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ABSTRACT

Training large models with distributed data parallelism (DDP) requires frequent
communication of gradients across workers, which can saturate bandwidth. In-
frequent communication strategies (e.g., Local SGD) reduce this overhead but,
when applied to adaptive optimizers, often suffer a performance gap relative to
fully synchronous DDP. We trace this gap to a time-scale mismatch: the optimizer’s
fast-moving momentum, tuned for frequent updates, decays too quickly to smooth
gradients over long intervals, leading to noise-dominated optimization. To address
this, we propose MT-DAO, a family of optimizers that employs multiple slow- and
fast-moving first momenta or the gradient to track update dynamics across different
time scales, for which we provide the first convergence guarantees. Empirically,
for language-model pre-training, this eliminates the performance gap with DDP,
outperforming infrequent-communication baselines in perplexity and reducing
iso-token wall-clock time relative to DDP by 6–27% on Ethernet interconnects.
At the 720M scale, MT-DAO reaches a target perplexity in 24% fewer steps and
35% less time than the single-momentum DDP baseline. MT-DAO enables effective
cross-datacenter training and training over wide geographic areas.

1 INTRODUCTION

The scalability of training infrastructure is impeded by the communication required for Distributed
Data Parallelism (DDP). Infrequent parameter-averaging strategies like Local SGD (Stich, 2019)
reduce this overhead, yet extensions to adaptive optimizers (Cheng & Glasgow, 2025; Charles et al.,
2025) show a performance gap relative to DDP (Sani et al., 2025; Charles et al., 2025). Charles et al.
(2025) finds that infrequent averaging, even with Nesterov momentum at round boundaries (Reddi
et al., 2021), underperforms DDP for models up to 2.4B parameters and worker counts exceeding 2.

We hypothesize this gap stems from a timescale mismatch. Optimizers use fast-moving momenta (low
β1 ≈ 0.9) that smooth high-frequency noise under DDP but decay too rapidly between infrequent
synchronizations. This decay prevents a stable shared trajectory, leading to our central question:

Can a distributed adaptive optimizer with β’s suited for infrequent communication
close the performance gap with DDP while providing convergence guarantees?

We propose MT-DAO, which brings multi-momentum optimizers (Lucas et al., 2019; Pagliardini et al.,
2025) to the distributed, infrequent-communication regime. MT-DAO resolves the mismatch by using
slow-moving momenta (e.g., β ≈ 0.999) to preserve trajectory information across synchronizations
while remaining responsive via a fast momentum. In its simplest quasi-hyperbolic form (Ma & Yarats,
2019), MT-DAO uses the current gradient as the fast momentum, adds no memory or communication
overhead, and requires only one additional hyperparameter. Crucially, unlike methods that use a
momentum-based outer optimizer (Reddi et al., 2021; Douillard et al., 2023) at synchronization
boundaries, MT-DAO needs no extra memory buffers or multiple outer hyperparameters.

Empirically, slow momentum acts as a regularizer, improving update alignment by increasing cosine
similarity between worker pseudo-gradients (Reddi et al., 2021). This stability lets MT-DAO improve
perplexity over low-communication baselines. Furthermore, MT-DAO matches or exceeds its DDP
analogue at larger scales, closing the perplexity gap for models up to 720M parameters.
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Contributions :

1. A Provably Convergent Multi-Timescale Framework. We introduce MT-DAO, the first frame-
work to integrate multi-momentum strategies into distributed settings, with convergence guarantees
for heterogeneous momentum timescales and synchronization frequencies.

2. Closing the Performance Gap Efficiently. MT-DAO matches synchronous DDP, outperforming
baselines in perplexity, reducing wall-clock time by 6–27%; at 720M it reaches a target perplexity
in 24% fewer steps and 35% less time than a DDP baseline.

3. Noise Suppression and Information Retention. MT-DAO’s slow momentum preserves mutual
information across rounds and reduces inter-worker momentum variance.

4. Resilience to Infrequent Communication. MT-DAO lowers the rate of change of parameters and
momenta, improving tolerance to low communication frequencies.

5. Alignment of Worker Trajectories. MT-DAO increases cosine similarity of local worker update
trajectories, which reduces worker drift and aligns the overall model update.

2 MULTI-TIMESCALE DISTRIBUTED ADAPTIVE OPTIMIZERS (MT-DAO)
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Figure 1: To highlight the stability benefit of MT-DAO, we illustrate its performance on a toy non-
convex problem. Crucially, under a high momentum decay of β = 0.9999, prior stateful methods like
Local Adam (Cheng & Glasgow, 2025) become unstable and fail to converge, whereas MT-DAO
maintains its rapid and stable convergence. We optimize the non-convex Rosenbrock function
f(x1, x2) = (1− x1)

2 + 100(x2 − x21)
2 with M = 256 workers and IID Gaussian noise (σ = 2).

Our analysis begins by characterizing the conflict between optimizer momentum timescales and
the long communication intervals of infrequent-communication training. We consider the standard
setting. Let M be the total number of workers and K be the number of local updates performed by
each worker per round. The goal is to minimize a global objective f(x) := 1

M

∑M
m=1 fm(x) over

the model parameters x, where each fm(x) is the local objective Eξ∼Dm [Fm(x; ξ)] for a data sample
ξ drawn from data distribution Dm. We posit that the performance degradation in this regime stems
from a fundamental mismatch between the optimizer’s memory and the communication period.

2.1 TIMESCALE MISMATCH

The first momentum in adaptive optimizers is an Exponential Moving Average (EMA). Let ut be the
momentum, β be the momentum decay factor, and gt be the gradient at step t. The momentum is then
given by ut = βut−1 +(1−β)gt. Its effective memory is quantified by its half-life, τ0.5(β) = ln 0.5

ln β ,
the number of steps until the momentum decays by 50% (Pagliardini et al., 2025). A typical β1 = 0.9
yields τ0.5 ≈ 6.6 steps, suitable for frequent communication. A conflict arises when K ≫ τ0.5,
common in communication-efficient training (K ∈ [32, 512]). Unrolling the momentum update
over K local steps from a synchronized state ut gives: ut+K = βKut + (1− β)

∑K−1
k=0 βkgt+K−k.

The influence of the global state ut on the final local state ut+K decays with βK . For β1 = 0.9
and K = 32, this factor is negligible (≈ 0.03). In such a setting, the worker becomes reliant on
high-variance, potentially biased local gradients. For example, if noise is independent across workers,
the variance of the final local momentum is Var(ut+K) = 1−β

1+β (1− β2K)σ2
m (see Appendix F), with

2
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σ2
m being the gradient variance of worker m. As β → 1 the factor 1−β

1+β suppresses variance. For
β → 0, variance approaches σ2

m, exposing local updates to noise-induced instability.

An alternative interpretation of this memory decay is offered by information theory, which quantifies
the preserved signal between the initial global momentum Ut and the final local momentum Ut+K
via their mutual information, I(Ut+K ;Ut). By modeling the local updates as a linear process
Ut+K = βKUt + L, where L is the accumulated local gradient noise, a closed-form expression
can be derived when assuming Gaussian distributions for the states and noise with covariances ΣUt

and ΣL respectively. The mutual information is I(Ut+K ;Ut) =
1
2 log det(I + β2KΣUt

Σ−1
L ) (see

Appendix F). As βK → 0, mutual information vanishes, implying statistical independence with
respect to the momentum at the start of the interval. As βK → 1.0, the initial signal is preserved.

2.2 THE CHALLENGE OF HIGH-β OPTIMIZERS

Although both arguments above encourage the use of large β values as a solution to this timescale
mismatch problem, previous work has shown that high-momentum optimizers are often unfeasible in
practice (Lucas et al., 2019). Without modification, they are insufficiently responsive to changes in
the loss landscape and are prone to oscillations (see the top of Fig. 2), yielding subpar performance.
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Figure 2: Comparison of Local SGDM with standard momentum (top) and MT-DAO-SGDM (N = 1
momentum, ω1 = 0.95) (bottom) for the function f(x;λ) = 1

2λx
2 with x ∈ R for various parameters

controlling the rate of change λ and and sync frequencies (frequent: solid, infrequent/slow: dashed).
For β = 0.9, Local SGD with momentum can quickly find the sole global optimum, which does
not hold for non-convex functions, however, MT-DAO-SGDM converges despite the slow momentum
dampening it. While both optimizers are stable at β = 0.9, at high momentum (β = 0.999) Local
SGD with standard momentum becomes unstable for high λ while MT-DAO-SGDM remains stable.

This instability motivates using multi-momentum methods (Lucas et al., 2019; Ma & Yarats, 2019;
Pagliardini et al., 2025). Such methods compose the optimizer update as a linear combination of slow
and fast-moving first momenta, or the gradient in the case of Quasi-hyperbolic methods (Ma & Yarats,
2019). This avoids common pitfalls of high-momentum methods by responding to changes in the loss
landscape via the fast momentum/gradient. Recent works (Pagliardini et al., 2025; Semenov et al.,
2025) have shown that such optimizers can provide SOTA results, outperforming popular optimizers
such as Adam (Loshchilov & Hutter, 2019), Muon (Jordan et al., 2024), and Dion (Ahn et al., 2025).

2.3 THE MT-DAO METHOD AND ALGORITHM

Based on this analysis, we formalize the MT-DAO framework in Algorithm 1 for Adam with a variant
for ADOPT in Algorithm 2 and one for SGD with Momentum (SGDM) presented in Algorithm 3.
It accommodates adaptive optimizers with N first-order momenta {uj} and a single second-order
momentum v. The parameter update is driven by a convex combination with hyper-parameters {ωj}

3
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Algorithm 1 MT-DAO-Adam, local bias correction omitted to save space.
Require: Model tensors, hyper-parameters
1: x0 ∈ Rd, {ūj

−1}Nj=1 ∈ (Rd)N , v̄−1 ∈ Rd — initial params, N first momenta, second momentum
2: {β1,j}Nj=1, β2 ∈ [0, 1) — decay rates for each momentum state
3: {ωj}Nj=1 ∈ [0, 1] — convex combination coefficients for first momenta,

∑N
j=1 wj ≤ 1.0

4: ρ ∈ R+, {ηt}T−1
t=0 — clipping radius, learning-rate schedule

5: T,M ∈ N+ — total optimization steps and number of workers
6: Kx, {Kj}Nj=1,Kv ∈ (N+)

N+2 — communication periods for parameters and states
7: OuterOpt : Rd → Rd — update params using an outer optimizer, averaging by default

Ensure: xT , {uj
T−1}Nj=1, vT−1

8: for each worker m: initialize xm
0 , {uj,m

−1 }, vm−1

9: for t = 0, . . . , T − 1 do
10: for all workers m = 0, . . . ,M − 1 in parallel do
11: ĝmt ← clip(∇F (xm

t ; ξmt ), ρ) clipped stochastic gradient
12: for j = 1 to N do update N first momenta
13: uj,m

t ← β1,j ū
j
t−1 + (1− β1,j)ĝ

m
t

14: ūj
t−1 ← if (t mod Kj = 0) then Em[uj,m

t−1] else uj,m
t−1 sync uj everyKj steps

15: vmt ← β2v̄t−1 + (1− β2)(g
m
t )2

16: v̄t−1 ← if (t mod Kv = 0) then Em[vmt−1] else vmt−1 sync v everyKv steps

17: ∆m
t ← 1√

vm
t +ϵ

[
(1−∑N

j=1 ωj)ĝ
m
t +

∑N
j=1 ωju

j,m
t

]
form combined update direction

18: xm
t+1 ← x̄t − ηt∆

m
t

19: x̄t ← if (t mod Kx = 0) then OuterOpt(Em[xm
t ] ) else xm

t sync x everyKx steps

of these N preconditioned momenta and the preconditioned current gradient, which receives the
remaining weight 1−∑N

j=1 ωj . We highlight these additions in purple. This inclusion of the current
gradient term effectively implements the Quasi-hyperbolic Momentum (QHM) structure within this
generalized multi-momentum framework. The OuterOpt procedure represents arbitrary parameter
optimizers such as Federated Averaging (McMahan et al., 2017), Nesterov Momentum (Huo et al.,
2020), or FedOPT (Reddi et al., 2021). Unless stated otherwise, our analysis and arguments refer
to using averaging to align with previous converge analyses (Cheng & Glasgow, 2025; Iacob et al.,
2025). MT-DAO-Adam reduces communication costs by ( 1

Kx
+
∑N
j=1

1
Kj

+ 1
Kv

)−1 over DDP.

This generalized framework recovers previous distributed adaptive optimizers (Stich, 2019; Douillard
et al., 2023; Cheng & Glasgow, 2025; Iacob et al., 2025). It also introduces the first-ever formula-
tions for provably convergent distributed variants of multi-momentum optimizers (Lucas et al.,
2019; Ma & Yarats, 2019; Pagliardini et al., 2025). Figure 2 (bottom) shows an example of MT-DAO-
SGDM converging for both high and low β1 with a quasi-hyperbolic formulation while the Local
SGDwith momentum averaging method fails for high β1. To highlight the stability of MT-DAO-Adam,
Figure 1 illustrates its convergence on a common toy non-convex problem (Pagliardini et al., 2025)
under high momentum (β = 0.9999), a setting where prior provably convergent methods like Local
Adam (Cheng & Glasgow, 2025) become unstable and do not reach the optimum.

3 CONVERGENCE GUARANTEES FOR MT-DAO

This section provides a theoretical convergence analysis for the proposed MT-DAO approach using the
SGDM optimizer. The analysis, detailed in Appendix D, relies on the following standard assumptions.
Assumption 1 (Lower bound and smoothness). The overall loss function f : Rd → R is lower
bounded by some f∗ ∈ R and all local loss functions fm are L-smooth:

∥∇fm(x)−∇fm(y)∥ ≤ L∥x− y∥, for any x, y ∈ Rd.

Assumption 2 (Unbiased noise with bounded stochastic variance). The stochastic gradient gm of
local loss function fm computed by machine m is unbiased and the noise has bounded variance:

E[gm] = ∇fm(x), E[∥gm −∇fm(x)∥2] ≤ σ2, for any x ∈ Rd.

4
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Assumption 3 (Bounded heterogeneity). For any x ∈ Rd, the heterogeneity is bounded by

1
M

∑M
m=1 ∥∇fm(x)∥2 ≤ G2 +B2∥∇f(x)∥2.

