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ABSTRACT

In this paper, we introduce a strategy for identifying textual saliency in large-scale
language models applied to classification tasks. In visual networks where saliency
is more well-studied, saliency is naturally localized through the convolutional lay-
ers of the network; however, the same is not true in modern transformer-stack
networks used to process natural language. We adapt gradient-based saliency
methods for these networks, propose a method for evaluating the degree of se-
mantic coherence of each layer, and demonstrate consistent improvement over
numerous other methods for textual saliency on multiple benchmark classification
datasets. Our approach requires no additional training or access to labelled data,
and is comparatively very computationally efficient.

1 INTRODUCTION

Trained on the vast swathes of open-source text available on the internet, large-scale language mod-
els have demonstrated impressive performance in text generation and classification. Most recently,
models with transformer-stack architectures have shown an impressive ability to focus on task-
salient elements of language and utilize that focus to achieve superhuman performance in certain
constrained areas. However, there is a growing concern that despite this performance, these models
lack transparency and have unpredictable blind spots in certain areas. This has led to an increased
focus on salience in natural language i.e. identifying which elements of text the model considers
important for making a decision.

Unlike computer vision, where the pixels relevant to a task are often grouped together, the words
that are important in a movie review, article or resume may not be close to each other. This lack
of locality is reflected in the preferred architectures, with convolutional heads to visual networks
encouraging local associations while stacks of fully connected transformer layers allow natural lan-
guage tokens to associate more globally. This free association, combined with the degree of model
complexity in transformer architectures, leads to challenges in interpretability, as not all feature
spaces within the hidden layers of the network map cleanly to natural language.

Current methods that explain the decision making processes of transformer-stack architectures focus
on the embedding layer. However, these methods often result in confusing or redundant explana-
tions, as information gets muddled passing through multiple layers of transformers. Along with
Rogers et al. (2020), we hypothesize that a more meaningful, clear, decision-oriented representation
exists in solely the later layers of the network. In this paper, we propose a method that only captures
the signal of the later layers of the transformer stack and projects it back onto the token space of
natural language. Our method can be paired with any layer-based saliency metric, explicitly ac-
counts for multiple layers of self-attention mechanisms and reflects the implications of the complex
pre-training and task specific fine-tuning on the layers in the architecture. We validate this method
both with objective measures of model importance (Hiding / Revealing Game), and human measures
of external consistency (Token Overlap) and demonstrate significant improvements over the state of
the art.

Our contributions are:

1. We propose a computationally-efficient method using a pre-trained language model (LM)
head to “decode” the hidden layers by mapping their features back onto the token space and
present its application to an example saliency approach (Grad-CAM Selvaraju et al. (2017))
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for both binary and multi-class classification problems. Our method not only requires no
additional training or labels and works for any saliency method that calculates layer-specific
saliency, but prioritizes task-specific information over language structure.

2. We demonstrate improvement over state of the art methods for natural language explain-
ability in two objective measures. In the Hiding / Revealing Game, we show that the re-
moval / addition of tokens we believe are important damages / improves the performance of
a network more than our competitors. In Token Overlap, we show that our method has dra-
matically fewer tokens that are important for multiple classes; indicating that our important
tokens are truly indicative of the class in question. Notably, we achieve these improvements
despite not directly optimizing for either metric, suggesting a robust result.

1.1 RELATED WORK

The concept of feature attribution or saliency scores initially began in computer vision (CV) where
the interest lay in being able to explain the object detection and classification decisions of con-
volutional neural networks (CNNs). A large swath of literature has arisen in the CV domain on
model explainers that broadly fall into a several overlapping categories: gradient-based methods,
propagation-based methods, and occlusion-based methods Simonyan et al. (2014); Zeiler & Fergus
(2014); Springenberg et al. (2014); Bach et al. (2015); Noh et al. (2015); Zhou et al. (2016); Sel-
varaju et al. (2017); Sundararajan et al. (2017); Shrikumar et al. (2017); Lundberg & Lee (2017);
Smilkov et al. (2017); Fong & Vedaldi (2017); Zhang et al. (2018); Gu et al. (2018); Omeiza et al.
(2019); although some avoid these categories Castro et al. (2009); Ribeiro et al. (2016).

