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Figure 1: FetchBot is a sim-to-real framework achieving generalizable object fetching in cluttered
scenes. Its systematic design enables policy generalization and sim-to-real transferability across
diverse objects, varying layouts, and multiple end-effectors. Videos are on the project website.

Abstract: Generalizable object fetching in cluttered scenes remains a funda-
mental and application-critical challenge in embodied AI. Closely packed objects
cause inevitable occlusions, making safe action generation particularly difficult.
Under such partial observability, effective policies must not only generalize across
diverse objects and layouts but also reason about occlusion to avoid collisions.
However, collecting large-scale real-world data for this task remains prohibitively
expensive, leaving this problem largely unsolved. In this paper, we introduce
FetchBot, a sim-to-real framework for this challenge. We first curate a large-scale
synthetic dataset featuring 1M diverse scenes and 500k representative demon-
strations. Based on this dataset, FetchBot employs a depth-conditioned method
for action generation, which leverages structural cues to enable robust obstacle-
aware action planning. However, depth is perfect in simulation but noisy in real-
world environments. To address this sim-to-real gap, FetchBot predicts depth from
RGB inputs using a foundation model and integrates local occupancy prediction
as a pre-training task, providing a generalizable latent representation for sim-to-
real transfer. Extensive experiments in simulation and real-world environments
demonstrate FetchBot’s strong zero-shot sim-to-real transfer, effective clutter han-
dling, and adaptability to novel scenarios. In cluttered environments, it achieves
an average real-world success rate of 89.95%, significantly outperforming prior
methods. Moreover, FetchBot demonstrates excellent robustness in challenging
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cases, such as fetching transparent, reflective, and irregular objects, highlighting
its practical value. Project website: https://pku-epic.github.io/FetchBot/.
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1 Introduction
Cluttered scenes are ubiquitous—from densely packed retail displays and disorganized warehouse
racks to crowded kitchen cabinets—making reliable object fetching in such environments an essen-
tial capability for embodied AI applications. Densely arranged objects introduce severe occlusions
and rich obstacles, requiring an effective fetching policy to reason about object geometry and obsta-
cles to minimize collisions under partial observation while generalizing across diverse categories,
layouts, and materials. These demands make generalizable fetching in cluttered scenes a largely
unsolved problem.

For this task, some prior works [1, 48, 34, 2, 26] that employ heuristics or motion planning based
on partial environment observation often fall short in highly cluttered scenes, especially when
no collision-free path exists. Other works [38, 11] investigate learning-based methods, however
they struggle to handle the generalization across diverse object arrangements, categories, geome-
tries, and materials commonly encountered in real-world scenarios due to limited amount of real
data [15, 12, 4]. In contrast, synthetic data offers a more efficient and scalable alternative. Some
recent works [11, 38] propose to augment existing fetching datasets in simulation environments.
However, the generated scenes are overly sparse, featuring widely spaced objects with minimal oc-
clusion. Therefore, the policies fail to generalize to the densely cluttered environments encountered
in the real world. Furthermore, sim-to-real gap persists. Several methods [22, 46, 31, 43] leverage
depth and point-cloud inputs to bridge this gap, given its focus on geometry instead of texture [54].
Nevertheless, practical limitations still remain: real depth sensors often produce flying pixels around
object boundaries [28], unreliable measurements on reflective and transparent surfaces, and substan-
tial noise. These factors collectively undermine robust performance in complex real-world scenarios.

Along with generalization, fetching safety, which requires environmental impact minimization, is
crucial since slight collisions may lead to hazards (illustrated in Fig. 1). Works [33, 10, 16, 21]
model environments using scene voxel maps, typically constructed by projecting RGB views via
sensed depth and camera extrinsics. This technique directly inherits the limitations of depth sensors,
which are often unreliable in practice. Critically, it also produces incomplete voxel representations
in heavily occluded regions, thereby losing essential geometric details.

To address the above challenges, we introduce FetchBot, a framework designed for generalizable
and safe robotic fetching in occlusion-rich environments. To mitigate data scarcity, we develop a
Unified Voxel-based Scene Generator (UniVoxGen) to synthesize millions of cluttered scenes ef-
ficiently, where objects are tightly packed and frequently occlude one another. Given that motion
planning often fails to find collision-free trajectories in such scenes, we train a dynamics-aware ora-
cle policy using reinforcement learning to generate representative demonstrations. We then leverage
depth predicted by a foundation model [49] as an intermediate representation to bridge the sim-to-
real gap. To tackle the incomplete scene understanding caused by heavy occlusion, we integrate
occupancy prediction [42, 44, 3] as an auxiliary task to overcome perception limitations arising
from heavy occlusion. This task encourages the model to infer occluded regions through spatial
reasoning, leading to more complete scene understanding. Through extensive simulation and real-
world experiments, our method outperforms existing approaches by a significant margin, achieving
an average 89.95% success rate in real-world scenarios. This robustness also extends to challenging
objects, including translucent, reflective, and irregular items.

In summary, we make the following contributions: 1) Generate a large-scale dataset comprising 1M
diverse cluttered scenes using UniVoxGen and 500k demonstrations using a dynamics-aware oracle
policy. This dataset serves as a foundation for developing generalizable fetching skills. 2) Intro-
duce a depth-conditioned action generation policy. This policy leverages depth predictions from a
foundation model to bridge the sim-to-real gap. Additionally, it integrates occupancy prediction as
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a pre-training task, enabling the model to infer information about occlusions and achieve compre-
hensive scene understanding. 3) Validate our method through extensive simulation and real-world
experiments, demonstrating significant improvements in handling cluttered scenes, achieving zero-
shot sim-to-real transfer, and generalizing across diverse scenarios.

2 Related Works

Robotic Fetching from Cluttered Scenes. Robotic fetching is a long-standing and fundamental
challenge within robotic manipulation, attracting extensive research interest over the years [27].
A particularly demanding aspect of this challenge involves fetching objects from cluttered envi-
ronments [6, 7, 23, 24, 51, 18, 26, 48, 1, 11, 53, 40]. While numerous studies [26, 48, 1] have
focused on identifying initial picking or grasping points, the subsequent, critical retrieval stage is
often under-emphasized. This phase necessitates careful maneuvering to minimize disturbance to
surrounding objects, as even slight collisions can destabilize the scene. Recently, benchmarks like
FetchBench [11] have begun to specifically target the complexities of object fetching. However,
generating simulated environments that fully capture the high density and unpredictable nature of
real-world clutter remains difficult, potentially limiting the direct applicability of models trained in
such settings. Addressing this gap, our work employs a voxel-based method to generate simulated
cluttered scenes that more realistically capture the complexity of real-world environments.

