
Differentially Private Clustering in Data Streams

Alessandro Epasto 1 Tamalika Mukherjee 2 Peilin Zhong 1

Abstract
Clustering problems (such as k-means and k-
median) are fundamental unsupervised machine
learning primitives. Recently, these problems
have been subject to large interest in the privacy
literature. All prior work on private clustering,
however, has been devoted to the offline case
where the entire dataset is known in advance. In
this work, we focus on the more challenging pri-
vate data stream setting where the aim is to design
memory-efficient algorithms that process a large
stream incrementally as points arrive in a private
way. Our main contribution is to provide the first
differentially private algorithms for k-means and
k-median clustering in data streams. In particular,
our algorithms are the first to guarantee differen-
tial privacy both in the continual release and in
the one-shot setting while achieving space sub-
linear in the stream size. We complement our
theoretical results with an empirical analysis of
our algorithms on real data.

1. Introduction
Clustering is an essential primitive in unsupervised machine
learning, and its geometric formulations, such as k-means
and k-median, have been studied extensively, e.g., (Arya
et al., 2001; Charikar et al., 2002; Har-Peled & Mazumdar,
2004; Chen, 2006; 2008; Awasthi et al., 2010; Ostrovsky
et al., 2012; Li & Svensson, 2016; Ahmadian et al., 2020).
In this paper, we focus on the study of clustering in the
streaming model under the constraint of data privacy.

Differential privacy (DP) (Dwork et al., 2016) has become
the de facto standard for preserving data privacy due to its
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compelling privacy guarantees and mathematically rigorous
definition. There is a rich DP literature for clustering in the
polynomial-time setting, e.g., (Nissim et al., 2007; Feldman
et al., 2009; 2017; Gupta et al., 2010; Balcan et al., 2017;
Huang & Liu, 2018; Nissim & Stemmer, 2018; Stemmer &
Kaplan, 2018; Ghazi et al., 2020; Cohen et al., 2021) where
the focus has been to improve the approximation ratios and
achieve efficient algorithms in high-dimensional Euclidean
space. More recent works have studied this problem in other
models of computation, such as sublinear-time (Blocki et al.,
2021) and massively parallel computing (MPC) (Cohen-
Addad et al., 2022a;b). However, the study of DP clustering
in the streaming model remains vastly unexplored.

1.1. Our Results

In this paper we address the problem of clustering in the
streaming model in which the input x1, . . . , xT ∈ Rd ar-
rives in a stream. We the give the first pure DP k-means
and k-median clustering algorithms that use space sublinear
in the size in T for (1) continual release setting: where
the algorithm must output a clustering at every timestamp
t ∈ [T ], and (2) one-shot setting: where the algorithm must
output a clustering at the end of the stream. As is standard
in DP clustering literature, we assume Λ is an upper bound
on the diameter of the space of input points.

In the following two theorems we assume we are given a
non-DP algorithm in the offline setting that can compute
a ρ-approximation to k-means (or k-median)—many such
algorithms exists with constant approximation (e.g. (Ahma-
dian et al., 2020)).

Theorem 1.1. There exists an ε-DP algorithm for k-
means (or k-median) in the continual release model
such that for every timestamp t ∈ [T ] it out-
puts a clustering with Θ(ρ)dO(1)-multiplicative er-
ror and Õ(kρΛ

2

ε · (d log T )O(1)))-additive error in
O(k log2(Λ) log(k)poly (log (TΛk))) space.1

Theorem 1.2. There exists an ε-DP algorithm for k-
means (or k-median) in the one-shot model such that
it outputs a clustering with Θ(ρ)dO(1)-multiplicative
error and Õ(kρΛ

2

ε · (d log T )O(1)))-additive error in

1We use the Õ(·) notation to neglect poly-logarithmic factors
in (Λ, k, T ).

1



Differentially Private Clustering in Data Streams

O(k log2(Λ) log(k)poly (log (TΛk))) space at the end of
the stream of length T .

We observe that in both settings the memory used is Õ(k)
(ignoring poly-logarithmic factors in (Λ, k, T )) thus match-
ing the space requirements of non-DP streaming algo-
rithms (Charikar et al., 2003).

1.2. Technical Overview

Our techniques apply to both k-means and k-median clus-
tering, but we assume we are dealing with k-means for
simplicity. Before discussing our algorithm in more detail,
we first outline the challenges to designing a DP k-means
clustering algorithm in the continual release setting.

