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Abstract

Large language models (LLMs) have witnessed001
remarkable advancements across a spectrum002
of language tasks. Despite great progress,003
mathematical problem-solving is still a par-004
ticularly formidable challenge. Previous stud-005
ies have tried to address this problem by aug-006
menting questions and found that the perfor-007
mance is saturated with more training data.008
To further enhance the complex mathematical009
reasoning capabilities of LLMs, we propose010
EnrichMath, which is fine-tuned on our En-011
richMathQA dataset. EnrichMathQA is con-012
structed by enhancing answers in MATH and013
GSM8K to have a leading summary and re-014
ducing the thought jumping with our proposed015
Enrich Reasoning Idea(ERI) and Enrich Rea-016
soning Solution(ERS) strategies. EnrichMath017
achieves state-of-the-art performance among018
current open-source mathematical models. Our019
EnrichMath-70B achieves 32.5% accuracy on020
the MATH benchmark, outperforming Meta-021
Math by 2.7%. Furthermore, EnrichMath-70B022
achieves an accuracy of 84.1% on GSM8K,023
which is comparable to the methods that use024
external calculation tools.025

1 Introduction026

Recently, large language models (LLMs) have027

demonstrated significant advancements among var-028

ious NLP tasks, such as coding assistance(Chen029

et al., 2021; Li et al., 2023), adherence to instruc-030

tions(Brown et al., 2020; Ouyang et al., 2022), and031

mathematical problem-solving(Collins et al., 2023;032

Imani et al., 2023; Lu et al., 2022). Mathematical033

problem-solving is particularly challenging for cur-034

rent LLMs, as it requires precise multi-step reason-035

ing capabilities. The final answer to a mathematical036

problem highly relies on the accurate output of ev-037

ery previous step, which is very difficult for current038

LLMs to produce. At present, the research com-039

munity is making efforts to increase the mathemat-040

ical problem-solving ability of open-source LLMs041

(such as LLaMA(Touvron et al., 2023a)) since the 042

training recipes of high-ranking models (such as 043

GPT-4(Achiam et al., 2023)) are still close-sourced. 044

To boost the mathematical problem-solving 045

power of open-source LLMs, researchers have 046

mainly developed two strategies: prompt-based 047

and fine-tuning approaches. Prompt-based strate- 048

gies(Fu et al., 2022; Wei et al., 2022) aim to utilize 049

the model’s inherent reasoning abilities through 050

in-context learning without modifying the model’s 051

parameters, such as crafting special prompts and 052

selecting illustrative examples. In contrast, fine- 053

tuning methods(Xu et al., 2023; Longhui Yu, 2023; 054

Chiang et al.; Yuan et al., 2023; Gou et al., 2023; 055

Wang et al., 2023a) finetune the model parame- 056

ters with the output from other well-performed 057

closed-source LLMs. Due to the prompt-based 058

strategy needing to find different prompts for dif- 059

ferent LLMs which is less effective, recent studies 060

are mainly focused on the finetuning-based strat- 061

egy. 062

Training data plays a vital role in finetuning 063

LLMs. Recently proposed MetaMath(Longhui Yu, 064

2023) generates large-scale training data by aug- 065

menting mathematical questions with forward and 066

backward reasoning directions. By finetuning 067

LLaMA-2 on their collected new training data, the 068

finetuned model MetaMath achieves state-of-the- 069

art performance on two popular benchmarks. How- 070

ever, the MetaMath approach mainly focuses on 071

augmenting questions, which could only bootstrap 072

question understanding ability. The model still 073

suffers from hallucinations in the answers such as 074

calculating and logical errors. 075

To enhance the answering ability of LLMs, we 076

introduce two novel methodologies inspired by the 077

process of human practice: Enrich Reasoning Idea 078

(ERI) and Enrich Reasoning Solution (ERS). As 079

illustrated in Fig.1, the ERI sketches the overall 080

solution at the beginning of the answer, which 081

serves as a strategic guide to the following rea- 082
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Figure 1: Overview of the mathematical problem-solving LLM - EnrichMath.(The areas in bold are optimizations
compared to the original answer.)