The natural-language processing (NLP) community has adopted, extended, and introduced new
variants of these methods for both simpler long short-term memory (LSTM) architectures Li et al.
(2016); Arras et al. (2017); Kádár et al. (2017) and more complex state-of-the-art transformer-stack-
based architectures Guan et al. (2019); Wallace et al. (2019); De Cao et al. (2020); Chefer et al.
(2021b); Hase et al. (2021); Feldhus et al. (2021). Additionally, with the language domain and their
attention-based architectures came another category of explainability methods that either visualize
or use attention weight values for explanations Bahdanau et al. (2014); Martins & Astudillo (2016);
Strobelt et al. (2018); Liu et al. (2018); Thorne et al. (2019); Kobayashi et al. (2020); Hao et al.
(2021). However, this new category did not come without its share of controversy, with many pa-
pers questioning or defending their explanatory power Jain & Wallace (2019); Wiegreffe & Pinter
(2019); Serrano & Smith (2019); Pruthi et al. (2019); Vashishth et al. (2019); Bastings & Filippova
(2020).

The transfer of explainability techniques from CNN and LSTM architectures to far larger and more
complex architectures with stacks of multi-headed self-attention mechanisms has proven challeng-
ing. Unlike CNNs and LSTMs, the transformer stack has little cognitive motivation, instead relying
on a pre-training regime over a massive corpora to learn language structure. Many works have
attempted to derive meaning from the learned structures in the architecture including Voita et al.
(2019); Michel et al. (2019) who study the role of multiple heads, other approaches (mentioned
previously) study information flow in the self-attention mechanism as part of their attention based
explainers, and still others simply probe and visualize the overall architecture Tenney et al. (2019);
Kovaleva et al. (2019); Vig (2019); Rogers et al. (2020); Likhosherstov et al. (2021). However,
despite these works, explainability methods for transformer-stack architectures fail to account for a
principal component of the architecture, the stacking of transformer blocks. Unlike previous works,
we propose a saliency method that explicitly accounts for its representation after multiple layers of
self-attention mechanisms and reflects the implications of the complex pre-training and task specific
fine-tuning on the layers in the architecture.

2 PROPOSED SALIENCY METHOD

We propose a method for producing explanations for decisions made by language models with
encoder-based transformer architectures such as BERT Devlin et al. (2018) and RoBERTa Vaswani
et al. (2017). We extend saliency techniques from the CV domain to the NLP domain in a way that
tracks the provenance of intermediate layers in the original input space. This allows our method to
capture layer specific information about the contributions of each token in an input sequence to a
language model’s final decision.
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In the following subsections, we use Grad-CAM as the driving example for a layer-wise saliency
technique. However, as will be seen in Algorithm 1, our method is agnostic to the specific saliency
method as long as the method can calculate layer specific scores. We show that by using a language
model head, we can compute interpretable explanations at any layer and for any saliency metric. The
novelty of our overall method is the ability to assign explanatory power to the original tokens in the
input sequence from scores calculated using information only downstream from a specific hidden
layer in a transformer stack.

2.1 CALCULATING LAYER SALIENCY SCORES

One way to calculate scores that explain the contributions of a token is using Gradient-weighted
Class Activation Mapping (Grad-CAM), a gradient-based saliency method which was first proposed
in Selvaraju et al. (2017) to produce visual explanations for CV problems. Grad-CAM is one of
several gradient-based methods that has the advantage of being able to perform class-discriminative
localization for any CNN-based models without requiring architectural changes or re-training.

We compute the gradient of the predicted score yc (before softmax) for class c with respect to an
output of a transformer block hl. These gradients can be viewed as weights that capture the “im-
portance” (for a specific class c) of each of the K features for each element of the output sequence.
Specifically for Grad-CAM, this represents a partial linearization of the model downstream from hl.
We calculate the Grad-CAM scores as a weighted combination of the features in the output and use
a ReLU function to assign no importance to elements with negative scores. Explicitly,

αc
l = ReLU(

K∑
k=1

∂yc

∂hk
l

hk
l ) (1)

where the hk
l are the column vectors corresponding to the K features of the output of layer l in

the stack of transformer blocks and αc
l is a vector of size n whose elements are the scores for each

element of the output sequence. Note, the scores αc
l can be replaced with any method that can

calculate layer specific scores; Grad-CAM is simply one example.