Natural space-efficient approaches fail. A natural first
approach towards this problem in the one-shot setting and
one that was employed in the sublinear-time model (Blocki
et al., 2021) is to maintain a random sample using the same
space as our proposed algorithm, i.e., Õ(k) and apply a state-
of-the-art DP clustering algorithm on this sample at the end
of the stream. One can easily show that this algorithm pre-
serves DP and is as space efficient as our method. However,
the accuracy of the resulting clustering achieved will be con-
siderably worse than our proposed algorithm. In the worst
case, this approach can lead to an additive error (ignoring
k,Λ, d dependencies) of O(

√
T ) (see Cohen-Addad et al.

(2022b) for a detailed exposition). In contrast, our approach
leads to an additive error of O(poly(log T )). We demon-
strate this experimentally by showing that our proposed
algorithm outperforms the random sampling algorithm we
use as a baseline.

Our Approach. For every timestamp t ∈ [T ], our algo-
rithm for both continual release and one-shot settings can
be split into two main steps — (1) Compute a weighted
DP coreset F in an online fashion that satisfies a bicriteria
approximation to k-means (see Theorem 1.3). (2) Compute
a non-DP k-means ρ-approximation algorithm on F in a
postprocessing step.

Theorem 1.3 (Bicriteria approximation). There exists an
ε-DP algorithm that for every timestamp t ∈ [T ], computes
a weighted set of O(k log(k) log2(Λ) log T ) centers with
dO(1)-multiplicative error to the best k-means (or k-median)
clustering and Õ(kρΛ

2

ε · (d log T )O(1)))-additive error in
O(k log2 Λ log(k)poly (log (TΛk))) space.

Quadtrees and Heavy Hitters. A quadtree creates a
nested series of grids that partitions Rd and can be used
to embed input points into a Hierarchically Separated Tree
(HST) metric, which often makes computing k-means cost
simpler. We use this embedding to map every input point
to the center of a grid (or cell) at every quadtree level. For
a fixed level, our goal is to approximately choose the O(k)

cells that have the most points, i.e., we want to find the
“heaviest” cells in a DP fashion and store them as candidate
centers in set F . We achieve this by hashing the cells into
O(k) substreams and running a continual release black-box
DP heavy hitter algorithm on each hash substream. Since
with large enough probability, the heavy cells will not col-
lide, this achieves our goal. Note that since we need to do
this over logarithmically many levels of the quadtree, we
will end up with a bicriteria approximation.

We stress that we need to run a continual release black-box
DP heavy hitter algorithm for both our continual release and
one-shot setting clustering algorithms. This is because we
need to assign xt to a candidate center in F (obtained from
computing the heavy-hitters) in an online fashion at every
timestep t ∈ [T ] in both settings. The main difference in
our algorithms for these two settings is that in the continual
release setting we release the resulting weighted coreset con-
sisting of candidate centers and their noisy weights at every
timestep t ∈ [T ], while in the one-shot setting we release
the weighted coreset at the end of the stream. Thus, we keep
track of the noisy weights in the continual release setting
via multiple instantiations of the binary mechanism (Dwork
et al., 2010; Chan et al., 2011) while we can add Laplace
noise to release the noisy weights at the end of the stream
in the one-shot setting.

2. Preliminaries
An event E occurs with high probability if for any c ≥ 1,
there is an appropriate choice of constants for which E
occurs with probability at least 1−O(1/kc) where k is the
k-clustering input parameter.

Norms and heavy hitters. Let p ≥ 1, the `p-norm of a vec-
tor x = (x1, . . . , xt) is defined as ‖x‖p = (

∑t
i=1 |xi|p)1/p.

Given a multiset S, denote the frequency of an item x ap-
pearing in S as f(x). We say that an item x is an α-heavy
hitter (α-HH for short) if f(x) ≥ α‖S‖1.

Differential Privacy. Streams S = (x1, . . . , xT ) and
S ′ = (x′1, . . . , x

′
T ) are neighboring if there exists at most

one timestamp t∗ ∈ [T ] for which xt∗ 6= x′t∗ and xt = x′t
for all t 6= t∗.

Definition 2.1 (Differential privacy Dwork et al. (2016)).
A randomized algorithm A is ε-DP if for every pair of
neighboring datasets D ∼ D′, and for all sets S of possible
outputs, we have that Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S]

Theorem 2.2 (Binary Mechanism BM Chan et al. (2011);
Dwork et al. (2010)). Let ε ≥ 0, γ ∈ (0, 0.5), there is an
ε-DP algorithm for the sum of the stream in the continual
release model. With probability 1 − γ, the additive error
of the output for every timestamp t ∈ [T ] is always at most
O( 1

ε log2.5(T ) log( 1
γ )) and uses O(log T ) space.
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See (Dwork & Roth, 2014) for more foundational concepts
in differential privacy.

