
Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning

Anonymous ACL submission

Abstract

The surge in Large Language Models (LLMs)001
has revolutionized natural language processing,002
but fine-tuning them for specific tasks often en-003
counters challenges in balancing performance004
and preserving general instruction-following005
abilities. In this paper, we posit that the dis-006
tribution gap between task datasets and the007
LLMs serves as the primary underlying cause.008
To address this problem, we introduce Self-009
Distillation Fine-Tuning (SDFT), a novel ap-010
proach that bridges the distribution gap by guid-011
ing fine-tuning with a distilled dataset gener-012
ated by the model itself to match its original dis-013
tribution. Experimental results on the Llama-2-014
chat model across various benchmarks demon-015
strate that SDFT effectively mitigates catas-016
trophic forgetting while achieving comparable017
or superior performance on downstream tasks018
compared to the vanilla fine-tuning. Moreover,019
SDFT demonstrates the potential to maintain020
the helpfulness and safety alignment of LLMs.021

1 Introduction022

In recent years, the development of Large Lan-023

guage Models (LLMs) has emerged as one of024

the most groundbreaking advancements in Natu-025

ral Language Processing (NLP). LLMs such as026

GPT-3 (Brown et al., 2020) and PaLM (Chowdhery027

et al., 2023) have revolutionized the field by lever-028

aging massive textual corpora during pre-training,029

enabling them to achieve remarkable few-shot per-030

formance across a wide range of tasks. The intro-031

duction of Supervised Fine-Tuning (SFT) (Ouyang032

et al., 2022b; Chung et al., 2022) has further pro-033

pelled the capabilities of LLMs, particularly in en-034

hancing their instruction-following abilities. Inter-035

estingly, even when starting with the same base036

LLM (Touvron et al., 2023; Bai et al., 2023), minor037

variations in the supervised dataset can lead to sig-038

nificant differences in model performance (Zhou039

et al., 2023; Wang et al., 2023). Consequently,040

Vanilla Fine-Tuning

Self-Distillation Fine-tuning (Ours)

Seed
Language Models

Task
Dataset

Task Dataset

Compromised
Language Models

Enhanced
Language Models

Distilled
Dataset

Seed
Language Models

Figure 1: Unlike vanilla fine-tuning, which may com-
promise seed LMs, our proposed self-distillation fine-
tuning (SDFT) approach enhances seed LMs with im-
proved downstream task performance while largely
maintaining broad capabilities already learned.