soning process. The ERS, on the other hand, aims083

to reduce the "thought jumps" that lead to abrupt084

and illogical transitions between steps by adding085

more logical transitions and missing context. It is086

worth noting that, our proposed ESR strictly fol-087

lows the original answer without involving more088

mathematical calculations or symbols. This could089

generate highly accurate enhanced answers that090

would significantly reduce the cost of data collec-091

tion. Combining these two strategies, we enhance092

the reasoning flow of current answers on two popu-093

lar mathematical datasets (MATH(Hendrycks et al.,094

2021) and GSM8K(Cobbe et al., 2021)) to gen-095

erate a new EnrichMathQA dataset. We finetune096

the open-source LLaMA-2 model on the generated097

EnrichMathQA dataset and name the new model098

EnrichMath. By summarizing the ideas of solving099

the problem and filling the logical gap and miss-100

ing contexts in solutions, our proposed EnrichMath101

model achieves state-of-the-art accuracy on both102

datasets.103

Another benefit of our method is that our strategy104

is orthometric to previous question-based methods.105

The recently proposed method MetaMath achieves106

promising performance by augmenting questions.107

However, they found that combining with previ-108

ously proposed mathematical reasoning data re-109

sults in worse performance under data sizes from110

20k to 100k, concluding that "more data is not111

always better". Our method aims to improve the112

answering ability of LLMs, which is complemen-113

tary to previous methods that aim to understand 114

the questions better. Our extended experiments 115

indicate that combining MetaMathQA with our 116

EnrichMathQA could bring further performance 117

improvements, and more data performs better. We 118

encourage the community to continue investigating 119

effective data augmentation methods for mathemat- 120

ical problem-solving. 121

Our contributions can be summarized below: 122

• We propose two strategies to enrich the an- 123

swers in the training data to generate Enrich- 124

MathQA: Enrich Reasoning Idea (ERI) to 125

summarize the idea at the beginning and En- 126

rich Reasoning Solution (ERS) to address the 127

thought jumping in answers. 128

• By fine-tuning the open-source LLaMA- 129

2 model on our collected EnrichMathQA 130

dataset, we obtain the EnrichMath model, 131

which has an excellent performance in solving 132

mathematical problems. 133

• Our methods focus on improving the answer- 134

ing ability, which is orthometric to previous 135

question augmentation methods. Extensive 136

experiments indicate that more data is better 137

based on our strategies. 138

• Our proposed EnrichMath model significantly 139

surpasses current state-of-the-art methods 140

on two popular mathematical benchmarks, 141

MATH and GSM8K. Specifically, Enrich- 142

Math attains an accuracy of 32.5% on the 143
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MATH dataset and 84.1% on GSM8K, mark-144