These are standard assumptions in smooth non-convex optimization (Yu et al., 2019; Karimireddy
et al., 2020b; Wang et al., 2021; Yuan et al., 2022), covering homogeneous data as a special case
(G2 = 0, B2 = 1). For analytical tractability, we model periodic synchronization every K steps as a
probabilistic event. Model parameters are averaged with probability px = 1/Kx, the j-th momentum
is averaged with probability pj = 1/Kj . The gradient is treated as a momentum with β = 0.

Theorem 1. Let Assumptions 1, 2 and 3 hold. Then, choosing the step size η = min(η0,
1√
T
) where

η0
def
= 1/(4Lmax(βω, 6

√
ψmax(1, B2 − 1))) with constants

βω
def
=
∑N
j=1

ωjβj

1−βj
, and ψ

def
= 4(1−px)

p2x

∑N
j=1 ωj

(1−βj)(1−pj)
1−(1−pj)βj

(1)

the average iterates xt = Em[xmt ] of MT-DAO-SGDM converge with the following rate:

1
T

∑T−1
t=0 E∥∇f(xt)∥2 ≤ 4√

T

(
f(x0)− f∗ + Lσ2

2M

)
+O

(
1+β2

ω+ψ
T

)
. (2)

The derived bound in (2) achieves the optimal O(1/
√
T ) asymptotic rate for smooth non-convex

stochastic optimization (Arjevani et al., 2023). Distributed factors, such as client drift and data
heterogeneity, are contained within the step-size constraint and the higher-order O(1/T ) term, thus
not affecting the asymptotic rate. The step size η is constrained by βω and ψ. The dependence
ψ = O(1/p2x) shows that model synchronization frequency px is critical. The impact of momentum
synchronization is nuanced: reducing a momentum’s sync frequency pj increases its contribution to
ψ, but this is modulated by its decay rate βj . This implies "slower" momenta (larger βj) are more
robust to infrequent synchronization. This analysis reveals a trade-off: large βj values constrain
the step size via βω but reduce the communication penalty in ψ. Furthermore, synchronizing
only the model always (i.e., px = 1, pj = 0) is algorithmically equivalent to synchronizing only
the momenta always (i.e., px = 0, pj = 1). In the boundary case where only model parameters are
synced (px = 1, pj = 0), ψ = 0 and the rate recovers that of mini-batch SGD (Liu et al., 2020).

4 EXPERIMENTAL DESIGN

Building on our analysis, our experimental design answers the following research questions:

RQ1 Does MT-DAO reduce momentum noise and preserve mutual information, as predicted?
RQ2 Does MT-DAO better preserve task performance when decreasing communication frequency?
RQ3 How does MT-DAO perform against DDP and prior communication-efficient optimizers?
RQ4 How does slow momentum affect local optimization trajectories between synchronizations?
RQ5 How does MT-DAO impact downstream task performance vs baselines?

4.1 SETUP

Models and Data. We use peri-norm (Kim et al., 2025) GPT-style transformer models of 16M,
125M, and 720M parameters (Table 2). The 16M model is used for hyperparameter sweeps and
qualitative investigations, while the 125M and 720M models are used for scaling experiments and
baseline comparisons. All models are trained with a sequence length of 2048 on the SmolLM2
mixture (Allal et al., 2025). We evaluate all models (16M, 125M, 720M) using validation perplexity
on a held-out 10% portion of the training mixture. For further details, please see Appendix B.

Optimizers and Tuning Methodology. We use the ADOPT optimizer, a variant of Adam whose
convergence rate is independent of the second-momentum decay rate β2 and preserves perfor-
mance (Taniguchi et al., 2024); we fix β2 = 0.9999 to isolate the first momentum dynamics (governed
by β1 defaulting to 0.9 and ω).For Adam we use (β1, β2) = (0.9, 0.999) by default as recommended
by Semenov et al. (2025). We use the CompleteP parameterization for one-shot transfer of the
learning rate (LR) from small to large models (Dey et al., 2025). For each combination of convex
coefficients (ω’s) and momentum decays (β’s), we tune the learning rate on the 16M model and
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Figure 3: A comparison of MT-DAO (β1 = 0.999) versus a Local ADOPT baseline (β1 = 0.95) with
a communication frequency of K = 32. For each communication round, we plot metrics computed
between the momentum at the start (t) and end (t+K) of the round. MT-DAO’s slow momentum
preserves mutual information, I(Ut;Ut+K), across rounds while the baseline’s momentum decays
losing the global optimization direction (left). Furthermore, MT-DAO reduces inter-worker momen-
tum variance, Var(ut+K), indicating greater stability against local noise (right).

transfer the optimal hyperparameters to larger models directly without ever re-tuning (ω’s) and (β’s).
To establish strong DDP baselines, we tune ω, β1 parameters in the DDP setting and reuse them for
MT-DAO. For complete details see Appendix B.2. We always use quasi-hyperbolic MT-DAO (N = 1)
which does not require additional memory and reduces comms costs by ( 1

Kx
+ 1

K1
+ 1

Kv
)−1 over

DDP.

Baselines. We compare MT-DAO against: the base optimizer (ADOPT/Adam) with DDP and DDP
analogues to MT-DAO such as Quasi-hyperbolic Momentum (QHM) (Ma & Yarats, 2019). For
communication-efficient baselines we use the provably convergent and stateful Local Adam (Cheng
& Glasgow, 2025) approach. We also compare against using Nesterov momentum as the outer
optimizer (Charles et al., 2025). We evaluate ML performance for communication-efficient methods
under the same, fixed synchronization frequency. Unless otherwise stated we use K = Kx = K1 =
Kv = 32 steps, based on prior work finding a practical balance of performance efficiency (Charles
et al., 2025). We split the dataset in an IID fashion across 4 workers using 1 H100 per worker.

Other Metrics We analyze flattened models/momenta st ∈ Rd using several metrics. The relative
change over K steps is measured as ∥st+K − st∥2/∥st∥2. To quantify the dispersion among M
worker vectors, we compute the cross-worker variance, defined as 1

M

∑M
m=1 ∥sm − s̄∥22. The

statistical dependency between two random vectors at different timesteps is captured by their mutual
information, I(Ut+K ;Ut). Finally, we measure alignment between vectors using cosine similarity.

5 EVALUATION

This section empirically validates MT-DAO, showing its slow momentum preserves information and
aligns workers (Sections 5.1 and 5.4), which improves stability under infrequent communication
(Section 5.2) and allows it to close the performance gap with DDP at scale (Section 5.3).

5.1 MT-DAO REDUCES MOMENTUM NOISE AND PRESERVES MUTUAL INFORMATION (RQ1)

We now empirically validate the motivation of MT-DAO. Our results in Fig. 3 demonstrate that the
slow-momentum of MT-DAO both preserves information about the global optimization direction
across communication rounds and suppresses the variance induced by local updates.

Slow Momentum Is Preserved: The slow momentum in MT-DAO preserves its direction across
communication rounds. This directional memory also reduces the influence of local gradient noise,
leading to lower momentum variance across workers and a more stable optimization path.

5.2 MT-DAO IS RESILIENT TO INFREQUENT COMMUNICATION (RQ2)

We now investigate if MT-DAO provides greater resilience against infrequent synchronization, as
predicted by our analysis in Section 3 showing that reducing the communication frequency of
momenta with higher β has a diminshed impact on the step size.

6
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Figure 4: Mean relative L2 change and standard deviation across communication rounds of (left)
model parameters and (right) the first momentum state, as a function of momentum decay (β1)
and weight (ω1). In both cases, MT-DAO shows a significantly reduced relative rate of change
with high (β1, ω1) (minimum in gold), which reduces worker drift and thus makes parameter
averaging more effective. Each point on the grid corresponds to a configuration evaluated with its
own independently tuned learning rate. Local ADOPT corresponds to (β1 = 0.95, ω1 = 1.0).

Table 1: Demonstration of how parameter synchronization period (Kx) affects final perplexity for
two MT-DAO configurations with momentum periods K1 = Kv = 16 for our 16M models. Values
show the percentage increase in validation perplexity over the Kx = 16 baseline. Higher β leads to
less performance degradation as Kx increases.

Kx 16 32 64 128 256 512 1024

β1 = 0.99 (37.72) +1.7% +3.0% +3.9% +5.1% +5.6% +6.2%
β1 = 0.995 (37.65) +1.0% +1.6% +3.2% +2.8% +3.4% +3.7%

Table 1 shows that a MT-DAO configuration with a higher momentum decay β1 suffers less perfor-
mance degradation as the parameter synchronization period Kx increases. This improved resilience
can be explained by the reduced rate of change in the model parameters, which is quantified in
Figure 4. The underlying principle is that the global averaging step is most effective when the
worker models have diverged minimally. Let xt be the synchronized model at the start of a round.
After Kx local steps, worker m arrives at state xmt+Kx

. Figure 4 shows that high (β1, ω1) values
reduces the local model change, Em[∥xmt+Kx

−xt∥2]. A smaller per-worker model change bounds the
variance across the set of workers ({xmt+Kx

}Mm=1), mitigating local drift. This enhances convergence
robustness because workers compute gradients on models that are closer to the global mean, making
their local updates more relevant to the central objective (Li et al., 2020).

Slow Momentum as Anchor: Long-term momentum (high β1 and ω) reduces the rate of change of
parameters and optimizer states. This stability ensures worker models diverge less prior to synchro-
nization, which reduces the performance impact of infrequent synchronization.

5.3 MT-DAO OUTPERFORMS PRIOR LOW-COMMS OPTIMIZERS AND MATCHES DDP (RQ3)

We evaluate MT-DAO on 16M, 125M, and 720M parameter language models against other baselines.
We report validation perplexity as a function of both training tokens and wall-clock time. Timings are
measured on 4 cloud H100s connected via 50–100 Gbit/s Ethernet, including constant implementation
overheads, and accounting for communication–computation overlap in DDP. These measurements
are specific to this hardware; Appendix E provides a bandwidth model that compares communication-
efficient methods to DDP across a wider range of interconnects. When reporting time-to-target
perplexity, we give improvements in both wall-clock time and training tokens.

Across all scales, MT-DAO consistently improves over ADOPT-DDP and Local ADOPT in both
tokens and time, closing the gap to synchronous training and reducing end-to-end wall clock by
6–27%. At 720M, relative to single-momentum DDP, MT-DAO reaches the same perplexity in 24%
fewer tokens and 35% less time. Relative to QHADOPT-DDP, MT-DAO trails at 16M, matches at
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Figure 5: Validation perplexity versus wall-clock time and training tokens for MT-DAO (β1 =
0.999, ω1 = 0.98) and baselines on models of increasing size. Horizontal lines denote the two DDP
baselines (ADOPT-DDP and QHADOPT-DDP). For each non-DDP method, a colored marker on the
x-axis marks the point at which its curve attains a lower/equal perplexity to a DDP variant.

125M, and at 720M reaches the QHADOPT-DDP target perplexity about 8% faster in wall-clock
and ≈ 5% fewer tokens. The additional improvements in time are due to MT-DAO communicating
10× less than DDP. The outer Nesterov baseline performs better than Local ADOPT in our
setting yet remains below MT-DAO and DDP; matching the findings of Charles et al. (2025, Table 4),
which reported underperformance relative to DDP by 0.2% to 1.7% at the 550M to 1.3B scale.
Mechanistically, Nesterov coalesces per-round gradients and preserves them according to the
half-life of the outer momentum, whereas MT-DAO implements a finer-grained inner multi-timescale
modification. We examine how these choices shape worker update trajectories in the next section,
however, we do note that MT-DAO (N = 1) does not require the additional momentum buffer of
Nesterov and has only one additional hyperparameter to tune instead of two.

Improved Performance and Efficiency at Scale: MT-DAO improves performance w.r.t all baselines
across model scales, closing the performance gap to DDP.

5.4 MT-DAO ALIGNS WORKER UPDATE TRAJECTORIES(RQ4)

Having established the performance benefits of MT-DAO, we now investigate the underlying mecha-
nism. We hypothesize that the slow momentum reduces worker drift by keeping the optimization
trajectories of individual workers aligned with the global optimization direction. To validate this, we
measure the cosine similarity between key optimization vectors. We define the per-round local update
as the "pseudo-gradient" (∆m = xmt+K − xmt ), and the global pseudo-gradient as the average of local
ones (Reddi et al., 2021). To provide a comprehensive comparison, we define the "global momentum"
for each method: for MT-DAO and Local ADOPT, it is the average of worker momenta at the end
of a round, while for the Nesterov variant, it is the state of the outer Nesterov momentum.

The results in Fig. 6 show that MT-DAO achieves near-perfect alignment (cosine similarity > 0.95)
across all four metrics. This indicates that: (1) each worker’s update is consistent with its own
momentum history (Local PG to Local Mom), (2) workers are in strong agreement with each other
(Local PG to Global PG), and (3, 4) both local and global updates are aligned with the long-term
global trajectory (Local/Global PG to Global Mom). This demonstrates that the slow momentum acts
as a regularizer, ensuring all workers maintain a stable and shared optimization path.
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Figure 6: A comparison of update vector alignments for MT-DAO (β1 = 0.999, ω1 = 0.98) versus
Local ADOPT (β1 = 0.95), and Local ADOPT (β1 = 0.95) with Nesterov. Cosine similarity
is measured between: (1) the local pseudo-gradient and global momentum, (2) the local pseudo-
gradient and the local momentum, (3) the local and global pseudo-gradients, (4) the local and global
momentum. Pseudo-gradient and momentum have been abbreviated as PG and Mom.

In contrast, the Nesterov outer optimizer presents mixed results. As an EMA of global pseudo-
gradients, it is better aligned to the global pseudo-gradient than the Local ADOPT momentum and it
improves the alignment between the local and global pseudo-gradients compared to standard Local
ADOPT. However, it never reaches the degree of alignment of MT-DAO in any metric.

Slow Momentum as Regularizer: MT-DAO’s slow momentum acts as a regularizer for each worker,
ensuring that local updates remain aligned with their history and the global trajectory.

5.5 MT-DAO IMPROVES DOWNSTREAM TASK PERFORMANCE VS BASELINES

To rigorously assess the practical utility of our proposed method, we evaluate downstream zero-shot
and few-shot accuracy throughout the pre-training process. Figure 7 presents these results, detailing
both per-task scores and a macro-average metric (“All Tasks (AVG)”) at the 1.3B parameter scale.