the open-source community has witnessed rapid 041

growth in LLM variants with different SFT datasets 042

and techniques, thereby augmenting their utility 043

and accessibility. 044

However, SFT typically prioritizes improving 045

general instruction-following abilities, suggesting 046

that LLMs with SFT might face challenges in spe- 047

cific downstream tasks. As a result, repurposing 048

these models as Seed Language Models (seed LMs) 049

for subsequent fine-tuning tailored to specific down- 050

stream tasks has emerged as an appealing approach. 051

While the approach seems optimistic, our prelimi- 052

nary study reveals the challenge of simultaneously 053

enhancing task-specific performance and preserv- 054

ing general instruction-following abilities through 055

vanilla fine-tuning, primarily due to the issue of 056

catastrophic forgetting. Echoing our findings, re- 057

cent studies have highlighted that fine-tuning, even 058

with benign datasets, can compromise the safety of 059

seed LMs (Qi et al., 2024; Yang et al., 2023; Zhan 060

et al., 2023; Pelrine et al., 2023). As evidenced, 061

fine-tuning methods that alleviate catastrophic for- 062

getting remain missing. 063

In this paper, we propose a novel fine-tuning 064

method, Self-Distillation Fine-Tuning (SDFT), to 065

1

mitigate catastrophic forgetting during fine-tuning.066

We hypothesize that catastrophic forgetting stems067

from the distribution shift between the task dataset068

and the seed LMs. To address this issue, SDFT first069

prompts the seed LM to generate a response that is070

consistent with the target response for the task. A071

representative example of generated responses is072

depicted in Figure 2. This refined, self-generated073

response is then used as a surrogate target during074

subsequent fine-tuning. By leveraging the model’s075

own responses as targets, SDFT inherently main-076

tains the original distribution, avoiding distribution077

shift and thereby preserving capabilities. The work-078

flow of SDFT is illustrated in Figure 1.079

We systematically evaluate SDFT by comparing080

its performance against that of vanilla fine-tuning081

and the seed LM across a variety of benchmarks.082

These benchmarks encompass: (1) diverse down-083

stream tasks, including mathematical reasoning,084

tool use and code generation; (2) assessments of085

general helpfulness and safety alignment. Results086

on all benchmarks demonstrate the superiority of087

SDFT compared to vanilla fine-tuning. For in-088

stance, vanilla fine-tuning on the OpenFunctions089

dataset (Patil et al., 2023) leads to a decrease in ac-090

curacy on the HumanEval benchmark (Chen et al.,091

2021) from 13.4 to 9.8, constituting a decline of092

27%. In contrast, SDFT not only mitigates this093

degradation, but also marginally enhances the ac-094

curacy to 15.2. We also conduct an in-depth anal-095

ysis of our method, which indicates that increas-096

ing the proportion of distilled responses for fine-097

tuning leads to a decrease in catastrophic forget-098

ting, thereby confirming that SDFT mitigates catas-099

trophic forgetting by bridging the distribution gap.100

2 Related Work101

Fine-Tuning Fine-tuning is a prevalent strategy102

for improving the performance of models on down-103

stream tasks, as demonstrated in domains includ-104

ing coding (Roziere et al., 2023; Luo et al., 2024),105

arithmetic (Luo et al., 2023a), healthcare (Jin et al.,106

2023) and finance (Wu et al., 2023). Vanilla fine-107

tuning directly maximizes the log-likelihood of tar-108

get responses. Similar to our work, Self-Play Fine-109

tuning (Chen et al., 2024) employs the identical110

LLM as both generator and discriminator, steering111

the model to prefer annotated response over gener-112

ated outputs. As the LLM’s distribution ultimately113

converges with that of the training data, the method114

does not alleviate forgetting during fine-tuning.115

Continual Learning Fine-tuning enables mod- 116

els to adapt to new data distributions, improving 117

their efficacy on downstream tasks. However, this 118

process can lead to the loss of previously acquired 119

knowledge, an issue known as catastrophic forget- 120

ting (French, 1999). A related domain is continual 121

learning (Kirkpatrick et al., 2017; Lopez-Paz and 122

Ranzato, 2017), which seeks to enable models to 123

acquire new knowledge while mitigating such for- 124

getting. Traditional methods often depend on the 125

preservation of historical data for replay (Scialom 126

et al., 2022; Luo et al., 2023b), the computation 127

of parameter importance (Kirkpatrick et al., 2017; 128

Aljundi et al., 2018), or the assignment of distinct 129

neurons to different tasks (Mallya and Lazebnik, 130

2018). However, fine-tuning LLMs is particularly 131

challenging due to their extensive parameter and 132

task space, compounded by the frequent unavail- 133

ability of original training datasets, which dimin- 134

ishes the feasibility of these established techniques 135

(Kirkpatrick et al., 2017; Lopez-Paz and Ranzato, 136

2017; Scialom et al., 2022). Although recent re- 137

search (Luo et al., 2023b; Scialom et al., 2022) 138

highlights the significance of continual learning for 139

LMs, there are scant feasible solutions for LLMs. 140

In this paper, we conduct a comprehensive eval- 141

uation of the catastrophic forgetting issue during 142

the fine-tuning of LLMs and propose a simple yet 143

effective strategy specifically designed for LLMs. 144

Alignment As the capabilities of Large Lan- 145

guage Models (LLMs) expand, so does the po- 146

tential for generating toxic content, engendering 147

significant safety concerns (Perez et al., 2022; Gan- 148

guli et al., 2022). In response, various strategies 149

have been proposed to align LLMs with human 150

ethical standards and prevent the generation of 151

toxic content. Prevalent methods including in- 152

struction tuning (Ouyang et al., 2022a; Touvron 153

et al., 2023), reinforcement learning from human 154

feedback (Ouyang et al., 2022a; Bai et al., 2022), 155

and self-alignment techniques (Sun et al., 2023). 156

Employing these alignment techniques, LLMs 157

strike a dedicate tradeoff between utility and safety 158

(Bianchi et al., 2023; Qi et al., 2024). While these 159

methods have demonstrated efficacy in safety align- 160

ment, they do not cover further risks that arise from 161

fine-tuning. Recent research reveals that even fine- 162

tuning with benign data can lead to compromised 163

safety (Qi et al., 2024; Yang et al., 2023; Zhan et al., 164

2023; Pelrine et al., 2023). Our proposed strategy 165

can effectively mitigate such safety degradation. 166

2

Seed LM Distribution
Task Dataset Distribution

Distilled Dataset Distribution

Instruction: Name three types of
machine learning algorithms.

Response: Three types of machine
learning algorithms are supervised
learning, unsupervised learning,
and reinforcement learning.

Self-Distillation via
Response Rewriting

Task Dataset

Instruction: Name three types of
machine learning algorithms.

Response: I can name three types
of machine learning algorithms as
follows:1. Supervised Learning:
This type of algorithm …

Distilled Dataset

Seed
Language Models

Projection

Figure 2: Left: An illustration of a generated distilled response that demonstrates a reduced distribution shift
relative to the seed LLM. Right: The diminished distribution shift contributes to a moderate parameter shift, thereby
alleviating the issue of catastrophic forgetting.

3 Method167

In this section, we begin by outlining the process168

of fine-tuning, followed by the introduction of our169

proposed self-distillation fine-tuning method and170

its implementation details.171

3.1 Fine-tuning LLMs172

While LLMs demonstrate remarkable proficiency173

across various tasks, they often encounter limita-174

tions when it comes to downstream tasks that neces-175

sitate fine-tuning. Specifically, we refer to a LM in176

need of further fine-tuning as seed LM, denoted as177

f and parameterized by θ. The seed LM typically178

undergoes general SFT, indicating its capacity to179

map any natural language instruction x ∈ X con-180

textualized by the task description c ∈ C, to its181

corresponding output y ∈ Y .182

fθ : C ×X → Y. (1)183

The fine-tuning process of the seed LM can be out-184

lined as follows: for the target task t with context185

ct, each task example (xt, yt) is utilized to update186

the model parameters. This update aims at mini-187

mizing the disparity between the data distribution188

and the LM distribution, as expressed below:189

LFT(θ) = − log fθ(y
t | ct, xt), (2)190

which seeks to minimize the negative log likelihood191

of the target output yt given the context ct and input192

xt, with respect to the model parameters θ. LFT193

converges when the generated response ŷ matches194

yt, i.e., the distribution of fine-tuned LM aligns195

with the task dataset distribution.196

3.2 Self-Distillation Fine-Tuning197

As the distribution of the seed LM converges to-198

wards that of the task dataset, it naturally enhances199

performance on target tasks. However, the vanilla200

fine-tuning is susceptible to catastrophic forgetting201

of general instruction-following capabilities, in- 202

cluding safety alignment. To mitigate the problem, 203

we propose Self-Distillation Fine-Tuning (SDFT), 204

aimed at better aligning the distribution of the task 205

dataset with the seed LM. As depicted in Figure 2, 206

the initial step of SDFT involves prompting the 207

seed LM to rewrite the original response yt into ỹ: 208

ỹ ∼ fθ(y | ct, xt, yt). (3) 209

This step marks the primary distinction between 210

our method and vanilla fine-tuning, as it involves 211

mapping the original response into a response 212

within the seed LM’s distribution. To accomplish 213

the rewriting, we utilize a self-distillation template, 214

which imposes minimal requirements on the seed 215

LM, simply requiring it to adhere to our directive 216

for rewriting responses. The exact specifications of 217

this prompt are elaborated later. 218

Next, to ensure the quality of the distilled re- 219

sponses, we employ simple heuristics to evaluate 220

the distilled response. For instance, in math rea- 221

soning problems, we extract the final answer from 222

the distilled response ỹ and compare it with the 223

one from the original response yt. Otherwise, we 224

keep the original response. We formalize this con- 225

ditional selection process as: 226

ỹ′ =

{
ỹ if Extract(ỹ) = yt,

yt otherwise.
(4) 227

Finally, the distilled response is used as a replace- 228

ment for the original response yt for fine-tuning, 229

i.e., the loss becomes: 230

LSDFT(θ) = − log fθ(ỹ
′ | ct, xt). (5) 231

Hence, the distribution gap is mitigated by utilizing 232

the distilled dataset instead of the task dataset, as 233

depicted on the right side of Figure 2. 234

3

Below are an instruction that describes a
task along with a reference answer. Using
the reference answer as a guide, write your
own response.

Instruction:
{instruction}

Reference Answer:
{original response}

Response:

Figure 3: The distillation template used in most of our
experiments. It designates the original response as “ref-
erence answer” and prompts the model to generate a
response using the reference answer as a guide.