ing an improvement of 2.7% on MATH over145

MetaMath. Besides, EnrichMath is compa-146

rable to the methods using external tools on147

the GSM8K benchmark, even outperforming148

MathCoder.149

2 Related Work150

2.1 Large Language Model151

LLMs have witnessed significant changes in vari-152

ous natural language processing (NLP) tasks, yield-153

ing unprecedented improvements. These models154

are distinguished by their extensive scale, harness-155

ing tens to hundreds of billions, and even trillions,156

of parameters, trained on vast datasets. LLMs have157

not only demonstrated exceptional performance158

across a wide range of downstream tasks but have159

also shown emergent capabilities that were previ-160

ously unattainable(Zhao et al., 2023).161

LLMs can be divided into two categories:162

closed-source and open-source. Among the163

closed-source models, notable examples include164

OpenAI’s GPT-4, Google’s LaMDA(Thoppilan165

et al., 2022), PaLM(Chowdhery et al., 2023),166

Bard(Manyika and Hsiao, 2023), and DeepMind’s167

Chinchilla(Hoffmann et al., 2022) and Gopher(Rae168

et al., 2021). On the other hand, the open-169

source domain has witnessed a flourishing devel-170

opment of LLMs. EleutherAI contributes GPT-171

NeoX-20B(Black et al., 2022) and GPT-J-6B(Wang172

and Komatsuzaki, 2021). BigScience introduces173

BLOOM(Workshop et al., 2022), whose models174

range from 7B to 176B parameters. The most175

popular model in the open-source LLM com-176

munity comes from Meta’s LLaMA-1(Touvron177

et al., 2023a) and LLaMA-2(Touvron et al., 2023b).178

These models are available in three parameter con-179

figurations: 7B, 13B, and 70B. Building upon the180

LLaMA base model, various models fine-tuned181

on it have emerged, including Alpaca(Taori et al.,182

2023), Vicuna(Chiang et al.), Guanaco(Dettmers183

et al., 2023), WizardLM(Xu et al., 2023), and oth-184

ers. LLaMA has gained popularity in the open-185

source community, providing a versatile founda-186

tion for model fine-tuning and application-specific187

tuning.188

2.2 Mathematical Reasoning of Large189

Language Model190

Mathematical reasoning is a key aspect of human191

intelligence that enables us to comprehend and192

make decisions based on numerical data and lan- 193

guage(Lu et al., 2022). This cognitive faculty 194

is also an important factor in evaluating the ca- 195

pabilities of LLMs. Mathematical reasoning is 196

still a great challenge for LLMs, which struggle 197

with complex computations and symbolic manipu- 198

lations. To improve reasoning capabilities, prompt- 199

based methods are proposed. Chain-of-thought 200

prompting (CoT)(Wei et al., 2022) proposes that 201

LLMs can improve reasoning capabilities by gener- 202

ating reasoning chains through leveraging interme- 203

diate natural language rationales as prompts. Some 204

recent studies also proposed to select in-context- 205

learning examples, since the chosen examples in 206

prompts have a large impact on the accuracy and 207

stability of reasoning(Rubin et al., 2021; Zhang 208

et al., 2022). 209

Fine-tuning is another way to improve reasoning 210

capabilities. WizardMath(Xu et al., 2023) intro- 211

duces an evolutionary instruction method, evolving 212

questions to varying levels of complexity to gener- 213

ate a spectrum of difficulty. MetaMath(Longhui Yu, 214

2023), on the other hand, employs a bootstrapping 215

question approach from diverse perspectives, in- 216

cluding rephrasing, self-verification, and FOBAR 217

questions, thereby increasing the diversity of ques- 218

tions. Despite the progress in question enhance- 219

ment, there remains a paucity of research dedicated 220

to the enhancement of answers to further improve 221

reasoning ability. One method to enhance answers 222

is to extend the reasoning paths by LLMs, but this 223

often results in lower accuracy and higher compu- 224

tational costs(Gou et al., 2023). Besides, recent 225

methodologies have suggested the use of compu- 226

tational tools to improve reasoning accuracy, such 227

as Python(Gou et al., 2023; Wang et al., 2023a), 228

which relies on computation tools to ensure accu- 229

racy. 230

Different from most prior work that focused on 231

augmenting questions, this paper targets answer 232

augmentation, which can be cooperated with the 233

question-enhancing methods to further improve per- 234

formance. Besides, we take a more thorough study 235

in eliciting LLMs’ intrinsic reasoning capabilities 236

to derive solutions rather than relying on external 237

calculation tools. 238

3 Method 239

3.1 Enrich Reasoning Idea 240

In human problem-solving, the initial step typi- 241

cally involves thinking of a solution strategy, which 242
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then guides the systematic derivation of the an-243