If we calculate the scores with respect to 0-th layer outputs h0 (embeddings of token, segment, and
positional information), the elements of the score vector correspond directly to the tokens of the
input sequence. However, once an input sequence passes through a transformer block (described
explicitly in equation 4 in Section 2.2), this relationship no longer holds. Unlike CNNs where there
is a clear provenance between the pixels and the outputs of the convolution filters, the multi-headed
self-attention mechanism of transformers are far more complicated. The receptive fields of a CNN
are local patches, whereas the receptive fields of the outputs of a transformer block are far more
global consisting of the entire input. This is because each self-attention head uses the entire input
to learn new representations for some subset of the features making each element of the output a
function of all elements of the input. Many works Vig (2019); Tsai et al. (2019); Likhosherstov
et al. (2021) have attempted to attribute meaning to the attention mechanism with varying levels of
success; however, they primarily focus on a single transformer block. The meaning of an output
sequence when the input sequence is passed through multiple transformer blocks in a stack is even
less clear.

Thus, while it is relatively easy to calculate scores αc
l with respect to the embeddings (l = 0), which

already lie in the token space, it may not necessarily produce explanations that are most relevant
to a models prediction. Rogers et al. (2020) surveys 150 papers and derives potential explanations
for the roles of the layers of the BERT model. They conclude that the lower layers have the most
information about linear word order (i.e. the linear position of a word in a sentence Lin et al.
(2019)), the middle layers contain syntactic information, and the final layers are the most task-
specific. Therefore, it would be worthwhile to also explore the explanatory power of the saliency
scores of the other layers l > 0 where only information in the network downstream from that layer
is included in the score. By only capturing information downstream from a specific layer, we ignore
potentially task-irrelevant information in the earlier layers of the network.

2.2 INTERPRETING THE HIDDEN LAYERS

In order to calculate saliency scores, e.g. equation 1, that only capture information downstream
from a specific layer, we need to project these scores into a space where the elements of the pro-
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jected vector correspond directly to the original tokens of an input sequence. This allows us to have
a meaningful version of the scores where we can directly understand the contributions of each token.
And because the elements of a scores vector correspond directly to the elements of a transformer
block’s outputs, the problem of projecting scores into a token space is equivalent to the problem of
projecting outputs into a token space. Thus this projection problem can be mathematically formu-
lated as finding a mapping f that minimizes the loss L(·) between the output of a transformer block
and its closest possible token space representation t, i.e.

argmin
f

L(t, f(hl)) (2)

where f holds for any layer l in a transformer stack and t is a n × V right stochastic matrix whose
rows lie in the token space T defined as the surface of a V -dimensional unit hypersphere. The axes
of this hypersphere correspond to the V tokens in a vocabulary, so any point on this surface is the
weighted contributions of each token to this surface point.

One of the pre-training tasks of models with encoder-based transformer architectures (e.g. BERT) is
the masked language model task, which is trained to minimize exactly this loss when L(·) is a cross-
entropy function, t is the original input sequence, and the layer l = L is the final transformer block
in the stack. The masked language model task trains two functions: f base(·) that represents the
transformer-stack and f lm(·) the language model (LM) head that minimizes L(ti, f lm(hi

L)) where
hi
L = f base(ti) is the i-th element of the output of the full transformer stack and ti is a one-hot

vector representing the token at the i-th element of the original input sequence.