Clustering. For points x, y ∈ Rd, we let d(x, y) = ‖x −
y‖2 be the Euclidean distance between x and y. Given a set
C, we define d(x, C) := minc∈C d(x, c).

For a set of centers C, we define the cost of clustering for
the set S wrt C as

cost(C,S) =
∑
x∈S

dz(x,C)

where z = 1 for k-median, and z = 2 for k-means.

Our goal in DP clustering is to produce a set of k centers
CS for input stream S such that (1) CS is ε-DP wrt S, and
(2) cost(CS ,S) ≤ α · cost(CoptS ,S) + β.

3. Bicriteria Approximation in Continual
Release Setting

We describe our algorithm in more detail here. We focus on
the k-means problem in the sequel, however we stress that
our techniques easily extend to the k-median problem and
the algorithm and analysis are nearly identical. We refer to
the Supplementary Materials for a full version of this paper.

Algorithm. Our main algorithm is given by Algorithm 1
which initializes log Λ parallel instances of randomly shifted
quadtrees. At every timestep t ∈ [T ] the input point xt
is assigned to a cell in the log Λ many levels of every
quadtree. For a fixed quadtree, the subroutine DPFind-
Centers (see Algorithm 2) is called on every level. The
subroutine DPFindCenters returns a candidate set of cen-
ters F̂t which is first added to the current set of candidate set
of centers F , and xt is then assigned to the nearest center
in F . Finally, the DP counts of all centers in F are updated
via the Binary Mechanism.

The DPFindCenters subroutine (see Algorithm 2) finds the
approximate heaviest O(k) cells in a fixed level of a fixed
quadtree. It achieves this by first hashing all the cells in that
level to w := O(k) many substreams (or buckets) Bj for
all j ∈ [w] and then runs a continual release α-heavy hitter
algorithm DP-HH on each bucket.2 We use the `1-heavy
hitter algorithm from (Epasto et al., 2023) as DP-HH — it
returns a set H of α-heavy hitters and their approximate
counts f̂(c) for all c ∈ H . Since we are storing all the
cells marked as heavy hitters as candidate centers over at
most T timesteps, we need to ensure that we do not store
too many false positives, i.e., cells whose counts are much

2Notice that in the pseudo code Algorithm 2, ⊥ represents an
empty update that does not affect the counters of elements of the
stream and is ignored. This is needed for technical reasons to
ensure DP by avoiding the value of the hash affecting the number
of events in the sub-streams.

Algorithm 1 DP Clustering Algorithm in Continual Re-
lease Setting

Require: Privacy parameter ε, Threshold parameter for
heavy hitters α, Time bound T , Binary Mechanism
BM, Continual Release DP-HH algorithm, Stream S of
points x1, . . . , xT ∈ Rd

Ensure: Set of DP centers F and their noisy weights DP-
Coreset at every timestep t

1: ε′ := ε
log2 Λ log k

2: Initialize hashmap DPCoreset to empty{used to store
centers and noisy weights}

3: Initialize parallel quadtrees Q1, . . . , Qlog(Λ) as follows:
Initialize each quadtreeQq as S(q)

1 , . . . ,S(q)
log(Λ) parallel

streams or levels with the bottom stream/level having
grid size Θ(1)

4: Initialize F := ∅
5: for t = 1 to T do
6: for each S(q)

` where 0 ≤ ` ≤ log(Λ) and 1 ≤ q ≤
log(Λ) do

7: Add xt to S(q)
`

8: F̂t = DPFindCenters(ε′,S(q)
` )

9: F = F ∪ F̂t
10: {add new centers to hashmap DPCoreset and ini-

tialize their DP weights}
11: for c ∈ F̂t −F do
12: Add c as a key to DPCoreset
13: Initialize an instance of BMc(T, ε′, 0) for

DPCoreset(c)
14: end for
15: if F 6= ∅ then
16: Let c∗ := argminc∈F d(xt, c) {assign xt to the

nearest center; if F = ∅ then discard xt}
17: DPCoreset(c∗) = BMc∗(T, ε, 1)
18: end if
19: for c 6= c∗ do
20: DPCoreset(c) = BMc(T, ε, 0)
21: end for
22: end for
23: Output F ,DPCoreset
24: end for

smaller than α‖Bj‖1. To address this challenge, we have
an additional pruning step that eliminates any cell c whose
approximate count is less than Θ(α)T̂Bh(c)

where T̂Bh(c)

denotes the DP size of the hash stream Bh(c) at timestep
t ∈ [T ]. We keep track of T̂Bh(c)

via another instance of
the Binary Mechanism. Finally, only the cells that pass this
pruning step are added as candidate centers to the set F̂t.
Theorem 3.1. Let S := {x1, . . . , xT } be the stream of in-
put points in Euclidean space. For t = 1, . . . , T , let Ft
be the set of centers until time step t. Let cost(F ,S) :=
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Algorithm 2 DPFindCenters

