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Abstract

Large language models (LLMs) have witnessed
remarkable advancements across a spectrum
of language tasks. Despite great progress,
mathematical problem-solving is still a par-
ticularly formidable challenge. Previous stud-
ies have tried to address this problem by aug-
menting questions and found that the perfor-
mance is saturated with more training data.
To further enhance the complex mathematical
reasoning capabilities of LLMs, we propose
EnrichMath, which is fine-tuned on our En-
richMathQA dataset. EnrichMathQA is con-
structed by enhancing answers in MATH and
GSMSK to have a leading summary and re-
ducing the thought jumping with our proposed
Enrich Reasoning Idea(ERI) and Enrich Rea-
soning Solution(ERS) strategies. EnrichMath
achieves state-of-the-art performance among
current open-source mathematical models. Our
EnrichMath-70B achieves 32.5% accuracy on
the MATH benchmark, outperforming Meta-
Math by 2.7%. Furthermore, EnrichMath-70B
achieves an accuracy of 84.1% on GSMSK,
which is comparable to the methods that use
external calculation tools.

1 Introduction

Recently, large language models (LLMs) have
demonstrated significant advancements among var-
ious NLP tasks, such as coding assistance(Chen
et al., 2021; Li et al., 2023), adherence to instruc-
tions(Brown et al., 2020; Ouyang et al., 2022), and
mathematical problem-solving(Collins et al., 2023;
Imani et al., 2023; Lu et al., 2022). Mathematical
problem-solving is particularly challenging for cur-
rent LLMs, as it requires precise multi-step reason-
ing capabilities. The final answer to a mathematical
problem highly relies on the accurate output of ev-
ery previous step, which is very difficult for current
LLMs to produce. At present, the research com-
munity is making efforts to increase the mathemat-
ical problem-solving ability of open-source LLMs

(such as LLaMA(Touvron et al., 2023a)) since the
training recipes of high-ranking models (such as
GPT-4(Achiam et al., 2023)) are still close-sourced.

To boost the mathematical problem-solving
power of open-source LLMs, researchers have
mainly developed two strategies: prompt-based
and fine-tuning approaches. Prompt-based strate-
gies(Fu et al., 2022; Wei et al., 2022) aim to utilize
the model’s inherent reasoning abilities through
in-context learning without modifying the model’s
parameters, such as crafting special prompts and
selecting illustrative examples. In contrast, fine-
tuning methods(Xu et al., 2023; Longhui Yu, 2023;
Chiang et al.; Yuan et al., 2023; Gou et al., 2023;
Wang et al., 2023a) finetune the model parame-
ters with the output from other well-performed
closed-source LLLMs. Due to the prompt-based
strategy needing to find different prompts for dif-
ferent LLMs which is less effective, recent studies
are mainly focused on the finetuning-based strat-
egy.

Training data plays a vital role in finetuning
LLMs. Recently proposed MetaMath(Longhui Yu,
2023) generates large-scale training data by aug-
menting mathematical questions with forward and
backward reasoning directions. By finetuning
LLaMA-2 on their collected new training data, the
finetuned model MetaMath achieves state-of-the-
art performance on two popular benchmarks. How-
ever, the MetaMath approach mainly focuses on
augmenting questions, which could only bootstrap
question understanding ability. The model still
suffers from hallucinations in the answers such as
calculating and logical errors.

To enhance the answering ability of LLMs, we
introduce two novel methodologies inspired by the
process of human practice: Enrich Reasoning Idea
(ERI) and Enrich Reasoning Solution (ERS). As
illustrated in Fig.1, the ERI sketches the overall
solution at the beginning of the answer, which
serves as a strategic guide to the following rea-



Question: Krista put 1 cent into her new bank on a Sunday morning. On Monday she put 2 cents into her bank. On Tuesday she put 4 cents into
her bank, and she continued to double the amount of money she put into her bank each day for two weeks. On what day of the week did the total

amount of money in her bank first exceed $2?
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Answer: The formula for a geometric series is

Taking a to be the initial 1-cent deposit and n to be the
number of days Krista had money in her bank so far, we
have the inequality% >200=>1-2"<-200=>
201 <2m

The smallest power of 2 that is greater than 201 is 28 .
Thus, n = 8 and Sunday is 7 days away from day 1.

: To find the day Krista's bank exceeds $2, calculate the sum of her
daily doubled deposits as a geometric series. Identify the smallest power of 2
over $2 and count the days from Sunday to reach this total.

ERS: The total amount of money in her bank forms a geometric series. The
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formula for the sum of a geometric series is , where a is the first term, 7 is
the common ratio, and n is the number of terms.

In this case, a is the initial 1-cent deposit, r is 2 (since she doubles the amount
each day), and n is the number of days Krista had money in her bank so far. We
want to find the smallest n such that the total amount of money in her bank
exceeds $2 or 200 cents.

This gives us the inequality: 11%22" >200=>1-2"<-200=>201<2"
The smallest power of 2 that is greater than 201 is 28 . Thus,n = 8.

