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Figure 1: Overview of our proposed Distracting Token Pruning (DTP) method for improv-
ing Vision-Language-Action (VLA) models in robotic manipulation. Left: Input consisting of
the current visual observation and natural language instruction. Middle: Comparison between the
original VLA model (top) may focus on task-irrelevant regions that lead to task failure, while our
DTP-enhanced approach (bottom) creates more focused attention on task-critical areas, leading to
the improvements in the task success rate.

ABSTRACT

Vision-Language Action (VLA) models have shown remarkable progress in
robotic manipulation by leveraging the powerful perception abilities of Vision-
Language Models (VLMs) to understand environments and directly output ac-
tions. However, by default, VLA models may overly attend to image tokens in the
task-irrelevant region, which we describe as ‘distracting tokens’. This behavior
can disturb the model from the generation of the desired action tokens in each
step, affecting the success rate of tasks. In this paper, we introduce a simple yet
effective plug-and-play Distracting Token Pruning (DTP) framework, which dy-
namically detects and prunes these distracting image tokens. By correcting the
model’s visual attention patterns, we aim to improve the task success rate, as well
as exploring the performance upper boundaries of the model without altering its
original architecture or adding additional inputs. Experiments on the SIMPLER
Benchmark show that our method consistently achieving relative
improvements in task success rates across different types of novel VLA mod-
els, demonstrating generalizability to transformer-based VLLAs. Further analysis
reveals a negative correlation between the task success rate and the amount of at-
tentions in the task-irrelevant region for all models tested, highlighting a common
phenomenon of VLA models that could guide future research. We also publish
our code at: https://anonymous.4open.science/r/CBD3.
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1 INTRODUCTION

The success of Vision-Language Models (VLMs) in understanding and reasoning about visual
content has opened new possibilities for embodied Al. Trained on large-scale image—text data,
VLMs (Liu et al.| 2023} [Karamcheti et al., [2024; Beyer et al., [2024; [Lu et al.,|2024; Malartic et al.,
2024} [Chen et al., 2025} |Bai et al.,|2025) excel at visual recognition, reasoning, and visual question
answering. Building on this, Vision-Language-Action (VLA) models extend VLMs to generate ex-
ecutable robot actions, bridging high-level semantic reasoning with low-level control. Early VLAs
such as RT-1 (Brohan et al., |2023b) and RT-2 (Brohan et al.,|2023a)) pioneered action tokenization for
robotic control, while later models like OpenVLA (Kim et al., |2024) achieved strong performance
despite smaller sizes. These advances established the core VLA pipeline: a visual encoder (Radford
et al.L[2021}|Sun et al.,2023;|Zhai et al., 2023} /Oquab et al.,|2024]), a language model (Touvron et al.}
2023; Dai et al., 2024; Qwen et al.,|20235)), and discrete action token generation.

Recent works further improve VLA capabilities. SpatialVLA (Qu et al) |2025) and (Sun et al.,
20255 |Lin et al.} 2025} |Li et al.l [2025)) incorporate depth for better 3D understanding, Nora (Hung
et al.| 2025) employs tokenizers such as FAST (Pertsch et al.| 2025)) for precise continuous control,
and world-model approaches (Cen et al., 2025} [Wang et al., [2025) leverage dynamics modeling for
action prediction. Despite these architectural advances, VLAs may still fail in manipulation tasks
due to redundant visual tokens, with task-irrelevant visual tokens may receive disproportionately
high attention during cross-attention, distracting the model from task-relevant regions (Figure [I).
This raises a concern: Do distracting tokens affect task success, and can pruning them improve
performance?

We initially tried manually inspecting visual attention patterns and pruning image tokens for the
model. However, this approach has two major limitations: (1) reviewing attention by human for
each action token is extremely time-consuming, especially since the model can output hundreds to
thousands action tokens for each episode, making full test-suite analysis impractical; (2) human in-
tuition about ”good” attention patterns may not align with the model’s preferences. Although ideal
attention should focus on task-relevant objects and regions, different VLA models may have their
own visual pattern preference, so manual pruning does not necessarily lead to improved perfor-
mance.

To address these two problems, we propose Distracting Token Pruning (DTP), a plug-and-play
framework that dynamically prunes distracting tokens. DTP contains three stages: (1) Relevance-
based important region construction, where prompt—image token interactions identify task-relevant
visual tokens, and (2) Action attention analysis, where the attention heatmap reveals which image
tokens the model focuses at each action generation step. (3) We then apply an intersection-based
strategy, selectively pruning visual tokens in the unimportant region, if their attention exceeds the
maximum attention within the important region (scaled by tolerance 7). Experiments on the SIM-
PLER Benchmark (Li et al.l 2024) prove that DTP effectively corrects visual attention patterns,
improves task success rates, and generalizes across transformer-based VLAs.