Require: Privacy parameter ε′, Stream S` with 2` cells
(representing the `-th level of quadtree instantiation),
Binary Mechanism BM

Ensure: Set of candidate centers F̂t at every timestep t ∈
[T ]

1: Initialize F̂t = ∅
2: Let w = O(k)
3: Initialize T̂B1 , . . . , T̂Bw{DP Count for the size of hash

bucket}
4: for p = 1, . . . , L, where L := O(log k) run in parallel

do
5: Initialize hash function h : [2`] → [w] s.t. ∀c,∀j ∈

[w],Pr[h(c) = j] = 1
w

6: Initialize empty hash streams B1, . . . ,Bw
7: for each cell c at level ` do
8: Append c to Bh(c) and append ⊥ to the end of

every stream Bj such that j 6= h(c).
9: T̂Bh(c)

= BMh(c)(T, ε
′, 1)

10: for j 6= h(c) do
11: T̂Bj

= BMj(T, ε
′, 0)

12: end for
13: end for
14: for j ∈ [w] do
15: f̂ , H ← DP-HH(ε′,Bj) {ε′ := ε

log2 Λ log k
}

16: for c ∈ H do
17: if f̂(c) ≥ α

1000 · T̂Bh(c)
then

18: Append c to F̂t as a center
19: end if
20: end for
21: end for
22: end for
23: Return F̂t

∑T
t=1 cost(Ft) where cost(Ft) := minf∈Ft dist

2(xt, f).
There exists an algorithmA (see Algorithm 1) that outputs a
set of centers F and their corresponding weights DPCore-
set at every timestep t ∈ [T ] such that

1. (Privacy) A is 3ε-DP.

2. (Accuracy) With high probability,

cost(F ,S) ≤ O(d3)cost(CoptS ,S)

+ Õ

(
d2Λ2k

ε
logC (T · k · Λ)

)
where cost(CoptS ,S) is the optimal k-means cost for
S.

3. (Space) A uses O(k log2(Λ) log(k)poly (log (TΛk)))
space.

4. (Size of F) F has at most O(k log(k) log2(Λ) log T )
centers.

Privacy. Since we are outputting the center point of the
cells marked as heavy hitters and their respective noisy
counts, we only need to show that DP is maintained wrt
these centers and noisy counts of centers and hash sub-
streams. An input point is assigned to a specific cell for a
specific level of the quadtree, and cells at the same level are
disjoint. Since there are log Λ levels per quadtree, a point is
a member of log Λ cells. Since there are log Λ log k parallel
processes, a single point participates in log2 Λ log k total
calls to DP-HH. Note that we do not account for the O(k)
buckets that the cells are hashed into, as DP-HH is called on
disjoint inputs for each bucket. Thus calling each DP-HH
instance with a privacy budget of ε

log2 Λ log k
preserves ε-DP.

We use the Binary Mechanism to keep track of the size of
each hash substream Bj ∀j ∈ [w]. Since the input cells (and
corresponding points within cells) are disjoint in each sub-
stream due to hashing, this preserves ε

log2 Λ log k
-DP which

over log2 Λ log k parallel processes preserves ε-DP. Finally,
we release the number of points per center via the Binary
Mechanism where each point can only contribute to a single
cell count which preserves ε-DP. Therefore by composition,
we get 3ε-DP for the entire algorithm.

4. From Bicriteria Approximation to
k-Clustering

Suppose we have a non-DP k-means algorithmA′ that gives
a ρ-approximation. We run A′(DPCoreset) where DP-
Coreset is the output of Algorithm 1. Note that by postpro-
cessing, this computation preserves privacy.

For simplicity we denote the centers and their corresponding
noisy weights in DPCoreset as a tuple (F , ŵ). Let CF,ŵ
denote the k-clustering obtained as output fromA′((F , ŵ)).
We show that cost(CF,ŵ,S) is reasonably bounded by the
optimal cost of clustering of S denoted as cost(CoptS ,S).

Theorem 4.1. Let S = {x1, . . . , xT }. Suppose CoptS is the
optimal set of centers for S. Then

cost(CF,ŵ,S) ≤ (2ρ+ 1)O(d3)cost(CoptS ,S)

+ Õ(
kρΛ2

ε
· (d log T )O(1))
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