF
Test 1202.2 s 840 m 4 55 GT

Forest⋆ Train 402.1 s 606 m 1 991 SELF
Val 134.0 s 151 m 1 247 SELF
Test 970.5 s 896 m 2 41 GT

Grass Train 860.3 s 857 m 1 2050 SELF
Val 242.5 s 214 m 1 512 SELF
Test 2196.2 s 1224 m 3 113 GT

⋆ Length measured using RTK-GPS and may not reflect the
real-distance traversed within the forest.

For offline analysis we used 3 large-scale datasets, namely:
• Hilly: a hillside with dense vegetation and fruit trees.
• Forest: a fir forest with hiking paths.
• Grass: a grassland area with moderate inclines and vary-

ing vegetation surrounding a small lake.
The datasets are recorded with a teleoperated ANYmal C plat-

form. The main sensing input for our system are monocular,
wide Field of View (FoV) color images from a single global
shutter Sevensense Alphasense Core camera. Fig. 6 shows
aerial views of the paths that were used for data collection, as
well as some samples of the specific areas that were traversed
during this operation.

We organized the collected data into training, validation,
and testing data, which is summarized in Tab. II. The longest
sequence recorded in each site (Fig. 6, shown in purple ■)
is used for training and validation purposes. The first 80%
of the sequence are used to generate training data, with the
remaining 20% kept for validation. The remaining sequences
of each scene are subsampled and exclusively used for testing.

Regarding the labels, we manually segmented images from
the test split into traversable (1) and untraversable (0) classes,
which we named ground truth labels (GT). These binary labels
reflect the intuition of an expert robot operator on which
places are safely accessible for the robot, and were used for
quantitative assessment of the design decisions.

C. Training Process

Fig. 7 shows the training loss accuracy over time, illustrating
some of the fluctuating behavior, as well as example images
of the output segmentation over training.
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