Since she started on a Sunday, and there are 7 days in a week, the day of the
week when the total amount of money in her bank first exceeded $2 is Sunday,

which is 7 days away from day 1.

original answer

EnrichMath answer

Figure 1: Overview of the mathematical problem-solving LLM - EnrichMath.(The areas in bold are optimizations

compared to the original answer.)

soning process. The ERS, on the other hand, aims
to reduce the "thought jumps" that lead to abrupt
and illogical transitions between steps by adding
more logical transitions and missing context. It is
worth noting that, our proposed ESR strictly fol-
lows the original answer without involving more
mathematical calculations or symbols. This could
generate highly accurate enhanced answers that
would significantly reduce the cost of data collec-
tion. Combining these two strategies, we enhance
the reasoning flow of current answers on two popu-
lar mathematical datasets (MATH(Hendrycks et al.,
2021) and GSMS8K(Cobbe et al., 2021)) to gen-
erate a new EnrichMathQA dataset. We finetune
the open-source LLaMA-2 model on the generated
EnrichMathQA dataset and name the new model
EnrichMath. By summarizing the ideas of solving
the problem and filling the logical gap and miss-
ing contexts in solutions, our proposed EnrichMath
model achieves state-of-the-art accuracy on both
datasets.

Another benefit of our method is that our strategy
is orthometric to previous question-based methods.
The recently proposed method MetaMath achieves
promising performance by augmenting questions.
However, they found that combining with previ-
ously proposed mathematical reasoning data re-
sults in worse performance under data sizes from
20k to 100k, concluding that "more data is not
always better". Our method aims to improve the
answering ability of LLMs, which is complemen-

tary to previous methods that aim to understand
the questions better. Our extended experiments
indicate that combining MetaMathQA with our
EnrichMathQA could bring further performance
improvements, and more data performs better. We
encourage the community to continue investigating
effective data augmentation methods for mathemat-
ical problem-solving.
Our contributions can be summarized below:

* We propose two strategies to enrich the an-
swers in the training data to generate Enrich-
MathQA: Enrich Reasoning Idea (ERI) to
summarize the idea at the beginning and En-
rich Reasoning Solution (ERS) to address the
thought jumping in answers.

* By fine-tuning the open-source LLaMA-
2 model on our collected EnrichMathQA
dataset, we obtain the EnrichMath model,
which has an excellent performance in solving
mathematical problems.

* Our methods focus on improving the answer-
ing ability, which is orthometric to previous
question augmentation methods. Extensive
experiments indicate that more data is better
based on our strategies.

* QOur proposed EnrichMath model significantly
surpasses current state-of-the-art methods
on two popular mathematical benchmarks,
MATH and GSMS8K. Specifically, Enrich-
Math attains an accuracy of 32.5% on the



MATH dataset and 84.1% on GSM8K, mark-
ing an improvement of 2.7% on MATH over
MetaMath. Besides, EnrichMath is compa-
rable to the methods using external tools on
the GSM8K benchmark, even outperforming
MathCoder.

2 Related Work

2.1 Large Language Model

LLMs have witnessed significant changes in vari-
ous natural language processing (NLP) tasks, yield-
ing unprecedented improvements. These models
are distinguished by their extensive scale, harness-
ing tens to hundreds of billions, and even trillions,
of parameters, trained on vast datasets. LLMs have
not only demonstrated exceptional performance
across a wide range of downstream tasks but have
also shown emergent capabilities that were previ-
ously unattainable(Zhao et al., 2023).

LLMs can be divided into two categories:
closed-source and open-source. Among the
closed-source models, notable examples include
OpenAl's GPT-4, Google’s LaMDA (Thoppilan
et al., 2022), PaLM(Chowdhery et al., 2023),
Bard(Manyika and Hsiao, 2023), and DeepMind’s
Chinchilla(Hoffmann et al., 2022) and Gopher(Rae
et al,, 2021). On the other hand, the open-
source domain has witnessed a flourishing devel-
opment of LLMs. EleutherAl contributes GPT-
NeoX-20B(Black et al., 2022) and GPT-J-6B(Wang
and Komatsuzaki, 2021). BigScience introduces
BLOOM(Workshop et al., 2022), whose models
range from 7B to 176B parameters. The most
popular model in the open-source LLM com-
munity comes from Meta’s LLaMA-1(Touvron
et al., 2023a) and LLaMA-2(Touvron et al., 2023b).
These models are available in three parameter con-
figurations: 7B, 13B, and 70B. Building upon the
LLaMA base model, various models fine-tuned
on it have emerged, including Alpaca(Taori et al.,
2023), Vicuna(Chiang et al.), Guanaco(Dettmers
et al., 2023), WizardLM(Xu et al., 2023), and oth-
ers. LLaMA has gained popularity in the open-
source community, providing a versatile founda-
tion for model fine-tuning and application-specific
tuning.