In summary, our work makes the following contributions: (1) We introduce the Distracting To-
ken Pruning (DTP) framework, a novel intersection-based method that automatically identifies and
prunes distracting tokens, improving task success rates by addressing common attention weaknesses
in VLA models. (2) We explore the performance upper bound of VLAs by varying tolerance 7,
seeking the ideal visual attention patterns that align with model preferences and maximize achiev-
able performance. (3) We analyze attention values in unimportant regions, revealing a negative
correlation with task success and offering insights for building more robust VLAs.

2 RELATED WORK

Vision-Language Models (VLMs) have become the foundation for multimodal reasoning, show-
ing strong generalization across visual understanding, captioning, and visual question answering.
Large-scale pretraining on internet-scale image—text data has enabled models such as Prismat-
icVLM |[Karamcheti et al.|(2024), InternVL2.5 Chen et al.| (2025), PaliGemma 2 Beyer et al.|(2024),
and Qwen2.5-VL Bai et al.| (2025) to achieve impressive performance on various visual-language
tasks. These models combine high-capacity visual encoders such as SigL.IP [Zhai et al.| (2023)) and
DINOV2 Oquab et al.[ (2024) with large language models (Touvron et al., [2023} [Dai et al., 2024;
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Qwen et al.l [2025), producing flexible representations that can be adapted across a wide range of
tasks. While primarily designed for static vision-language tasks, the success of VLMs in struc-
tured reasoning has inspired their extension into embodied Al domains. In particular, their ability to
jointly ground natural language with perceptual input provides a natural interface for robotic control.
This transition, however, requires not only high-level semantic understanding but also the capacity
to map instructions and observations into temporally grounded motor actions — a gap that gave rise
to Vision-Language-Action (VLA) models.

Vision-Language-Action Models (VLAs) extend the capabilities of VLMs by directly generating
robot actions, effectively bridging perception and motor control. Early work such as RT-1 (Brohan
et al.,2023b) and RT-2 (Brohan et al.| [2023a) established the paradigm of representing actions as
discrete tokens, enabling pretrained language models to output robot commands in a manner analo-
gous to text generation. Building on this foundation, OpenVLA (Kim et al., [2024) and OpenVLA-
OFT (Kim et al., 2025)) further reduced the model size and improved inference efficiency. Recent
efforts have pushed VLAs in two complementary directions. First, improvements in vision encoding
aim to overcome limitations of purely 2D perception. Spatial VLA (Qu et al.,2025)), GeoVLA (Sun
et al.l 2025), EVO-0 (Lin et al), [2025), and PointVLA (Li et al.l 2025) incorporate the depth in-
formation for the objects in the input image, boosting spatial perception ability and yielding the
increase in task success rate, Second, advances in action decoding focus on bridging the gap be-
tween discrete action tokens and continuous control. Models such as Nora (Hung et al., [2025)),
7.5 (Intelligence et al., [2025)), and mo-FAST (Pertsch et al., [2025)) transform discrete token outputs
into continuous action values, enabling more precise and faster execution. Beyond architectural re-
finements, new paradigms such as UniVLA (Wang et al., 2025 and WorldVLA (Cen et al.| [2025])
integrate world-modeling into the VLA framework. By jointly predicting future observations and
generating actions, world models capture the underlying physics of the environment, which helps
for more accurate action token generation. However, existing VLAs still face challenges where
models may attend heavily to task-irrelevant tokens, a phenomenon that can degrade action quality
and lower task success rates. This limitation motivates our work: developing methods to detect
and prune these distracting tokens, thereby refining the model’s visual attention and improving the
precision of action generation.

3 METHOD

Our method involves three stages to find and prune distracting tokens (see Figure [2). First, we
analyze prompt-to-visual relevance to identify visual tokens that mostly related to the user’s intent
task. Next, we conduct a weighted self-attention analysis from the generation perspective. Finally,
we apply a dynamic intersection-based pruning strategy that reconciles both perspectives, selectively
pruning image tokens. This multi-stage designs help the model to automatically correct its visual
attention patterns at each generation step.