3.3 Distillation Template235

In our work, the distillation template plays a cru-236

cial role. Designed to be task-independent, it can237

be applied seamlessly across various tasks without238

requiring modification. Within this framework, the239

template designates the original response within the240

task dataset as the “reference answer” and guides241

the model to generate a response accordingly. The242

template employed in the majority of our experi-243

ments is illustrated in Figure 3. When dealing with244

datasets involving math reasoning, we slightly ad-245

just the template to better accommodate the reason-246

ing process. Further details about these templates247

can be found in Appendix B.248

4 Experiments249

In this section, we begin by presenting the dataset250

employed for fine-tuning and evaluation purposes.251

Following that, we conduct a comparative anal-252

ysis of the experimental results obtained from253

vanilla fine-tuning and our proposed SDFT ap-254

proach across various tasks, encompassing mathe-255

matical reasoning, code generation, and tool using.256

Finally, we assess the impact of both methods on257

safety, general knowledge, and helpfulness.258

4.1 Experimental Setup259

We utilize the Llama-2-chat-7b model (Touvron260

et al., 2023) as the seed LM. Due to limited compu-261

tation resources, we utilize the Low Rank Adapta-262

tion (LoRA) technique (Hu et al., 2022) during both263

vanilla fine-tuning and our proposed SDFT. The264

query and value matrices of the LoRA were tuned265

with a rank of r = 8. We adhered to the default 266

configuration settings of Llama2. The learning rate 267

was initiated at 1×10−4 and progressively decayed 268

to zero following a cosine annealing schedule. and 269

the batch size was set to 8. 270

To ensure fair comparison, we maintain consis- 271

tency in nearly all hyperparameters for both meth- 272

ods. For datasets comprising more than 10, 000 273

examples, we randomly select 2, 000 examples for 274

fine-tuning to ensure comparability in size across 275

datasets. More details can be found in Appendix A. 276

4.2 Datasets for Fine-tuning and Evaluation 277

We fine-tune the Llama-2-chat-7b model on a vari- 278

ety of datasets, including those for both single-task 279

and multi-task scenarios. We then evaluate the per- 280

formance of both the seed model and the fine-tuned 281

models across diverse tasks. The datasets for fine- 282

tuning and evaluation are categorized as follows: 283

Single-task datasets. For single-task datasets, 284

we explore boosting the mathematical reasoning, 285

tool using, and code generation capabilities of 286

LMs during fine-tuning. The mathematical rea- 287

soning capabilities are improved using the GSM8K 288

dataset (Cobbe et al., 2021), which comprises 8.8k 289

high-quality arithmetic word problems designed 290

at grade school level. The tool using proficiency 291

is assessed by leveraging function-calling datasets 292

such as the Gorilla Openfunctions dataset (Patil 293

et al., 2023). Additionally, code generation skills 294

are boosted using the MagiCoder dataset (Wei et al., 295

2023), while evaluation is conducted using the Hu- 296

manEval dataset (Chen et al., 2021). 297

Multi-task datasets. We use three high- 298

quality datasets to assess the efficacy of our ap- 299

proach within multi-task fine-tuning scenarios: Al- 300

paca (Taori et al., 2023), Dolly (Conover et al., 301

2023) and LIMA (Zhou et al., 2023). The Alpaca 302

dataset encompasses a variety of tasks, including 303

arithmetic, coding, and question-answering. It was 304

generated using the Self-Instruct method (Wang 305

et al., 2022) via the text-davinci-003 model. The 306

Dolly dataset is composed of seven distinct tasks, 307

such as open question & answer, information ex- 308

traction, and summarization. The LIMA dataset 309

covers a broad range of topics and was curated 310

from multiple sources. 311

Safety evaluation. We utilize the harmful behav- 312

ior instructions from the Advbench dataset (Zou 313

et al., 2023) for evaluation, assessing the safety of 314

models’ outputs through keyword matching follow- 315

ing Qi et al. (2024). We define the proportion of 316

4

Method Dataset OpenFunctions GSM8K HumanEval Average

Seed LM — 19.6 29.4 13.4 20.8

Vanilla FT
OpenFunctions 34.8 21.5 9.8 22.0
GSM8K 17.9 31.9 12.2 20.7
MagiCoder 3.6 23.2 18.9 15.2

SDFT (Ours)
OpenFunctions 36.6 ↑ 1.8 29.1 ↑ 7.6 15.2 ↑ 5.4 27.0 ↑ 5.0
GSM8K 17.9 ↑ 0.0 34.4 ↑ 2.5 14.6 ↑ 2.4 22.3 ↑ 1.6
MagiCoder 8.0 ↑ 5.4 24.9 ↑ 1.7 18.3 ↓ 0.6 17.1 ↑ 1.9

Table 1: Evaluation results on downstream tasks. The vanilla fine-tuning improves performance on the target task
but generally at the expense of tasks that were already performing well. SDFT mitigates the forgetting and can
achieve comparable or superior performance on all kinds of tasks.