2.2 Mathematical Reasoning of Large
Language Model

Mathematical reasoning is a key aspect of human
intelligence that enables us to comprehend and

make decisions based on numerical data and lan-
guage(Lu et al., 2022). This cognitive faculty
is also an important factor in evaluating the ca-
pabilities of LLMs. Mathematical reasoning is
still a great challenge for LLMs, which struggle
with complex computations and symbolic manipu-
lations. To improve reasoning capabilities, prompt-
based methods are proposed. Chain-of-thought
prompting (CoT)(Wei et al., 2022) proposes that
LLMs can improve reasoning capabilities by gener-
ating reasoning chains through leveraging interme-
diate natural language rationales as prompts. Some
recent studies also proposed to select in-context-
learning examples, since the chosen examples in
prompts have a large impact on the accuracy and
stability of reasoning(Rubin et al., 2021; Zhang
et al., 2022).

Fine-tuning is another way to improve reasoning
capabilities. WizardMath(Xu et al., 2023) intro-
duces an evolutionary instruction method, evolving
questions to varying levels of complexity to gener-
ate a spectrum of difficulty. MetaMath(Longhui Yu,
2023), on the other hand, employs a bootstrapping
question approach from diverse perspectives, in-
cluding rephrasing, self-verification, and FOBAR
questions, thereby increasing the diversity of ques-
tions. Despite the progress in question enhance-
ment, there remains a paucity of research dedicated
to the enhancement of answers to further improve
reasoning ability. One method to enhance answers
is to extend the reasoning paths by LLMs, but this
often results in lower accuracy and higher compu-
tational costs(Gou et al., 2023). Besides, recent
methodologies have suggested the use of compu-
tational tools to improve reasoning accuracy, such
as Python(Gou et al., 2023; Wang et al., 2023a),
which relies on computation tools to ensure accu-
racy.

Different from most prior work that focused on
augmenting questions, this paper targets answer
augmentation, which can be cooperated with the
question-enhancing methods to further improve per-
formance. Besides, we take a more thorough study
in eliciting LLMS’ intrinsic reasoning capabilities
to derive solutions rather than relying on external
calculation tools.

3 Method

3.1 Enrich Reasoning Idea

In human problem-solving, the initial step typi-
cally involves thinking of a solution strategy, which



then guides the systematic derivation of the an-
swer. However, current mathematical datasets
(like MATH and GSMS8K) typically favor direct
problem-solving without any pre-thinking or ideas.
Inspired by this human-like approach to problem-
solving, we propose the concept of Enrich Reason-
ing Idea (ERI), enriching the answer by construct-
ing an idea first. In this way, when answering a
question, LLLMs will generate an idea first, and then
generate the answer following the idea.

To construct the dataset, ERI generates a suc-
cinct yet logically robust idea derived from the
given answer using good-performance closed-
source LLMs GPT-4, and the prompt can be found
in the Appendices. One specific example is illus-
trated in Example 3.1. ERI pointed out the problem-
solving trajectory: it begins by applying the volume
formula to get the radius, followed by employing
the surface area formula to compute the surface
area.

Furthermore, ERI can be seamlessly added to the
front of the original answer. This integration serves
to direct the inferential problem-solving trajectory.
By adhering to this structured premise, LLMs are
compelled to engage in a stepwise deductive reason-
ing process following the ideas, thereby mitigating
the risk of deviation from the intended analytical
pathway. The incorporation of ERI augments the
resolution process, yielding a more comprehensive
and coherent solution narrative.

3.2 Enrich Reasoning Solution

Although LLMs have achieved great progress in
capturing and utilizing knowledge information,
they still suffer from hallucinations(Zhao et al.,
2023). In mathematical problem-solving, these
hallucinations may occur as incorrect solutions or
reasoning steps that lack a logical basis, often due
to the model’s inability to fully grasp the context
or the implicit knowledge assumed in the problem
statement. We propose that a detailed contextual-
ization of each reasoning step, with explicit logical
connections, can mitigate the occurrence of halluci-
nations to enhance the mathematical reasoning ca-
pabilities of LLMs. However, many current mathe-
matical datasets exhibit "thought jumps", omitting
contexts like some common sense, meanings of
formula variables, causal relationships, etc.

To mitigate this issue, we introduce the Enrich
Reasoning Solution (ERS) strategy, specifically de-
signed to avoid "thought jumps". ERS bridges
the gaps in contextual information that often re-

sult in non-sequitur steps within problem-solving
sequences. ERS will not modify the solution path-
way, formulas, or calculations in the original an-
swer. Instead, ERS aims to supplement the missing
context and logical gap in the reasoning process,
thereby elucidating the rationale behind each step
of the model’s reasoning process. Equipping ERS,
the model gains a deeper insight into the internal
logic and structural relationships, which helps to
bolster the reasoning ability.