swer. However, current mathematical datasets244

(like MATH and GSM8K) typically favor direct245

problem-solving without any pre-thinking or ideas.246

Inspired by this human-like approach to problem-247

solving, we propose the concept of Enrich Reason-248

ing Idea (ERI), enriching the answer by construct-249

ing an idea first. In this way, when answering a250

question, LLMs will generate an idea first, and then251

generate the answer following the idea.252

To construct the dataset, ERI generates a suc-253

cinct yet logically robust idea derived from the254

given answer using good-performance closed-255

source LLMs GPT-4, and the prompt can be found256

in the Appendices. One specific example is illus-257

trated in Example 3.1. ERI pointed out the problem-258

solving trajectory: it begins by applying the volume259

formula to get the radius, followed by employing260

the surface area formula to compute the surface261

area.262

Furthermore, ERI can be seamlessly added to the263

front of the original answer. This integration serves264

to direct the inferential problem-solving trajectory.265

By adhering to this structured premise, LLMs are266

compelled to engage in a stepwise deductive reason-267

ing process following the ideas, thereby mitigating268

the risk of deviation from the intended analytical269

pathway. The incorporation of ERI augments the270

resolution process, yielding a more comprehensive271

and coherent solution narrative.272

3.2 Enrich Reasoning Solution273

Although LLMs have achieved great progress in274

capturing and utilizing knowledge information,275

they still suffer from hallucinations(Zhao et al.,276

2023). In mathematical problem-solving, these277

hallucinations may occur as incorrect solutions or278

reasoning steps that lack a logical basis, often due279

to the model’s inability to fully grasp the context280

or the implicit knowledge assumed in the problem281

statement. We propose that a detailed contextual-282

ization of each reasoning step, with explicit logical283

connections, can mitigate the occurrence of halluci-284

nations to enhance the mathematical reasoning ca-285

pabilities of LLMs. However, many current mathe-286

matical datasets exhibit "thought jumps", omitting287

contexts like some common sense, meanings of288

formula variables, causal relationships, etc.289

To mitigate this issue, we introduce the Enrich290

Reasoning Solution (ERS) strategy, specifically de-291

signed to avoid "thought jumps". ERS bridges292

the gaps in contextual information that often re-293

sult in non-sequitur steps within problem-solving 294

sequences. ERS will not modify the solution path- 295

way, formulas, or calculations in the original an- 296

swer. Instead, ERS aims to supplement the missing 297

context and logical gap in the reasoning process, 298

thereby elucidating the rationale behind each step 299

of the model’s reasoning process. Equipping ERS, 300

the model gains a deeper insight into the internal 301

logic and structural relationships, which helps to 302

bolster the reasoning ability. 303

An example is illustrated in Example 3.2. Com- 304

pared to the original answer, ERS explains in detail 305

what the combination formula means and why it 306

should be used. Furthermore, ERS points out the 307

independence of choosing yogurt flavors and choos- 308

ing toppings, which explains why the number of 309

choices for the two can be multiplied to get the 310

total number of combinations. 311

Most previous augmenting methods on mathe- 312

matical datasets discard the original answers and 313

use LLMs to generate their expected answers. 314

Some request LLMs to give more steps or new 315

reasoning paths. Such data augmentation methods 316

have high requirements for the reasoning ability 317

and accuracy of LLMs. However, GPT-4, which 318

is currently recognized as having strong reasoning 319

capabilities, can only achieve an accuracy of 42.5% 320

on the MATH test set, so half of the data gener- 321

ated in this way may be wrong. This process is 322

resource-intensive and necessitates the reacquisi- 323

tion of erroneous samples. 324

In contrast, given the original questions and an- 325

swers, ERS employs enriching instruction and few- 326

shot prompting to guide LLMs in enriching the 327

original solutions. Compared to other accuracy- 328

low methods, ERS achieves an accuracy of about 329

99.7% when constructing enriched solutions. The 330

key to achieving high accuracy is that ERS does not 331

require LLMs to generate new reasoning pathways, 332

but only enriches existing reasoning steps, which 333

reduces the requirements for LLMs. The prompt 334

can be found in Appendices. 335

Based on the assumption that "thought jumps" 336

in reasoning lead to hallucinations in the model, 337

ERS mandates that the enrichment process must 338

avoid any form of thought jumps, thereby ensuring 339

a seamless and logically coherent solution narrative. 340

Therefore, the enriched answers are not only more 341

rigorous but also exhibit a smooth, step-by-step 342

explanation that is contextually grounded. 343
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Figure 2: Example of Enrich Reasoning Idea

Figure 3: Example of Enrich Reasoning Solution

4 Experiments344

4.1 Datasets345

We propose EnrichMathQA and use it as the train-346

ing dataset. Besides, we evaluate our model on two347

popular benchmarks: MATH and GSM8K.348

MATH This dataset consists of competition-349

level mathematics problems. It encompasses a350

total of 12,500 problems, partitioned into 7,500351

for training and 5,000 for testing. Each problem is352

accompanied by a step-by-step solution and con-353

cludes with a distinct final answer, which is format-354

ted for straightforward verification of the model-355

generated solutions. Notably, the MATH dataset356

spans a broad spectrum of subjects and difficulty357

levels, including seven categories: Prealgebra, Al-358

gebra, Number Theory, Counting and Probability,359

Geometry, Intermediate Algebra, and Precalculus.360

GSM8K Comprising a diverse collection361

of grade school mathematical word problems,362

GSM8K is recognized for its high quality. While363

it is generally considered less challenging than the364

MATH dataset, it similarly provides step-level so-365

lutions with basic arithmetic operations (addition,366

subtraction, multiplication, division). The GSM8K367

dataset contains 8,500 problems, with 7,500 for368

training and 1,000 for testing.369

EnrichMathQA Table 1 illustrates the com-370

position of our novel EnrichMathQA dataset,371

Table 1: Number of samples in our proposed Enrich-
MATHQA.