Sim2Real Transfer for 3D Visuomotor Policies. Currently, there are many 3D-based imita-
tion learning policies [33, 10, 8, 52, 16, 45, 21] that utilize 3D observation data to mimic ex-
pert actions from demonstrations. However, these methods predominantly rely on real-world data
to perform real-robot tasks, failing to fully leverage the potential of simulators. As a result,
sim-to-real transfer for 3D visuomotor policies remains an under-explored topic. Most previous
works [22, 46, 31, 43, 20] have employed point clouds as representations to achieve sim-to-real, but
they still struggle to bridge the sim-to-real gap due to noise and inaccuracies, particularly at object
edges and reflective surfaces in real-world point clouds captured by depth sensors. To further ad-
vance the field of sim-to-real research, inspired by approaches in autonomous driving [42, 3, 44] and
computer vision foundation model [49, 9, 13, 32, 14], we propose utilizing predicted depth as an
intermediate representation, leveraging its strong generalization ability to mitigate the sim-to-real
gap. Furthermore, we employ a unified 3D representation to ensure consistent multi-view image
fusion, thereby achieving complete perception and further minimizing the sim-to-real gap.

3 FetchBot

3.1 Overview

To enable generalizable and safe fetching skills, we introduce FetchBot, a framework that learns
a generalizable fetching policy through zero-shot sim-to-real. We begin by efficiently generating
realistic, densely cluttered scenes using a voxel-based method (§ 3.2), and collecting demonstrations
from a dynamics-aware oracle policy (§ 3.3). Next, we leverage the depth predicted by a foundation
model as the intermediate representation to bridge the sim-to-real gap (§ 3.4). Finally, we introduce
an occupancy-based voxel representation to address the challenge of incomplete perception caused
by heavy occlusion (§3.4).

3.2 Voxel-based Cluttered Scene Generator

Accurate scene generation mandates collision-free object placement. However, existing meth-
ods [38, 19, 47, 30, 50, 41] often rely on computationally intensive simulator-based colli-
sion checks or simulated object dropping. These techniques are prone to generating un-
realistic configurations (see Appendix A for details) and significantly hinder both genera-
tion efficiency and scene validity, particularly in densely cluttered and occluded environments.

3



(A) Diverse Synthetic Data Generation

���

(B) 3D Vision Encoder Pretraining

RGB

Occupancy

ResNet

M
ul

ti 
vi

ew
 In

pu
t

Occ
Encoder

Occ
Decoder

Target Object

Obstacle Object

Shelf Dividers

End Effector

Loss

3D
Vision 

Encoder

Transformer

Flatten

Readout Token

Diffusion

Predicted 
Depth

Trajectories

Action
Feature

Noise

-0.1 1.35 0.78
Loss

(C) Vision Policy Training

(D) Zero-Shot Sim2Real

+

Figure 2: FetchBot Pipeline. In the (A) data generation stage, we use UniVoxGen to generate
a diverse set of cluttered scenes and employ an RL-based Oracle policy to collect representative
demonstrations. In the (B) 3D vision encoder pretraining stage, we first use the foundation model’s
predicted depth as an intermediate representation to mitigate the sim-to-real gap, then introduce an
occupancy prediction task to learn a complete scene representation that can infer occluded regions.
In the (C) vision policy training stage, we distill these expert demonstrations into a vision-based
policy through imitation learning, which can achieve (D) zero-shot sim-to-real.
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Figure 3: A set of fundamental
voxel operations in UniVoxGen.

In contrast, our approach, UniVoxGen, operates within a unified
voxel space established by initially voxelizing each object. As
depicted in Fig. 3, we leverage fundamental voxel operations:
Union (adding objects), Intersection (detecting collisions), Dif-
ference (removing objects), and Transformation (adjusting ob-
ject poses). These operations are computationally lightweight
and execute rapidly, facilitating the efficient generation of realis-
tic scenes. Leveraging this efficiency, we employed UniVoxGen
to create a large-scale dataset of 1 million cluttered scenes, which
serve as training data for our oracle policy. Furthermore, the gen-
erated voxel scenes provide dense ground truth for training the occupancy prediction task.

3.3 Dynamics-Aware Oracle Policy

To generate demonstrations with minimal disturbance, we train an oracle policy using reinforcement
learning. Through extensive interaction, this policy learns implicit environment dynamics, enabling
it to understand the impact of potential actions and select optimal, low-impact maneuvers. A core
component of this policy is a hierarchical scene encoder designed to capture both local object details
and global scene context, allowing for effective representation of complex clutter.

Observations Encoding. The observation ot of oracle policy π combines
proprioception pt, the previous action at−1, and a scene representation zt.
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Figure 4: Scene Encoder Network. The network
employs a hierarchical architecture, where a local
network extracts object features and a global net-
work captures scene-level structure and context.

Inspired by PointNet++ [29], we adopt a hier-
archical network fscene. As depicted in Fig. 4,
consider a scenario S comprising a set of ob-
jects, and each object is represented by a set
of keypoints Ki = {ki,1,ki,2, . . . ki,n}. Our
hierarchical process first extracts local features
z
(i)
local for each object independently using a

network f local: z
(i)
local = f local(Ki). Subse-

quently, these local features are aggregated by
a global network fglobal to produce the final

scene representation z = zglobal: zglobal = fglobal({z
(1)
local, . . . ,z

(N)
local}). This global feature z

serves as our comprehensive scene representation. The networks f local and fglobal each comprise
a two-layer MLP followed by max pooling. This design enables permutation invariance, there-
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fore enhancing robustness. This hierarchical architecture could preserve detailed object information
alongside global scene understanding.

Reward. Our reward function combines task completion, behavioral constraints, and an envi-
ronment change penalty based on per-step obstacle movement mstep (translation and rotation):
r = λtaskrtask + λconsrcons + λenvrenv . Task reward is given for successful fetching, but only
if the total obstacle change per episode mepisode is less than σm, a success threshold. We employ
a curriculum for σm, starting high to facilitate initial task completion and gradually decreasing it
to enforce precision and minimal environmental impact later in training. Detailed reward design is
provided in Appendix B.