An example is illustrated in Example 3.2. Com-
pared to the original answer, ERS explains in detail
what the combination formula means and why it
should be used. Furthermore, ERS points out the
independence of choosing yogurt flavors and choos-
ing toppings, which explains why the number of
choices for the two can be multiplied to get the
total number of combinations.

Most previous augmenting methods on mathe-
matical datasets discard the original answers and
use LLMs to generate their expected answers.
Some request LLMs to give more steps or new
reasoning paths. Such data augmentation methods
have high requirements for the reasoning ability
and accuracy of LLMs. However, GPT-4, which
is currently recognized as having strong reasoning
capabilities, can only achieve an accuracy of 42.5%
on the MATH test set, so half of the data gener-
ated in this way may be wrong. This process is
resource-intensive and necessitates the reacquisi-
tion of erroneous samples.

In contrast, given the original questions and an-
swers, ERS employs enriching instruction and few-
shot prompting to guide LLMs in enriching the
original solutions. Compared to other accuracy-
low methods, ERS achieves an accuracy of about
99.7% when constructing enriched solutions. The
key to achieving high accuracy is that ERS does not
require LLMs to generate new reasoning pathways,
but only enriches existing reasoning steps, which
reduces the requirements for LLMs. The prompt
can be found in Appendices.

Based on the assumption that "thought jumps"
in reasoning lead to hallucinations in the model,
ERS mandates that the enrichment process must
avoid any form of thought jumps, thereby ensuring
a seamless and logically coherent solution narrative.
Therefore, the enriched answers are not only more
rigorous but also exhibit a smooth, step-by-step
explanation that is contextually grounded.



/Question: The volume of a given sphere is 36w cubic inches. How many square inches are in its surface area? Express your
answer in terms of 7.
Original Answer: The volume of a sphere with radius 7 is gnr3. Here, we have i; nr3 = 36 m. Dividing both sides by g T
yields 72 = 27; cube rooting both sides yields 7 = 3. The surface area of a sphere with radius r is 47r2; here, our surface area is
4m(3%) = 36m
Enrich Reasoning Idea: The solution involves two main steps:
1. Use the volume formula for a sphere to find the radius.

\_2. Use the radius to calculate the surface area using the sphere's surface area formula.

Figure 2: Example of Enrich Reasoning Idea

Question: A yogurt shop sells four flavors of yogurt and has six different toppings. How many combinations of one flavor and
two different toppings are available?

Original Answer: There are 4 choices of flavor, and (g) = 15 ways to choose two of the six toppings. The total number of
combinations is 4 X 15 = 60.

Enrich Reasoning Solution: There are 4 choices of flavor. Since we are choosing 2 toppings out of 6, we can use the

!
combination formula ('r') = %, where n is the total number of items, and 7 is the number of items to choose. In this
case,n = 6 and r = 2, so we have (g) = 15 ways to choose two of the six toppings.

Finally, since the choice of flavor and the choice of toppings are independent, we multiply the number of choices for each
\to get the total number of combinations. Therefore, the total number of combinations is 4 X 15 = 60.

Figure 3: Example of Enrich Reasoning Solution

4 Experiments

4.1 Datasets

We propose EnrichMathQA and use it as the train-
ing dataset. Besides, we evaluate our model on two
popular benchmarks: MATH and GSM8K.

MATH This dataset consists of competition-
level mathematics problems. It encompasses a
total of 12,500 problems, partitioned into 7,500
for training and 5,000 for testing. Each problem is
accompanied by a step-by-step solution and con-
cludes with a distinct final answer, which is format-
ted for straightforward verification of the model-
generated solutions. Notably, the MATH dataset
spans a broad spectrum of subjects and difficulty
levels, including seven categories: Prealgebra, Al-
gebra, Number Theory, Counting and Probability,
Geometry, Intermediate Algebra, and Precalculus.

GSMS8K Comprising a diverse collection
of grade school mathematical word problems,
GSMBSK is recognized for its high quality. While
it is generally considered less challenging than the
MATH dataset, it similarly provides step-level so-
lutions with basic arithmetic operations (addition,
subtraction, multiplication, division). The GSM8K
dataset contains 8,500 problems, with 7,500 for
training and 1,000 for testing.

EnrichMathQA Table 1 illustrates the com-
position of our novel EnrichMathQA dataset,

Table 1: Number of samples in our proposed Enrich-
MATHQA.

Datasets ERI ERS
EnrichMATHQA-MATH 35K 35K
EnrichMATHQA-GSM8K 35K 35K

which is constructed by LLLM with different tem-
peratures. This dataset is enriched based on
MATH and GSMSK, containing 70K pairs of
high-quality problems and enriched answers(35K
from EnrichMathQA-MATH and 35K from
EnrichMathQA-GSMS8K). Utilizing this compre-
hensive EnrichMathQA dataset, we proceeded to
conduct a series of experiments on both the MATH
and GSMS8K benchmarks

4.2 Models and Experimental Details

We use the most popular and state-of-the-art open-
source large language model LLaMA-2 as the base
model for finetuning. GPT-4 is used to construct
MetaMathQA.