While we now have a function f lm(·) that solves a specific version of equation 2, we still need to
understand the function’s role in encoder-based transformer architectures. The LM head takes in a
row i of the n × K final transformer-stack output and transforms it to lie in the same space as the
corresponding row of the n× V one-hot matrix of the original input sequence. It decomposes as

f lm(hi
L) =

V∑
j=1

P̂ ij
L e(j) (3)

where e(j) is a 1 × V basis vector with a one in column j and a zero elsewhere representing j-th
dimension of the token space T and P̂L is a n×V right stochastic matrix with each row i containing
the (after softmax) prediction probabilities of being the j-th token in the vocabulary. Thus, because
the basis vector e(j)s correspond to tokens where j is the token’s position in the vocabulary, we can
interpret P̂ ij

L as the amount of influence the j-th token has on i-th element of hL.

However, the masked language model task is training a function specifically for the final output of
the transformer stack hL. In order to extrapolate the effects of the f lm(·) function to the output
of any layer l, we must understand the most complicated part of an encoder-based transformer
architecture, the self-attention mechanism. As previously studied in Likhosherstov et al. (2021);
Tsai et al. (2019), the output of the self-attention mechanism can be expressed as

X ′ = AXWV (4)

where A = softmax(
XWQWT

KXT

√
d

) is the normalized self-attention matrix, WQ,WK ,WV are the
query, key, and value weight matrices, and d is hidden dimension of the self-attention mechanism.
Thus the self-attention matrix A is a weighted similarity or kernel gram matrix between the ele-
ments of the input X , and the features of the output X ′ are weighted combinations of the features
of the inputs. The multi-headed mechanism simply combines various self-attention mechanisms in
a weighted fashion and the rest of the transformer block consists of a feed-forward component and
some layer additions and normalizations; thus we can describe outputs of a transformer block over-
all as approximately a weighted combination of its inputs. Similarly, stacking transformer blocks
together results in further weighted combinations of the original input sequence.

This leads to the key idea that because the outputs of any stack of transformer blocks are a weighted
combination of original K features, they lie in the same continuous feature space RK . Unlike
the original token space T , this feature space does not have an easily interpretable meaning. We
conjecture that because the pre-training tasks are performed over an enormous corpus (Wikipedia
etc.), the learned function f lm(·) is estimating the map between RK and T where the feature space
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is much smaller than the token vocabulary space K << V . Thus the f lm(·) function acts as a
universal decoder that predicts the likeliest combination of tokens, i.e. basis vectors e(j) of T , that
make up f lm(hl) where P̂l are the prediction probabilities. We provide a simple example illustrating
this process in Figure 1 to provide geometric intuition.

While the rows of P̂l can be interpreted as the likelihood that each element of hl is a certain token
in the vocabulary, the columns of P̂l can analogously be interpreted as the amount of influence each
token has on hl. However, because we are only interested in the contributions of tokens from the
input sequence, we can subset the V columns of P̂l to only the T columns that correspond to the
unique input sequence tokens. Let D̂l be a T × n matrix where the rows of D̂l are the columns of
P̂l that correspond to the tokens in the input sequence and the columns indices of D̂l correspond to
the elements of hl. Now that we have a way to account for the contributions of tokens in an input
sequence to a hidden layer, we can calculate a layer’s saliency scores with respect to these tokens as

ŝl = D̂lα
c
l (5)

where the elements of ŝl are weighted combinations of the scores for layer l from equation 1 with
each element being a different weight according to the rows of D̂l. These saliency scores ŝl capture
the importance of each token in the input sequence to the models decision using only information in
the model that is downstream from a specific layer l in a transformer stack. Thus we can view the
layer choice l as a control for the amount of model information used in a saliency score.

Additionally if we only want to allow contributions from the most important tokens, we can restrict
each ŝil in equation 5 to be a weighted combination of only the output scores where the input token
ti is an top ranked contributor.
We show pseudocode for our approach in
Algorithm 1 which takes as inputs a tok-
enized input sequence t, a layer choice l,
a threshold τ for the number of contribu-
tions from top ranked tokens, a LM task
head from a pre-trained model f lm(·), and a
fine-tuned classification model m(·) where
mbase

l (·) is the output of layer l in the trans-
former stack and mclass(·) is the classifica-
tion task head. For a given layer l, estimate
the output scores α̂l using the gradients of
the pre-softmax most likely prediction ŷ and
the output of the l-th block in the trans-
former stack as hl (Lines 1-3). Then esti-
mate the token contributions D̂l as a subset
of P̂l, the LM probability predictions for hl

onto the input token sequence t (Lines 4-5).
Finally the saliency scores ŝl are a weighted
sum of output scores α̂l where the non-zero
weights are the top τ ranked values in the
columns of D̂l (Lines 6-12).