MT-DAO demonstrates consistent superiority over the AdamW-DDP baseline in aggregate perfor-
mance. Notably, it excels on the most challenging reasoning tasks, achieving a clear lead on ARC-
CHALLENGE and HELLASWAG. When compared to QHAdamW-DDP, MT-DAO remains competitive
during the early phases of training and progressively closes the performance gap as training duration
increases, mirroring the trends observed in our perplexity analysis. While the outer Nesterov
momentum baseline is comparable to AdamW-DDP and consistently outperforms Local ADOPT, it
fails to match the performance of MT-DAO across the evaluated metrics.

We further contextualize these gains by examining wall-clock efficiency. Using a setup of 4 machines
with 8 H100 GPUs each, connected via 100 Gbit inter-node links (where each node runs intra-node
DDP and MT-DAO treats each node as a worker), MT-DAO achieves target accuracies earlier in time
than its DDP counterparts. Detailed time-normalized comparisons are provided in Figure 12.

Downstream Mirrors Perplexity: MT-DAO delivers higher downstream accuracy than AdamW-DDP,
tracks QHAdamW-DDP ever more closely with training, and converts these gains into earlier time-to-
target under multi-node settings.

6 RELATED WORK

Standard Distributed Data Parallelism’s (DDP) per-step synchronization creates a communication bot-
tleneck (Sergeev & Balso, 2018). This is mitigated by two orthogonal strategies: payload compression
and infrequent synchronization. Compression shrinks transmissions via quantization (Alistarh et al.,
2017), sparsification (Lin et al., 2018b), mixes thereof (Wang et al., 2023b), low-rank updates (Robert
et al., 2025), or communicating select momentum components (Peng et al., 2024). Our work advances
infrequent synchronization (Stich, 2019; McMahan et al., 2017) which allows local updates between
communications and is complementary to compression.
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Figure 7: Downstream task accuracy versus training tokens on ARC-CHALLENGE, ARC-
EASY, HELLASWAG, MMLU, and PIQA. Curves compare MT-DAO, Local ADOPT, Nesterov,
AdamW-DDP, and QHAdamW-DDP; horizontal reference lines (when shown) indicate external model
baselines. Error bars denote ±σ over samples. MT-DAO exceeds AdamW-DDP on the aggregate
and on reasoning-heavy tasks (ARC-CHALLENGE, HELLASWAG); with smaller but steady gains
on MMLU. As training length increases, MT-DAO closes the gap to QHAdamW-DDP, consistent
with the perplexity results. Nesterov tracks AdamW-DDP and outperforms Local ADOPT, but
remains below MT-DAO across metrics. Time-normalized results are provided in Figure 12.

Adapting stateful optimizers like Adam to infrequent synchronization is not straightforward. Local
Adam (Cheng & Glasgow, 2025) provided the first convergence proofs at the cost of synchronizing
all optimizer states. Douillard et al. (2023); Charles et al. (2025) showed that a Nesterov-based outer
optimizer improves performance. Recently Iacob et al. (2025) improved the communication efficiency
of Local Adam by decoupling parameter and momentum sync frequencies. However, these methods
use single-timescale optimizers with small β1 values ill-suited to low communication frequencies
due to momentum decay. While naively increasing momentum often harms task performance, recent
optimizers that track gradients across multiple timescales have shown significant benefits. QHM (Ma
& Yarats, 2019) decouples momentum decay from gradient weight, while AggMo (Lucas et al., 2019)
averages multiple velocity vectors for stability. Building on this, AdEMAMix (Pagliardini et al., 2025)
mixes fast and slow momenta to accelerate convergence, demonstrating that slow momentum acts as
memory, reducing forgetting in LLMs. Fur further related work see Appendix G.

7 CONCLUSION

A persistent challenge in distributed training has been the performance gap between fully-synchronous
and communication-efficient optimizers. We identify one potential cause for this gap: the rapid decay
of momentum in standard optimizers is temporally mismatched with the long intervals inherent to
infrequent communication, leading to unstable update directions. We address this with MT-DAO, a
multi-timescale optimizer that maintains a stable, long-term (high-β) update direction that persists
across communication rounds. Our theory shows that momenta with higher β are less sensitive to
synchronization frequency. Furthermore, our experiments on large language models demonstrate that
this approach closes the performance gap with DDP and outperforms prior communication-efficient
methods. This is achieved by using the slow momentum to maintain a stable, shared optimization
trajectory across workers. These findings establish that managing momentum timescales is a critical
factor for performant distributed training, opening new avenues for research into dynamic timescale
modulation and integration with compression. Ultimately, this work provides a robust and practical
path forward for scaling foundation model training in communication-constrained environments, for
cross-datacenter training, or across wide geographic areas.
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8 REPRODUCIBILITY

We provide the complete source code for our mt_dao framework, accompanied by detailed setup
instructions, to ensure the reproducibility of our results.

System & Dependencies: The required environment, including specific versions of Ubuntu, CUDA,
and Python, can be installed using the provided system_setup.sh and install_env.sh
scripts. These scripts handle all necessary dependencies.

Data: We provide scripts to download and prepare the datasets. The distribution of data across
clients for both IID and non-IID settings is managed through declarative YAML configuration files
found in mt_dao/conf/dataset/streams/.

Execution & Hyperparameters: Example scripts are available for launching federated, central-
ized, and evaluation runs (e.g., fed_125m_example.sh, cen_125m_example.sh). To fully
reproduce our paper’s experiments, users can utilize the provided base launcher scripts and set the
specific hyperparameters detailed in the paper. A concrete example of this process is available in
scripts/iclr_mt_dao.
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A LIMITATIONS

Limitations. First, our empirical validation is limited to models up to 720M parameters. Second, our
experiments use ADOPT instead of Adam, this avoids the need to tune the β2 of the second momentum,
simplifying experimental design. Third, we preferred a detailed investigation of the training dynamics
of the highly memory and communication-efficient MT-DAO (N = 1) over increasing the number of
momenta, which brings diminishing returns (Lucas et al., 2019; Ma & Yarats, 2019).

B EXPERIMENTAL DETAILS

Here we provide additional experimental details complementing those in Section 4.1, including: a)
model architecture details and the model parameterization (Appendix B.1), b) our hyperparameter
sweep procedure to select optimizer-specific settings (Appendix B.2), and c) the results of our tuning
sweeps for MT-DAO.

B.1 ARCHITECTURE DETAILS AND PARAMETRIZATION

Table 2: Model architecture and training hyperparameters. Architectural parameters include the
number of transformer blocks (#Blocks), attention heads (#Heads), embedding dimension (dmodel),
vocabulary size (|V|), and feedforward expansion ratio (Exp. Ratio). Key training parameters are the
global batch size (|BG|) and the total number of training steps (T ). All models use RoPE positional
embeddings (Su et al., 2024), the SiLU activation function, norm-based gradient clipping with a
bound of ρ, and are initialized with a typical (Semenov et al., 2025; Dey et al., 2025) σ = 0.02.For
Adam we use the ρ values recommended by Semenov et al. (2025). Sequence length is standard for
models at these scales.

Model Size Blocks dmodel |V| #Heads Exp.∼Ratio ROPE θ ACT Init σ ρAdopt ρAdam Seq Len |BG| T

16M 4 256 50K 4 4 10000 SiLU 0.02 1.0 1.0 2048 64 4608, 12288,40960
125M 12 768 50K 12 4 10000 SiLU 0.02 1.0 0.5 2048 256 4608, 12288,40960
360M 24 1024 50K 16 4 10000 SiLU 0.02 1.0 0.25 2048 256 12288,40960
720M 12 2048 50K 16 4 10000 SiLU 0.02 1.0 0.1 2048 512 4608, 12288,40960
1.3B 24 2048 50K 16 4 10000 SiLU 0.02 1.0 0.1 2048 1024 12288,40960

Table 2 summarizes the architectural details of our models, which follow established practices for
large language models at their respective scales. To improve training stability and final performance,
we adopt two key modifications. First, following the recommendations of Kim et al. (2025), we use a
Peri-LayerNorm transformer structure instead of pre-norm. Second, we use the CompleteP (Dey
et al., 2025) parametrization with α = 1.0, which enables the effective transfer of optimizer hyper-
parameters from a small model to its larger-scale counterparts in a one-shot manner. This property
allows us to perform comprehensive hyperparameter sweeps on our smallest model size and reserve
computationally expensive scaling experiments for direct comparisons against baselines.

We set batch sizes and training durations following recent best practices (Zhang et al., 2025). For the
smallest model size, the initial batch size is determined using the noise-scale estimator for the critical
batch size (McCandlish et al., 2018) and then doubled until the efficiency deviates from a linear trend
by 20%. For our 125M and 720M models we follow the batch size recommendations from Semenov
et al. (2025). Training durations are set as multiples of the compute-optimal token budget (Hoffmann
et al., 2022): for the 16M model, we tune using ≈ 2× this budget and run baseline comparisons at
≈ 16×; for the 125M model, we use ≈ 8×; and for the 720M model, we use ≈ 2.83×. We chose the
720M model size as a good balance between scale and computational efficiency following Semenov
et al. (2025), with the 360M being chosen as an efficient middle-ground between 720M and 125M.
For the 1.3B we use a standard batch size of 2M tokens.

All models are trained using the warmup-stable-decay (WSD) learning rate schedule (Hägele et al.,
2024), with warmup and decay periods selected based on established recommendations (Zhang et al.,
2025; Hägele et al., 2024; Allal et al., 2025; Semenov et al., 2025).

For all longer training runs and baseline comparisons, we use the industry-standard warmup of
TWARM = 2048 steps. We use a cooldown period equal to the warmup period in all cases, using

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1-sqrt cooldown (Hägele et al., 2024). We use slightly different tuning configurations for vs Adam.
For the 16M model tuning runs for ADOPT, which last 4608 steps, the warmup period is set to
TWARM = 512 steps. For Adam we use 12288 steps as the tuning period with a warmup period set
to TWARM = 2048.

B.2 OPTIMIZER HYPERPARAMETER SWEEPING PROCEDURE

Our tuning procedure is designed to ensure that both our method and the baselines are evaluated under
their optimal DDP configurations, providing a fair comparison. Given that previous work has shown
that the learning rate (LR) tends to transfer effectively between DDP and distributed settings (Iacob
et al., 2025), we first tune all parameters to achieve the best possible performance under DDP and
then transfer these settings to MT-DAO. Unlike methods such as AdEMAMix that use schedulers
for optimizer parameters, we employ a simple switch from a base optimizer (e.g., ADOPT) to its
multi-timescale variant at the end of the warmup period. This necessitates a two-phase LR tuning
process to ensure identical starting conditions for both optimizers:

1. Phase 1: Base Optimizer Tuning. We first tune the learning rate for the base optimizer
over the entire training run to achieve the lowest final perplexity. This ensures the baseline
itself is as strong as possible.

2. Phase 2: MT-DAO/Quasi-hyperbolic Tuning. Using the model state from the end of
the base optimizer’s warmup, we then tune the learning rate for the post-switch phase of
MT-DAO and of its DDP analogue. With a WSD scheduler, this corresponds to tuning the LR
for the constant "stable" portion of training and for the cooldown.

While more complex scheduling manipulations might yield further gains for MT-DAO, this two-phase
approach provides the cleanest methodology for comparison. For every combination of momentum
decay rates (β’s) and convex coefficients (ω’s) used by MT-DAO, we independently perform this
tuning procedure. For ADOPT the LR sweeps in both phases search over values between 2−10 and
2−6 using powers of two, with the search grid refined by manually adding half-power steps (e.g.,
2−8.5, 2−7.5, 2−6.5) around the optimal value.

B.3 OPTIMIZER TUNING RESULTS

First, our tuning of ADOPT for DDP revealed an optimal lr η∗ = 2−8 while our tuning for Adam
revealed an optimal learning rate of η∗ = 10−3 . We now present the results of our tuning for the
post-warmup lr for MT-DAO-ADOPT with N = 1 first momenta in Fig. 8.

A clear trend emerges from our results: methods with higher momentum decay rates (βs) or higher
weights (ωs) ascribed to the slow-moving momenta can tolerate significantly higher learning rates
than standard momentum methods. This finding is in strong agreement with the previous findings of
Lucas et al. (2019), who similarly found that AggMo can effectively utilize learning rates that are
orders of magnitude higher than those suitable for classical momentum.

Takeaway: Multi-timescale optimizers that emphasize slow-moving momenta (via high β or ω values)
are not only more stable but can also leverage much higher learning rates, enabling faster convergence
than their single-timescale counterparts.
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Figure 8: Visualizing the learning rate sweeps for different MT-DAO configurations. Each subplot
shows the final perplexity for a given convex coefficient (ω) and momentum decay (β1), where
β2 = 0.9999 was kept constant. The sweep demonstrates that the optimal learning rate and final
performance are highly dependent on the choice of these internal hyperparameters, with β1 ∈
[0.995, 0.999] and ω ∈ [0.9, 0.99] performing best for these short tuning experiments. The vertical
line in each subplot marks the best-performing lr for that configuration.Switch scale referes to the
multiple of the base learning rate that we select, the chosen learning rate can be computed via
multiplication with ηBASE.