Datasets ERI ERS
EnrichMATHQA-MATH 35K 35K

EnrichMATHQA-GSM8K 35K 35K

which is constructed by LLM with different tem- 372

peratures. This dataset is enriched based on 373

MATH and GSM8K, containing 70K pairs of 374

high-quality problems and enriched answers(35K 375

from EnrichMathQA-MATH and 35K from 376

EnrichMathQA-GSM8K). Utilizing this compre- 377

hensive EnrichMathQA dataset, we proceeded to 378

conduct a series of experiments on both the MATH 379

and GSM8K benchmarks 380

4.2 Models and Experimental Details 381

We use the most popular and state-of-the-art open- 382

source large language model LLaMA-2 as the base 383

model for finetuning. GPT-4 is used to construct 384

MetaMathQA. 385

Following (Longhui Yu, 2023; Xu et al., 2023), 386

we use the AdamW optimizer to train the model 387

with 3 epochs and the learning rate is set as 2e-5. 388

The batch size is 32 for the 70B model and 128 389

for the 13B model. The ablation study experiments 390

in Table 2 use the same data size of MATH and 391

GSM8K to get a fair comparison. The experiments 392

on analysis of more data for finetuning are also 393
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Figure 4: Example of Case Study in Test Set of MATH

Table 2: Ablation study of ERI, ERS, and MetaMath on
MATH and GSM8K dataset.

Datasets ERI ERS MetaMath Acc(%)
13.5

✓ 17.2
✓ 19.5

MATH ✓ 19.0
✓ ✓ 21.3
✓ ✓ ✓ 22.6

56.8
✓ 72.0

✓ 76.3
GSM8K ✓ 74.2

✓ ✓ 78.8
✓ ✓ ✓ 81.1

based on LLaMA-2-70B and we finally combine394

question bootstrapping and our answers enrichment395

methodologies to get the best performance.396

5 Ablation Study397

To evaluate the effectiveness of our new proposed398

Enrich Reasoning Idea(ERI) and Enrich Reasoning399

Solution(ERS), we conduct the ablation study on400

MATH and GSM8K datasets based on LLaMA-2-401

70B. To make a fair comparison, the training data402

from EnrichMathQA-MATH and EnrichMathQA-403

GSM8K respectively is the same size data as the404

training data of MATH and GSM8K, rather than405

repeatedly sampling to obtain more data. Further-406

more, since our method focuses on enriching an- 407

swers, we combine EnrichMath with MetaMath, 408

which focuses on augmenting questions, to explore 409

whether the combination of them could create new 410

sparks. We also sample MetaMath with the same 411

size as MATH and GSM8K. 412

5.1 Effects of ERI 413

As depicted in Table 2, the baseline model’s ac- 414

curacy is 13.5% on the MATH dataset and 56.8% 415

on the GSM8K dataset. The ablation of ERI is 416

conducted by integrating with ERI and the original 417

answer, which yields an encouraging increase in ac- 418

curacy to 17.2% on MATH and 72.0% on GSM8K, 419

with an improvement of 3.7% and 15.2% respec- 420

tively. It can be seen from the above results that 421

ERI can significantly enhance the model’s reason- 422

ing ability. 423

5.2 Effects of ERS 424

Table 2 depicted the performance of ERS. On 425

the MATH dataset, the accuracy increases from 426

13.5% to 19.5%, achieving a 6% improvement. 427

On GSM8K, ERS also propels the model’s accu- 428

racy from 56.8% to 76.3%, obtaining a 19.5% im- 429

provement. Such huge progress is attributed to the 430

improvement of the answers by the ERS module, 431

which bridges the gaps in contextual information to 432

improve the model’s reasoning ability. It is worth 433
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noting that the improvement of GSM8K is greater434