Algorithm 1 Transformer-stack architectures embed
a discrete vocabulary into a lower dimensional con-
tinuous space where layers in the stack merely trans-
form it within this space. Our approach generates a
decoder from the low-dim latent space back to the
original token space.

Input: t, l, τ, fmlm(·),m(·)
1: hl = mbase

l (t)
2: ŷ = maxmclass(mbase(t))

3: α̂l = ReLU(
∑K

k=1
∂ŷ
∂hk

l

hk
l ) or some other score

4: P̂l = f lm(hl)

5: D̂i
l = (P̂ j

l )
⊤ ∀j corresponding to tokens ti

6: for i = 1 to T do
7: for j = 1 to n do
8: if D̂ij

l in top τ ranked values of D̂j
l then

9: ŝjl += D̂ij
l α̂j

l
10: end if
11: end for
12: end for
Output: ŝl

While the weights for the classification model m(·) change when fine-tuned to a specific dataset,
they are still initialized at the pre-trained values; so, the transformer block outputs hl will still lie in
RK . Thus because f lm(·) estimates the map from RK to T , it is still able to decode hl despite
being the outputs of a model with different weights.
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Figure 1: The input sequence “big dog” is tokenized into two tokens t1 and t2 that lie on the unit
hypersphere T and are then embedded into having K continuous features (h1

0 and h2
0). A series of

l transformer blocks is applied to the embedded input sequence to produce h1
l and h2

l , which are
decoded back onto T with the f lm(·) function. The outputs (t̂1l and t̂2l ) of the transformer blocks in
T can be interpreted as weighted combinations of the original tokens t1 and t2.

3 EXPERIMENTS

In this section, we detail our experimental results on two benchmark classification task datasets1:
SST-2 Socher et al. (2013) a binary classification dataset that is one of the the General Language
Understanding Evaluation (GLUE) Wang et al. (2019) tasks and AG News Zhang et al. (2015) a
subset (4 largest classes) of news articles from more than 2,000 news sources gathered by Gulli
(2005). We implemented our approach (labelled Decoded Grad-CAM) on a RoBERTa base from
HuggingFace Wolf et al. (2020) using Grad-CAM for the saliency scores and compared against
numerous other explainability methods that have been trained and provided by the AllenNLP
Interpret Wallace et al. (2019) and ThermoStat Feldhus et al. (2021) Python packages. To the best
of our abilities, we have attempted to mimic the training regimes described by their respective
packages for all competing models’ explainability methods. However, in order to maintain
consistency across all experiments and improve visibility, we have chosen to always use the
standard RoBERTa base model with a 12 layer transformer stack. For further details on the
experimental setup see Section A.1.

3.1 THE HIDING /REVEALING GAME

In order to evaluate the explainability of a token, we use the Hiding Game Fong & Vedaldi (2017);
Castanon & Byrne (2018) and an inverse variant of it, which we will call the Revealing Game. For
NLP, the Hiding Game iteratively obscures the least important tokens according to some score
attributed with the token, replaces them with a [MASK] token, and removes them from the
self-attention mechanism. The Revealing Game does the opposite and starts with a completely
masked sequence and iteratively reveals the most important tokens according to their score. For
both games, the prediction accuracy is periodically calculated at percentages of the total sequence
length (ignoring [PAD] tokens). Similar variants such as positive / negative perturbations Chefer
et al. (2021a) or using masking in Hase et al. (2021) have also been used for evaluating the
explainability of methods. In addition to the AllenNLP Interpret and ThermoStat explainers, we
also compare against a random baseline that is averaged over 20 random perturbations.