C DETERMINISTIC OPTIMIZER-SPECIFIC VARIANTS OF MT-DAO
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Algorithm 2 MT-DAO-ADOPT
Require: Model tensors, hyper-parameters
1: x0 ∈ Rd, {ūj

−1}Nj=1 ∈ (Rd)N , v̄−1 ∈ Rd — initial params, N first momenta, second momentum
2: {β1,j}Nj=1, β2 ∈ [0, 1) — decay rates for each momentum state
3: {ωj}Nj=1 ∈ [0, 1] — convex combination coefficients for first momenta,

∑N
j=1 ωj ≤ 1.0

4: {ct}T−1
t=0 , {ηt}T−1

t=0 — clipping and learning-rate schedules
5: T,M ∈ N+ — total optimization steps and number of workers
6: Kx, {Kj}Nj=1,Kv ∈ (N+)

N+2 — communication periods for parameters and states
7: OuterOpt : Rd → Rd — update params using an outer optimizer, averaging by default

Ensure: xT , {uj
T−1}Nj=1, vT−1

8: for each worker m: initialize xm
0 , {uj,m

−1 }, vm−1

9: for t = 0, . . . , T − 1 do
10: for all workers m = 0, . . . ,M − 1 in parallel do
11: gmt ← ∇F (xm

t ; ξmt ) stochastic gradient

12: vmt ← β2v̄t−1 + (1− β2)(g
m
t )2 update second momentum with raw gradient

13: v̄t ← if (t mod Kv = 0) then Em[vmt ] else vmt sync v everyKv steps

14: ĝmt ← gmt√
vm
t +ϵ

normalize gradient (ADOPT core step)

15: g̃mt ← clip(ĝmt , ct) clip the normalized gradient

16: for j = 1 to N do update N first momenta

17: uj,m
t ← β1,j ū

j
t−1 + (1− β1,j)g̃

m
t use clipped, normalized gradient

18: ūj
t ← if (t mod Kj = 0) then Em[uj,m

t ] else uj,m
t sync uj everyKj steps

19: ∆m
t ← (1−∑N

j=1 ωj)g̃
m
t +

∑N
j=1 ωju

j,m
t form combined update direction

20: xm
t+1 ← x̄t − ηt∆

m
t apply combined update

21: x̄t+1 ← if ((t+ 1) mod Kx = 0) then OuterOpt(Em[xm
t+1]) else xm

t+1 sync x everyKx steps

Algorithm 3 MT-DAO-SGDM
Require: Model tensors, hyper-parameters
1: x0 ∈ Rd, {ūj

−1}Nj=1 ∈ (Rd)N — initial params, N first momenta
2: {β1,j}Nj=1 ∈ [0, 1) — decay rates for each momentum state
3: {ωj}Nj=1 ∈ [0, 1] — convex combination coefficients for first momenta,

∑N
j=1 ωj ≤ 1.0

4: ρ ∈ R+, {ηt}T−1
t=0 — clipping radius, learning-rate schedule

5: T,M ∈ N+ — total optimization steps and number of workers
6: Kx, {Kj}Nj=1 ∈ (N+)

N+1 — communication periods for parameters and states
7: OuterOpt : Rd → Rd — update params using an outer optimizer, averaging by default

Ensure: xT , {uj
T−1}Nj=1

8: for each worker m: initialize xm
0 , {uj,m

−1 }
9: for t = 0, . . . , T − 1 do

10: for all workers m = 0, . . . ,M − 1 in parallel do
11: ĝmt ← clip(∇F (xm

t ; ξmt ), ρ) clipped stochastic gradient

12: for j = 1 to N do update N first momenta

13: uj,m
t ← β1,j ū

j
t−1 + (1− β1,j)ĝ

m
t

14: ūj
t ← if (t mod Kj = 0) then Em[uj,m

t ] else uj,m
t sync uj everyKj steps

15: ∆m
t ← (1−∑N

j=1 ωj)ĝ
m
t +

∑N
j=1 ωju

j,m
t form combined update direction (unnormalized)

16: xm
t+1 ← x̄t − ηt∆

m
t

17: x̄t+1 ← if ((t+ 1) mod Kx = 0) then OuterOpt(Em[xm
t+1]) else xm

t+1 sync x everyKx steps

D CONVERGENCE ANALYSIS OF MT-DAO-SGDM

In order to facilitate the technical presentation, we model synchronization frequencies by assigning
probabilities to each averaging event. For example, the parameters xmt are synchronized with the
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Algorithm 4 MT-DAO-SGDM, probabilistic variant
Require: Model tensors, hyper-parameters
1: x0 ∈ Rd, {uj

−1}Nj=1 ∈ (Rd)N — initial parameters, N first momenta
2: {βj}Nj=1 ∈ [0, 1) — decay rates for each momentum state
3: {ωj}Nj=1 ∈ [0, 1] — convex combination of non-negative coefficients for first momenta,

∑N
j=1 wj = 1

4: {ηt}T−1
t=0 — learning-rate schedule

5: T,M ∈ N+ — total optimization steps and number of workers
6: px = 1

Kx
, {pj = 1

Kj
}Nj=1 ∈ [0, 1]N+1 — communication periods/probabilities for parameters and states

Ensure: xT , {uj
T−1}Nj=1

7: for each worker m: initialize xm
0 , {uj,m

−1 }
8: for t = 0, . . . , T − 1 do
9: for all workers m = 0, . . . ,M − 1 in parallel do

10: gmt ← ∇Fm(xm
t ; ξmt ) stochastic gradient

11: for j = 1 to N do update N first momenta

12: uj,m
t ←

Em[βju
j,m
t−1 + (1− βj)g

m
t ], with probability pj

βju
j,m
t−1 + (1− βj)g

m
t , with probability 1− pj

sync u

13: ∆m
t ←

∑N
j=1 ωju

j,m
t form combined update direction

14: xm
t+1 ←

Em[xm
t − ηt∆

m
t ], with probability px

xm
t − ηt∆

m
t , with probability 1− px

sync x

probability px = 1
Kx

, which is statistically equivalent to performing the averaging in every 1
px

= Kx

iteration. Similarly, momentum uj,mt synchronization happens with probability pj = 1
Kj

, which can

differ from px. Note that QHM structure is included since we can choose β1 = 0 and get u1,mt = gmt .

Auxiliary notation. Let Em and Ej be the averaging operators with weights 1
M across M workers

and ωj across N momenta.

ujt
def
= Em[uj,mt ] = βju

j
t−1 + (1− βj)gt,where gt = Em[gmt ]

xj,mt+1
def
=

{
Em[xj,mt − ηuj,mt ], with probability px
xj,mt − ηuj,mt , with probability 1− px

xjt+1
def
= Em[xj,mt+1] = xjt − ηujt , xmt+1 = Ej [xj,mt+1] = (line 14) .

For the sake of notation, we also let umt = ∆m
t = Ej [uj,mt ], ut = Em[umt ], xt = Em[xmt ] in the

upcoming derivations.

Step 1 (virtual iterates). Letting xj−1 = xj0 = x0, define the global virtual iterations as follows

zjt
def
=

1

1− βj
xjt −

βj
1− βj

xjt−1, and zt
def
= Ej [zjt ] for t ≥ 0.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The key property of this virtual iterates we are going to exploit in the next steps is that they follow
averaged gradients, namely for any t ≥ 0 we have

zt+1 − zt = Ej [zjt+1 − zjt ]

= Ej
[(

1

1− βj
xjt+1 −

βj
1− βj

xjt

)
−
(

1

1− βj
xjt −

βj
1− βj

xjt−1

)]
= Ej

[
1

1− βj
(xjt+1 − xjt )−

βj
1− βj

(xjt − xjt−1)

]
= Ej

[
1

1− βj
(−ηujt )−

βj
1− βj

(−ηujt−1)

]
= Ej

[ −η
1− βj

(ujt − βju
j
t−1)

]
= Ej [−ηgt] = −ηgt.

Step 2 (smoothness over virtual iterates). Then we apply smoothness of the global loss function f
over these global virtual iterates.

f(zt+1) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2

= f(zt) + ⟨∇f(xt), zt+1 − zt⟩︸ ︷︷ ︸
I

+ ⟨∇f(zt)−∇f(xt), zt+1 − zt⟩︸ ︷︷ ︸
II

+
L

2
∥zt+1 − zt∥2︸ ︷︷ ︸

III

.

In the next step, we separately bound each term appearing in the above bound.

Step 3a (one step progress). Bounding term I.

E⟨∇f(xt), zt+1 − zt⟩

= −ηE
〈
∇f(xt),

1

M

M∑
m=1

gmt

〉
= −ηE

〈
∇f(xt),

1

M

M∑
m=1

∇fm(xmt )

〉

= −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
η

2
E

∥∥∥∥∥∇f(xt)− 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

= −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xt)−∇fm(xmt )

∥∥∥∥∥
2

≤ −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
η

2M

M∑
m=1

E∥∇fm(xt)−∇fm(xmt )∥2

≤ −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
ηL2

2M

M∑
m=1

E∥xt − xmt ∥2︸ ︷︷ ︸
Lemma 3

.

Step 3b (one step progress). Bounding term II.

E⟨∇f(zt)−∇f(xt), zt+1 − zt⟩ = −ηE
〈
∇f(zt)−∇f(xt),

1

M

M∑
m=1

∇fm(xmt )

〉

≤ ηρ

2
E∥∇f(zt)−∇f(xt)∥2 +

η

2ρ
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

≤ ηρL2

2
E∥zt − xt∥2︸ ︷︷ ︸

Lemma 2

+
η

2ρ
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

.
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Step 3c (one step progress). Bounding term III.

L

2
E∥zt+1 − zt∥2 =

η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

gmt

∥∥∥∥∥
2

=
η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

gmt −∇fm(xmt )

∥∥∥∥∥
2

+
η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

=
η2L

2M2

M∑
m=1

E∥gmt −∇fm(xmt )∥2 + η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

≤ η2L

2M
σ2 +

η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

.

Step 3abc (one step progress). Combining previous bounds.

Ef(zt+1)− Ef(zt) ≤ E ⟨∇f(xt), zt+1 − zt⟩︸ ︷︷ ︸
I

+E ⟨∇f(zt)−∇f(xt), zt+1 − zt⟩︸ ︷︷ ︸
II

+E
L

2
∥zt+1 − zt∥2︸ ︷︷ ︸

III

≤ −η
2
E∥∇f(xt)∥2 −

η

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
ηL2

2M

M∑
m=1

E∥xt − xmt ∥2︸ ︷︷ ︸
Lemma 3

+
ηρL2

2
E∥zt − xt∥2︸ ︷︷ ︸

Lemma 2

+
η

2ρ
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
η2L

2K
σ2 +

η2L

2
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

≤ −η
2
E∥∇f(xt)∥2 −

η

2

(
1− 1

ρ
− ηL

)
E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
ηρL2

2
E∥zt − xt∥2︸ ︷︷ ︸

Lemma 2

+
ηL2

2M

M∑
m=1

E∥xt − xmt ∥2︸ ︷︷ ︸
Lemma 3

+
η2L

2M
σ2.
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Step 4 (final). Now we average over the iterates and apply the bounds derived in Lemmas 2 and 3.

E[f(zT )− f(z0)]

T
=

1

T

T−1∑
t=0

E[f(zt+1)− f(zt)]

≤ − η

2T

T−1∑
t=0

E∥∇f(xt)∥2 −
η

2

(
1− 1

ρ
− ηL

)
1

T

T−1∑
t=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
ηρL2

2

1

T

T−1∑
t=0

E∥zt − xt∥2︸ ︷︷ ︸
Lemma 1

+
ηL2

2

1

TM

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2︸ ︷︷ ︸
Lemma 2

+
η2L

2M
σ2

≤ − η

2T

T−1∑
t=0

E∥∇f(xt)∥2 −
η

2

(
1− 1

ρ
− ηL

)
1

T

T−1∑
t=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
η2L

2M
σ2

+
ηρL2

2

η2β2
ω

M
σ2 + η2β2

ω

1

T

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmτ )

∥∥∥∥∥
2


+
ηL2

2

(
12η2(B2 − 1)ψ · 1

T

T−1∑
t=0

E∥∇f(θt)∥2 + 4η2ψ(σ2 + 3G2)

)

≤ −η
2

(
1− 12η2L2(B2 − 1)ψ

) 1

T

T−1∑
t=0

E∥∇f(xt)∥2

− η

2

(
1− 1

ρ
− ηL− η2β2

ωρL
2

)
1

T

T−1∑
t=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

+
η2L

2M
σ2 +

η3ρL2β2
ω

2M
σ2 + 2η3L2ψ(σ2 + 3G2).

Next, we choose ρ = 2 and step size η such that

12η2L2(B2 − 1)ψ ≤ 1

2
⇐⇒ to bound the first term

ηL+ 2η2β2
ωL

2 ≤ 1

2
⇐⇒ to bound the second term

12η2L2ψ ≤ 1

2
⇐⇒ from Lemma 3

Notice that

η0
def
=
(
4Lmax

(
βω, 6

√
ψmax(1, B2 − 1)

))−1

satisfies all three bounds. Then, with any η ≤ η0 we get

E[f(zT )− f(z0)]

T
≤ − η

4T

T−1∑
t=0

E∥∇f(xt)∥2

+
η2L

2M
σ2 +

η3ρL2β2
ω

2M
σ2 + 2η3L2ψ(σ2 + 3G2).

Noticing that z0 = x0 and f∗ ≤ f(zT ), we have

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 4(f(x0)− f∗)

ηT
+

2ηL

M
σ2 +

4η2L2β2
ω

M
σ2 + 8η2L2ψ(σ2 + 3G2).
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Furthermore, choosing η = min(η0,
1√
T
), we get the following rate:

1

T

T−1∑
t=0

E∥∇f(xt)∥2

≤ max

(
1,

1

η0
√
T

)
4(f(x0)− f∗)√

T
+

2Lσ2

M
√
T

+
4L2β2

ωσ
2

MT
+

8L2ψ(σ2 + 3G2)

T

≤ 4(f(x0)− f∗)√
T

+
2Lσ2

M
√
T

+
4(f(x0)− f∗)

η0T
+

4L2β2
ωσ

2

MT
+

8L2ψ(σ2 + 3G2)

T

=
4√
T

(
f(x0)− f∗ +

Lσ2

2M

)
+O

(
1 + β2

ω + ψ

T

)
.

D.1 KEY LEMMAS

Lemma 2. For all T ≥ 1, we have

T−1∑
t=0

∥zt − xt∥2 ≤ η2β2
ω

M
Tσ2 + η2β2

ω

T−1∑
t=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmt )

∥∥∥∥∥
2

, (3)

where

βω
def
=

N∑
j=1

ωjβj
1− βj

.

Proof. Since u−1 = 0, unrolling the update rule of momentum, for any t ≥ 0 we get

ujt = βju
j
t−1 + (1− βj)gt = (1− βj)

t∑
τ=0

βt−τj gτ .

Using this and the definition of the average iterates, we have

zjt − xjt =
βj

1− βj
(xjt − xjt−1) = − ηβj

1− βj
ujt = −ηβj

t∑
τ=0

βt−τj gτ

zt − xt = Ej [zjt − xjt ] = Ej

[
−ηβj

t∑
τ=0

βt−τj gτ

]
= −η

t∑
τ=0

Ej
[
βt−τ+1
j

]
gτ

= −η
t∑

τ=0

β(t−τ+1)
ω gτ , where β(τ)

ω = Ej
[
βτj
]
=

N∑
j=1

ωjβ
τ
j .

Let us make another notation for the sum of weights in the above sum and bound it as follows:

st
def
=

t∑
τ=0

β(t−τ+1)
ω =

t∑
τ=0

N∑
j=1

ωjβ
t−τ+1
j

=

N∑
j=1

ωj

t∑
τ=0

βt−τ+1
j =

N∑
j=1

ωj
βj − βt+2

j

1− βj
≤

N∑
j=1

ωjβj
1− βj

def
= βω.