3.4 Vision-based Imitation Learning

Intermediate Depth Representation for Sim-to-Real. Depth maps offer superior spatial informa-
tion compared to RGB images, which is crucial for robotic fetching. Nonetheless, direct sim-to-real
policy transfer with depth is difficult due to depth sensor limitations like edge inaccuracies, poor
transparency handling, and substantial noise. To address this, we utilize a sim-to-real-friendly inter-
mediate depth representation derived from a depth foundation model. We use DepthAnything [49]
to map both simulation RGB images Ps and real-world RGB images Pr to a shared depth space
Df . This intermediate representation ensures the policy always receives input within the same in-
put space Df . Consequently, this design allows FetchBot to maintain consistent action predictions
across domains and significantly improve its sim-to-real capability.

Completion of Occluded Regions. Planning safe trajectories in cluttered scenes is challenging due
to heavy occlusion hindering complete perception. As depicted in Fig. 2 (B), we address this by in-
troducing semantic occupancy prediction as an auxiliary task. After obtaining multi-view predicted
depth maps from the DepthAnything, we extract feature maps I = {ii}Ni=1 using a ResNet-50 back-
bone. These features are subsequently aggregated into a 3D latent space using a multi-view feature
fusion mechanism. Specifically, within the 3D vision encoder, we define a set of learnable local
3D-grid queries Q ∈ RC×H×W×Z , where H , W , and Z denote the query grid dimensions. For
each 3D query point p, we project it into the 2D feature maps F2D according to known camera pa-
rameters, utilizing only information from the valid views Vhit. A deformable cross-attention (DCA)
mechanism then aggregates local 2D features around the projected points:

DCA(qp,F2D) =
1

|Vhit|
∑

t∈Vhit

DA(qp,P(p, t),F2D
t ),

where qp is the feature associated with 3D point p = (x, y, z), P(p, t) is the projection function,
F2D

t is the 2D feature map from hitted view t, and DA denotes deformable attention [55]. The
aggregated 3D features are further refined using 3D convolutions (see Appendix C for more details).

Within a local 3D volume around the end-effector, referred to as the region of interest (ROI), we
predict semantic occupancy, distinguishing object classes (target, obstacle, robot) instead of simply
identifying occupied or free spaces. This semantic representation is crucial for identifying the target
object in cluttered scenes. Local prediction within ROI improves both computational efficiency and
generalization by exposing the network to diverse partial observations (irregular shape due to crop-
ping). Additionally, the network uses multi-view predicted depth maps as input to predict occupancy
in unobserved regions, and the model is supervised with complete scene occupancy (generated by
UniVoxGen). This auxiliary task enables the model to infer the full structure from limited cues,
enhancing robustness to occlusions in cluttered scenes.

As illustrated in Fig. 2 (C), building upon the 3D semantic occupancy prediction, our policy trans-
lates this scene representation F3D into executable actions through a transformer-based architec-
ture [37, 17, 39]. Specifically, we augment the 3D features with learnable position embeddings
P 3D ∈ RC×H×W×Z before flattening them into feature vectors V 3D ∈ RC . A learnable readout
token queries and aggregates these features to produce action features FA. Finally, a lightweight
diffusion head [5] denoises Gaussian noise aK into the predicted action a0, conditioned on FA.
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Figure 5: Qualitative Results in the real world. We evaluate our system in diverse and cluttered
scenes containing a variety of objects and environments. The upper row shows a suction cup, and
the bottom row shows the parallel gripper.

End-effector Suction Cup Parallel Gripper
Method Success Rate (%) ↑ Translation (cm) ↓ Rotation (rad) ↓ Success Rate (%) ↑ Translation (cm) ↓ Rotation (rad) ↓
Heuristc 54.98 6.71 0.91 63.43 0.41 0.71
CuRobo 68.26 3.96 0.63 73.05 0.24 0.49
AIT* 62.52 5.86 0.75 67.87 0.35 0.63
Oracle 85.60 1.47 0.29 94.11 0.13 0.02
RGB (DP) 70.35 4.97 0.55 75.85 0.24 0.13
Point Cloud (DP3) 72.37 4.49 0.76 80.45 0.21 0.16
Raw Depth 71.44 4.49 0.56 71.44 0.17 0.09
Predicted Depth 61.21 6.54 0.76 68.37 0.38 0.12
RGB-D Voxel 71.38 4.65 0.62 79.73 0.22 0.10
Occupancy (Ours) 81.46 2.78 0.36 91.02 0.13 0.06

Table 1: Simulation Results. Compares the performance of different methods across two end
effectors (suction cup and parallel gripper) in terms of success rate, translation disturbance, and
rotation disturbance. Our method outperforms all baselines (except for the oracle), achieving the
highest success rate and the lowest disturbance in translation and rotation.

Two-Stage Policy Learning Framework. We begin by pretraining the 3D vision encoder on Uni-
VoxGen’s complete occupancy data, optimizing cross-entropy and scene-class affinity losses [3]
to establish robust scene understanding. In the second stage, we freeze the pre-trained vision en-
coder. Concurrently, the policy head (comprising transformer and diffusion components) is trained
via imitation learning. This learning process minimizes the mean squared error (MSE) between the
predicted noise and the actual noise applied to the oracle actions.

4 Experiments

In this section, we conduct extensive experiments to validate the effectiveness of our method. Our
primary evaluations focus on shelf environments, which present the most significant challenges for
fetching tasks. First, we compare our method with several baselines in the Isaac Gym [25] simula-
tor. Next, we deploy the system in a replicated retail store to confirm the sim-to-real performance.
Finally, we conduct ablation studies to demonstrate the contribution of each key component to the
sim2real transfer. We use two end effectors, a parallel gripper for bottle-shaped items and a suction
cup for box-shaped items, to demonstrate our method’s flexibility.

4.1 Simulation Experiment

In simulation experiments, we utilize 3000 densely constructed scenes to assess safe fetching per-
formance under occlusion. We further investigate the efficacy of different representation methods
for fetching in these cluttered environments by modifying the input modality module.

Metrics. Our simulation evaluations assess two key metrics: (1) environmental impact, measured
by total obstacle displacement (both translational and rotational), evaluates fetching-induced distur-
bances, and (2) success rate, requiring target fetching with obstacle displacement kept under a 3 cm
threshold, which we determined to be an acceptable tolerance during fetching.
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Baselines. We compare FetchBot with three series of methods: (1) heuristic-based methods, utiliz-
ing rules to generate trajectories composed of straight-line paths. (e.g., lift-then-extract), (2) motion
planning-based methods (CuRobo [36] and AIT* [35]), which find collision-free paths for fetching
via motion planners, and (3) learning-based methods, including the original RGB-based diffusion
policy (DP [5]), 3D point cloud-based DP3 [52], RGB-D voxel-based diffusion policy, raw depth
image-based diffusion policy, and DepthAnything-based diffusion policy, all these baselines employ
the same diffusion denoising process for action generation (see Appendix D for more details).