In Figure 2, we use the Hiding / Revealing Game to evaluate the accuracy of various explainability
methods on the SST-2 sentiment classification dataset. We show the performance of the best
layers2 of our Decoded Grad-CAM (for visibility) against AllenNLP Interprets implementation of
the Simple, Smooth, and Integrated methods along with a layer 0 (vanilla) version of Grad-CAM.

For the Revealing Game, the accuracy of our layers shoots up very quickly after the first couple of
tokens are revealed, implying that those tokens are very important to the model’s classification
decision. For the Hiding Game, all four of our layers have steeper drops in accuracy, which implies
that the tokens being masked are more important as they dramatically affect the accuracy. Note that

1For a full description of the datasets, see Section A.1.
2See Section A.2 for all layers
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we are using a RoBERTa base model, which is smaller than the RoBERTa large model used by the
AllenNLP Interprets explainers and is the reason for the small gap in accuracy when the full input
sequence is used. Despite having a smaller underlying model, our Decoded Grad-CAM at layer 7
outperforms the explainers on a larger model up until the vast majority (≈ 70%) of important
tokens have been revealed.

(a) Revealing Game (b) Hiding Game

Figure 2: Our Decoded Grad-CAM method against the vanilla Grad-CAM, AllenNLP Interpret
explainers, and a random baseline on the SST-2 binary sentiment classification dataset.

We also apply the Hiding / Revealing Game to the AG News dataset, which is a multi-class topic
classification task, and evaluate against numerous ThermoStat explainers. We show the accuracy of
the best layers3 against all the ThermoStat explainers in Figure 3.

(a) Revealing Game (b) Hiding Game

Figure 3: Our Decoded Grad-CAM method against vanilla Grad-CAM, ThermoStat explainers, and
a random baseline on the AG News four topic classification dataset.

Many of the ThermoStat explainers are specifically built to probe for changes in predictions from
changes in tokens and are essentially optimized to do well in the Hiding Game. However due to
this perturbation construction, many of these methods (Integrated, LIME, Occlusion, and Shapely)
are also extremely computationally expensive requiring many passes forward through the model
and the ThermoStat package was specifically constructed to improve accessibility (at least for
benchmark datasets) to these explainers Feldhus et al. (2021).

In contrast, our decoded layer saliency method is applicable to any trained model without requiring
any re-training and only requires one backward pass, which is far more computationally efficient.

3See Section A.2 for all layers
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Additionally, because our method is not probing for changes from a correct class to an incorrect
one, it does not require labels. This makes it useful as an explainer even in scenarios where a user
only has access to a trained model and does not have access to any training or labelled data.

Despite this, our Decoded Grad-CAM layer 6 outperforms the majority of the ThermoStat
explainers including the computationally heavy LIME method. Similar to the results for the SST-2
dataset, we see the accuracy of our best layers shoot up quickly in the Revealing Game with layer 6
having very competitive results with ThermoStats’ Shapely, Occlusion, and Integrated methods.
For the Hiding Game, our layers do not exhibit as dramatic of a drop, but still do significantly
better than most ThermoStat explainers and our layer 6 is competitive with the all except the
Shapely method until ≈ 40% of tokens are hidden.

We also calculate the Area Under the Curve (AUC) for the various explainers in both figures above
in Table 2, where the best layer explainer of our method is bolded and the best competing explainer
is italicized. From the AUCs corresponding to Figure 3, we see that for the Revealing Game, the
difference in performance between the top four best explainers is extremely minor with only 0.011
gap between the first and fourth place methods. For the Hiding Game, the Shapely explainer is
clearly the best; however our layer 6 still has respectable performance being only 0.008 worse than
the Occlusion method and 0.078 worse than the Integrated method. Another noteworthy
observation is that our best performing layers (5-8 for the SST-2 dataset and 6,8 and 9 for the AG
News dataset) roughly correspond to the ”middle layers” described by Rogers et al. (2020). Thus
our saliency method is only including information downstream from these layers, namely those
corresponding to the ”final layers”, which are described to be more task-specific.