Using convexity of squared norm, we have

∥zt − xt∥2 = η2s2t

∥∥∥∥∥
t∑

τ=0

β
(t−τ+1)
ω

st
gτ

∥∥∥∥∥
2

≤ η2s2t

t∑
τ=0

β
(t−τ+1)
ω

st
∥gτ∥2 ≤ η2βω

t∑
τ=0

β(t−τ+1)
ω ∥gτ∥2
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Summing over the iterates yields

T−1∑
t=0

E∥zt − xt∥2 ≤ η2βω

T−1∑
t=0

t∑
τ=0

β(t−τ+1)
ω E∥gτ∥2

= η2βω

T−1∑
τ=0

T−1∑
t=τ

β(t−τ+1)
ω E∥gτ∥2 = η2βω

T−1∑
τ=0

(
T−τ∑
t=1

β(t)
ω

)
E∥gτ∥2

= η2βω

T−1∑
τ=0

 N∑
j=1

ωj
βj − βT−τ+1

j

1− βj

E∥gτ∥2

≤ η2β2
ω

T−1∑
τ=0

E∥gτ∥2

= η2β2
ω

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

gmτ −∇fm(xmτ )

∥∥∥∥∥
2

+ η2β2
ω

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmτ )

∥∥∥∥∥
2

=
η2β2

ω

M2

T−1∑
τ=0

M∑
m=1

E ∥gmτ −∇fm(xmτ )∥2 + η2β2
ω

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmτ )

∥∥∥∥∥
2

=
η2β2

ω

M
Tσ2 + η2β2

ω

T−1∑
τ=0

E

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xmτ )

∥∥∥∥∥
2

.

Lemma 3. If 24η2L2ψ ≤ 1, then

1

MT

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2 ≤ 12η2(B2 − 1)ψ · 1
T

T−1∑
t=0

E∥∇f(xt)∥2 + 4η2ψ(σ2 + 3G2),

where

ψ =
4(1− px)

p2x
·
N∑
j=1

ωj
(1− βj)(1− pj)

1− (1− pj)βj

Proof. Let us expand the term E∥xt+1 − xmt+1∥2 using xmt+1’s probabilistic update rule:

E∥xt+1 − xmt+1∥2 = px · 0 + (1− px) · E∥xt − ηut − (xmt − ηumt )∥2

= (1− px) · E∥xt − xmt − η(ut − umt )∥2
≤ (1− px)(1 + s)E∥xt − xmt ∥2 + η2(1− px)(1 + 1/s)E∥ut − umt ∥2

≤ η2(1− px)(1 + 1/s)

t∑
τ=1

((1− px)(1 + s))t−τE∥uτ − umτ ∥2.
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where s > 0 will be chosen later. Next we expand the term E∥ujt − uj,mt ∥2 using uj,mt ’s probabilistic
update rule:

E∥ujt − uj,mt ∥2 = pj · 0 + (1− pj) · E
∥∥∥∥∥ 1

M

M∑
m=1

(βju
j,m
t−1 + (1− βj)g

m
t−1)− (βju

j,m
t−1 + (1− βj)g

m
t−1)

∥∥∥∥∥
2

= (1− pj)E
∥∥∥βj(ujt−1 − uj,mt−1) + (1− βj)(gt−1 − gmt−1)

∥∥∥2
≤ (1− pj)βjE∥(ujt−1 − uj,mt−1)∥2 + (1− pj)(1− βj)E∥gt−1 − gmt−1∥2

≤ (1− pj)(1− βj)

t−1∑
τ=0

((1− pj)βj)
t−τ−1E∥gτ − gmτ ∥2

E∥ut − umt ∥2 ≤
N∑
j=1

ωjE∥ujt − uj,mt ∥2

≤
N∑
j=1

ωj(1− pj)(1− βj)

t−1∑
τ=0

((1− pj)βj)
t−τ−1E∥gτ − gmτ ∥2

≤
t−1∑
τ=0

 N∑
j=1

ωj(1− pj)(1− βj)((1− pj)βj)
t−τ−1

E∥gτ − gmτ ∥2

≤
t−1∑
τ=0

 N∑
j=1

ωj(1− pj)(1− βj)q
t−τ−1
j

E∥gτ − gmτ ∥2.

Denote qx = (1− px)(1+ s), q′x = (1− px)(1+ 1/s) and qj = (1− pj)βj . Combining the previous
two bounds, we get

1

M

M∑
m=1

E∥xt − xmt ∥2

≤ η2q′x

t∑
τ=1

qt−τx

1

M

M∑
m=1

E∥uτ − umτ ∥2 (4)

≤ η2q′x

t∑
τ=1

qt−τx

1

M

M∑
m=1

τ−1∑
ν=0

 N∑
j=1

ωj(1− pj)(1− βj)q
τ−ν−1
j

E∥gν − gmν ∥2

= η2q′x

N∑
j=1

ωj(1− pj)(1− βj)

t∑
τ=1

τ−1∑
ν=0

qt−τ−1
x qτ−νj

[
1

M

M∑
m=1

E∥gν − gmν ∥2
]

= η2q′x

N∑
j=1

ωj(1− pj)(1− βj)

t−1∑
ν=0

t∑
τ=ν+1

qt−τx qτ−ν−1
j

[
1

M

M∑
m=1

E∥gν − gmν ∥2
]

= η2q′x

N∑
j=1

ωj(1− pj)(1− βj)

t−1∑
ν=0

qt−νx − qt−νj

qx − qj

[
1

M

M∑
m=1

E∥gν − gmν ∥2
]
,

= η2q′x

N∑
j=1

ωj(1− βj)(1− pj)

t−1∑
ν=0

qt−νx − qt−νj

qx − qj

[
1

M

M∑
m=1

E∥gν − gmν ∥2
]
, .
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Next, we bound the gradient term above.

1

M

M∑
m=1

E∥gmt − gt∥2 =
1

M

M∑
m=1

E

∥∥∥∥∥gmt − 1

M

K∑
i=1

git

∥∥∥∥∥
2

≤ 2

K

M∑
m=1

E

∥∥∥∥∥gmt −∇fm(xmt )− 1

M

M∑
i=1

(git −∇fi(xit))
∥∥∥∥∥
2

+
2

M

M∑
m=1

E

∥∥∥∥∥∇fm(xmt )− 1

M

M∑
i=1

∇fi(xit)
∥∥∥∥∥
2

(Lemma 4) ≤ 2

M

M∑
m=1

E∥gmt −∇fm(xmt )∥2 − 2E

∥∥∥∥∥ 1

M

M∑
m=1

(gmt −∇fm(xmt ))

∥∥∥∥∥
2

+
12L2

M

M∑
m=1

E∥xt − xmt ∥2 + 6(B2 − 1)E∥∇f(xt)∥2 + 6G2

≤ 2σ2 +
12L2

M

M∑
m=1

E∥xt − xmt ∥2 + 6(B2 − 1)E∥∇f(xt)∥2 + 6G2.

Averaging over the iterates and plugging this bound to the previous one, we get

1

MT

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2

≤ 1

MT

T∑
t=1

M∑
m=1

E∥xt − xmt ∥2

≤ η2q′x
T

N∑
j=1

ωj(1− βj)(1− pj)

T∑
t=1

t−1∑
τ=0

qt−τx − qt−τj

qx − qj

[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

=
η2q′x
T

N∑
j=1

ωj(1− βj)(1− pj)

T−1∑
τ=0

T∑
t=τ+1

qt−τx − qt−τj

qx − qj

[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

=
η2q′x
T

N∑
j=1

ωj(1− βj)(1− pj)

qx − qj

T−1∑
τ=0

(
qx(1− qT−τ

x )

1− qx
−
qj(1− qT−τ

j )

1− qj

)[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

≤ η2q′x
T

N∑
j=1

ωj(1− βj)(1− pj)

qx − qj

T−1∑
τ=0

(
qx

1− qx
− qj

1− qj

)[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

=
η2q′x
T

N∑
j=1

ωj(1− βj)(1− pj)

(1− qx)(1− qj)

T−1∑
τ=0

[
1

M

M∑
m=1

E∥gτ − gmτ ∥2
]

Now, let us optimize the factor

q′x
1− qx

=
(1− px)(1 + 1/s)

1− (1− px)(1 + s)

by choosing optimal value for s introduced earlier. By the first order optimality condition, we find
that the optimal value is s∗ = 1√

1−px
− 1. Hence, the minimal value of the factor is

q′x
1− qx

=
1− px

(1−√
1− px)2

=
(1− px)(1−

√
1− px)

2

(1−√
1− px)2(1 +

√
1− px)2

=
(1− px)(1 +

√
1− px)

2

p2x
≤ 4(1− px)

p2x
.
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Letting

ψ =
4(1− px)

p2x

N∑
j=1

ωj
(1− βj)(1− pj)

1− qj
=

4(1− px)

p2x

N∑
j=1

ωj
(1− βj)(1− pj)

1− (1− pj)βj

and continuing the chain of bounds, we get

1

MT

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2

≤ η2ψ · 1
T

T−1∑
t=0

[
1

K

M∑
m=1

E∥gt − gmt ∥2
]

≤ η2ψ · 1
T

T−1∑
t=0

[
12L2

M

M∑
m=1

E∥xt − xmt ∥2 + 6(B2 − 1)E∥∇f(xt)∥2 + 2σ2 + 6G2

]

≤ 12η2L2ψ · 1

TM

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2

+ 6η2(B2 − 1)ψ · 1
T

T−1∑
t=0

E∥∇f(xt)∥2 + 2η2ψ(σ2 + 3G2).

Assuming 12η2L2ψ ≤ 1/2 and reordering the first term in the bound, we arrive

1

MT

T−1∑
t=0

M∑
m=1

E∥xt − xmt ∥2 ≤ 12η2(B2 − 1)ψ · 1
T

T−1∑
t=0

E∥∇f(xt)∥2 + 4η2ψ(σ2 + 3G2).

Lemma 4. Under smoothness and bounded heterogeneity assumptions 1 and 3, we have

1

M

M∑
m=1

∥∥∥∥∥∇fm(ym)− 1

K

K∑
i=1

∇fi(yi)
∥∥∥∥∥
2

≤ 6L2

M

M∑
m=1

∥y − ym∥2 + 3(B2 − 1)∥∇f(y)∥2 + 3G2,

for any y1, . . . , ym ∈ Rd and y = Em[ym].

Proof. The proof follows from Lemma 5 of (Iacob et al., 2025) as the result does not depend on the
optimizer.

E WALL-CLOCK TIME MODELING

To assess the practical benefits of our proposal, we analyze its impact on total wall-clock time by
modeling two distinct synchronization strategies: a simple unified frequency approach and a desyn-
chronized approach based on optimizer state half-lives. We adopt the model from DES-LOC (Iacob
et al., 2025) for estimating total training time.

E.1 WALL-CLOCK TIME MODEL

The total wall-clock time is modeled as the sum of computational and communication time: ttotal =
tcompute + tcomms. The computation time, tcompute, is a function of model and dataset size, while the
communication time, tcomms, depends on the number and size of synchronization events.

For a training process of T total steps, the communication time for an AllReduce operation (Sergeev
& Balso, 2018) depends on the payload size, number of workers M , bandwidth B, and latency l. The
total time for different methods and strategies is:
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Unified Frequency Methods: Parameters and all optimizer states are synchronized together
every K steps. The total payload is 3d (for parameters, first and second momenta). This
applies to Local Adam and a baseline version of our method, MT-DAO (Unified).

ttotal,Unified = tcompute +
T

K
·
[
2(3d)

B

(
1− 1

M

)
+ l

]
(5)

Half-Life Based Methods: Parameters (Kx), first momentum (Ku), and second momentum
(Kv) are synchronized at different frequencies. This applies to DES-LOC and our proposed
method, MT-DAO (Half-Life).

ttotal,Half-Life = tcompute +

(
T

Kx
+

T

Ku
+

T

Kv

)
·
[
2d

B

(
1− 1

M

)
+ l

]
(6)

Limitation: This model does not account for any potential overlap between computation and
communication.

E.2 EXPERIMENTAL CONFIGURATION

We compare the two synchronization strategies. The Unified Frequency strategy serves as a baseline,
where all states are synchronized together everyKx = 32 steps. This includes Local Adam, Local
ADOPT, and a variant of our method, MT-DAO (Unified), which uses a high β1 value but is forced
to sync at the same frequent rate as its parameters. These methods have equivalent communication
costs and will overlap for an iso-token budget, however, the results in Section 5 show that MT-DAO
achieves the same perplexity as Local ADOPT in many fewer optimization steps, outperforming on
time-to-perplexity metrics.

The Half-Life Based strategy aims to improve efficiency by synchronizing states less frequently if
they change slowly. The synchronization frequency is set based on the state’s half-life, τ0.5(β) =
ln(0.5)/ ln(β). This includes DES-LOC and MT-DAO (Half-Life). The quasi-hyperbolic (QH)
configuration of MT-DAO allows it to use an extremely high β1 = 0.999, leading to a very long
half-life and thus a much lower communication frequency for its first momentum. We use β2 = 0.999
for ADAM variants and β2 = 0.9999 for ADOPT variants.

Table 3 details the configurations for both strategies.

Table 3: Hyperparameter configurations and synchronization frequencies (K) for modeled methods,
grouped by synchronization strategy. For the Half-Life strategy, momentum frequencies are set to the
closest power of two to their half-life.

Strategy Method ω Values β1 Values β2 Value Sync Freq. Ku1 Sync Freq. Kv

Unified Frequency (All states sync every Kx = 32 steps)

Unified Local Adam N/A {0.95} 0.99 32 32
Unified Local ADOPT N/A {0.95} 0.9999 32 32
Unified MT-DAO-Adam (Unified) {0.95} {0.999} 0.999 32 32
Unified MT-DAO-ADOPT (Unified) {0.95} {0.999} 0.9999 32 32

Half-Life Based Frequency (States sync at different rates from Kx = 32)

Half-Life DES-LOC-ADAM N/A {0.95} 0.99 32 69
Half-Life DES-LOC-ADOPT N/A {0.95} 0.9999 32 6931
Half-Life MT-DAO-Adam (Half-Life) {0.95} {0.999} 0.999 693 693
Half-Life MT-DAO-ADOPT (Half-Life) {0.95} {0.999} 0.9999 693 6931

E.3 MODELING RESULTS

The following figures present the estimated wall-clock time and communication costs when training
a 1B model on 4 H100 machines with a batch size of 2M tokens and sequence length of 2048. The
results demonstrate that MT-DAO significantly reduces communication cost with both strategies, with
the half-life one being generally more effective.
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Figure 9: Estimated total wall-clock time as a function of interconnect bandwidth. For both (a) Adam
and (b) ADOPT, methods using the Half-Life strategy outperform those using a Unified frequency.
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Figure 10: Estimated total communication time. The plots clearly distinguish the two strategies. The
Unified frequency methods (Local Adam and MT-DAO (Unified)) have identical high costs. The
Half-Life methods are more efficient, with MT-DAO (Half-Life) being the most efficient due to its
ability to leverage a high-β momentum that requires infrequent updates.