(A) RGB-D Projection Based (B) Occupancy Query Based

Target Target

Figure 6: Comparison in simulation. (A)
RGB-D voxel method misses crucial geo-
metric details due to occlusion, leading to
collision during fetching. (B) Our method
can infer the occluded region, enabling suc-
cessful collision avoidance.

Results and Analysis. As shown in Table 1,
heuristic-based methods exhibit the poorest perfor-
mance due to their complete disregard for environ-
mental information and reliance on predefined tra-
jectories, resulting in frequent collisions. Motion
planning-based approaches also demonstrate limited
effectiveness, failing to reliably generate collision-
free paths in cluttered scenes as their planners ac-
count only for static geometric configurations while
neglecting the dynamic consequences of fetching
operations. Conversely, our oracle policy learns un-
derlying environmental dynamics through extensive
interactions, enabling it to select actions that minimize environmental change. Learning-based meth-
ods achieve substantially superior performance, though with notable constraints: RGB (DP) pol-
icy encounters obstacle avoidance difficulties stemming from absent spatial geometric information,
while point cloud, depth-based, and RGB-D voxel methods, despite their enhanced scene represen-
tations, are hindered by partial observability induced by severe occlusions, ultimately diminishing
success rates and environmental impact metrics. As shown in Fig. 6 (A), due to occlusion, the
RGB-D voxel method fails to capture the hidden part of the target, resulting in a naive extraction
attempt and a subsequent collision with obstacles. Besides struggling with heavy occlusion, the
DepthAnything-based method’s performance is further hindered by its scale-ambiguous depth pre-
dictions [49], yielding only relative depth, inadequate for true geometric representation. By contrast,
FetchBot’s occupancy representation effectively integrates multi-view spatial information and uses
contextual reasoning to infer geometric details of occluded areas, as depicted in Fig. 6 (B). This
approach leads to a more complete and structured 3D scene understanding, which facilitates object
fetching in complex environments, ultimately achieving a higher success rate of 81.46% for suction
cup and 91.02% for parallel gripper. Furthermore, FetchBot excels in the environmental impact
metric, meaning it effectively considers how each action affects nearby objects and chooses actions
that minimize disturbance.

4.2 Real World Experiment
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Figure 7: Comparison in the real world.
Direct RGB-D voxelization often yields
incomplete scenes in real-world settings,
while our occupancy method (Occ) gener-
ates more complete representations.

Extensive real-world experiments validated each
method’s generalization and zero-shot sim-to-real
transfer across diverse scenarios (varied objects, chal-
lenging materials, environments) using 15 trials with
both suction and gripper end-effectors (All scenes are
shown in Appendix E).

Metrics. Due to the unavailability of precise environ-
mental measurements in real-world settings, the suc-
cess rate serves as the only evaluation metric. A real-
world trial is counted as successful only if the target
is acquired and no surrounding objects exhibit visible
displacement during the fetch.

Baselines. Our real-world experimental evaluation fo-
cuses exclusively on learning-based approaches, em-

7



ploying identical representation modalities to those used in simulation (RGB, point clouds, raw
depth, DepthAnything, and RGB-D voxel).

Results and Analysis. Fig. 8 presents the zero-shot sim-to-real performance of each method
in the real world. Due to differences in object textures, lighting, and other factors between
simulation and reality, the RGB (DP) still underperforms despite extensive domain random-
ization. Additionally, the impact of depth noise and the inherent limitations of depth sen-
sors (e.g., poor performance on transparent and specular materials) limit the effectiveness of
point cloud and raw depth-based methods in zero-shot sim-to-real transfer, as illustrated in
Fig. 7 (A). While the DepthAnything-based method uses an intermediate representation to pre-
dict depth from both sim and real-world images, partially addressing the sim-to-real gap, its
predicted depth is scale-ambiguous [49], which ultimately limits the method’s overall perfor-
mance. Moreover, limited observations due to cluttered scenes further restrict its deployment.

Suction Cup
86.6

46.6
40.0 40.0

100

80

60

40

20

0

33.3

Modality Comparison (Success Rate)

73.3
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46.6
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Figure 8: Modalities comparison in the real world.

In contrast, FetchBot leverages predicted depth
from a foundation model to bridge the sim-to-
real gap and handle challenging objects like
transparent or reflective ones. It also uses
an occupancy-based representation to infer oc-
cluded regions, providing complete and struc-
tured geometry for better spatial understanding,
as shown in Fig. 7 (B). By focusing on local
occupancy and semantics within ROI and extensively randomizing object placements there during
training, the system generalizes effectively by exposing the policy to a wide variety of local geome-
tries. Its success in varied tasks, including tasks like tabletop fetching, as well as drawer extraction
without collision, demonstrates broad applicability beyond shelf setting (shown in Fig. 9).

4.3 Ablation Study for Sim2Real

DepthAnything Occupancy Success Rate (%) ↑
✓ ✓ 86.60
✓ × 73.33
× ✓ 60.00
× × 33.33

Table 2: Ablation study for sim2real.

We perform real-world ablation studies to system-
atically evaluate how individual modules in Fetch-
Bot contribute to successful sim-to-real transfer and
overall fetching performance. As shown in Ta-
ble 2, FetchBot w/o DepthAnything significantly re-
duces the real-world success rate (from 86.60% to
60.00%), confirming that predicted depth is crucial for mitigating the visual sim-to-real gap. Re-
moving the occupancy representation also degrades performance (to 73.33%), demonstrating its
necessity for inferring the occluded regions and alleviating the associated perception limitations.
Using only RGB inputs (removing both) results in the lowest success rate (33.33%), highlighting
the synergistic benefit of the two modules for reliable fetching in challenging real-world conditions.

5 Conclusion and Limitation

Figure 9: Real-robot extension experiments show-
ing successful fetching from cluttered tabletop
(suction) and drawer (parallel gripper) settings.