Area Under the Curve for Revealing Game (higher is better) and Hiding Game (lower is better)

Explainer Revealing Hiding

Grad-CAM l0 0.797 0.713
Decoded Grad-CAM l5 0.832 0.64
Decoded Grad-CAM l6 0.854 0.617
Decoded Grad-CAM l7 0.867 0.609
Decoded Grad-CAM l8 0.836 0.66
Simple 0.799 0.756
Smooth 0.795 0.762
Integrated 0.804 0.756
Random 0.748 0.77

Table 1: SST-2 Dataset (Figure 2)

Explainer Revealing Hiding

Grad-CAM l0 0.853 0.804
Decoded Grad-CAM l6 0.895 0.739
Decoded Grad-CAM l8 0.867 0.782
Decoded Grad-CAM l9 0.879 0.774
Shapely 0.905 0.567
Occlusion 0.894 0.731
Integrated 0.897 0.661
GradientShapely 0.86 0.784
LIME 0.851 0.792
GradxAct 0.851 0.794
DeepLiftShapely 0.823 0.842
Random 0.829 0.841

Table 2: AG News Dataset (Figure 3)

3.2 TOKEN OVERLAP

While the previous experiments are a good way to evaluate the affect of tokens on a model’s
decision making, they don’t actually provide any indication of explainability to a human. In order
to judge the human intuitiveness of the explanations, we should also consider the actual meanings
of the top ranking tokens. Thus, we aggregate the scores of all tokens for all input sequences in a
predicted class and weight their total score by how rarely they occur in everyday language i.e. the
inverse document frequency of a random collection of 50,000 Wikipedia articles. The intuition
behind this is that tokens that have high importance scores and occur often in the input sequence of
a predicted class relative to usage in common language are representative of that class. By
aggregating over all input sequences of a predicted class, we also reduce the rewarding of one-off
tokens that only explain the model’s decisions for that specific input sequence. We can visualize the
most important tokens for each predicted class in word clouds shown in Figures 7 and 8 in Section
A.3.

Additionally, for classification tasks, tokens should disambiguate classes. So tokens that are
important to a predicted class should be indicative, i.e. unique to a class, especially if the classes
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are complements of each other. For example, tokens that are strong indicators that a movie review
is positive should not also be strong indicators that a movie review is negative. Therefore, we can
also evaluate the representativeness of tokens deemed important to a predicted class by considering
how often they appear in multiple classes. Explicitly, we count the number of top k ranked tokens
that appear in every pair of classes and divide by the total count in order to get the percentage of
token overlap.

We show this percentage as a function of the top k ranked tokens in Figure 4 for the best Decoded
Grad-CAM layer according the Hiding / Revealing Game against the AllenNLP Interpret
explainers on the SST-2 dataset and against the best ThermoStat explainers on the AG News
dataset. Additionally we show, in tables in Section A.4, the actual tokens in the top 50 that appear
in multiple classes of the SST-2 and AG News datasets respectively, along with the raw counts of
token overlap in Figure 9.

(a) SST-2 dataset (b) AG News dataset

Figure 4: Percentage of tokens that appear in multiple classes for the top k most important tokens.

For both datasets, our best Decoded Grad-CAM layer significantly outperforms the competing
methods with very few important tokens belonging to multiple classes. Unlike the other
explainability methods, our approach only incorporates information in the network that is
downstream from a specific layer. Thus its does not include language structure information such as
the word order or syntactic information from earlier layers that would add noise to the explainer.
We can interpret from the plots that because the competing methods have many more tokens that
are salient for multiple classes, these tokens may be structurally important, but not class
discriminate. The removal of these structurally important tokens may also be causing an out of
distribution effect in the Hiding Game Hase et al. (2021) and biasing their good performance. We
also provide some example snippets of input sequences highlighted by the methods in the above
figures in tables in Section A.5. These examples provide an additional way for a human to directly
visualize and interpret the explainability of the methods for a particular input sequence.