3.1 PROBLEM FORMULATION

Given a VLA model F that processes visual tokens V € RM*9 where M represents number of im-
age tokens, our objective is to identify a subset V' C V with |V’'| = K (where K < M) that prune
the distracting image tokens, yielding improved task success rate Succ(F(V’)) > Succ(F(V)).

3.1.1 IMPORTANT REGION CONSTRUCTION

We compute the relevance score for visual tokens based on their interactions with prompt tokens.
Let P denote the set of prompt tokens, V the set of visual tokens, and C the set of selected layers.
For each layer ¢ € C and each prompt token p; € P, we calculate the relevance scores to all visual
tokens as:

H
1
rp, = T E Ajlpi, V], (1)
h=1

where A§ € RS*5 ig the attention matrix of head h at layer ¢, and S is the total number of tokens
(text, visual, system, etc.). Af[p;, V] selects the attention weights from prompt token p; to all
visual tokens V in that head. Averaging over H heads produces the relevance vector r, € RM
representing the overall importance of each visual token to prompt token p; at layer c.
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Figure 2: Detailed architecture of our Distracting Token Pruning (DTP) method for improving
visual attention in Vision-Language-Action models. The method consists of three main compo-
nents: (a) Important Region Construction: Using selected transformer layers C' to calculate the
relevance score between image and prompt tokens, which forms the task-related important region G.
(b) Visual Attention Pattern Construction: Creating the output to image token attention heatmap
A from all attention layers, weighted by the visual attention proportion. It captures where the model
focuses when generating actions. (c¢) Distracting Token Pruning: For any image token in the unim-
portant region, if its attention value is greater than 7 - a,, , it will be treated as distracting tokens,
and will be pruned.

For models (such as UniVLA (Wang et all, [2025))), where the input sequence places image tokens
after the prompt tokens, and prompt tokens don’t have attention to image tokens, we instead compute
the relevance heatmap using embedding similarity.

C

ry, = cosine(Epi,EV), 2)

where E,, € R? and Ey € RM*? are the embeddings of the prompt token and visual tokens,
respectively. Then we can aggregate across both prompt tokens and layers in a single step, and
obtain the overall relevance heatmap R for visual tokens:

1P
S P *

To reduce corner artifacts and focus on central regions, we apply spatial biasing with corner sup-
pression and Gaussian smoothing. Finally, we identify the & highest relevance visual tokens to form
the important region G.

3.2  VISUAL ATTENTION PATTERN CONSTRUCTION

To analyze which visual tokens the model attends to during action generation, we compute a visual
attention pattern for each generated action token. For each action token ¢; and each layer [ €
{1,..., N}, where N is the total number of layers in the model. We first extract the attention
weights from ¢; to all visual tokens, producing a layer-specific heatmap Aé € RM ., We then weight

each layer’s heatmap by the proportion of total visual attention in that layer, denoted as w', and
aggregate across layers to obtain the final visual attention pattern:

N
Aj = ZwlAg., 4)
=1
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Figure 3: Visualization of the distracting token pruning process across different VLA models
and tasks. The figure shows the Relevance Heatmap (first row), Important Region (second row),
Visual Attention Patterns (third row), and Final Pruning Mask (last row) for three VLA models
(SpatialVLA (Qu et al., |2025), Nora (Hung et al. [2025)), UniVLA (Wang et al. [2025))) on two
representative tasks (‘Put The Spoon...” and ‘Stack The Block...”). The comparison reveals how our
method identifies and prunes distracting visual tokens across different model architectures. Please
refer to Appendix for more visualization cases.

where A; € RM represents the overall attention the model assigns to each visual token while
generating action token ¢;. This final heatmap indicates which image tokens that model pay most of
attentions during the action token generation.

3.3 DISTRACTING TOKEN PRUNING

Given the important region G obtained from the relevance heatmap and the visual attention pattern
A, we identify distracting visual tokens by comparing attention values inside and outside of G.

Let a,, denote the maximum attention value among visual tokens located within the important atten-
tion region A,. For each visual token v located in the unimportant attention region A,,, we denote it
as a distracting token d if its attention exceeds the thresholded maximum:

deD iff Ayl >71-am, 5)

Where 7 is a tolerance factor and D is the set of all distracting tokens. Finally, all distracting tokens
in D will be pruned from the input to generate the refined action token. Please refer to Figure [3| for
the visualization of the process for different models and tasks.