than that of MATH, with an increase of nearly 20%,435

which shows that ERS improves simpler math prob-436

lems more significantly(Questions from GSM8K437

are easier than MATH).438

Finally, when integrated with ERI and ERS, our439

EnrichMath obtains a best performance of 21.3%440

on MATH and 78.8% on GSM8K. Such significant441

progress demonstrates the positive influence of ERI442

and ERS on the model’s mathematical reasoning443

capabilities and overall accuracy.444

5.3 Effects of Using MetaMath as445

Complement for Question Augmentation446

As we know MetaMath focuses on bootstrapping447

questions, while EnrichMath focuses on enriching448

answers, so these two methods are complementary.449

Therefore, we conducted ablation experiments on450

MetaMath based on EnrichMath to improve further.451

To make a fair comparison, we sampled the aug-452

mented MATH data from MetaMathQA with the453

same size as MATH. GSM8K also performed the454

same operation. As shown in Table 2, by combin-455

ing question and answer augmenting methodolo-456

gies, the model has shown significant improvement.457

It achieves 1.3% and 2.3% improvement over the458

model only equips answer enriching on MATH and459

GSM8K respectively. At the same time, the per-460

formance is even more significant on the model461

equip question bootstrapping, with 3.6% and 6.9%462

improvements on MATH and GSM8K respectively.463

The experiments demonstrate that augmenting464

questions and answers can both bolster the model’s465

reasoning abilities, and their cooperation can fur-466

ther improve the accuracy of the model. Besides,467

with the same amount of data, augmented answers468

are more effective than augmented questions.469

6 Comparison with Prior Works470

6.1 Results on MATH and GSM8K471

As is shown in Table 3, on MATH benchmark,472

comparing with the same open-source large lan-473

guage model without using an external tool(like474

python), our EnrichMath-70B obtains the best ac-475

curacy. EnrichMath-70B achieves 32.5% accuracy,476

with 2.7% improvement compared with MetaMath-477

70B and more than twice the accuracy of LLaMA-478

2-70B. For the 13B model, our EnrichMath also479

achieves the best performance among models of480

the same type achieving 23% accuracy. From the481

above performance, we can see the superiority of482

Table 3: Comparison of testing accuracy to existing
LLMs on GSM8K and MATH test set.† means that
external tools are used. ‡ means that the MetaMath
is finetuned by QLoRA with the batch of 128 from
(Longhui Yu, 2023), while the full finetuned version is
from (Wang et al., 2023b).

Methods Size MATH GSM8K
LLaMA-1 13B 3.9 17.8
LLaMA-2 13B 3.9 28.7

MPT 30B 3.1 15.2
Falcon 40B 2.5 19.6
Vicuna 13B - 27.6

WizardMath 13B 14.0 63.9
MetaMath 13B 22.4 72.3

EnrichMath 13B 23.0 73.1
LLaMA-1 65B 10.6 50.9
LLaMA-2 70B 13.5 56.8
Platypus-2 70B 15 45.9

RFT 70B - 64.8
WizardMath 70B 22.7 81.6
MetaMath‡ 70B 26.6 82.3
MetaMath 70B 29.8 80.4

EnrichMath 70B 32.5 84.1
PAL(LLaMA-2)† 70B 18.3 55.2

MathCoder† 70B 45.1 83.9
TORA† 70B 49.7 84.3

Table 4: Comparison of testing accuracy on MATH
Subtopics(70B).

MATH subtopics WizardMath MetaMath EnrichMath
Intermediate Algebra 7.1 14.28 15.0

Precalculus 12.6 10.8 15.4
Geometry 15.7 20.9 25.9

Number Theory 16.3 23.7 26.7
Counting & Probability 17.3 24.3 28.7

Prealgebra 41.7 46.9 50.0
Algebra 33.3 44.56 47.1
Overall 22.7 29.8 32.5

our ERI and ERS methods compared to other meth- 483

ods. 484

To further analyze the improvement of our 485

method, we show the accuracy of subtopics on 486

MATH in Table 4. Our EnrichMath exceeds Wiz- 487

ardMath and MetaMath among all subtopics. It’s 488

worth noting that EnrichMath achieves 15.4% on 489

the most difficult topic, Precalculus, surpassing 490

MetaMath 4.6% and WizardMath 2.8%. 491

On the GSM8K benchmark, our EnrichMath- 492

70B achieves 84.1%, with 2.5% improvement over 493

WizardMath and 1.8% over MetaMath with the 494

same parameters. Furthermore, the 13B model per- 495

formed even more outstandingly, surpassing Wiz- 496

ardMath by 9.2% and MetaMath by 0.8%. 497

It is noteworthy that the performance of 498

EnrichMath-70B on GSM8K is comparable to that 499

of models utilizing external computational tools, 500

and even outperforms MathCoder. This under- 501

scores the significant potential of using the intrinsic 502
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reasoning capabilities of LLMs without the need503

for additional aids.504

6.2 Analysis on More Data for Fine-tuning505

Figure 5: Performance of more data for fine-tuning on
MATH and GSM8K. (Different colored bars represent
different amounts sampled from MetaMathQA and com-
bined with EnrichMathQA as the training set.)