Conclusion. This paper introduces FetchBot, a
novel sim-to-real framework tackling the chal-
lenge of object fetching in cluttered scenes.
By leveraging a large-scale synthetic dataset,
depth-conditioned action generation, and tech-
niques to bridge the sim-to-real gap (including
RGB-to-depth prediction and occupancy pre-
training), FetchBot demonstrates strong zero-
shot transfer capabilities. Extensive experi-
ments validate its superior performance in effectively managing clutter and handling challenging
objects (e.g., transparent, reflective and irregular), significantly outperforming previous methods
and showcasing its practical value for complex, real-world fetching tasks.
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Limitation. FetchBot exhibits limitations despite its performance. Fetchbot exhibits certain limita-
tions when encountering tricky scenarios. First, in scenarios with significant occlusion, the policy
may output complex actions to avoid collisions. However, such maneuvers can cause the robot arm
to exceed its joint limits. Second, single-arm grasping of large-volume objects is inherently difficult,
suggesting a potential need for dual-arm collaboration in future work. Finally, the challenge with
fully occluded targets lies in their initial unreachability. Accessing them requires advanced reason-
ing to clear obstructions. Ideally, this reasoning would also encompass restoring the scene after the
task (e.g., returning moved objects). Developing such comprehensive reasoning capabilities may be
a key objective for future work. (Please refer to Appendix F for more details)
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A UniVoxGen

A.1 Scene Generation Method

A diverse and realistic set of scenes is crucial for sim-to-real transfer, requiring an effective scene
generation method. Creating a valid scene involves determining the pose for each object and ensur-
ing there is no penetration among any of them. Therefore, during scene generation, we need to check
for collisions between different objects. Previous approaches [6, 3, 8, 4, 10, 7] for generating clut-
tered scenes typically depend on computationally intensive collision detection mechanisms. These
methods require importing objects into a simulator and executing a simulation step to detect poten-
tial collisions, a process known to be computationally expensive. This inefficiency is particularly
pronounced in cluttered scenes, where the dense packing of objects inherently leads to frequent colli-
sions requiring verification. Additionally, some other methods create cluttered layouts by simulating
objects dropped from the air, which may result in unstable and unrealistic scene configurations. Our
method, UniVoxGen, is specifically designed for fast and realistic scene generation in voxel space.
It accelerates the generation process by performing efficient collision checks in voxel space and
produces realistic scene layouts using a set of carefully crafted hand-designed rules.

We begin by providing formal definitions for key elements in the voxel space. Let
V o = {V o

1 , V
o
2 , . . . , V

o
N} represent the voxel representation of a set of objects, and V s =

{V s
1 , V

s
2 , . . . , V

s
N} represent the voxel representation of the scene. We define a set of operational

primitives in voxel space for manipulating voxels. Specifically, Vi ∪ Vj denotes the union opera-
tion, which combines two voxel sets and is commonly used to add an object’s voxels into the scene.
Vi ∩ Vj denotes the intersection operation, which retrieves the intersection of two voxel sets and is
used to detect potential collisions when adding a new object. Vi − Vj denotes the difference opera-
tion, which removes the overlapping portion of Vi with Vj , typically used to remove an object from
the scene. Finally, T (Vi, P ), P ∈ SE(3) represents a transformation of a voxel Vi in SE(3) space,
commonly used to change the pose of the object. Here, P is a transformation matrix in SE(3) that
combines rotation and translation.

Algorithm 1 Scene Generation Algorithm

Require: Number of scenes N
Require: Max objects per scene K
Require: A set of objects O

1: for scene 1 : N do
2: Initialize scene voxel V s = {}
3: Sample a target object Otar

4: Sample a pose P in SE(3) for Otar

5: Apply T (Vi, P ) to transform the target object
6: Apply VOtar ∪ V s to add the target object to the scene
7: Sample number of obstacle objects k ∼ [1, . . . ,K]
8: for obstacle Oobs

i 1 : k do
9: Sample a pose P in SE(3) for Oobs

i
10: Apply T (Vi, P ) to transform the obstacle object
11: while VOobs

i
∩ V s do

12: Sample a new pose P in SE(3) for Oobs
i

13: Apply T (Vi, P ) to transform the obstacle object
14: end while
15: Apply VOobs

i
∪ V s to add the obstacle object to the scene

16: end for
17: Save the pose P of each object in the scene
18: end for

Based on the previously defined key elements and operation primitives, we further design a set of
generation rules R = {R1, R2, . . . , RN}. UniVoxGen uses these rules to generate diverse cluttered
scenes. These scenes may include unsolvable cases, where it is impossible to retrieve the target
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Figure 10: Generated cluttered scenes by UniVoxGen, including shelf, tabletop, drawer, and storage
rack environments.

object without colliding with any obstacles. It is worth noting that the inclusion of unsolvable
cases is intended to better simulate real-world scenarios, as such situations can occur in practice.
The procedure for generating these cluttered scenes is outlined in Algorithm 1. It should be noted
that, given the complexity of the various scene generation rules, the steps presented here represent a
simplified version of our scene generation rules. The detailed generation rules will be made available
in the released source code. Finally, we use UniVoxGen to generate 1 million cluttered scenes, which
are then utilized as training scene data for a oracle policy. It takes 12 hours on the workstation
equipped with 8 RTX 4090s to generate these 1 million scenes.

A.2 Scene Generation Result

We utilize UniVoxGen to generate a large number of cluttered environments. Our initial focus is on
cluttered shelf environments. Such environments require not only clutter but also a certain degree
of structured arrangement to be realistic. On a shelf, objects cannot be arbitrarily piled together,
but instead need to exhibit some regularity in their placement to simulate realistic shelf settings.
Additionally, we generate cluttered environments for tabletop, drawer, and rack settings to support
the needs of extension experiments, as shown in Fig. 10.

B Oracle Policy Training

B.1 Reward Function

Our reward function combines task completion rtask, behavioral constraints rcons, and an environ-
ment change penalty renv .

Task Reward. The task reward formulation imposes a dual requirement: the target object must be
successfully fetched, and the resulting environmental impact, measured over the entire episode, must
be limited. This impact is quantified by the total translation (mtrans) and total rotation (mrot) ac-
cumulated across all obstacles during the episode. Both metrics must remain below their respective
predefined thresholds: mtrans must be less than the translation threshold σtrans, and mrot must be
less than the rotation threshold σrot. We use a curriculum learning method for the thresholds (σtrans

and σrot), gradually decreasing their values during training. Specifically, σtrans is set according to
the sequence [0.03, 0.015, 0.01, 0.005, 0.0] m, and σrot follows the sequence [0.4, 0.2, 0.16, 0.1,
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0.0] radians. The transition to the next value in each sequence occurs once the policy’s performance
saturate at the current stage.

Behavioral Constraints Reward. We apply certain behavioral constraints to the flying end-effector
to make its behavior more naturalistic.