4 EXPERIMENTS

We evaluate DTP on the SIMPLER Benchmark (L1 et al., [2024) using three state-of-the-art VLAs:
Spatial VLA (Qu et al.} 2025)), a 3B model based on Paligemma 2 (Beyer et al., 2024} with integrated
3D position encoding; Nora (Hung et al., 2025)), built on Qwen2.5-VL-3B (Bai et al.| [2025) with
an additional FAST tokenizer (Pertsch et al.,|2025) for action decoding; and UniVLA (Wang et al.,
2025), a 9B world model for VLA tasks. This diverse set of models enables us to test DTP’s
generalizability across different architectures and demonstrate its effectiveness in improving robotic
manipulation performance.
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Table 1: Evaluation across different policies on WidowX Robot tasks. Our DTP method demon-
strates significant improvements across complex manipulation tasks.

Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket SR Rel.
Model

Grasp Success Grasp Success Grasp Success Grasp Success
Spatial VLA (Qu et al.; 2025 12.5% 12.5% 37.5% 20.8% 70.8% 25.0% 75.0% 58.3% 29.2% 100%
Spatial VLA + DTP (Ours) 25.0% 25.0% 45.8% 33.3% 54.2% 29.2% 62.5% 62.5% 37.5% 128.4%
Nora (Hung et al.[2025) 37.5% 16.7% 41.7% 4.2% 50.0% 4.2% 0.0% 0.0% 6.2% 100%
Nora + DTP (Ours) 37.5% 20.8% 41.7% 4.2% 45.8% 12.5% 83% 83% 11.5% 185.5%
UniVLA (Wang et al.;2025] 83.3% 70.8% 75.0% 70.8% 79.2% 33.3% 100.0% 100.0% 68.7% 100%
UniVLA +DTP (Ours) 87.5% 75.0% 79.2% 75.0% 100.0% 45.8% 100.0% 100.0% 74.0% 107.7%

Table 2: Evaluation across different policies on Google Robot tasks. Our DTP method shows
consistent improvements across different VLA architectures.

Model Visual Matching | Variant Aggregation

| Pick Coke Can  Move Near SR Rel. | Pick Coke Can  Move Near SR Rel.
Spatial VLA (Qu et al.||2025) 83.3% 75.4% 79.4% 100% 90.2% 68.7% 79.5% 100%
Spatial VLA + DTP (Ours) 86.7% 77.1% 81.9% 103.1% 90.2% 70.7% 80.5% 101.3%
Nora (Hung et al.}[2025] 53.7% 43.8% 48.7% 100% 56.0% 44.7% 50.4% 100%
Nora + DTP (Ours) 54.7% 45.0% 49.9% 102.4% 56.7% 47.0% 51.9% 103.0%

4.1 MAIN RESULTS

Our experiments across both WidowX and Google Robot tasks demonstrate that DTP consistently
improves task success rates for transformer-based VLAs. We report results using SR (average task
success rate) and Rel. (relative success rate), where the latter measures improvement over the base-
line model.

On WidowX tasks (Table[I), Spatial VLA improves from 29.2% to 37.5% average success (+28.4%
relative), Nora rises from 6.2% to 11.5% (nearly 2x), and UniVLA, already the strongest baseline
(68.7%), further increases to 74.0% (+7.7% relative). These results indicate that DTP benefits both
weak and strong policies by pruning distracting tokens.

On Google Robot tasks (Table[2)), improvements are smaller but consistent. Spatial VLA increases
by +1-3% relatively, while Nora gains +2-3% relatively, confirming that DTP generalizes across
robots and architectures, including already strong-performing setups. (Since UniVLA does not pro-
vide checkpoints for the Google Robot embodiment tasks, we exclude it from this test suite.)

Overall, the results highlight two key findings: Robustness across models: DTP benefits both
strong (UniVLA) and weak (Nora) VLAs, suggesting that pruning distracting visual tokens uni-
versally reduces noise in decision-making. Generalizability across tasks and robots: Improve-
ments are observed across different environments and embodiments, indicating that DTP is not
task-specific but broadly applicable. Detailed implementations are provided in Appendix[A.2]

4.2 PERFORMANCE UPPER BOUND UNDER VISUAL ATTENTION PATTERNS

To explore the performance upper bound of VLA models under their current architecture, we analyze
the model’s uncertainty about the correct action token A* under different visual attention patterns
(Please refer to Appendix [A.T] for detailed assumptions). Given the visual token value matrix Z €
RMxd wwhere M is the total number of visual tokens and d is the dimension of value vectors, and a
visual attention pattern o producing Z,, we define the conditional uncertainty as:

E(a)=H(A" | Za). (6)
Normalizing by the entropy of the action distribution H(A*) gives a task performance measure:
E(a)
Pla)=1—- ——= 7
(@) =1~ g4y ™

where P(«) = 1 denotes perfect action certainty. The optimal attention pattern o* is defined as the
one minimizing uncertainty:

A | Za*)

Pla*)=1- H(H(A*) , o€ argmain E(a). (8)
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Empirical Experiments with Varying 7:

o Smaller values of 7 prune a larger number of tokens from unim-
portant regions (with 7 = 0 basically pruning all such tokens).
e Larger values of 7 prune fewer tokens, and as 7 increases, the
performance gradually converges to that of the original model, as
no visual tokens will be pruned.

o UniVLA requires a much larger maximum 7 compared to
the other two models, suggesting that certain visual tokens in
its unimportant region receive relatively high attention. Conse-
quently, a higher 7 is necessary to ensure no tokens are pruned.

Figure 4: Exploration of performance upper bounds under varying tolerance parameter 7
across different VLA models. Dashed lines denote the baseline success rates without DTP, while
solid lines illustrate performance under DTP with different 7 values. The success rate is annotated
at peak to indicate 7. The results confirm that tuning 7 enables the selection of optimal tolerance
levels, thereby maximizing potential performance gains.

In practice, o* is unknown. We instead approximate it by pruning distracting tokens using a toler-
ance factor 7, yielding an attention pattern c... By running tests over different 7, we identify the
optimal setting 7, which yields the best sub-optimal attention pattern & by maximizing P(«).

Plags) < P(a) < P(a”). 9)

Here, ager represents the model’s default visual attention pattern, and P(cger) corresponds to its
baseline performance.

We evaluate the effect of pruning distracting tokens on SIMPLER WidowX Robot tasks across three
VLA models. The results in Figure |4 illustrate how DTP alters the visual attention patterns and al-
lows the models to approach their performance upper bounds. For Nora, pruning distracting tokens
yields substantial improvements across all tasks, despite its relatively weak baseline. SpatialVLA
exhibits moderate baseline performance and shows relatively consistent gains with pruning. Uni-
VLA, while already achieving strong baselines, still benefits from pruning under certain 7 values,
highlighting the robustness of our method. Overall, these results confirm that task-specific sub-
optimal tolerance values 7 exist for each model, with some tasks achieving nearly 2x higher suc-
cess rates, effectively pushing performance toward the theoretical upper bound under the current
architecture.

4.3 ABLATION STUDIES

To validate the effectiveness of our DTP framework, we conduct comprehensive ablation studies
comparing different token selection strategies within the DTP framework to demonstrate the supe-
riority of our targeted distracting token identification approach. Random_all region: Randomly
selects and prunes tokens from the entire region of the image. Random_unimportant_region: Ran-
domly selects and prunes tokens only within the unimportant region, while preserving tokens from
the important region. No_Gaussian: Constructs the important region without corner token suppres-
sion and Gaussian smoothing. Qurs: The proposed DTP method with full implementation.

As shown in Table [3]and ] Across both WidowX and Google Robot tasks, random pruning strate-
gies significantly underperform, often leading to degraded success rates. Restricting randomness to
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Table 3: Ablation study on WidowX Robot tasks. We compare different token selection strategies
within our DTP framework including random pruning, random pruning only in unimportant region,
and no Gaussian methods. Results demonstrate the superiority of our targeted distracting token
identification approach.

N ‘ Put Spoon on Towel ‘ Put Carrot on Plate ‘ Stack Green Block on Yellow Block ‘ Put Eggplant in Yellow Basket SR Rel.
Method
Grasp  Success Grasp  Success Grasp Success Grasp Success