Takeaway: MT-DAO can significantly reduce communication costs across bandwidths.

F DERIVATIONS OF MUTUAL INFORMATION AND VARIANCE

This section provides the detailed derivations for the expressions referenced in the main text.

F.1 VARIANCE OF LOCAL MOMENTUM

The variance of the final local momentum, Var(ut+K), is derived under the assumption that the
stochastic gradients gt are independent and identically distributed random variables with variance
σ2
m.

The unrolled momentum update over K local steps is given by:

ut+K = βKut + (1− β)

K−1∑
k=0

βkgt+K−k

The variance is calculated with respect to the randomness in the local gradients {gt+1, . . . , gt+K}.
The initial momentum ut is treated as a constant, as it is a synchronized state before local updates
begin.

Applying the variance operator:

Var(ut+K) = Var

(
βKut + (1− β)

K−1∑
k=0

βkgt+K−k

)
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Since ut is constant, Var(βKut) = 0. Using the property Var(aX) = a2Var(X):

Var(ut+K) = (1− β)2Var

(
K−1∑
k=0

βkgt+K−k

)
Given the assumption that the gradients gt+i are independent, the variance of their weighted sum is
the weighted sum of their variances, where weights are squared:

Var

(
K−1∑
k=0

βkgt+K−k

)
=

K−1∑
k=0

Var(βkgt+K−k) =

K−1∑
k=0

(βk)2Var(gt+K−k)

Assuming each local gradient has variance σ2
m:

Var

(
K−1∑
k=0

βkgt+K−k

)
=

K−1∑
k=0

β2kσ2
m = σ2

m

K−1∑
k=0

(β2)k

The summation is a finite geometric series,
∑n−1
i=0 r

i = 1−rn
1−r . With r = β2 and n = K:

K−1∑
k=0

(β2)k =
1− (β2)K

1− β2
=

1− β2K

1− β2

Substituting this back into the expression for Var(ut+K):

Var(ut+K) = (1− β)2σ2
m

1− β2K

1− β2

By factoring the denominator 1− β2 = (1− β)(1 + β), we can simplify the expression:

Var(ut+K) = (1− β)2σ2
m

1− β2K

(1− β)(1 + β)
=

1− β

1 + β
(1− β2K)σ2

m

This completes the derivation.

F.2 MUTUAL INFORMATION

The mutual information I(Ut+K ;Ut) is derived by modeling the momentum states as multivariate
Gaussian random vectors. The model for the update process is:

Ut+K = βKUt + L

The following assumptions are made:

1. The initial momentum Ut is a Gaussian random vector with zero mean and covariance ΣUt
,

i.e., Ut ∼ N (0,ΣUt
).

2. The accumulated local gradient noise L is a Gaussian random vector with zero mean and
covariance ΣL, i.e., L ∼ N (0,ΣL).

3. Ut and L are statistically independent.

The mutual information between two random vectors X and Y is defined as I(X;Y ) = h(Y ) −
h(Y |X), where h(·) is the differential entropy. For a d-dimensional Gaussian vector Z ∼ N (µ,Σ),
the entropy is h(Z) = 1

2 log det(2πeΣ).

First, we determine the distribution of Ut+K . As a linear combination of independent Gaussian
vectors, it is also Gaussian.

• Mean: E[Ut+K ] = E[βKUt + L] = βKE[Ut] + E[L] = 0.

• Covariance: Cov(Ut+K) = Cov(βKUt + L). Due to the independence of Ut and L:

ΣUt+K
= Cov(βKUt) + Cov(L) = β2KΣUt +ΣL
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Thus, Ut+K ∼ N (0, β2KΣUt
+ΣL).

The entropy of Ut+K is:

h(Ut+K) =
1

2
log det

(
2πe(β2KΣUt

+ΣL)
)

Next, we determine the conditional entropy h(Ut+K |Ut). The distribution of Ut+K conditioned on a
specific value Ut = ut is:

Ut+K |Ut = ut ∼ N (βKut,ΣL)

The entropy of this conditional distribution is:

h(Ut+K |Ut = ut) =
1

2
log det(2πeΣL)

Since this expression does not depend on the specific value ut, the conditional entropy h(Ut+K |Ut)
is the same.

Now, we compute the mutual information:

I(Ut+K ;Ut) = h(Ut+K)− h(Ut+K |Ut)

I(Ut+K ;Ut) =
1

2
log det

(
2πe(β2KΣUt

+ΣL)
)
− 1

2
log det(2πeΣL)

Using the logarithmic property log a− log b = log(a/b):

I(Ut+K ;Ut) =
1

2
log

(
det(2πe(β2KΣUt +ΣL))

det(2πeΣL)

)
The constant factors (2πe)d cancel out. Using the determinant property det(A)

det(B) = det(AB−1):

I(Ut+K ;Ut) =
1

2
log det

(
(β2KΣUt

+ΣL)Σ
−1
L

)
Distributing Σ−1

L inside the determinant:

I(Ut+K ;Ut) =
1

2
log det

(
β2KΣUt

Σ−1
L +ΣLΣ

−1
L

)
I(Ut+K ;Ut) =

1

2
log det

(
I + β2KΣUt

Σ−1
L

)
This completes the derivation.

G EXTENDED RELATED WORK

Strategies for Communication-Efficient Distributed Training. A substantial body of research
aims to curtail communication overhead in distributed training, primarily by either reducing the
frequency of synchronizations or compressing the data transmitted per round. The first approach,
often termed periodic or local SGD, involves performing multiple local optimization steps between
global aggregations. This strategy has been extensively analyzed in both IID and non-IID contexts
(see Kairouz et al. (2021) for a survey and Lin et al. (2018a)). In the realm of foundation-model
pre-training, methods like DiLoCo (Charles et al., 2025) have shown that infrequent synchronization
can, with careful tuning, achieve performance comparable to or better than standard data parallelism,
with scaling laws characterizing its behavior across model sizes (Charles et al., 2025). This paradigm
has also been adapted for federated-style pre-training (Sani et al., 2025) and variants with overlapping
or eager updates (Douillard et al., 2025; Kale et al., 2025). The second strategy involves compressing
communication payloads. Techniques range from randomized quantization (QSGD) (Alistarh et al.,
2017) and sparse updates tailored for non-IID data (STC, ZeroFL) (Sattler et al., 2019; Qiu et al.,
2022) to one-bit aggregation (signSGD-MV) (Bernstein et al., 2018). In practice, these two strategies
are often combined; for instance, FedPAQ integrates local training with quantization and partial
participation to provide strong theoretical guarantees (Reisizadeh et al., 2020).
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Multi-Timescale Momentum for Temporal Mismatches. The temporal discrepancy between
frequent local updates and infrequent global synchronizations creates a need for optimizers that
can integrate information across different timescales. Standard momentum, while beneficial in
low-curvature landscapes (Sutskever et al., 2013), imposes a compromise: low decay values are
responsive but slow, whereas high decay values are fast but prone to oscillations (Lucas et al.,
2019). A single exponential moving average (EMA) cannot effectively weight both recent and
distant gradients (Pagliardini et al., 2025). Multi-timescale optimizers address this limitation. Quasi-
Hyperbolic Momentum (QHM) decouples the current gradient’s weight from the momentum decay
rate (β) (Ma & Yarats, 2019), recovering methods like Nesterov and Triple Momentum (Scoy et al.,
2018). Aggregated Momentum (AggMo) maintains and averages multiple momentum buffers
with distinct β values, using faster-decaying terms to passively damp oscillations caused by slower,
more aggressive terms (Lucas et al., 2019). Similarly, AdEMAMix mixes a fast EMA with an
ultra-slow one (e.g., β3 = 0.9999), demonstrating that long-term gradient memory significantly
reduces catastrophic forgetting in language models (Pagliardini et al., 2025). This principle of
leveraging multiple timescales is also present in other contexts. Optimizers like Grokfast (Lee
et al., 2024) and AdMeta (Chen et al., 2023b) employ nested EMAs for different purposes, providing
orthogonal evidence for the value of long-term momentum. While these methods have shown
promise in step-wise synchronous training, their potential to resolve the temporal mismatch in
communication-efficient distributed optimization remains largely unexplored.

Perspectives from Federated Optimization. The field of Federated Learning (FL), particularly
in the cross-device setting, offers a rich history of methods for managing statistical heterogeneity
and communication constraints, which are central challenges. The foundational FedAvg algorithm
(McMahan et al., 2017) has inspired numerous successors (see survey by Kairouz et al. (2021)). To
counteract client drift caused by non-IID data, FedProx introduces a proximal regularizer for stability
(Li et al., 2020), SCAFFOLD employs control variates to reduce gradient variance (Karimireddy
et al., 2020b), and FedNova normalizes local updates to correct for objective inconsistency (Wang
et al., 2020). Server-side momentum (FedAvgM) has also been shown to stabilize aggregation under
data skew (Hsu et al., 2019). Adaptive methods have been extended to this setting in Adaptive
Federated Optimization (FEDOPT), which provides nonconvex guarantees for FedAdam, FedYogi,
and FedAdagrad (Kingma & Ba, 2015). Furthermore, Mime adapts centralized algorithms to FL
by marrying control variates with server statistics (Karimireddy et al., 2020a). Personalization
techniques, such as meta-learning-based Per-FedAvg (Fallah et al., 2020) and FedL2P (Lee et al.,
2023) or the regularized Ditto (Li et al., 2021), complement these global models by improving
per-client utility.

Orthogonal Approaches in Payload Compression and Optimizer Design. Orthogonal to reduc-
ing synchronization frequency, another line of work focuses on compressing the communication
payload itself, often in combination with periodic training. Foundational methods include quanti-
zation, as in QSGD (Alistarh et al., 2017), and sparsification, as in Deep Gradient Compression
(Lin et al., 2018b), with convergence analyses providing theoretical grounding (Alistarh et al., 2018).
More recent work like CocktailSGD combines random and top-k sparsification with quantization
for aggressive compression during LLM fine-tuning (Wang et al., 2023a). Beyond compressing
gradients, some methods compress the optimizer states. For instance, LDAdam performs adaptive
updates using low-rank approximations of gradient statistics (Robert et al., 2025), while DeMo
decouples momentum across workers and communicates only selected components (Peng et al.,
2024). Other advanced optimizers aim for stability and efficiency through different mechanisms; for
example, Lion uses a sign function with interpolated momentum (Chen et al., 2023a), and Sophia
employs a Hessian-based pre-conditioner to temper step sizes in high-curvature directions (Liu
et al., 2024). These approaches are generally compatible with and can be composed with infrequent
synchronization strategies.

H ADDITIONAL RESULTS

To investigate the stability of MT-DAO under varied momentum parameterizations, we now examine
its performance in a fast β regime. Figure 11 presents the results of this comparison, plotting both
the convergence rate in terms of distance to the optimum and the optimization trajectories on the
function’s contour plot.
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Figure 11: MT-DAO remains stable in both fast β regimes, as pictured here, and in slow β regimes as in
Figure 1. This is unlike prior stateful methods like Local Adamwhich only offer stable convergence
for fast β values As before, we optimize the non-convex Rosenbrock function f(x1, x2) = (1 −
x1)

2 + 100(x2 − x21)
2 with M = 256 workers and IID Gaussian noise (σ = 2).
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Figure 12: Downstream task accuracy versus time on ARC-CHALLENGE, ARC-EASY,
HELLASWAG, MMLU, and PIQA. Curves compare MT-DAO, Local ADOPT, Nesterov,
AdamW-DDP, and QHAdamW-DDP; horizontal reference lines (when shown) indicate external model
baselines. Error bars denote ±σ over samples. MT-DAO exceeds AdamW-DDP on the aggregate
and on reasoning-heavy tasks (ARC-CHALLENGE, HELLASWAG); with smaller but steady gains
on MMLU. As training length increases, MT-DAO closes the gap to QHAdamW-DDP, consistent
with the perplexity results. Nesterov tracks AdamW-DDP and outperforms Local ADOPT, but
remains below MT-DAO across metrics. tokens-normalized results are provided in Figure 7.

H.1 DOWNSTREAM EVALUATION

Time-to-Target Advantage: MT-DAO achieves downstream target accuracies faster in wall-clock
than DDP baselines in a realistic multi-node setup (4×8 H100, 100 Gbit), maintaining or improving
quality while reducing communication.

H.2 ABLATIONS ON THE NUMBER OF MOMENTA N

In our main work, we focus on MT-DAO with N = 1 specifically in its Quasi-Hyperbolic (QH)
formulation. We argue this provides a "free lunch": it captures multi-timescale dynamics (via the
instantaneous gradient and one slow momentum) without the memory and communication overhead
of storing and synchronizing additional buffers.
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In this section, we empirically validate this design choice by ablating the number of momenta N .
Guided by prior work on multi-momentum optimizers (Lucas et al., 2019; Ma & Yarats, 2019;
Pagliardini et al., 2025), we define the optimizer update as a convex combination of N states with
weights

∑N
i=1 ωi = 1.0. We distinguish between two families:

1. Standard variants: N momentum buffers are maintained. This corresponds to AdEMAMix
(N = 2) or AggMo (N = 3).

2. Quasi-Hyperbolic (QH) variants: The fastest momentum buffer is replaced by the current
preconditioned gradient gt. Mathematically, this is equivalent to setting the fastest β = 0.
This corresponds to (N = 1, used in our main text) or QHAdEMAMix (N = 2).

Experimental Setup. To ensure fair comparisons without the confounding factors of complex
scheduling introduced in Pagliardini et al. (2025), we use Adam as the inner optimizer for all variants
in this section. We utilize the WSD learning rate scheduler. Due to the combinatorial explosion of
hyperparameters as N increases, we fix the decay rates β to exponentially spaced values following
the recommendation of Lucas et al. (2019): βi = 1− 0.1i.