Following (Longhui Yu, 2023; Xu et al., 2023),
we use the AdamW optimizer to train the model
with 3 epochs and the learning rate is set as 2e-5.
The batch size is 32 for the 70B model and 128
for the 13B model. The ablation study experiments
in Table 2 use the same data size of MATH and
GSMBSK to get a fair comparison. The experiments
on analysis of more data for finetuning are also



Question: The product ab = 1200, a is an integer, and b is an odd integer. What is the largest possible value of b?

SFT Answer: Since b is odd, it can be written as 2k + 1, where k is an integer. Thus, ab = a(2k + 1) = 2ak + a = 1200. Asa
is an integer, the largest possible value of b is when a = 1, in which case b = 1200 (and k = 599). If b is any larger, then a becomes a
fraction, so b = 1200 is the largest possible value. (x)

MetaMath Answer: Since a is an integer, b must be a factor of 1200.

The prime factorization of 1200 is 23 x 3 X 52.

To maximize b, we want to choose the largest power of 5, which is 52 = 25.

Therefore, the largest possible value of b is 25.

The answer is: 25. (x)

QOur Answer: To find the largest possible value of b, consider the prime factorization of 1200 and the fact that b must
be odd. Since b cannot include the factor of 2 present in 1200, the largest odd factor of 1200 that can be b is the product of the
odd prime factors raised to the appropriate power.

(ERS) To solve this, we first express 1200 as a product of its prime factors:

1200 = 23 x 3 x52
Since b is an odd integer, it cannot include the factor of 2 that is present in the prime factorization of 1200. Therefore, b must be
composed only of the odd prime factors of 1200, which are 3 and 5. To maximize b, we should use the highest powers of these

primes that are factors of 1200.

The highest power of 3 that divides 1200 is 31, and the highest power of 5 is 52, Multiplying these together gives us the largest
possible value for b :

b=3'x52=3x25=75

Therefore, the largest possible value of b is 75.
The answer is: 75. (\/)

Figure 4: Example of Case Study in Test Set of MATH

Table 2: Ablation study of ERI, ERS, and MetaMath on

MATH and GSMS8K dataset.

Datasets ERI ERS MetaMath Acc(%)

13.5

v 17.2

v 19.5

MATH v 19.0

v v 21.3

v v v 22.6

56.8

v 72.0

v 76.3

GSMS8K v 74.2

v v 78.8

v v v 81.1

based on LLaMA-2-70B and we finally combine
question bootstrapping and our answers enrichment
methodologies to get the best performance.

5 Ablation Study

To evaluate the effectiveness of our new proposed
Enrich Reasoning Idea(ERI) and Enrich Reasoning
Solution(ERS), we conduct the ablation study on
MATH and GSMSK datasets based on LLaMA-2-
70B. To make a fair comparison, the training data
from EnrichMathQA-MATH and EnrichMathQA-
GSMSK respectively is the same size data as the
training data of MATH and GSMS8K, rather than
repeatedly sampling to obtain more data. Further-

more, since our method focuses on enriching an-
swers, we combine EnrichMath with MetaMath,
which focuses on augmenting questions, to explore
whether the combination of them could create new
sparks. We also sample MetaMath with the same
size as MATH and GSMS8K.

5.1 Effects of ERI

As depicted in Table 2, the baseline model’s ac-
curacy is 13.5% on the MATH dataset and 56.8%
on the GSM8K dataset. The ablation of ERI is
conducted by integrating with ERI and the original
answer, which yields an encouraging increase in ac-
curacy to 17.2% on MATH and 72.0% on GSM8K,
with an improvement of 3.7% and 15.2% respec-
tively. It can be seen from the above results that
ERI can significantly enhance the model’s reason-
ing ability.

5.2 Effects of ERS

Table 2 depicted the performance of ERS. On
the MATH dataset, the accuracy increases from
13.5% to 19.5%, achieving a 6% improvement.
On GSMBSK, ERS also propels the model’s accu-
racy from 56.8% to 76.3%, obtaining a 19.5% im-
provement. Such huge progress is attributed to the
improvement of the answers by the ERS module,
which bridges the gaps in contextual information to
improve the model’s reasoning ability. It is worth



noting that the improvement of GSM8K is greater
than that of MATH, with an increase of nearly 20%,
which shows that ERS improves simpler math prob-
lems more significantly(Questions from GSM8K
are easier than MATH).

Finally, when integrated with ERI and ERS, our
EnrichMath obtains a best performance of 21.3%
on MATH and 78.8% on GSMS8K. Such significant
progress demonstrates the positive influence of ERI
and ERS on the model’s mathematical reasoning
capabilities and overall accuracy.