Spatial VLA + DTP (Random_all region) 16.7% 12.5% 25.0% 20.8% 33.3% 8.3% 37.5% 20.8% 156%  53.4%
Spatial VLA + DTP (Random_unimportant_region) | 12.5% 8.3% 20.8% 4.2% 41.7% 25.0% 37.5% 333% 17.7%  60.6%
Spatial VLA + DTP (No_Gaussian) 12.5% 12.5% 37.5% 20.8% 70.8% 25.0% 75.0% 58.3% 292%  100.0%
Spatial VLA + DTP (Ours) 25.0% 25.0% 45.8% 33.3% 54.2% 29.2% 62.5% 62.5% 315%  1284%
Nora + DTP (Random_all_region) 37.5 8.3% 41.7% 0.0% 37.5% 42% 0.0% 0.0% 3.1% 50.0%
Nora + DTP (Random_unimportant_region) 37.5% 125% 50.0% 4.2% 58.3% 4.2% 4.2% 0.0% 5.2% 83.9%
Nora + DTP (No_Gaussian) 41.7% 8.3% 41.7% 4.2% 41.7% 4.2% 0.0% 0.0% 4.2% 67.7%
Nora + DTP (Ours) 37.5% 20.8% 41.7% 42% 45.8% 12.5% 8.3% 8.3% 115%  1817%
UniVLA + DTP (Random_all_region) 50.0% 41.7% 58.3% 54.2% 91.7% 33.3% 95.8% 83.3% 53.1%  77.3%
UniVLA + DTP (Random_unimportant_region) 83.3% 62.5% 70.1% 62.5% 83.3% 29.2% 95.8% 95.8% 62.5%  91.0%
UniVLA + DTP (No-Gaussian) 83.3% 75.0% 75.0% 62.5% 95.8% 33.3% 100.0% 100.0% 67.7%  98.5%
UniVLA + DTP (Ours) 87.5% 75.0% 79.2% 75.0% 100.0% 45.8% 100.0% 100.0% 740%  107.7%

Table 4: Ablation study on Google Robot tasks. Comparison of different token selection strategies
within our DTP framework across different tasks and variations. Our targeted approach consistently
outperforms alternative selection methods across all model variants.

Method ‘ Visual Matching ‘ Variant Aggregation
‘ Pick Coke Can Move Near SR Rel. ‘ Pick Coke Can Move Near SR Rel.

Spatial VLA + DTP (Random_all_region) 62.5% 57.5% 60.0% 75.6% 66.5% 52.2% 59.4% 74.7%
Spatial VLA + DTP (Random_unimportant_region) 86.0% 68.8% 77.4% 97.5% 54.2% 65.8% 60.0% 75.5%
Spatial VLA + DTP (No_Gaussian) 83.6% 75.9% 79.8% 101.0% 89.9% 68.3% 79.1% 99.5%
Spatial VLA + DTP (Ours) 86.7% 77.1% 81.9% 103.1% 90.2% 70.7% 80.5% 101.3%
Nora + DTP (Random_all_region) 12.1% 8.9% 10.5% 21.6% 7.4% 112% 9.3% 18.5%
Nora + DTP (Random_unimportant_region) 35.2% 28.7% 32.0% 65.6% 22.1% 31.4% 26.8% 53.1%
Nora + DTP (No_Gaussian) 53.7% 43.8% 48.8% 100% 56.0% 44.7% 50.4% 100%
Nora + DTP (Ours) 54.7% 45.0% 49.9%  102.4% 56.7% 47.0% 51.9%  103.0%

unimportant regions mitigates the drop but remains unstable. No_Gaussian variants achieve better
results, yet still fall short of the original model and our full approach, underscoring the benefit of cor-
ner suppression and Gaussian smoothing in refining important regions. In contrast, our targeted DTP
consistently achieves better outcomes across all models and platforms, validating the importance of
precise distracting token identification for robust improvements.

4.4 ANALYSIS OF ATTENTION IN UNIMPORTANT REGION AND TASK SUCCESS

To better understand the role of unimportant region attentions in task performance. We define the
unimportant attention as the sum of attention for all visual tokens in A, (see Figure [2). This value
quantifies the degree to which the model allocates attention to visually irrelevant information during
action generation. We conduct experiments on the SIMPLER Benchmark, evaluating both Google
Robot and WidowX Robot tasks. For each step, we let the model to generate action tokens with its
default visual attention patterns, then we observe and collect unimportant attention values. Finally
we group the episodes into success and failure categories, and we use Mann-Whitney U test to
examine whether the unimportant attention values differ significantly between them.

As shown in Fig. 5] (top-left), failure episodes consistently exhibit higher unimportant attention than
success episodes across all three models (p < 0.001). This indicates that attention leakage into
irrelevant regions is strongly linked to task failure, and the effect generalizes across architectures.
The temporal plots (Fig. [5] right and bottom) unpack the distributions of unimportant attention
into a dynamic view across episode steps. While failure episodes generally assign more attention
in unimportant region than success episode, the disparity most evident in the middle phase of the
trajectory when the robot begins grasping and manipulating the target object. This may suggest a
fundamental source of failure in certain robotic manipulation tasks.