safe responses as Raw Safe Rate. Additionally, we317

simulate jailbreaking attempts by appending adver-318

sarial suffixes to instructions as illustrated in Zou319

et al. (2023). The safe rate under this condition is320

referred to as Jailbreak Safe Rate.321

Helpfulness evaluation. We employ AlpacaE-322

val (Li et al., 2023) to evaluate the helpfulness323

of various models. This tool includes a dataset324

and associated evaluation metrics that facilitate325

the comparison of generated outputs with the re-326

sponses from Text-Davinci-003, across a diverse327

set of 805 detailed instructions sourced from multi-328

ple datasets. We report the win rate, which is the329

proportion of instances where the responses are330

favored over those produced by Text-Davinci-003,331

as judged by GPT-4.332

Knowledge evaluation. LMs’ general knowl-333

edge was assessed through evaluations using bench-334

marks from the OpenLLM Leaderboard, specif-335

ically MMLU (Hendrycks et al., 2021), Truth-336

fulQA (Lin et al., 2021), ARC (Clark et al.,337

2018), HellaSwag (Zellers et al., 2019), and Wino-338

grande (Sakaguchi et al., 2021). These datasets pro-339

vide a measure of the models’ factual and common-340

sense knowledge spanning a variety of domains.341

4.3 SDFT Achieves Better Results on342

Downstream Tasks343

Table 1 presents the results of fine-tuning on three344

downstream tasks. The results indicate that while345

vanilla fine-tuning can enhance the model’s efficacy346

on target tasks, it also leads to a significant decline347

in performance on other tasks. For example, as348

depicted in the table’s first row, fine-tuning with349

the Openfunctions dataset results in a diminished350

coding capability of the model, decreasing from351

13.41 to 9.76. A similar decline is observed in352

mathematical reasoning abilities, where accuracy353

on the GSM8K dataset drops from 29.42 to 21.53.354

Furthermore, the proposed SDFT can effectively 355

mitigate this performance degradation. In the cited 356

instance, the model retains its mathematical rea- 357

soning proficiency, achieving an accuracy of 29.11, 358

closely aligned with the seed model’s performance 359

(29.42). For coding performance evaluated on Hu- 360

manEval, there is a marginal improvement, with the 361

performance rising to 15.24 from the seed model’s 362

13.41.When focusing on the target task, SDFT also 363

outperforms vanilla fine-tuning, delivering an accu- 364

racy of 36.61 compared to 34.82. 365

4.4 SDFT Preserves Alignment 366

Fine-tuning on the majority of datasets has been 367

demonstrated to lead to a significant decrease in 368

both safety alignment and general helpfulness, as 369

highlighted by the findings in Table 2. For instance, 370

following fine-tuning on the GSM8K dataset, the 371

safe rate decreases from 99.81 to 82.12, the jail- 372

break safe rate drops from 88.85 to 54.81, and the 373

win rate on AlpacaEval diminishes from 66.04 to 374

23.38. In contrast, our proposed SDFT approach 375

effectively mitigates this decline, improving the 376

raw safe rate and jailbreak safe rate by 5 and 11, 377

respectively. Notably, there is a slight increase in 378

the win rate compared to the seed model, with a 379

score of 66.73 versus 66.03. 380

Table 3 presents evaluation results after fine- 381

tuning on instruction following datasets that con- 382

tain multiple tasks. As the target tasks of these 383

datasets are unspecified, we focus our evaluation 384

on safety and general helpfulness after fine-tuning. 385

In line with the patterns noted in Table 2, fine- 386

tuning on these datasets typically leads to a marked 387

reduction in both safety and helpfulness metrics. 388

We observe a pronounced decline in all three met- 389

rics, with each declining by roughly 20. In contrast, 390

our proposed SDFT method effectively mitigates 391

this reduction, limiting the decrease to under 10. 392

5

Dataset for FT Raw Safe Rate Jailbreak Safe Rate AlpacaEval Win Rate

Seed LM 99.81 88.85 66.04

Openfunctions 98.27 → 99.23 (↑ 0.96) 87.31 → 94.42 (↑ 7.11) 35.49 → 67.66 (↑ 32.17)
GSM8K 82.12 → 87.12 (↑ 5.00) 54.81 → 65.58 (↑ 10.77) 23.38 → 66.73 (↑ 43.35)
MagiCoder 96.73 → 97.88 (↑ 1.15) 83.65 → 88.65 (↑ 5.00) 76.52 → 76.09 (↓ 0.43)

Table 2: Assessment of Safety and General Helpfulness. Results are displayed in the format: Vanilla FT → SDFT.
Vanilla fine-tuning leads to notable degradation in safety and general helpfulness, while SDFT maintains strong
alignment after fine-tuning.

MMLU TruthfulQA ARC HellaSwag Winogrande
0

10

20

30

40

50

60

70

80

45
.06

34
.62

64
.35

57
.69

66
.38

42
.1

30
.99

63
.9

56
.83

67
.4

45
.56

31
.83

63
.81

56
.68

68
.03

GSM8K
Seed LM
Vanilla FT
SDFT

MMLU TruthfulQA ARC HellaSwag Winogrande
0

10

20

30

40

50

60

70

80

45
.06

34
.62

64
.35

57
.69

66
.38

45
.95

34
.74

63
.53

57
.49

66
.93

45
.53

34
.77

63
.5

56
.9

66
.38

OpenFunction
Seed LM
Vanilla FT
SDFT

MMLU TruthfulQA ARC HellaSwag Winogrande
0

10

20

30

40

50

60

70

80

45
.06

34
.62

64
.35

57
.69

66
.38

46
.16

35
.16

64
.37

56
.89

67
.32

46
.14

34
.72

64
.37

56
.95

67
.72

Magicoder
Seed LM
Vanilla FT
SDFT

MMLU TruthfulQA ARC HellaSwag Winogrande
0

10

20

30

40

50

60

70

80

45
.06

34
.62

64
.35

57
.69

66
.38

45
.98

33
.04

64
.06

56
.14

67
.09

45
.88

32
.83

64
.15

55
.87

66
.77

LIMA
Seed LM
Vanilla FT
SDFT

Figure 4: Performance comparisons of models on general knowledge benchmarks after fine-tuning on each dataset,
as reported in the OpenLLM Leaderboard. Fine-tuning on these datasets demonstrates a marginal effect on the
models’ general knowledge.

4.5 General Knowledge Remains Intact393

Figure 4 presents results on general knowledge.394

Although vanilla fine-tuning compromises down-395

stream performance and alignment, models’ capa-396

bilities in general knowledge are relatively unaf-397

fected. For instance, after fine-tuning on the Open-398

Functions dataset, the disparity in performance be-399

tween fine-tuned model and seed LM is less than 1.400

This is also observed after fine-tuning with SDFT.401

5 Analysis402

In this section, we conduct a detailed analysis to403

understand the impact of distribution shift on catas-404

trophic forgetting. In addition to the evaluation405

metrics outlined in Section 4, we incorporate four406

supplementary metrics to assess the degree of dis- 407

tribution shift. We utilize both the seed model and 408

fine-tuned models to generate responses on the Ad- 409

vbench (Zou et al., 2023) dataset and engage in a 410

comparative analysis of these responses. 411

In particular, we calculate the BLEU-4 and 412

ROUGE-L scores for the fine-tuned models, us- 413

ing the outputs from the seed model as references 414

to evaluate the extent of distribution shift. We also 415

utilize Sentence-BERT (Reimers and Gurevych, 416

2019) to derive sentence embeddings and use the 417

cosine similarity between these embeddings fol- 418

lowing Zhang et al. (2023). Lastly, we quantify the 419

extent of parameter shift by comparing the updated 420

parameters with those of the seed model, consid- 421

6

Method Dataset Raw Safe Rate Jailbreak Safe Rate Win Rate

Seed LM — 99.81 88.85 66.04

Vanilla FT
Alpaca 86.54 52.69 27.62
Dolly 81.73 26.54 22.09
LIMA 81.35 58.08 41.34

SDFT (Ours)
Alpaca 96.15 ↑ 9.6 86.15 ↑ 33.5 65.07 ↑ 37.5
Dolly 96.35 ↑ 14.6 72.69 ↑ 46.2 61.60 ↑ 39.5
LIMA 94.42 ↑ 13.1 78.08 ↑ 20.0 59.38 ↑ 18.0

Table 3: Evaluation results after fine-tuning on multitask instruction following datasets.

500 1000 1500 2000
Sample Size

20

40

60

80

Safe Rate GSM8K MultiArith Win Rate

Figure 5: As the size of distilled responses
increases, models’ performance across various
tasks decrease.