• Tuning Protocol: We tune the mixing weights ω and the learning rate η on the 16M model
for 12, 288 steps. We then transfer the optimal configurations to 125M and 360M scales
trained for 40, 960 steps.

• Baselines: We compare MT-DAO against DDP baselines for every N to measure the perfor-
mance gap.

H.2.1 MT-DAO (N = 1) VS. MT-DAO (N = 2)

We first compare our default MT-DAO (N = 1) against a standard MT-DAO (N = 2) which maintains
two explicit momentum buffers.

• Configurations: For N = 1, we use the gradient and a slow momentum with β1 = 0.999.
For N = 2, we use a fast momentum (β1,1 = 0.9) and a slow momentum (β1,2 = 0.999).

• Grid Search: We sweep the weight of the slow momentum ωslow ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and the learning rate η ∈ {1, 2, 4, 8, 16} × ηbase.

Results. Figure 20 and Fig. 21 visualize the tuning results. We find that shifting weight towards
the slow momentum is consistently optimal. Figure 13 compares the convergence of the optimal
configurations across scales.

We observe a critical distinction between the DDP and MT-DAO regimes. In DDP, adding a fast
momentum buffer (N = 2) yields a slight perplexity gain over N = 1 (0.01 at 16M, 0.02 at 125M
and 0.44 at 360M). However, for MT-DAO, theN = 2 variant performs worse than theN = 1 variant
by approximately 1.5% at 125M scale.

Interpretation: In the infrequent communication regime (K = 32), a fast momentum (β = 0.9,
τ0.5 ≈ 6 steps) decays almost entirely between synchronization steps (β32 ≈ 0.03). Consequently,
the worker’s fast momentum buffer becomes decorrelated from the global direction, injecting noise.
In contrast, the QH formulation (N = 1) uses the instantaneous gradient as the fast component.
Thus, MT-DAO (N = 1) captures the multi-timescale benefit without the instability of a decaying
fast momentum.

Memory and Communication Efficiency of N = 1: MT-DAO with N = 1 (Quasi-Hyperbolic)
matches the token-wise performance of N = 2 methods while reducing model-state memory usage
and communication volume by 33%.

H.2.2 QUASI-HYPERBOLIC N = 2 VS. STANDARD N = 3

To see whether increasing the number of momenta terms beyond N = 1 brings about further
improvement, we proceed to compare a QH N = 2 variant (QHAdEMAMix) against a standard
N = 3 (AggMo). We repeat the same experimental design as was done in H.2.1, specifically:
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Figure 13: MT-DAO (N = 1) vs. N = 2 variants. Validation perplexity vs. Wall-clock Time (top)
and Tokens (bottom) for 16M, 125M, and 360M models. Takeaway: The N = 1 Quasi-Hyperbolic
variant matches or beats the standard N = 2 variant in token-efficiency while being slightly faster in
wall-clock time due to lower communication volume.

• Configurations: For QHAdEMAMix (N = 2), we use the instantaneous gradient, a medium
momentum (β1,1 = 0.99) and a slow momentum (β1,2 = 0.999) term. AggMo (N = 3)
instead uses a fast momentum, (β1,1 = 0.9) a medium momentum (β1,2 = 0.99), and finally
a slow (β1,3 = 0.999) momentum term.

• Grid Search: For QHAdEMAMix and AggMo, we sweep over the configurations:

{(0.05, 0.05, 0.9), (0.05, 0.25, 0.8), (0.05, 0.25, 0.7), (0.05, 0.35, 0.6),
(0.05, 0.45, 0.5), (0.1, 0.1, 0.8), (0.1, 0.2, 0.7), (0.1, 0.3, 0.6), (0.1, 0.4, 0.5)}

In the case of QHAdEMAMix, the first ω in the tuple refers to ωg, which is applied to the
gradient, whilst for AggMo this is ω1 and this is applied to the fast momentum term. All
other elements of the procedure and all other hyper-parameters remain the same, including
the optimal base learning rate η = 0.01.

We note that in the main text we used a slightly higher ω1 = 0.98 as recommended by Ma & Yarats
(2019) beyond what we found to be optimal in short runs in order to guarantee stability at very long
training horizons. However, the goal for this section is to provide a fair comparison across N ’s under
similar tuning budgets, so we always use the optimum found by our 12288-step runs.

Results. Observing Fig. 22 and Fig. 23, we find that similar trends occur as in H.2.1, where both
formulations prefer hyperparameters that shift the weight of the ω terms to the slow momentum.
When evaluating the well-tuned models in Figure 14, we see that across model scales, the MT-DAO
(N = 2,QH) formulations perform better than their N = 3 counterparts (0.83 at 16M, 0.47 at
125M and 0.11 at 360M), with the gap between them decreasing as the model size increases. When
comparing these results with those observed in Fig. 23, we arrive at the following conclusion: the
addition of more momentum buffers has diminishing returns for our method as N > 1. As such, this
motivates our decision to prioritze MT-DAO with N = 1 in our main experiments: it provides a good
tradeoff in terms of performance, whilst minimizing the memory overhead of maintaining additional
momentum buffers.

Diminishing Returns of High N: Increasing N beyond 1 yields marginal token-wise gains that are
outweighed by the increased memory, communication, and tuning complexity. The Quasi-Hyperbolic
formulation is consistently the superior choice for infrequent synchronization.
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Figure 14: MT-DAO QH (N = 2) vs. Standard N = 3 (K = 32). Validation perplexity across
scales. The QH N = 2 variant (orange) consistently overlaps or outperforms the N = 3 variant
while requiring one fewer memory buffer.

64 128 256 512
Global Batch Size

1
2

4
8

W
or

ke
r

C
ou

n
t

22.13 25.23 28.41 30.73

22.82 25.48 28.46 29.88

25.30 27.74 30.69 32.31

25.26 25.65 27.39 28.84
24

26

28

30

32

Validation Perplexity

(a) Local Adam

64 128 256 512
Global Batch Size

1
2

4
8

W
or

ke
r

C
ou

n
t

21.22 23.06 25.92 29.25

21.93 23.46 26.44 29.15

24.02 25.23 28.11 31.32

23.53 22.91 24.78 27.62
22

24

26

28

30

Validation Perplexity

(b) MT-DAO

64 128 256 512
Global Batch Size

1
2

4
8

W
or

ke
r

C
ou

n
t

0.91 2.16 2.48 1.49

0.89 2.03 2.03 0.73

1.29 2.52 2.58 0.98

1.73 2.74 2.62 1.23

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

∆ of Validation Perplexities

(c) PPLLocalAdam − PPLMT-DAO

Figure 15: Robustness to Batch Size and Worker Count: Validation perplexity heatmaps for (a)
Local Adam and (b) MT-DAO across varying worker counts and global batch sizes. (c) shows
the performance gap, where positive values indicate MT-DAO outperforms Local Adam (lower
perplexity is better). MT-DAO demonstrates superior stability as the number of workers increases
(and per-worker batch size decreases) compared to the baseline.

H.3 ABLATIONS ON THE NUMBER OF WORKERS AND BATCH SIZE

In this section, we investigate the interplay between the global batch size (BG) and the number of
workers (M ) for both MT-DAO and Local Adam. We utilize our small model configuration since
we can easily use batch sizes orders of magnitude larger than necessary, simulating very large-batch
regimes. For Local Adam, we employ the standard AdamW hyperparameters β1 = 0.9, β2 = 0.999.
For MT-DAO, we utilize our robust configuration with β1 = 0.999, β2 = 0.999 and a convex
combination coefficient ω1 = 0.98. We vary the global batch size BG ∈ {64, 128, 256, 512} and the
worker count M ∈ {1, 2, 4, 8}, noting that the effective per-worker batch size B is given by BG/M .

Figure 15 demonstrates that MT-DAO is significantly more robust to increases in the worker count M .
As M increases for a fixed global batch size, the per-worker batch size BG/M decreases, injecting
higher noise into the local updates. As shown in Figure 15(c), the performance delta generally
increases as we move down the y-axis (increasing workers), indicating that Local Adam degrades
faster than MT-DAO in high-noise regimes. This robustness stems from the multi-timescale design:
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MT-DAO relies heavily on the slow, shared momentum (governed by ω1 = 0.98) rather than the noisy
local gradients.

This empirical behavior aligns with our variance analysis derived in Appendix F.1. While increasing
the batch size BG reduces variance linearly, the momentum decay rate β controls variance exponen-
tially relative to the synchronization period K. The variance of the local momentum state ut+K can
be approximated as follows for a global batch size BG and number of workers M :

Var(ut+K) ≈ 1− β

1 + β

(
1− β2K

)︸ ︷︷ ︸
Drift Term

· σ2

BG/M︸ ︷︷ ︸
Batch Noise

(7)

Standard optimizers with low β (e.g., 0.9) fail to suppress the drift term (1− β2K) when K is large.
MT-DAO utilizes a high β (0.999), suppressing this term significantly. Consequently, MT-DAO is less
sensitive to the linear increase in batch noise σ2

BG/M
caused by increasing M , allowing it to scale

efficiently even with small per-worker batches.

Performance at Large Batch Sizes. Finally, we observe that MT-DAO maintains a performance
advantage even at large global batch sizes (B = 512), more appropriate for a model roughly 45×
larger. According to the empirical model of large batch training (McCandlish et al., 2018) and more
recent works on the topic (Zhang et al., 2025), there exists a critical batch size past which further
increases in batch size do not lead to linear improvements in performance-for-compute due to a
decrease in sample efficiency. McCandlish et al. (2018) argue that this happens once the batch
size sufficiently denoises the gradient. Given the much better performance of BG ∈ {64, 128}
compared to BG = 512, our model is in this regime. However, despite the global batch size being
sufficient to reduce gradient noise, Local Adam still struggles due to the timescale mismatch inherent
in infrequent communication. MT-DAO stabilizes training by preserving the global optimization
direction across rounds, proving that the benefits of multi-timescale tracking extend beyond merely
compensating for small-batch noise. We also observe that for larger numbers of workers, the fall-off
in performance as the global batch size increases is not as sharp as for a single worker (equivalent
to DDP), for example, in the 8 worker case, the optimal batch size of MT-DAO is 128 rather than 64.
This corroborates the findings of Charles et al. (2025), which indicate that communication-efficient
training methods can benefit from larger batch sizes compared to DDP.

Robustness to Parallelism: MT-DAO consistently outperforms Local Adam as the number of
workers increases, effectively mitigating the variance introduced by smaller per-worker batch sizes. It
provides stability across diverse batching regimes, from noise-dominated small batches to large-batch
settings typical of massive-scale training. We also observe a potential increase in the optimal global
batch size for MT-DAO at higher numbers of workers.

H.4 MT-DAO COMPARISON AGAINST STREAMINGDILOCO

In this section, we demonstrate that the benefits of MT-DAO are orthogonal to and synergistic with the
streaming techniques introduced by Douillard et al. (2025). We introduce Streaming MT-DAO, a
variant that synchronizes fragments of the model and optimizer states continuously in the background,
as formalized in Algorithm 5 for Adam. We adopt the fragment-based approach where the model
θ is partitioned into disjoint fragments F1, . . . ,FF . We extend StreamingDiLoCo, which only
synchronizes parameters (and an outer optimizer state), so that our framework supports N inner
momentum states. We decouple the synchronization frequencies of the model parameters (Kx), the
N first momenta ({Kj}), and the second momentum (Kv). We use averaging as the outer optimizer
for all model states by default. The inner update step (L.24) retains the multi-timescale structure of
MT-DAO. For the Streaming Local Adam baseline, we implement the same algorithm but with
N = 1, standard single-timescale momentum (ω1 = 1.0).
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Algorithm 5 Streaming MT-DAO (Fragmented, Overlapped, Multi-Scale)
Require: Model tensors, hyper-parameters
1: x0 ∈ Rd, {uj

−1}Nj=1 ∈ (Rd)N , v−1 ∈ Rd — initial params, N first momenta, second momentum
2: Z — Global state (for all Z ∈ {x, u, v})
3: F1, . . . ,FF — partition of tensors into F fragments with offsets tf
4: Kx, {Kj}Nj=1,Kv ∈ (N+)

N+2 — independent sync periods for tensors
5: α, τ ∈ [0, 1],N — blending factor, inner overlap delay
6: OuterOptZ — outer optimizer specific to tensor type Z ∈ {x, u, v}

Ensure: xT , {uj
T−1}Nj=1, vT−1

7: initialize worker states xm
0 , {uj,m

−1 }, vm−1 identically for all workers m
8: initialize global state Z0 ← Zinit for all tensors Z ∈ {x, uj , v}
9: for parallel m = 1 . . .M do

10: for t = 0, . . . , T − 1 do
11: for each fragment f ∈ {1, . . . , F} and tensor Z ∈ {x, {uj}, v} do
12: K ← KZ select freq. for x, uj , or v
13: if (t− tf ) mod K == 0 then check sync schedule

14: ∆
(f)
Z ← Z

(f),m
t −Z(f)

t−K

15: h(f)
Z ← async-send[ 1

M

∑M
r=1 ∆

(f)
Z ] broadcast delta

16: if (t− tf − τ) mod K == 0 then check overlap schedule

17: ∆agg ← block-receive[h(f)
Z ] wait for data

18: Z̃ ← OuterOptZ(Z(f)
t−τ−K ,∆agg)

19: Z(f)
t−τ ← Z̃ archive new global state at index t− τ

20: Z
(f),m
t ← αZ

(f),m
t + (1− α)Z̃ merge streams

21: ĝmt ← clip(∇F (xm
t ; ξmt ), ρ) clipped stochastic gradient

22: for j = 1 to N do update N first momenta
23: uj,m

t ← β1,ju
j,m
t−1 + (1− β1,j)ĝ

m
t

24: vmt ← β2v
m
t−1 + (1− β2)(g

m
t )2

25: ∆m
t ← 1√

vm
t +ϵ

[
(1−∑N

j=1 ωj)ĝ
m
t +

∑N
j=1 ωju

j,m
t

]
26: xm

t+1 ← xm
t − ηt∆

m
t

27: end parallel for
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Figure 16: Streaming MT-DAO vs. StreamingDiLoCo. Validation perplexity vs. Time
(top) and Tokens (bottom) for 16M, 125M, and 360M models. Takeaway: Streaming MT-DAO
(orange) consistently outperforms StreamingDiLoCo and Streaming Local Adam. While
StreamingDiLoCo relies on an outer optimizer to reconcile divergent workers, MT-DAO prevents
excessive divergence via its slow inner momentum, leading to superior stability even with partial,
strided communication.