Overall, these results reveal that the suppression of unimportant attention emerges as a key factor for
robust execution, whereas failures tend to persist with high unimportant attention from the middle
stage of the trajectory. This finding highlights a systematic weakness of current VLA models: their
tendency to misallocate attention to task-irrelevant regions, which not only reduces task success rate
but also introduces instability during critical manipulation phases. Importantly, the consistency of
this effect across different architectures and robot platforms suggests that it is not model-specific,
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Figure 5: Unimportant attention in VLA models. (Top-left) Distribution of unimportant attention
values between success and failure episodes across three models. (Top-right, Bottom-left, Bottom-
right) Temporal evolution of unimportant attention for each model, with episode steps normalized
to [0, 1] to provide a unified view of the dynamic changes.

but rather a general property of vision-language-action pipelines. By quantifying and analyzing
unimportant attention, we provide empirical evidence that reducing attention leakage can serve as
a practical pathway to improving both efficiency and reliability. These insights also motivate the
design of targeted methods, such as our Distracting Token Pruning framework, which explicitly
suppresses irrelevant attention and allows the model to focus on task-relevant regions. Ultimately,
understanding and controlling unimportant attention offers a principled direction for creating more
generalizable VLA models.

5 CONCLUSION

In this work, we introduced Distracting Token Pruning (DTP), a simple yet effective plug-and-play
framework for evaluating Vision-Language-Action models. By dynamically detecting and pruning
distracting tokens in task-irrelevant regions, DTP corrects the visual attention patterns for more
accurate action token generation. Our method benefits both strong and weak policies, generalizes
across robots. Experiments on the SIMPLER Benchmark across three diverse VLAs demonstrated
consistent improvements in task success rates. Additionally, with appropriate tolerance 7 settings,
we can explore the performance upper bounds of the model under its original architecture. Ablation
studies further confirmed the necessity of our targeted pruning strategy over random or simplified
baselines. Finally, our analysis revealed a negative correlation between unimportant attention and
task success, highlighting attention leakage as a common cause of failure in robotic manipulation.
These findings provide new insights into building more robust embodied Al systems.
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A APPENDIX

ACKNOWLEDGMENTS OF LLM USAGE

We used large language models (LLMs) solely to assist with polishing the writing and improving
readability. All research ideas, experimental results, figures, and the substantive content of this paper
are entirely our own responsibility.

A.1 REMARKS FOR SECTION[4.2]

In practice, we assume that multiple ground-truth actions A* may lead to task success, which ensures
H(A*) > 0 and makes our normalized formulation well defined. The domain of « corresponds to
the cross-attention weights from the output (action) token query to the visual token keys, i.e., the
distribution of attention over visual tokens. Here Z denotes the value vectors of visual tokens, and
Z,, represents the attention-weighted aggregation used in generating the output token. Different tol-
erance values 7 prune varying numbers of tokens in the unimportant region (smaller 7 prunes more
aggressively), thereby modifying the attention weights « and inducing new attended representations
Z. . We seek the tolerance setting that minimizes the conditional uncertainty H (A* | Z,, ), which
corresponds to the model’s most effective (sub-optimal) attention pattern under pruning. Since VLA
models generate discrete action tokens autoregressively, the conditional entropy H(A* | Z,,) is nat-
urally computed from the predictive distribution over actions. Finally, while the theoretical optimum
o’ may be unattainable in practice, our method ensures that the selected & = «; approximates the
best possible sub-optimal attention pattern, aligning closely with the model’s own preferences and
yielding the maximum possible improvements in task success rate.

A.2 IMPLEMENTATION DETAILS

Our method is implemented as a plug-and-play module that integrates seamlessly with existing
VLA architectures. We register forward hooks on attention layers to extract attention scores without
modifying the model architecture. The method operates during inference with negligible overhead,
requiring only one additional forward pass for generating a single token to compute visual proportion
weights.

For experiments in Section we used a fixed tolerance score of 7 = 0.5 (for Spatial VLA (Qu
et al., 2025)), 7 = 1.22 (for Nora (Hung et al., [2025))), and 7 = 0.7 (for UniVLA (Wang et al.,
2025)) for all tasks.

For Spatial VLA with 256 visual tokens, the selected layers for constructing the relevance heatmap
are empirically chosen as C = 4,6 (indexed from layer 0) based on their strong visual-linguistic
alignment properties. We set k& = 109 for selecting the top-relevant image tokens from relevance
heatmap, and we set o = 0.65 for Gaussian smoothing when constructing the final important region.