500 1000 1500 2000
Sample Size

0.3

0.4

0.5

0.6

0.7

Embedding Sim bleu-4 Rouge-l | |2(2 × 10 5)

Figure 6: With increasing data for fine-tuning, bleu-
4, rouge-l and embedding similarity decrease, while
parameter shift scale increases, indicating intensified
distribution shift.

ering their distance as a measure of the parameter422

shift magnitude. The lower the BLEU-4, ROUGE-423

L, and embedding similarity scores, the greater the424

distribution shift. Conversely, the parameter shift is425

directly proportional to the norm of the parameter426

changes.427

5.1 Distribution Shift Correlates with428

Catastrophic Forgetting429

We induce varying degrees of distribution shift too430

investigate its impact through two approaches: (1)431

By sampling a diverse quantity of examples for fine-432

tuning, where an increased number of data points433

for fine-tuning corresponds to a greater distribution434

shift. (2) By mixing vanilla fine-tuning with SDFT,435

which involves substituting distilled samples with436

original ones. We define mix ratio to represent the437

proportion of distilled samples employed. A mix438

ratio of 1 signifies exclusive use of our SDFT and439

0 denotes vanilla fine-tuning.440

Figures 5 and 6 illustrate the results with varying441

sample sizes. As the sample sizes grow, we observe442

a notable decrease in the BLEU-4, ROUGE-L, and443

embedding similarity scores, along with an eleva-444

tion in parameter shift magnitude. This trend im- 445

plies a heightened degree of distribution shift. Con- 446

sequently, there is an observable decline in model 447

performance on benchmarks such as GSM8K, Mul- 448

tiArith, Advbench, and AlpacaEval, suggesting in- 449

tensified catastrophic forgetting. 450

In a similar vein, Figures 7 and 8 present re- 451

sults corresponding to an ascending mix ratio. As 452

this ratio increases, there is an upward trend in 453

the BLEU-4, ROUGE-L, and embedding similarity 454

scores, whereas the scale of parameter shift dimin- 455

ishes, denoting a mitigation in distribution shift. 456

Accordingly, benchmark performance exhibits im- 457

provement across the board, signaling a reduction 458

in the severity of catastrophic forgetting. 459

Figure 9 illustrates the similarity distribution 460

obtained through both vanilla fine-tuning and our 461

SDFT. Notably, with SDFT model has higher sim- 462

ilarity between the fine-tuned model and the seed 463

model, signifying reduced distribution shift. 464

5.2 Robustness among Distillation Templates 465

We have constructed two templates to investigate 466

the robustness of SDFT. The template illustrated 467

7

0.0 0.2 0.4 0.6 0.8 1.0
Mix Ratio

20

40

60

80

100
Safe Rate GSM8K MultiArith Win Rate

Figure 7: With an increasing mix ratio, there is
an enhancement in the models’ performance.

0.0 0.2 0.4 0.6 0.8 1.0
Mix Ratio

0.3

0.4

0.5

0.6

0.7

0.8

Embedding Sim bleu-4 Rouge-l | |2(2 × 10 5)

Figure 8: As the mix ratio escalates, bleu-4, rouge-l and
embedding similarity decrease, while parameter shift
scale increases, indicatint reduced distribution shift.

Dataset for FT Template Openfunctions HumanEval GSM8K Raw Safe Jailbreak Safe Win Rate

Openfunction
Vanilla FT 34.82 9.76 21.53 98.27 87.31 35.49
Refer 35.71 13.41 27.37 98.85 89.81 68.45
Using 36.61 15.24 29.11 99.23 94.42 67.66

Dolly
Vanilla FT 8.04 17.07 15.92 81.73 26.54 22.09
Refer 17.86 14.02 24.26 96.35 69.62 61.60
Using 16.07 14.63 26.31 97.31 72.69 57.52

Table 4: Ablation studies on distillation template. The performance of SDFT is consistently better than Vanilla FT
with different distillation templates.

0.0 0.2 0.4 0.6 0.8 1.0
Embedding Similarity to Original Model

0

20

40

60

80

Co
un

t

0.75 0.85

Vanilla FT
SDFT
Vanilla FT Mean
SDFT Mean

Figure 9: The distribution of embedding similarities
after fine-tuning. SDFT results in higher similarity to
the original model, indicating reduced distribution shift.

in Figure 3 is labeled “Using”, where the phrase468

“Using the reference answer as a guide” is replaced469

by “Refer to the reference answer”, with the lat-470

ter template being termed “Refer”. Results after471

fine-tuning with both templates are detailed in Ta-472

ble 4. The performance across diverse benchmarks473

remains consistent across the templates, demon-474

strating the robustness of SDFT.475

6 Conclusions and Limitations 476

In this paper, we perform a systematic evaluation 477

of catastrophic forgetting during the fine-tuning 478

of language models for downstream tasks. Our 479

findings indicate that the distribution shift during 480

fine-tuning can lead to performance degradation 481

in general task capabilities, as well as models’ 482

safety alignment and helpfulness. To enhance per- 483

formance on target task while maintaining LMs’ 484

broad capabilities, we propose a plug-and-play 485

strategy, SDFT, to reduce distribution shift and 486

mitigate catastrophic forgetting. Extensive experi- 487

ments show that SDFT effectively diminishes for- 488

getting and delivers comparable or superior perfor- 489

mance to vanilla fine-tuning on targeted tasks. 490

Our study is subject to certain limitations. Ow- 491

ing to constraints in computational resources, our 492

experiments are based on the Llama-2-7b-chat 493

model with the LoRA technique. Investigations 494

involving larger models and full parameter tuning 495

remain to be explored. Furthermore, our safety 496

evaluations are limited to the Advbench dataset 497

and fixed adversarial suffixes, leaving the robust- 498

ness against other jailbreak strategies for future. 499

8

Ethical Statement500

Our proposed method SDFT effectively mitigates501

the issue of catastrophic forgetting during the fine-502

tuning of language models, including the degrada-503

tion of safety alignment. Therefore, this process504

does not entail additional risks.505

We utilize a variety of open-source English506

datasets for training, including Alpaca (Taori et al.,507

2023), Dolly (Conover et al., 2023), LIMA (Zhou508

et al., 2023), GSM8K (Cobbe et al., 2021), Open-509

Functions (Patil et al., 2023), and MagiCoder (Wei510

et al., 2023). The Llama-2-chat model (Touvron511

et al., 2023) serves as our seed model for training.512

We acknowledge that there may be inherent biases513

present within these datasets and the model.514

References515

Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-516
seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.517
Memory aware synapses: Learning what (not) to for-518
get. In European Conference on Computer Vision,519
pages 139–154.520

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,521
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei522
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,523
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,524
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,525
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong526
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-527
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,528
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,529
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-530
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang531
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang532
Zhu. 2023. Qwen technical report. arXiv preprint533
arXiv:2309.16609.534

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda535
Askell, Anna Chen, Nova DasSarma, Dawn Drain,536
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.537
2022. Training a helpful and harmless assistant with538
reinforcement learning from human feedback. arXiv539
preprint arXiv:2204.05862.540