We use raction range to constrain the policy’s output from becoming too large. That is:

raction range =

{
−λaction range exp

(
(|a| − 3)2

)
if |a| > 3

0 if |a| ≤ 3

To ensure smoother and more continuous actions, we introduce a term, raction rate, that penalizes
large differences between consecutive pose outputs of the policy (alast, acurrent):

raction rate = −λaction rate exp
(
(alast − acurrent)

2
)

To prevent fetching the object in singular poses, which could violate robot arm joint limits, we
incentivize maintaining the target object close to its initial pose (pinit). This objective is achieved
using the rpose penalty term, calculated as:

rpose = −λpose exp (pcurr − pinit)

To prevent collisions with shelf barriers, we introduce a penalty term, rpenetration. If a collision,
i.e., penetration, occurs, the target object experiences a significant acceleration, denoted as accel.
This acceleration is then used to compute the penalty as follows:

rpenetration = −λpen exp
(
a2ccel

)
To encourage moving the target towards its designated goal position, we employ a reward com-
ponent, rtarget move, to guide the policy’s behavior. This reward incentivizes movement towards
the goal and penalizes movement away from it. Let dlast denote the distance from the target to
the goal position at the previous timestep, and dcurr be the current distance to the goal. The term
dlast − dcurr thus represents the progress made towards the goal in the current step, a positive value
indicates movement closer to the goal. We use v represents target’s velocity and dt is the duration
of the timestep, the reward is defined as:

rtarget move = λtarget move ·
dlast − dcurr

v · dt

Environment Change Reward. To incentivize the policy to minimize its impact on the environ-
ment, we introduce penalties based on the total displacement of all obstacles within each timestep.
Specifically, we consider the total translational displacement (mtrans step) and the total rotational
displacement (mrot step) of all obstacles. These penalties are computed as follows:

rtrans step = −λtrans step exp
(
m2

trans step

)
rrot step = −λrot step exp

(
m2

rot step

)
All weight coefficients are listed in Table 4. We train our oracle policy with PPO [5], and the training
hyper-parameters are shown in Table 3.

B.2 Training Randomization

To improve the robustness of the oracle policy and diversify the demonstration set, we apply ex-
tensive domain randomization during training. We randomize the objects’ mass and center of mass,
friction coefficients, the shelf’s upper-barrier height, camera pose, and the end-effector’s initial pose;
in addition, we inject noise into observations to emulate real-world imperfections such as calibration
bias and readout noise.
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Hyper-parameters Values

Num. envs 1024
Num. steps for per update 24
Num. minibatches 4
Num. learning epochs 1500
learning rate 0.0003
clip range 0.2
entropy coefficient 0.0
kl threshold 0.02
max gradient norm 1.0
λ 0.95
γ 0.99

Table 3: Hyper-parameters for the oracle policy
learning.

Hyper-parameters Values

λtask 5.0
λaction range 1.5
λaction rate 0.0001
λpose 0.6
λpenetration 9.0
λtarget move 0.06
λtrans step 10.0
λrot step 10.0

Table 4: Hyper-parameters for the reward func-
tion.

B.3 Curriculum Learning Methods

We explore various curriculum learning strategies. The first step is to assign difficulty levels to
the task scenarios. Specifically, we generate a diverse set of scenarios based on predefined rules,
and then categorize them into five difficulty levels according to the occlusion rate—defined as the
percentage of the target object’s surface area occluded by obstacles when viewed from the front.

Approach 1. Per-Environment Difficulty Curriculum. ✗ We adopt a locomotion-style curricu-
lum [13] as our first attempt: in Isaac Gym, each environment is assigned a difficulty level; upon
task success its difficulty increases, otherwise it decreases. However, this scheme does not yield any
improvement over direct training on all scenarios.

Approach 2. Unified Difficulty Curriculum. ✗ Our second attempt departs from the locomotion-
style curriculum. In Isaac Gym, all parallel environments are kept at the same difficulty level,
rather than assigning each environment its own difficulty. Once the policy converges at the current
difficulty, we advance all environments to the next level. However, this method also fails to produce
satisfactory results.

Approach 3. Policy-Driven Difficulty Curriculum. ✗ Our third attempt abandons the use of man-
ually defined metrics (i.e., occlusion rate) for defining difficulty levels, rather than relying on the
policy’s own performance. Specifically, we first train the policy on all scenarios until convergence,
then evaluate it and label the failed scenarios as higher-difficulty cases. Training then continues
exclusively on these failed scenarios, and this process is repeated for five iterations. However, this
method also fails to deliver satisfactory results.

Approach 4. Task-Conditioned Curriculum. ✓ Our final method is a σ-based curriculum (§ 3.3):
σ is large early for exploration and is gradually reduced to enhance precision and stability.

Our key insight is that, whether difficulty is defined manually or in a policy-driven way, the chosen
scene difficulty axis is highly homogeneous and lacks qualitative transitions across levels; knowl-
edge learned in easy scenarios transfers poorly to hard ones, failing to provide effective learning
gradients or a skill ladder. Unlike scene-based curricula, the σ-based curriculum decouples train-
ing from scene parameters and schedules solely based on task difficulty via σ, thereby avoiding
scene-difficulty specification and directly improving task performance and training stability.

B.4 The Architecture of Oracle Policy

Encoder. The oracle policy receives an observation composed of three parts: the scene repre-
sentation zt, proprioception pt, and the previous action at−1. The term pt ∈ R12 encodes the
end-effector pose relative to the target placement and decomposes as pt = [rott, transt], where
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rott ∈ R9 denotes the rotation matrix (flattened to 9 entries) and transt ∈ R3 is the translation
vector. The previous action satisfies at−1 ∈ R6. The scene encoder network (§ 3.3) maps the raw
scene input to zt ∈ R64. The final observation is the concatenation ot = [zt, pt, at−1 ] ∈ R82.

Decision. The decision module is a three-layer MLP that maps the observation to an action. For-
mally, the policy π implements π : R82→R6 and at = π(ot), where at ∈ R6.

C Vision Policy Training

C.1 Ablation Study on Scaling the Training Data

In our ablation study on scaling the training data, we examine its impact on both the occupancy
pre-training (Fig. 11) and the policy learning (Fig. 12). We use suction cup as the end-effector tool
to complete this experiment.

Scaling the Training Data for Occupancy Pre-Training. This study examines how the amount
of data utilized for pre-training the 3D vision encoder via an occupancy prediction task affects the
ultimate performance of the model. All experiments employ varying dataset sizes for pre-training
the 3D vision encoder but maintain a fixed dataset size of 500K for policy training. We find a clear
correlation between larger datasets and improved policy performance. Starting with 500 scenes, the
success rate is 62.33%. As the dataset size increases to 5k and 50k, the success rate improves to
70.72% and 72.50%, respectively. As the dataset size increases to 100k and 250k, the performance
continues to improve. The largest dataset, with 500k scenes, achieves the best performance, reach-
ing a success rate of 81.46%. This demonstrates that pre-training on larger datasets significantly
enhances the policy performance, providing a more comprehensive understanding of the 3D scene.