5.3 Effects of Using MetaMath as
Complement for Question Augmentation

As we know MetaMath focuses on bootstrapping
questions, while EnrichMath focuses on enriching
answers, so these two methods are complementary.
Therefore, we conducted ablation experiments on
MetaMath based on EnrichMath to improve further.
To make a fair comparison, we sampled the aug-
mented MATH data from MetaMathQA with the
same size as MATH. GSMSK also performed the
same operation. As shown in Table 2, by combin-
ing question and answer augmenting methodolo-
gies, the model has shown significant improvement.
It achieves 1.3% and 2.3% improvement over the
model only equips answer enriching on MATH and
GSMBSK respectively. At the same time, the per-
formance is even more significant on the model
equip question bootstrapping, with 3.6% and 6.9%
improvements on MATH and GSMS8K respectively.

The experiments demonstrate that augmenting
questions and answers can both bolster the model’s
reasoning abilities, and their cooperation can fur-
ther improve the accuracy of the model. Besides,
with the same amount of data, augmented answers
are more effective than augmented questions.

6 Comparison with Prior Works

6.1 Results on MATH and GSMSK

As is shown in Table 3, on MATH benchmark,
comparing with the same open-source large lan-
guage model without using an external tool(like
python), our EnrichMath-70B obtains the best ac-
curacy. EnrichMath-70B achieves 32.5% accuracy,
with 2.7% improvement compared with MetaMath-
70B and more than twice the accuracy of LLaMA-
2-70B. For the 13B model, our EnrichMath also
achieves the best performance among models of
the same type achieving 23% accuracy. From the
above performance, we can see the superiority of

Table 3: Comparison of testing accuracy to existing
LLMs on GSM8K and MATH test set.” means that
external tools are used. ¥ means that the MetaMath
is finetuned by QLoRA with the batch of 128 from
(Longhui Yu, 2023), while the full finetuned version is
from (Wang et al., 2023b).

Methods Size  MATH GSM8K
LLaMA-1 13B 39 17.8
LLaMA-2 13B 39 28.7
MPT 30B 3.1 15.2
Falcon 40B 2.5 19.6
Vicuna 13B - 27.6
WizardMath 13B 14.0 63.9
MetaMath 13B 224 72.3

EnrichMath 13B 23.0 73.1
LLaMA-1 65B  10.6 50.9
LLaMA-2 70B 135 56.8
Platypus-2 70B 15 459

RFT 70B - 64.8
WizardMath ~ 70B  22.7 81.6
MetaMath? 70B  26.6 82.3
MetaMath 70B  29.8 80.4
EnrichMath 70B 32.5 84.1
PAL(LLaMA-2)f 70B  18.3 55.2
MathCoderf 70B  45.1 83.9
TORA' 70B  49.7 84.3

Table 4: Comparison of testing accuracy on MATH
Subtopics(70B).

MATH subtopics WizardMath MetaMath EnrichMath

Intermediate Algebra 7.1 14.28 15.0
Precalculus 12.6 10.8 154
Geometry 15.7 20.9 25.9
Number Theory 16.3 23.7 26.7
Counting & Probability 17.3 24.3 28.7
Prealgebra 41.7 46.9 50.0
Algebra 333 44.56 47.1
Overall 22.7 29.8 325

our ERI and ERS methods compared to other meth-
ods.

To further analyze the improvement of our
method, we show the accuracy of subtopics on
MATH in Table 4. Our EnrichMath exceeds Wiz-
ardMath and MetaMath among all subtopics. It’s
worth noting that EnrichMath achieves 15.4% on
the most difficult topic, Precalculus, surpassing
MetaMath 4.6% and WizardMath 2.8%.

On the GSM8K benchmark, our EnrichMath-
70B achieves 84.1%, with 2.5% improvement over
WizardMath and 1.8% over MetaMath with the
same parameters. Furthermore, the 13B model per-
formed even more outstandingly, surpassing Wiz-
ardMath by 9.2% and MetaMath by 0.8%.

It is noteworthy that the performance of
EnrichMath-70B on GSMSK is comparable to that
of models utilizing external computational tools,
and even outperforms MathCoder. This under-
scores the significant potential of using the intrinsic



reasoning capabilities of LLMs without the need
for additional aids.

6.2 Analysis on More Data for Fine-tuning
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Figure 5: Performance of more data for fine-tuning on
MATH and GSMSK. (Different colored bars represent
different amounts sampled from MetaMathQA and com-
bined with EnrichMathQA as the training set.)

As we know the data scaling law is significant
for LLMs. MetaMath demonstrates that more data
is not always better. By combining the existing
augmented dataset with MetaMathQA of different
scales for fine-tuning, they found that more aug-
mented data hurt the performance. However, it’s
contrary to our conclusion.

As shown in Fig.5, we sample 40k, 80k,
120k from MetaMathQA to combine with Enrich-
MathQA for fine-tuning LLaMA-2-70B. As data
scales increase, the performance of the model can
be further improved, which indicates that more data
is better based on our strategies.