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio,541
Paul Röttger, Dan Jurafsky, Tatsunori Hashimoto,542
and James Zou. 2023. Safety-tuned llamas:543
Lessons from improving the safety of large lan-544
guage models that follow instructions. arXiv preprint545
arXiv:2309.07875.546

Tom Brown, Benjamin Mann, Nick Ryder, Melanie547
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind548
Neelakantan, Pranav Shyam, Girish Sastry, Amanda549
Askell, et al. 2020. Language models are few-shot550
learners. In Advances in Neural Information Process-551
ing Systems, volume 33, pages 1877–1901.552

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 553
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 554
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 555
Greg Brockman, et al. 2021. Evaluating large 556
language models trained on code. arXiv preprint 557
arXiv:2107.03374. 558

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, 559
and Quanquan Gu. 2024. Self-play fine-tuning con- 560
verts weak language models to strong language mod- 561
els. CoRR, abs/2401.01335. 562

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 563
Maarten Bosma, Gaurav Mishra, Adam Roberts, 564
Paul Barham, Hyung Won Chung, Charles Sutton, 565
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 566
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 567
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin- 568
odkumar Prabhakaran, Emily Reif, Nan Du, Ben 569
Hutchinson, Reiner Pope, James Bradbury, Jacob 570
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, 571
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, 572
Sunipa Dev, Henryk Michalewski, Xavier Garcia, 573
Vedant Misra, Kevin Robinson, Liam Fedus, Denny 574
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, 575
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, 576
David Dohan, Shivani Agrawal, Mark Omernick, An- 577
drew M. Dai, Thanumalayan Sankaranarayana Pil- 578
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, 579
Rewon Child, Oleksandr Polozov, Katherine Lee, 580
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark 581
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy 582
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, 583
and Noah Fiedel. 2023. Palm: Scaling language mod- 584
eling with pathways. J. Mach. Learn. Res., 24:240:1– 585
240:113. 586

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 587
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 588
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 589
2022. Scaling instruction-finetuned language models. 590
arXiv preprint arXiv:2210.11416. 591

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 592
Ashish Sabharwal, Carissa Schoenick, and Oyvind 593
Tafjord. 2018. Think you have solved question 594
answering? try arc, the ai2 reasoning challenge. 595
arXiv:1803.05457v1. 596

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 597
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 598
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 599
Nakano, Christopher Hesse, and John Schulman. 600
2021. Training verifiers to solve math word prob- 601
lems. arXiv preprint arXiv:2110.14168. 602

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, 603
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, 604
Matei Zaharia, and Reynold Xin. 2023. Free dolly: 605
Introducing the world’s first truly open instruction- 606
tuned llm. 607

Robert M French. 1999. Catastrophic forgetting in con- 608
nectionist networks. Trends in cognitive sciences, 609
3(4):128–135. 610

9

https://doi.org/10.48550/ARXIV.2401.01335
https://doi.org/10.48550/ARXIV.2401.01335
https://doi.org/10.48550/ARXIV.2401.01335
https://doi.org/10.48550/ARXIV.2401.01335
https://doi.org/10.48550/ARXIV.2401.01335
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda611
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,612
Ethan Perez, Nicholas Schiefer, Kamal Ndousse,613
et al. 2022. Red teaming language models to re-614
duce harms: Methods, scaling behaviors, and lessons615
learned. arXiv preprint arXiv:2209.07858.616

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,617
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.618
2021. Measuring massive multitask language under-619
standing. In International Conference on Learning620
Representations.621

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan622
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and623
Weizhu Chen. 2022. Lora: Low-rank adaptation of624
large language models. In The Tenth International625
Conference on Learning Representations, ICLR 2022,626
Virtual Event, April 25-29, 2022. OpenReview.net.627

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.628
2023. Genegpt: Augmenting large language models629
with domain tools for improved access to biomedical630
information. ArXiv.631

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,632
Joel Veness, Guillaume Desjardins, Andrei A Rusu,633
Kieran Milan, John Quan, Tiago Ramalho, Ag-634
nieszka Grabska-Barwinska, et al. 2017. Over-635
coming catastrophic forgetting in neural networks.636
Proceedings of the national academy of sciences,637
114(13):3521–3526.638

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,639
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and640
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-641
tomatic evaluator of instruction-following models.642
https://github.com/tatsu-lab/alpaca_eval.643

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.644
Truthfulqa: Measuring how models mimic human645
falsehoods.646

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.647
Gradient episodic memory for continual learning. In648
Advances in Neural Information Processing Systems,649
volume 30.650

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-651
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei652
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-653
ardmath: Empowering mathematical reasoning for654
large language models via reinforced evol-instruct.655
arXiv preprint arXiv:2308.09583.656

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie657
Zhou, and Yue Zhang. 2023b. An empirical study658
of catastrophic forgetting in large language mod-659
els during continual fine-tuning. arXiv preprint660
arXiv:2308.08747.661

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-662
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,663
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:664
Empowering code large language models with evol-665
instruct. In International Conference on Learning666
Representations.667

Arun Mallya and Svetlana Lazebnik. 2018. Packnet: 668
Adding multiple tasks to a single network by iterative 669
pruning. In Proceedings of the IEEE/CVF Confer- 670
ence on Computer Vision and Pattern Recognition, 671
pages 7765–7773. 672

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 673
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 674
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 675
2022a. Training language models to follow instruc- 676
tions with human feedback. In Advances in Neural 677
Information Processing Systems. 678

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 679
Carroll L. Wainwright, Pamela Mishkin, Chong 680
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, 681
John Schulman, Jacob Hilton, Fraser Kelton, Luke 682
Miller, Maddie Simens, Amanda Askell, Peter Welin- 683
der, Paul F. Christiano, Jan Leike, and Ryan Lowe. 684
2022b. Training language models to follow instruc- 685
tions with human feedback. In Advances in Neural 686
Information Processing Systems 35: Annual Confer- 687
ence on Neural Information Processing Systems 2022, 688
NeurIPS 2022, New Orleans, LA, USA, November 28 689
- December 9, 2022. 690

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 691
Joseph E. Gonzalez. 2023. Gorilla: Large language 692
model connected with massive apis. In arXiv preprint 693
arXiv:2305.15334. 694

Kellin Pelrine, Mohammad Taufeeque, Michal Zajac, 695
Euan McLean, and Adam Gleave. 2023. Exploiting 696
novel gpt-4 apis. arXiv preprint arXiv:2312.14302. 697

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, 698
Roman Ring, John Aslanides, Amelia Glaese, Nat 699
McAleese, and Geoffrey Irving. 2022. Red team- 700
ing language models with language models. arXiv 701
preprint arXiv:2202.03286. 702