Streaming Schedule and Offsets: Following Douillard et al. (2025), we assign a synchronization
offset tf to each fragment. This enforces a round-robin schedule where, at any given step t, only a
small subset of the model, specifically, fragments where (t− tf ) (mod K) = 0. This design flattens
the communication spikes into a more uniform stream.

Independent State Frequencies: Streaming MT-DAO manages N + 2 distinct tensor types: the
parameters x, N first momenta {uj}, and the second momentum v. This opens a new design space
for distributed optimization: we define independent synchronization periods Kx, {Kj},Kv (L.6).
This allows for schedules where rapidly changing parameters are synced frequently, while stable,
long-term momentum states (high β) are synced on slower timescales.

Computation Overlap: To hide the latency of these synchronizations, we implement the overlap
mechanism proposed by Douillard et al. (2025). The inner optimizer continues stepping for τ iterations
while the outer gradients are transmitted and aggregated. The updates are then merged into the live
stream with a blending factor α (Lines 11–16).

Experimental Setup. We adopt the configuration from Douillard et al. (2025), using the strided
fragment communication pattern. We set the synchronization periods to Kx = K1 = Kv = 128
(closest power of two to the recommended 100) for Streaming MT-DAO (N = 1). We use 2
layers per fragment for the 16M model and 3 layers per fragment for the 125M/360M models. We
utilize a blending coefficient α = 0.5 and a communication overlap of τ = 1 as recommended. For
StreamingDiLoCo, we use the recommended server learning rate of 0.4 with server momentum
0.9. For Streaming MT-DAO, we use the ω1 = 0.95, β1 = 0.999, β2 = 0.999, η = 0.002
MT-DAO hyperparameters tuned in Appendix H.2 with the batch size and clipping threshold as for
all our other experiments with the same model scale. When using the non-streaming variant of
MT-DAO we use the standard K = 32 unified sync frequency. For Streaming Local Adam we
use ω1 = 1.0 (no quasi hyperbolic term) and β1 = 0.9, β2 = 0.999, η = 0.001 as tuned for the
standard Adam in Appendix H.2.
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Figure 17: Sensitivity to Gradient Clipping. Validation perplexity vs. Time (left) and Tokens (right)
for 125M and 360M models trained with standard clipping (ρ = 0.5 for the 125M and ρ = 0.25 for
the 360M, dotted lines) versus no clipping (ρ = ∞, solid lines). While the 16M model diverged
without clipping (not shown), the 125M and 360M models converged successfully with minimal
performance degradation, demonstrating that MT-DAO’s heavy reliance on the slow momentum
stabilizes updates at scale, we use ω1 = 0.95.

Results. Figure 16 shows that Streaming MT-DAO closely mirrors the performance of MT-DAO,
with a small gap, across model scales, starting with a 1.3% gap for the small model which shrinks to
≈ 1% for the 125M and 360M models. This is in-line with the findings of Douillard et al. (2025)
which indicate very similar performance between the streaming and non-streaming variants of their
method. Streaming MT-DAO and MT-DAO consistently outperform StreamingDiLoCo and
Streaming Local Adam.

Beyond the effects discusssed in Section 5.4, the lower sync frequencies of the streaming regime
(K > 100) also play a role in the performance gap. With such infrequent syncs, standard fast
momentum decays imemdiately at the start of a round and then optimizes solely for the local
trajectory for an extended duration, decoupling the local optimization from the global trajectory.
StreamingDiLoCo attempts to correct this via the outer Nesterov optimizer, but this correction is
infrequently for large K. In contrast, the slow momentum component of MT-DAO persists across the
long streaming intervals, ensuring the local update direction remains anchored to the long-term global
trajectory. While our method introduces an additional communication requirement for synchronizing
optimizer states, this overhead is effectively mitigated by the streaming architecture. Due to the
communication-computation overlap (τ ) and update interpolation, we observe minimal impact on
wall-clock training time with our hardware configuration. Furthermore, any potential overhead can
be readily offset by increasing the overlap factor τ , allowing computation to proceed uninterrupted.
Although we utilize the default τ = 1, which proves sufficient for these model scales, Douillard et al.
(2025) demonstrates that values up to τ = 10 remain effective in practice.

Synergy with Streaming: MT-DAO is fully compatible with streaming communication. Its slow
momentum compensates for the extended staleness of model fragments in the streaming regime,
offering a substantial perplexity improvement over StreamingDiLoCo without additional overhead.

H.5 ABLATION ON THE CLIPPING THRESHOLD

In standard LLM pre-training with Adam, gradient clipping is considered a critical heuristic to prevent
training divergence caused by "spiky" gradients or numerical instabilities where coordinates of the
second moment term

√
vt approach zero while gradients are large.

Mechanism of Stability. In Figure 17, we compare MT-DAO trained with standard clipping against
a version with clipping disabled (ρ = ∞). We observe that for 125M and 360M models, removing
clipping results in negligible performance degradation. This stability is intrinsic to the MT-DAO
design:
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1. We only transition from the base optimizer to MT-DAO after the warmup phase is complete.
By this stage, the gradients have typically stabilized compared to the initial training steps.

2. MT-DAO assigns a large convex coefficient to the slow momentum. This naturally dampens
outliers without explicit clipping.

Scale Dependency. We observe that the robustness to unclipped gradients is scale-dependent. In our
experiments, the 16M parameter model diverged immediately without clipping. However, the 125M
and 360M models trained stably.

It is important to clarify that the necessity of clipping is primarily a property of the inner optimizer
(Adam) rather than MT-DAO itself. Adam is susceptible to divergence when the preconditioner is
ill-conditioned or when dealing with rare tokens in heavy-tailed distributions.

Clipping Robustness: MT-DAO naturally dampens gradient spikes via its heavy weight on the slow
momentum, removing clipping entirely is safe at larger model scales (125M+) where gradient norms
are naturally lower. For robust training across all scales, we recommend retaining standard clipping.

H.6 ABLATION WITH K = 1

Our primary design objective for MT-DAO is to reduce the performance gap of communication-
efficient methods relative to fully synchronous DDP. In our main experiments (K = 32), we
demonstrate that MT-DAO can match fully synchronous baselines by using slow momentum to bridge
the gap between synchronization steps. In this section, we investigate the limit case of K = 1 to
isolate the behavior of the algorithm when this specific challenge is removed. As shown in Fig. 18,
while MT-DAO performs similarly to DDP, it trails slightly for both N = 1 and N = 2 at the 16M
and 125M scales.
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Figure 18: Comparison at the Synchronous Limit (K = 1). Top: Validation perplexity for MT-DAO
(K = 1) versus DDP baselines for N = 1 (left) and N = 2 (right) variants across 16M and 125M
scales. Bottom: The L2 norm of the second momentum state vt for the corresponding runs. While
MT-DAO performs similarly to DDP, it trails slightly. The bottom plot shows that the local estimation
of the second moment in MT-DAO leads to a larger norm than the global DDP estimate over time,
resulting in a slightly lower effective learning rate.

We emphasize that we would not expect MT-DAO to generally outperform DDP at K = 1 for
two key reasons. First, the noise inherent to Local SGD methods (K > 1) can act as an implicit
regularizer (Lin et al., 2020), which may account for the shrinking or disappearance of the performance
gap to DDP in the main work, depending on the setting. This benefit is strictly lost at K = 1. Second,
while for Local SGD methods with a simple first-order momentum, K = 1 is mathematically
equivalent to standard DDP, for state-of-the-art adaptive optimizers this equivalence breaks down
due to the non-linearity of the second moment update. We must distinguish between the local
gradient estimate gmt computed on a per-worker batch of size B, and the global gradient estimate
ḡt = 1

M

∑M
m=1 g

m
t computed on the effective global batch of size M × B. DDP computes the

second moment using the lower-variance global estimate, i.e., (ḡt)2 =
(

1
M

∑M
m=1 g

m
t

)2
. In contrast,

MT-DAO computes the second moment locally using the noisier gmt (derived from batch size B) and
subsequently averages these states, effectively computing 1

M

∑M
m=1(g

m
t )2. By Jensen’s inequality

applied to the convex square function (element-wise), 1
M

∑M
m=1(g

m
t )2 ≥

(
1
M

∑M
m=1 g

m
t

)2
. Since

the second moment estimate is a moving average of these squared terms, the MT-DAO estimate is

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

Tokens (Billions)

24

28

32

36

40

44

48

52

V
al

id
at

io
n

P
er

p
le

x
it

y

MT-DAO (N=1) (24.23)

Muon-DDP (26.89)

QHMuon-DDP (24.31)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Tokens (Billions)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

V
al

id
at

io
n

P
er

p
le

x
it

y

MT-DAO (N=1) (10.09)

Muon-DDP (11.27)

QHMuon-DDP (10.24)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Tokens (Billions)

10

12

14

16

18

20

22

24

26

V
al

id
at

io
n

P
er

p
le

x
it

y

MT-DAO (N=1) (9.00)

Muon-DDP (9.97)

QHMuon-DDP (9.10)

Figure 19: MT-DAO with Muon. Validation perplexity vs. Tokens for 16M (left), 125M (middle), and
360M (right) models. MT-DAO significantly outperforms the base Muon-DDP baseline and matches
or exceeds QHMuon-DDP at all model scales. This demonstrates that the benefits of multi-timescale
optimization and independent gradient weighting transfer effectively to matrix-based optimizers
using Newton-Schulz preconditioning.

guaranteed to be larger than that of DDP, resulting in a larger denominator in the adaptive update and
implicitly reducing the average per-coordinate effective learning rate.

Regime of Applicability: MT-DAO is specialized for infrequent communication (K ≫ 1). In the
synchronous limit (K = 1), it performs comparably to DDP but trails slightly. This stems from
the nonlinearity of adaptive optimizers: by Jensen’s inequality, MT-DAO’s local estimation yields a
larger second momentum than DDP’s global estimation, implicitly reducing the effective learning rate
as demonstrated empirically. Consequently, we recommend DDP as the default choice when fully
synchronous training is feasible.

H.7 EFFICACY WITH MUON

To demonstrate the universality of our approach, we apply MT-DAO to Muon (Jordan et al., 2024), a
recent optimizer that utilizes Newton-Schulz iterations for update orthogonalization. The Newton-
Schulz preconditioning is typically applied to the momentum term. This means our multi-timescale
considerations regarding momentum variance and drift apply directly to the underlying state before
preconditioning occurs. While we leave the full theoretical analysis of preconditioned local updates
for future work, our framework is structurally compatible with these methods. We now demonstrate
that MT-DAO is empirically effective when using Muon as an inner optimizer.

Experimental Setup. We use the default weight decay of 0.1 and set Nesterov to true, using the
default PyTorch implementation of Muon with the match_rms_norm learning rate adjustment
recommended by Liu et al. (2025). Following standard practice for this optimizer, we employ a
split optimization strategy: AdamW trains the embeddings and layer norms, while Muon trains all
2D matrices (Jordan et al., 2024). We independently tune the base AdamW learning rate, finding the
optimum to be 1e-3, and the Muon learning rate, finding the optimum to be 2e-3. We then jointly
tune the multiplier we sweep over for the quasi-hyperbolic variants in Fig. 24. We use β=0.9 for base
Muon and β = 0.999 for MT-DAO and QHMuon. Adam parameters are fixed at β1, β2 = 0.9, 0.999
as in the rest of our work for the base optimizer and β1, β2 = 0.999, 0.999 for MT-DAO and QHMuon.
We use the clipping threshold appropriate for Adam (Table 2).

Results. Our results shown in Figure 19 indicate that MT-DAO significantly outperforms base Muon
and matches or exceeds QHMuon at all model scales. Beyond proving that MT-DAO is effective
with Muon, our results are also the first, to the best of our knowledge, to indicate that using an
independent weight for the gradient is beneficial for Muon. While the base Muon implementation
includes a Nesterov term, this is equivalent to a quasi-hyperbolic formulation where the weight
of the gradient is directly tied to the momentum β. Our hyperparameter sweep shown in Fig. 24
indicates that this coupling is likely to be suboptimal when β is very high, since a higher weight
should be assigned to the gradient to compensate for the low reactivity of the momentum.
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Figure 20: Hyperparameter Tuning Surface: QH-AdamW (N = 1). Validation perplexity on
16M models. Performance improves as the weight ω shifts heavily towards the slow momentum
(β = 0.999), confirming that the fast component (gradient) acts primarily as a reactive correction
term. We select the optimum (marked in yellow) for scaling experiments.

Efficacy under Newton-Schulz: Our findings confirm that the same principles that underlie MT-DAO
apply effectively within Newton-Schulz preconditioning, enabling MT-DAO to match the performance
of the base Muon optimizer and match or exceed QHMuon. We also generally recommend QHMuon
with a high β over standard Muon.

I LLM USAGE DECLARATION

As declared in the submission form, LLMs were used in this work in order to aid or polish writing and
for retrieval and discovery of related work. We used GPT-5 and Gemini 2.5 PRO primarily to
abbreviate or rephrase text or to evaluate the clarity of our writing and provide guidance on areas of
improvement. We also used the deep research feature present in both models in order to discover, but
not describe or interpret, additional papers for our extended literature review in Appendix G. Finally,
we used both models to generate plotting code and as general code assistants.
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Figure 21: Hyperparameter Tuning Surface: AdEMAMix (N = 2). Validation perplexity on
16M models. Performance improves as the weight ω shifts heavily towards the slow momentum
(β2 = 0.95), confirming that the fast momentum (β1 = 0.05) acts primarily as a reactive correction
term. We select the optimum (marked in yellow) for scaling experiments.
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Figure 22: Tuning N = 2 QHAdEMAMix. Optimal performance is found with a heavy bias
towards the slowest momentum (ω2 = 0.9), confirming that long-horizon signal is the primary
driver of performance in distributed settings. We select the optimum (marked in yellow) for scaling
experiments.
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Figure 23: Tuning QHMuon. Using our pre-defined grid for quasi-hyperbolic ω, we find that utilizing
an ω = 0.95 provides the best performance for the QHMuon optimizer.
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Figure 24: Tuning N = 3 AggMo. Optimal performance is found with a heavy bias towards
the slowest momentum (ω3 = 0.8), confirming that long-horizon signal is the primary driver
of performance in distributed settings. We select the optimum (marked in yellow) for scaling
experiments.
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