6.3 Analysis from a Perplexity Perspective
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Figure 6: Perplexity of Different Method

Following (Longhui Yu, 2023), we calculate the

perplexity of EnrichMathQA, which is lower than
all other methods in Fig.6. The low perplexity
also demonstrated that our ERI and ERS methods
follow an inherently easy-to-learn nature, which
facilitates eliciting the problem-solving abilities of
LLMs(Longhui Yu, 2023).

6.4 Analysis on Case Study

Example 3.3 shows the case study of EnrichMath,
SFT(Touvron et al., 2023b), and MetaMath on the
test set of MATH. We can see that the solution
from SFT is one-sided, as even if the value of a
decreases, the value of b may not necessarily in-
crease as an odd number. So ultimately b equals
1200 is wrong. As for MetaMath, the first step is
true, which factors 1200 correctly. However, Meta-
Math fails to understand why factoring works and
directly chooses 5 as the largest power, resulting in
a false answer. In contrast to the above methods,
firstly, our EnrichMath illustrates ERI accurately,
guiding the following deviated steps to conduct
prime factorization of 1200 and get the product of
odd prime factors as the final answer. Secondly,
EnrichMath demonstrates ERS, which performs
correct factorization, and explains that the purpose
of factorization is to obtain all non-even factors,
including 3 and 5. As a result, EnrichMath gets the
final correct answer.

7 Conclusion

In this paper, we aim to enhance the mathemati-
cal problem-solving abilities of open-source LLM:s.
We introduce a novel answer enhancement method-
ology that consists of two key components: En-
rich Reasoning Idea (ERI) and Enrich Reasoning
Solution (ERS), which provide a concise yet logi-
cal robust idea to guide the following reasoning
process and bridge the gap of "thought jumps"
by enriching existing answers. After enriching
the MATH and GSMS8K datasets, we got a high-
quality dataset called EnrichMathQA. We then
finetuned the LLaMA-2 model with our proposed
EnrichMathQA dataset and got a state-of-the-art
model(EnrichMath) among open-source mathemat-
ical models without using external tools. Our
EnrichMath-70B achieves 32.5% on MATH and
84.1% on GSMB8K, outperforming comparable
LLMs by a large margin. Our work further demon-
strates that with our strategy, more augmented data
is better for fine-tuning, providing inspiration for
data scaling law in LL.Ms.



Limitations

There are two limitations to this work. Firstly,
our ERI and ERS methods rely on the existing
answers. If the existing answer is incorrect or lacks
a valid reasoning process, our proposed ERI and
ERS cannot rectify it and provide a correct answer.
Secondly, our EnrichMathQA’s answers are longer
than normal answers, which needs more resources
to train and infer.

Ethics Statement

We experiment on two mathematical datasets, in-
cluding GSM8K and MATH, both of which use
MIT License code. The prompts used in these ex-
periments are listed in the Appendices, and we want
to emphasize that none of the prompts contain any
words that discriminate against any individual or
group. Furthermore, prompts would not negatively
impact anyone’s safety in this work.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality. 2023. URL https://lmsys.
org/blog/2023-03-30-vicuna, 1(2):3.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language

modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Katherine M Collins, Albert Q Jiang, Simon Frieder,
Lionel Wong, Miri Zilka, Umang Bhatt, Thomas
Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum,
William Hart, et al. 2023. Evaluating language
models for mathematics through interactions. arXiv
preprint arXiv:2306.01694.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark,
and Tushar Khot. 2022. Complexity-based prompt-
ing for multi-step reasoning. arXiv preprint
arXiv:2210.00720.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al.
2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Han Shi Jincheng Yu Zhengying Liu Yu Zhang James
T Kwok Zhenguo Li Longhui Yu, Weisen Jiang.
2023. Metamath: Bootstrap your own mathemat-
ical questions for large language. arXiv preprint
arXiv:2309.12284.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and
Kai-Wei Chang. 2022. A survey of deep learn-
ing for mathematical reasoning. arXiv preprint
arXiv:2212.10535.



James Manyika and Sissie Hsiao. 2023. An overview
of bard: an early experiment with generative ai. AL
Google Static Documents, 2.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2023a. Math-
coder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint
arXiv:2310.03731.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
2023b. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. CoRR,
abs/2312.08935.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,

10

et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ili¢, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, Francgois Yvon, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuangi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Appendices

Prompt

Example A.1 shows the prompt of ERI. Example
A.2 and Example A.3 show the prompt of both ERI
and ERS for GSMS8K and MATH respectively. If
only ERI is needed, use Example 3.1 directly. To
get both ERI and ERS, Example 3.2 or Example
3.3 can be used.



You are a perfect assistant for answers. According to the answer I give you, I hope you give the idea of the answer to the respondent rather than
the answer directly. The ideas for the answer will help the respondent to solve the question better and serve as the preparatory part of the
respondent's answer.