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi 703
Jia, Prateek Mittal, and Peter Henderson. 2024. Fine- 704
tuning aligned language models compromises safety, 705
even when users do not intend to! In International 706
Conference on Learning Representations. 707

Nils Reimers and Iryna Gurevych. 2019. Sentence- 708
BERT: Sentence embeddings using Siamese BERT- 709
networks. In Proceedings of the 2019 Conference on 710
Empirical Methods in Natural Language Processing 711
and the 9th International Joint Conference on Natu- 712
ral Language Processing (EMNLP-IJCNLP), pages 713
3982–3992, Hong Kong, China. Association for Com- 714
putational Linguistics. 715

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 716
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 717
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 718
Code llama: Open foundation models for code. arXiv 719
preprint arXiv:2308.12950. 720

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 721
ula, and Yejin Choi. 2021. Winogrande: An adver- 722
sarial winograd schema challenge at scale. Commu- 723
nications of the ACM, 64(9):99–106. 724

10

https://github.com/tatsu-lab/alpaca_eval
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

Thomas Scialom, Tuhin Chakrabarty, and Smaranda725
Muresan. 2022. Fine-tuned language models are726
continual learners. In Proceedings of the 2022 Con-727
ference on Empirical Methods in Natural Language728
Processing, pages 6107–6122.729

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin730
Zhang, Zhenfang Chen, David Cox, Yiming Yang,731
and Chuang Gan. 2023. Principle-driven self-732
alignment of language models from scratch with733
minimal human supervision. In Advances in Neu-734
ral Information Processing Systems.735

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann736
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,737
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:738
An instruction-following llama model. https://739
github.com/tatsu-lab/stanford_alpaca.740

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-741
bert, Amjad Almahairi, Yasmine Babaei, Nikolay742
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti743
Bhosale, et al. 2023. Llama 2: Open founda-744
tion and fine-tuned chat models. arXiv preprint745
arXiv:2307.09288, abs/2307.09288.746

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack747
Hessel, Tushar Khot, Khyathi Raghavi Chandu,748
David Wadden, Kelsey MacMillan, Noah A. Smith,749
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How750
far can camels go? exploring the state of instruction751
tuning on open resources. CoRR, abs/2306.04751.752

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-753
isa Liu, Noah A Smith, Daniel Khashabi, and Han-754
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-755
guage model with self generated instructions. arXiv756
preprint arXiv:2212.10560.757

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and758
Lingming Zhang. 2023. Magicoder: Source code is759
all you need. arXiv preprint arXiv:2312.02120.760

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,761
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-762
badur, David Rosenberg, and Gideon Mann. 2023.763
Bloomberggpt: A large language model for finance.764
arXiv preprint arXiv:2303.17564.765

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold,766
William Yang Wang, Xun Zhao, and Dahua Lin.767
2023. Shadow alignment: The ease of subvert-768
ing safely-aligned language models. arXiv preprint769
arXiv:2310.02949.770

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali771
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a772
machine really finish your sentence? In Proceedings773
of the 57th Annual Meeting of the Association for774
Computational Linguistics.775

Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta,776
Tatsunori Hashimoto, and Daniel Kang. 2023. Re-777
moving rlhf protections in gpt-4 via fine-tuning.778
arXiv preprint arXiv:2311.05553.779

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 780
Smola. 2023. Automatic chain of thought prompting 781
in large language models. In International Confer- 782
ence on Learning Representations. 783

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao 784
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, 785
Lili Yu, et al. 2023. Lima: Less is more for alignment. 786
arXiv preprint arXiv:2305.11206. 787

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrik- 788
son. 2023. Universal and transferable adversarial 789
attacks on aligned language models. arXiv preprint 790
arXiv:2307.15043. 791

11

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/ARXIV.2306.04751
https://doi.org/10.48550/ARXIV.2306.04751
https://doi.org/10.48550/ARXIV.2306.04751
https://doi.org/10.48550/ARXIV.2306.04751
https://doi.org/10.48550/ARXIV.2306.04751

A Experiment Details792

Throughout all experiments, we applied fine-tuning793

to the Llama-2-chat-7b model (Touvron et al.,794

2023) using the Low-Rank Adaptation (LoRA)795

technique (Hu et al., 2022). The query and value796

matrices of the LoRA were tuned with a rank of797

r = 8. We adhered to the default configuration798

settings of Llama2. The learning rate was initiated799

at 1× 10−4 and progressively decayed to zero fol-800

lowing a cosine annealing schedule. and the batch801

size was set to 8.802

We randomly sampled a subset of 2,000 exam-803

ples and conducted fine-tuning for 2 epochs for804

the Alpaca (Taori et al., 2023), Dolly (Conover805

et al., 2023), and MagiCoder (Wei et al., 2023)806

datasets. With the LIMA (Zhou et al., 2023).807

GSM8K (Cobbe et al., 2021) and OpenFunc-808

tion (Patil et al., 2023) datasets, we fine-tune on the809

entire train set. We train LIMA for 2 epochs and810

the other two datasets for 5 epochs.811

To assess the general helpfulness of models, we812

employ the AlpacaEval framework 1, with GPT-813

4 serving as the evaluator. The evaluations of814

benchmarks in OpenLLM leaderboard are imple-815

mented via the lm-evaluation-harness 2. Further-816

more, we evaluate the coding capabilities using the817

HumanEval dataset (Chen et al., 2021), leveraging818

the bigcode-evaluation-harness project3.819

B Templates and Examples820

This section provides templates used in our experi-821

ments and some illustrative examples of distillation822

on each dataset.823

In most of our experiments, we use the standard824

alpaca (Taori et al., 2023) template for both fine-825

tuning and prediction, as presented in Figure 10.826

To enhance the reasoning abilities, we slightly827

modify the standard Alpaca template for datasets re-828

garding reasoning, namely GSM8K and MultiArith.829

The template used for training and distillation are830

presented in Figure 11 and Figure 12 respectively.831

To make the extraction of final answer easier for832

mathematical reasoning datasets, we specify the833

format of final answer during evaluation. The tem-834

plate used for evaluation is presented in Figure 13.835

Figures 14, 15, 16, 17, 18 present examples of836

distilled data point on each dataset.837

1https://github.com/tatsu-lab/alpaca_eval
2https://github.com/EleutherAI/lm-evaluation-harness
3https://github.com/bigcode-project/bigcode-evaluation-

harness

Below are an instruction that describes a
task. Write a response that appropriately
completes the request.

Instruction:
{instruction}

Response:

Figure 10: The standard alpaca template. This template
is used for both training and evaluation in most experi-
ments.

You are an expert in math. Below is a
math question. Write a response that appro-
priately answers the question.