As we know the data scaling law is significant506

for LLMs. MetaMath demonstrates that more data507

is not always better. By combining the existing508

augmented dataset with MetaMathQA of different509

scales for fine-tuning, they found that more aug-510

mented data hurt the performance. However, it’s511

contrary to our conclusion.512

As shown in Fig.5, we sample 40k, 80k,513

120k from MetaMathQA to combine with Enrich-514

MathQA for fine-tuning LLaMA-2-70B. As data515

scales increase, the performance of the model can516

be further improved, which indicates that more data517

is better based on our strategies.518

6.3 Analysis from a Perplexity Perspective519

Figure 6: Perplexity of Different Method

Following (Longhui Yu, 2023), we calculate the520

perplexity of EnrichMathQA, which is lower than 521

all other methods in Fig.6. The low perplexity 522

also demonstrated that our ERI and ERS methods 523

follow an inherently easy-to-learn nature, which 524

facilitates eliciting the problem-solving abilities of 525

LLMs(Longhui Yu, 2023). 526

6.4 Analysis on Case Study 527

Example 3.3 shows the case study of EnrichMath, 528

SFT(Touvron et al., 2023b), and MetaMath on the 529

test set of MATH. We can see that the solution 530

from SFT is one-sided, as even if the value of a 531

decreases, the value of b may not necessarily in- 532

crease as an odd number. So ultimately b equals 533

1200 is wrong. As for MetaMath, the first step is 534

true, which factors 1200 correctly. However, Meta- 535

Math fails to understand why factoring works and 536

directly chooses 5 as the largest power, resulting in 537

a false answer. In contrast to the above methods, 538

firstly, our EnrichMath illustrates ERI accurately, 539

guiding the following deviated steps to conduct 540

prime factorization of 1200 and get the product of 541

odd prime factors as the final answer. Secondly, 542

EnrichMath demonstrates ERS, which performs 543

correct factorization, and explains that the purpose 544

of factorization is to obtain all non-even factors, 545

including 3 and 5. As a result, EnrichMath gets the 546

final correct answer. 547

7 Conclusion 548

In this paper, we aim to enhance the mathemati- 549

cal problem-solving abilities of open-source LLMs. 550

We introduce a novel answer enhancement method- 551

ology that consists of two key components: En- 552

rich Reasoning Idea (ERI) and Enrich Reasoning 553

Solution (ERS), which provide a concise yet logi- 554

cal robust idea to guide the following reasoning 555

process and bridge the gap of "thought jumps" 556

by enriching existing answers. After enriching 557

the MATH and GSM8K datasets, we got a high- 558

quality dataset called EnrichMathQA. We then 559

finetuned the LLaMA-2 model with our proposed 560

EnrichMathQA dataset and got a state-of-the-art 561

model(EnrichMath) among open-source mathemat- 562

ical models without using external tools. Our 563

EnrichMath-70B achieves 32.5% on MATH and 564

84.1% on GSM8K, outperforming comparable 565

LLMs by a large margin. Our work further demon- 566

strates that with our strategy, more augmented data 567

is better for fine-tuning, providing inspiration for 568

data scaling law in LLMs. 569
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Limitations570

There are two limitations to this work. Firstly,571

our ERI and ERS methods rely on the existing572

answers. If the existing answer is incorrect or lacks573

a valid reasoning process, our proposed ERI and574

ERS cannot rectify it and provide a correct answer.575

Secondly, our EnrichMathQA’s answers are longer576

than normal answers, which needs more resources577

to train and infer.578

Ethics Statement579

We experiment on two mathematical datasets, in-580

cluding GSM8K and MATH, both of which use581

MIT License code. The prompts used in these ex-582

periments are listed in the Appendices, and we want583

to emphasize that none of the prompts contain any584

words that discriminate against any individual or585

group. Furthermore, prompts would not negatively586

impact anyone’s safety in this work.587
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and ERS for GSM8K and MATH respectively. If 760

only ERI is needed, use Example 3.1 directly. To 761

get both ERI and ERS, Example 3.2 or Example 762

3.3 can be used. 763
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