[question]:Addison's age is three times Brenda's age. Janet is six years older than Brenda. Addison and Janet are twins. How old is Brenda?
[answer]:First, let SA = $ Addison's age, $B = $ Brenda's age, and $J = $ Janet's age. Then, from the statements given, we have the following
system of equations: $$\begin{cases}

A=3B\\

J=B+6\\

A=]

\end{cases} $$ Since $A=J$, we know that $3B=B+6$. Solving this equation, we have that $2B = 6 \Rightarrow B=3$. Thus, Brenda is
$\boxed {3}$ years old.

[idea of answer]:The problem is solved by setting up a system of equations based on the relationships given in the question: Addison's age is
three times Brenda's, Janet is six years older than Brenda, and Addison and Janet are twins. By equating Addison's and Janet's ages (since they are
twins) and solving the resulting equation, we can find Brenda's age.

[question]: {Q}
[answer]: {A}
\_[idea of answer]: J

/You are an answer enricher. I hope you will refine your answers based on the questions and answers provided, avoid jumping your thinking. Pay attention to filling the\
missing contexts and logical gaps in existing answers. Besides, be careful not to change the original pathways or modify formulas and results, as well as special
symbol expressions, such as 4 x 15 = <<4*15=60>>60. The first step is to give the idea of the answer, which helps the respondent to solve the question better. Finally,
solve the problem.

[question]:Albert is wondering how much pizza he can eat in one day. He buys 2 large pizzas and 2 small pizzas. A large pizza has 16 slices and a small pizza has 8
slices. If he eats it all, how many pieces does he eat that day?

[answer]:He eats 32 from the largest pizzas because 2 x 16 = <<2*16=32>>32

He eats 16 from the small pizza because 2 x 8 = <<2*8=16>>16

He eats 48 pieces because 32 + 16 = <<32+16=48>>48

HHH# 48

[enriched_answer]:

<idea of solution>To solve this, calculate the total number of slices in the large pizzas and the small pizzas separately, then add those numbers together to find the
total number of slices Albert will eat.

<solution>Albert purchases two large pizzas and two small pizzas for his day of pizza eating. Each large pizza is divided into 16 slices, thus he has 2 x 16 =
<<2*¥16=32>>32 slices from the large pizzas.

Similarly, each small pizza is divided into 8 slices. Therefore, from the small pizzas, he has 2 x 8 = <<2*8=16>>16 slices.

By adding up the slices from both the large and small pizzas, we find that Albert eats a total of 32 + 16 = <<32+16=48>>48 slices of pizza in one day.

So, if Albert consumes all the pizzas he bought, he will have eaten 48 slices of pizza in a single day.

HH#HHE A8

[question]: {Q}
[answer]: {A}
[enriched_answer]:
<idea of solution>
o /

You are an answer enricher. I hope you will refine your answers based on the questions and answers provided and avoid jumping your thinking. Pay
attention to filling the missing contexts and logical gaps in existing answers. Besides, be careful not to change the original pathways or modify
formulas and results, as well as mathematical symbol formats. The first step is to give the idea of the answer, which helps the respondent to solve
the question better. Finally, solve the problem.

[question]: Krista put 1 cent into her new bank on a Sunday morning. On Monday she put 2 cents into her bank. On Tuesday she put 4 cents into
her bank, and she continued to double the amount of money she put into her bank each day for two weeks. On what day of the week did the total
amount of money in her bank first exceed $\$2$?

[answer]: The formula for a geometric series is $\frac{a-ar"n} {1-r}$. Taking $a$ to be the initial $1$-cent deposit and $n$ to be the number of
days Krista had money in her bank so far, we have the inequality $$\frac{1-2"n} {1-2}\geq 200 \Rightarrow 1-2”n\leq -200 \Rightarrow 201 \leq
2”n.$$ The smallest power of 2 that is greater than 201 is $2°8$. Thus, $n=8$ and $\boxed {\text{Sunday} }$ is 7 days away from day $1$.
[enriched_answer]:

<idea of solution> To find the day Krista's bank exceeds $2, calculate the sum of her daily doubled deposits as a geometric series. Identify the
smallest power of 2 over $2 and count the days from Sunday to reach this total.

<solution> The total amount of money in her bank forms a geometric series. The formula for the sum of a geometric series is $\frac {a-ar"n} {1-r}$,
where $a$ is the first term, $r$ is the common ratio, and $n$ is the number of terms.

In this case, $a$ is the initial 1-cent deposit, $r$ is 2 (since she doubles the amount each day), and $n$ is the number of days Krista had money in
her bank so far. We want to find the smallest $n$ such that the total amount of money in her bank exceeds $2, or $200 cents.

This gives us the inequality:$$\frac{1-2”n} {1-2}\geq 200 \Rightarrow 1-2”n\leq -200 \Rightarrow 201 \leq 2"n.$$

The smallest power of 2 that is greater than 201 is $2/8$. Thus, $n=8$.

Since she started on a Sunday, and there are 7 days in a week, the day of the week when the total amount of money in her bank first exceeded $2 is
$\boxed {\text{Sunday} }$, which is 7 days away from day $18.

[question]: {Q}

[answer]: {A}

[enriched_answer]:

\<idea of solution> /
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