{instruction}

Figure 11: The template used for training on the
GSM8K dataset.

You are an expert in math. Below are a
math question and its reference answer.
Refer to the reference answer and write
a response that appropriately answers the
question.

{instruction}

{response}
Great! Let’s think step by step.

Figure 12: The template used for distilling on the
GSM8K dataset.

You are an expert in math. Below is a
math question. Write a response that appro-
priately answers the question. Your final
answer should be an integer at the end of
your response, formatted as: The answer is
{answer}.

{instruction}

Figure 13: The template used for evaluation on the
GSM8K and MultiArith datasets.

12

Instruction:
Name three types of machine learning algorithms.

Original Answer:
Three types of machine learning algorithms are supervised learning, unsupervised learning, and
reinforcement learning.

Distilled Response:
I can name three types of machine learning algorithms as follows:
1. Supervised Learning: This type of algorithm involves training a machine learning model on
labeled data, where the target output is already known. The model learns to predict the target
output based on the input data, and can be used for tasks such as image classification, speech
recognition, and sentiment analysis.
2. Unsupervised Learning: This type of algorithm involves training a machine learning model on
unlabeled data, where there is no target output. The model learns patterns and relationships in the
data without any prior knowledge of the output. Examples of unsupervised learning tasks include
clustering, dimensionality reduction, and anomaly detection.
3. Reinforcement Learning: This type of algorithm involves training a machine learning model
to make a series of decisions in an environment in order to maximize a reward. The model learns
through trial and error, and the reward serves as feedback to guide the learning process. Examples
of reinforcement learning tasks include game playing, robotics, and autonomous driving.

Figure 14: Example of distilled data point on the Alpaca dataset.

Instruction:
Classify the following as a ’Country’, ’State’ or ’City’: California, Sacramento, Chicago, Singa-
pore, New Delhi, London, Tennessee, New York

Original Answer:
California: State
Sacramento: City
Chicago: City
Singapore: Both Country and City
New Delhi: City
London: City
Tennessee: City
New York: Both State and City

Distilled Response:
I classify the following as:
* California: State
* Sacramento: City
* Chicago: City
* Singapore: Both Country and City
* New Delhi: City
* London: City
* Tennessee: City
* New York: Both State and City

Figure 15: Example of distilled data point on the Dolly dataset.

13

Instruction:
Lisa, Jack, and Tommy earned $60 from washing cars all week. However, half of the $60 was
earned by Lisa. Tommy earned half of what Lisa earned.
How much more money did Lisa earn than Tommy?

Original Answer:
Lisa earned $60 * 1/2 = $30.
Tommy earned $30 * 1/2 = $15.
Lisa earned $30 - $15 = $15 more than Tommy.
The answer is 15.

Distilled Response:
Here is the response:
Lisa earned $60 * 1/2 = $30, and Tommy earned $30 * 1/2 = $15. So, Lisa earned $30 - $15 =
$15 more than Tommy. Therefore, the answer is $15.

Figure 16: Example of distilled data point on the GSM8K dataset.

Instruction:
Construct a function call to answer the given question using keyword arguments based on the
provided specifications:

Question: I want to describe the Studio Lifecycle Configuration named ’my-lc-config’ on AWS
SageMaker.

Function to be used: aws.sagemaker.describe_studio_lifecycle_config

Description: Describes the Studio Lifecycle Configuration.

Parameters:
1. studio_lifecycle_config_name - The name of the Studio Lifecycle Configuration to describe.
Format your response as a single string using keyword arguments.

Original Answer:
aws.sagemaker.describe_studio_lifecycle_config(studio_lifecycle_config_name=“my-lc-config”)

Distilled Response:
aws.sagemaker.describe_studio_lifecycle_config(studio_lifecycle_config_name="my-lc-config")

Explanation:
The function call uses the ‘studio_lifecycle_config_name‘ parameter to specify the name of
the Studio Lifecycle Configuration to describe, which in this case is "my-lc-config". The
‘aws.sagemaker.describe_studio_lifecycle_config‘ function is then called with this parameter to
retrieve the description of the specified Studio Lifecycle Configuration.

Figure 17: Example of distilled data point on the OpenFuctions dataset.

14

Instruction:
How slicing in Python works? Please include references where appropriate.

Original Answer:
The syntax is:
“‘
a[start:stop] # items start through stop-1
a[start:] # items start through the rest of the array
a[:stop] # items from the beginning through stop-1
a[:] # a copy of the whole array
“‘
There is also the ‘step‘ value, which can be used with any of the above: “‘ a[start:stop:step] # start
through not past stop, by step “‘ The key point to remember is that the ‘:stop‘ value represents
the first value that is not in the selected slice. So, the difference between ‘stop‘ and ‘start‘ is the
number of elements selected (if ‘step‘ is 1, the default)
. . .

While the “‘:“‘-based notation is very helpful for simple slicing, the explicit use of “‘slice()“‘
objects simplifies the programmatic generation of slicing.

Distilled Response:
Slicing in Python is a powerful feature that allows you to extract a subset of elements from a
sequence (such as a list, tuple, or string) based on a specified range and step. The syntax for
slicing is:
“‘
a[start:stop] # items start through stop-1
a[start:] # items start through the rest of the array
a[:stop] # items from the beginning through stop-1
a[:] # a copy of the whole array
“‘
In addition to the basic syntax, there are several other features of slicing in Python:
* **Negative indices**: If ‘start‘ or ‘stop‘ is a negative number, it counts from the end of the
array instead of the beginning. For example, ‘a[-2]‘ returns the last two elements of the array,
while ‘a[-3]‘ returns the last three elements.

* **Step**: The ‘step‘ value can be used to specify the distance between elements in the slice.
For example, ‘a[1:3:2]‘ returns the elements at indices 1, 3, and 5 of the array.

* **Optional arguments**: If ‘stop‘ is not specified, it defaults to the end of the array. Similarly,
if ‘step‘ is not specified, it defaults to 1
. . .

In summary, slicing in Python is a powerful feature that allows you to extract a subset of elements
from a sequence based on a specified range and step. The basic syntax is simple and intuitive, but
there are several other features and options that can be used to customize the slicing operation

Figure 18: Example of distilled data point on the LIMA dataset.

15

	Introduction
	Related Work
	Method
	Fine-tuning LLMs
	Self-Distillation Fine-Tuning
	Distillation Template

	Experiments
	Experimental Setup
	Datasets for Fine-tuning and Evaluation
	SDFT Achieves Better Results on Downstream Tasks
	SDFT Preserves Alignment
	General Knowledge Remains Intact

	Analysis
	Distribution Shift Correlates with Catastrophic Forgetting
	Robustness among Distillation Templates

	Conclusions and Limitations
	Experiment Details
	Templates and Examples