For Nora with 64 visual tokens, the selected layers for constructing the relevance heatmap are em-
pirically chosen as C = 12,13, 21 (indexed from layer 0) based on their strong visual-linguistic
alignment properties. We set k& = 40 for selecting the top-relevant image tokens from relevance
heatmap, and we set 0 = 0.65 for Gaussian smoothing when constructing the final important re-
gion.

For UniVLA with 1024 visual tokens, the selected layers for constructing the relevance heatmap
are empirically chosen as C = 11,12 (indexed from layer 0) based on their strong visual-linguistic
alignment properties. We set & = 512 for selecting the top-relevant image tokens from relevance
heatmap, and we set o = 0.9 for Gaussian smoothing when constructing the final important region.

In our experiments, we use DPT to detect distracting tokens during the model’s original action
generation, then construct a pruning mask over the visual input, and finally let the model re-generate
a refined action token under the masked attention. For Spatial VLA, however, we simplify this
process by analyzing only the first action token to construct a single pruning mask, which is then
applied across all subsequent tokens at the step. This strategy significantly mitigate the inference
speed issue, with only a minor trade-off in the precision of distracting token pruning. For Nora,
we limit pruning to at most two visual tokens, since it operates with relatively fewer visual tokens,
and excessive pruning may introduce errors in the generation process. For SIMPLER Benchmark,
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we sample test cases for Pick Coke Can Variant Aggregation test suite, as it is designed to evaluate
efficiency while maintaining overall testing quality and validity of results.

In the experiments of Section 4.2] we use an interval of 7 = 0.1 for empirical evaluation on the
SIMPLER WidowX Robot tasks to identify the optimal 7. For UniVLA, however, we adopt a
coarser interval of 7 = 1.0 once 7 > 3.0, since smaller increments beyond this point yield negligible
differences in task success rate, and the larger step size improves experimental efficiency.

All experiments for Spatial VLA and Nora were conducted on a single NVIDIA RTX 3090 GPU,
while UniVLA was run on an NVIDIA A100 GPU. (For reproducibility, we recommend using the
same GPU setup, as different GPU may lead to slight variations in the results.)

A.3 LIMITATION

While DTP demonstrates strong generalizability to transformer-based VLA models and serves as
an effective approach to explore performance upper bounds without altering model architectures,
our implementation has some limitations. First, the current system could potentially be optimized
to achieve faster inference speed, which would improve its efficiency. Second, the construction
of important areas relies solely on the model’s own ability, with few rule-based refinements. This
dependence may limit precision, and future work could incorporate alternative methods for gen-
erating more accurate important regions, thereby further enhancing the overall performance of the
framework.

A.4 ADDITIONAL VISUALIZATION CASES OF OUR METHOD

Spatial VLA Nora UniVLA
Stack The Block...  Stack The Block...  Stack The Block... ~ Stack The Block...  Stack The Block...  Stack The Block...

Relevance
Heatmap

Important
Region

Visual
Attention
Patterns

Pruning
Mask

Figure 6: Visualization of the distracting token pruning process across different VLA models
for the stacking task. The figure shows the Relevance Heatmap (first row), Important Region
(second row), Visual Attention Patterns (third row), and Final Pruning Mask (last row) for three VLA
models (Spatial VLA (Qu et al.| [2025)), Nora (Hung et al.| 2025), UniVLA (Wang et al.,2025))). The
comparison reveals how our method identifies and prunes distracting visual tokens across different
model architectures.
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Figure 7: Layer-wise visual attention patterns of Spatial VLA for the task ‘Stack the Block...’
Each image shows the attention distribution at a different transformer layer when the model gener-
ates the action token.
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Figure 8: Layer-wise relevance heatmap of SpatialVLA for the task ‘Stack the Block...’, with
selected layer 4, 6 used for constructing important region.
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Figure 9: Layer-wise visual attention patterns of Nora for the task ‘Stack the Block...” Each
image shows the attention distribution at a different transformer layer when the model generates the
action token.
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Figure 10: Layer-wise relevance heatmap of Nora for the task ‘Stack the Block...’, with selected
layer 12, 13, 21 used for constructing important region.
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Figure 11: Layer-wise visual attention patterns of UniVLA for the task ‘Stack the Block...” Each
image shows the attention distribution at a different transformer layer when the model generates the
action token.
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Figure 12: Layer-wise relevance heatmap of UniVLA for the task ‘Stack the Block...’, with
selected layer 11, 12 used for constructing important region.
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