Scaling the Training Data for Policy Learning. We seek to determine how the quantity of data
available for policy learning influences the model’s ultimate performance. For this investigation,
all experiments maintain a fixed data volume for 3D vision encoder pre-training but use different
amounts of data for training the policy. With a dataset of 500 state-action pairs, the success rate
is 48.23%. As the dataset increases to 5k and 50k, the success rate rises to 54.66% and 65.55%,
respectively. As the dataset size increases to 100k and 250k, performance continues to improve.
The largest dataset of 500k state-action pairs yields the best performance, achieving a success rate
of 81.46%. These results highlight that increasing the training data size for the decision module
significantly improves task success, emphasizing the importance of a sufficiently large dataset for
accurate and reliable policy performance.

Figure 11: Occ Pre-Training Scaling Law Figure 12: Policy Learning Scaling Law

Overall, our findings highlight the critical role of large-scale data in both occupancy pre-training
and policy learning, underscoring the importance of scaling the dataset for improving the overall
performance and accuracy of the 3D vision policy.
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C.2 Ablation Study on Region of Interest (ROI) Size

Focusing solely on the region of interest is an effective approach that enhances the policy’s gener-
alization ability and aids policy learning. We define our Region of Interest (ROI) by cropping an
H ×W × Z cm cubic space around the end-effector.

In our ablation study on the ROI size (Table. 5), we investigated the impact of varying sizes on
policy performance. The results show that a compact ROI, specifically 20×20×30 cm, leads to the
best performance, achieving the highest success rate (81.46%) and the lowest translation (2.78 cm)
and rotation (0.36 rad) errors. It is crucial to note that the optimal ROI size is not arbitrarily small
but is closely tied to the scale of the target objects. In our experiments, the target objects average
approximately 5 × 10 × 12 cm. Therefore, an ROI of 20 × 20 × 30 cm is large enough to fully
encompass the target while providing essential local context, yet small enough to filter out most
distracting information. As the ROI size increases beyond this optimal range, both the success rate
and accuracy metrics decrease. This is because larger ROIs introduce more irrelevant information
from distant areas, which reduces the model’s ability to focus on the target region and leads to less
precise predictions.

These findings highlight the advantage of using a task-appropriate, localized ROI. This approach
not only improves policy performance but also enhances generalization, making the network more
robust to scene variations. It also accelerates policy inference while maintaining high performance,
especially in cluttered environments.

ROI Size (cm) Success Rate (%) ↑ Translation (cm)↓ Rotation (rad)↓
20× 20× 30 81.46% 2.78 0.36
40× 80× 30 76.93% 3.24 0.43
60× 150× 30 74.63% 3.67 0.47

Table 5: Ablation study on Region of Interest (ROI) size. A compact ROI of 20 × 20 × 30 cm
achieves the best results, with the highest success rate and lowest errors. This highlights the benefit
of a localized ROI that is appropriately scaled to the task, as larger ROIs degrade performance by
including irrelevant information from distant areas.

C.3 Training Details

Pre-training for occupancy prediction used 40 GeForce RTX 4090 GPUs on 500K scenes and fin-
ished in 16 hours. Policy learning then trained on 500K demonstration frames for 8 hours. In
real-world tests, the system runs at over 10 fps on a single NVIDIA GeForce RTX 4090.

C.4 The Details of 2D-3D Spatial Attention

Rather than averaging multi-view features (which assumes equal contribution), we fuse them using
Deformable Cross-Attention (DCA) [12], guided by a grid of 3D queries Q ∈ RC×H×W×Z .

As shown in Fig. 7, for each 3D query, defined by its position p and feature qp, we project it onto
each camera view t via P(p, t) : R3 7→ R2. We retain only the set of views where the projection
is valid, Vhit. The aggregated 3D feature Fp at voxel p is then computed by averaging the attention
outputs from all visible views:

Fp = DCA(qp, {F2D
t }) = 1

|Vhit|
∑
t∈Vhit

DA
(
qp,P(p, t),F2D

t

)
,

where F2D
t is the 2D feature map of view t. The Deformable Attention (DA) module is defined as:

DA(q, pref, X) =

Nhead∑
m=1

Wm

Nkey∑
k=1

Amk ·W ′
mX(pref +∆pmk)

 .

Here, for each attention head m and key k, the module uses the query q to predict a 2D sampling
offset ∆pmk relative to the reference point pref = P(p, t) and an attention weight Amk. It then
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samples the 2D feature map X at these sparse, dynamically determined locations (pref +∆pmk) and
computes a weighted sum. Wm and W ′

m are standard learnable projection matrices.

This approach allows the final 3D feature volume, F = {Fp}, to unequally weight views based on
visibility and content, enhancing robustness to occlusion and blur.

C.5 Processing of Relative Depth

Depth estimates from DepthAnything [9] are inherently scale-ambiguous. To create a consistent
input for our feature extractor, we first normalize each predicted depth map using a per-image min-
max scaling to bring its values into the range [0, 1].

Concretely, given an RGB image I ∈ RH×W×3, DepthAnything produces a single-channel depth
map D ∈ RH×W . This map is normalized as:

D̂ =
D −min(D)

max(D)−min(D) + ε

where min(D) and max(D) are the minimum and maximum values of the specific depth map D,
and ε is a small constant for numerical stability.

To prepare this normalized map for a standard ResNet backbone, we treat D̂ as a grayscale image. It
is first replicated across three channels to match the expected input format (H ×W × 3). Then, this
3-channel tensor undergoes a second normalization using the standard ImageNet mean and standard
deviation values. The resulting tensor is finally fed into the ResNet backbone (with the final max-
pooling layer removed) to extract the feature map F .

C.5.1 Mapping Relative Depth to Metric Voxels

Our method does not perform an explicit conversion from relative depth to metric depth, nor does it
use depth values to unproject 2D features into a 3D point cloud. Instead, the core of our approach is
to project the centers of a predefined 3D metric voxel grid (with a cell size of 5 mm) onto the input
camera views. This forward projection is based on the standard pinhole camera model and utilizes
the provided camera matrices.

This multi-view projection strategy is key to resolving spatial ambiguity. By using multiple views,
points that might lie along a single viewing ray from one camera are disambiguated through parallax,
as they project to distinct 2D locations in the second view.

Consequently, the network is tasked with implicitly learning the transformation from relative depth
features to a metrically-scaled occupancy grid, guided by these strong multi-view geometric con-
straints. The entire process is optimized end-to-end with direct supervision from the ground-truth
metric voxel data. In summary, our methodology leverages the geometric accuracy of the pinhole
camera model for projection and the power of end-to-end learning to fuse features from relative
depth into a usable metric representation.

C.6 Real-World Reconstruction Results

We first pre-train the encoder on an occupancy-prediction auxiliary task in simulation, which yields
high-quality reconstruction not only in simulation but also on real hardware (strong sim-to-real, as
shown in Fig. 13). Under heavy occlusions, the model infers the occluded volume to recover a
complete scene representation, and it remains robust to transparent, reflective, and irregular objects.
Importantly, we do not feed the reconstructed voxels (final occupancy map) to the downstream pol-
icy. Instead, the policy receives intermediate latent features from the pre-trained encoder; although
it never observes the final occupancy prediction, these auxiliary-task–enriched features allow it to
implicitly capture the scene’s complete 3D geometry.
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Figure 13: Real-world occupancy reconstruction results, capable of handling diverse scenarios:
varying object shapes, different materials, and complex layouts.
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Figure 14: We illustrate our real-robot experimental hardware setup and the two types of end-effector
tools employed: one suction cup and one parallel gripper.

D Baseline Implementation Details

Baselines utilizing RGB (Diffusion Policy), point cloud (3D Diffusion Policy), RGB-D voxels, raw
depth, and predicted depth all share the same action generation method, differing only in their input
representations. Actions are generated via a Denoising Diffusion Probabilistic Model (DDPM) [2],
which utilizes 1000 denoising steps during training and 100 steps for inference, its network archi-
tecture is a three layer MLP.

RGB (Diffusion Policy) [1]. We use dual-view RGB images as input and extract features follow-
ing the same processing pipeline as Diffusion Policy (i.e., through ResNet and Spatial Softmax).
Subsequently, actions are generated using DDPM.

Point Cloud (3D Diffusion Policy) [11]. Our input is a point cloud generated by fusing two camera
depth maps. Following the approach in DP3, we employ a Simple PointNet to extract features from
this point cloud.
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Figure 15: Illustration of experimental scenarios. The main experiments are conducted in a repli-
cated retail store, supplemented by evaluations on a storage rack, in a cabinet, in a drawer, and on
tabletops.

Figure 16: Layouts for real-robot experiments.

RGB-D Voxel. We project RGB images from two viewpoints into 3D space using camera extrinsics
and depth maps, thereby forming a voxel representation. A 3D convolutional network (3D ConvNet)
is then employed to extract features from these voxels. Then use DDPM to generate actions.

Raw Depth. We use ResNet to extract features from two viewpoint depth maps, after which actions
are generated via DDPM.

Predicted Depth. We utilize Depth Anything to obtain predicted depth maps. Features are then
extracted from these maps using ResNet. Subsequently, actions are generated via DDPM.

E Real-Wold Experiment Details

E.1 Setup

Hardware. In our real-world experiments, we use the Flexiv Rizon 4S robotic arm. Two Intel D435i
cameras provide input for our 3D vision policy from different perspectives, exclusively utilizing their
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Figure 17: Objects used in real-robot experiments, including a diverse range of items with various
shapes (such as boxed, bottled, and irregular forms) and materials (including transparent and reflec-
tive types).

RGB streams. One camera is mounted on the robotic arm, while the other offers a third-person view,
as shown in Fig. 14 (a).

End-Effector Tools. We utilize two end-effector tools: a suction cup and a parallel gripper. The
suction cup, which was custom-made by us via 3D printing, is used to handle boxed objects. The
parallel gripper, Flexiv GRAV model, is employed for grasping bottled objects (illustrated in Fig. 14
(b)).

Experiment Scenes. Our main real-world experiments are primarily conducted in a replicated retail
environment. Additionally, we perform experiments in settings involving a cabinet and a rack, all
scenes all shown in Fig. 15. And all 30 experimental layouts are shown in Fig. 16.

E.2 Real-World System Design

Our real-world system employs a hierarchical, asynchronous control architecture to ensure smooth
and stable robot execution. The system is decoupled into two main layers: a high-level Policy Layer
and a low-level Control Layer.

The Policy Layer operates at a low frequency of 10 Hz. In this layer, the policy network receives
the latest sensor observations, performs inference, and generates a target end-effector (EE) pose
(position and orientation). This target pose is then sent as a command to the lower-level controller.

The Control Layer is an IK-based controller that runs asynchronously at a high frequency of 100
Hz. This layer is responsible for translating the target EE pose into a smooth trajectory of joint
positions (qpos). It receives commands from the policy layer asynchronously and interpolates the
robot’s current pose towards the target. In each control cycle, it calculates a small, kinematically
valid motion step using an inverse kinematics solver, ensuring that the robot’s velocity limits are
respected. This decoupling of low-frequency policy decisions from high-frequency motion control
is crucial for stable and continuous real-world performance.

E.3 Experiment objects

The objects used in our experiments encompass a diverse range of types, including those that are
boxed, bottled, transparent, reflective, or irregularly shaped. The experimental objects are displayed
in Fig. 17.

24



Target

Unreachable 
situations 
require 

reasoning 
ability

TargetA large-volume 
object needs 

dual-arm 
collaboration

Target

Figure 18: Illustration of Limitations. (Top row) Actions exceeding joint limits due to an attempted
approach from above. (Bottom row, left) A large-volume object demonstrating the need for dual-
arm manipulation. (Bottom row, right) A completely occluded and initially unreachable target,
necessitating a multi-step reasoning process involving moving the obstacle, fetching the target, and
subsequently returning the obstacle to its original position.

F Failure Modes Analysis

When scenes become excessively complex, there is a possibility that the policy’s output will lead to
joint limit violations for the robotic arm, causing the task to fail. The top of Fig. 18 depicts a scenario
where the robot’s intended rotational approach from above to fetch an object results in exceeding
its joint limits and a collision with the upper barrier. Furthermore, when an object is too large and
too heavy, we need to employ dual-arm coordination, as shown in the bottom of Fig. 18. Finally,
when the target is completely occluded to the point of being unreachable, reasoning capabilities
are required to first move the obstacles aside, then retrieve the target, and subsequently restore the
obstacles to their original positions (Fig. 18). All of these can be considered as future work.
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