4 DISCUSSION

In this paper, we have presented an approach for measuring the importance of tokens to a
classification task based on the information encoded in the hidden layers of the transformer stack.
Consistent with previous research into the meanings of these intermediate layers in large-scale
language models, we explicitly confirm, through multiple experiments, that the later layers
generate better task-specific human explanability. Our approach works with any score-generation
method that generates layer-specific importance scores and requires no re-training. Most
importantly, it shows that information in the later layers of the transformer stack are more
important for model classification performance (The Hiding Game) as well as for human
consistency (Token Overlap). In the future, we look to extend this work to tasks beyond
classification. We also plan to further explore and leverage the geometric relationship between the
feature embedding and token spaces first established in this paper.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

Datasets:

1. SST-2 Socher et al. (2013): This is a two class version of the Stanford sentiment analysis
corpus where each sample is a full sentence from a movies review labeled as either
Negative (class 0) or Positive (class 1) sentiment. It is split to have 67,349 training
samples, 872 validation samples, and 1821 test samples; however the test labels are not
publicly available and the validation set is commonly used for experiments in numerous
paper including this one.

2. AG News Zhang et al. (2015): This is a four class version of a corpus collected by Gulli
(2005) from over 2000 news sources. Each sample is a full sentence from a news article
labeled as belonging to the World (class 0), Sports (class 1), Business (class 2), or Sci/Tech
(class 3) topics. It is split to have 120,000 training samples and 7,600 test samples.

Models:
AllenNLP Interpret on a RoBERTa large model Wallace et al. (2019)

1. Simple Simonyan et al. (2014): gradient of the loss with respect to each token
2. Smooth Smilkov et al. (2017): average the gradient over noisy input sequences (add white

noise to embeddings)
3. Integrated Sundararajan et al. (2017): integrating the gradient with 10 samples along the

path from an embedding of all zeros to the original input sequence

ThermoStat on a RoBERTa base model Feldhus et al. (2021)

1. GRADxACT: simple element-wise product of gradient and activation
2. Integrated Sundararajan et al. (2017): same as above, except 25 samples along the path
3. LIME Ribeiro et al. (2016): sample 25 points around input sequence and use predictions

at sample points to train a simpler interpretable model
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4. Occlusion Zeiler & Fergus (2014): perturbation based approach, replace sliding window
(3 tokens) with baseline and compute difference in prediction

5. Shapley Castro et al. (2009): add a random permutation of tokens from the input sequence
to a baseline, look at difference in prediction after each addition, perform 25 times and
average over them

6. DeepLiftShap Lundberg & Lee (2017): approximates Shapely values, computes DeepLift
attributions for each input-baseline pair, average over baselines

7. GradientShap Lundberg & Lee (2017): approximates Shapely values, computes the
expectations of gradients by randomly sampling 5 times from the distribution of baselines

Decoded Grad-CAM layers implemented on RoBERTa base from HuggingFace Wolf et al. (2020)

Metrics:

1. The Hiding / Revealing game: Order tokens in descending amounts of importance for
each method, hiding each token one by one. Methods with a better grasp of importance
will reduce the prediction accuracy of the network faster by hiding tokens that really
matter. The Revealing Game is the converse, which slowly reveals important tokens. This
method was used in Fong & Vedaldi (2017); Castanon & Byrne (2018).

2. Percentage of Token Overlaps: For every pair of classes we count the number of tokens in
the top k most-important for both classes and divide total count by

(
C
2

)
∗ k where C is

number of classes. This yields a measure of how unique the tokens we believe are
important for identify a class are.
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A.2 HIDING / REVEALING GAME FOR ALL LAYERS

Figure 5: All Decoded Grad-CAM layers on the SST-2 dataset.
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Figure 6: All Decoded Grad-CAM layers on the AG News dataset.
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A.3 WORD CLOUDS

The size of the tokens in the word clouds are reflective of the weighted tokens scores.
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Figure 7: Word Clouds with Top 50 Tokens for SST-2 dataset.

While the left column (Predicted Negative) of Figure 7 is composed of generally negative terms,
there are some more puzzling tokens that are deemed important according to the AllenNLP
Interpret explainers such as ‘ ‘ and pokemon. The right column (Predicted Positive) also seems to
have some tokens with negative connotations such as {menace, dement} in the Simple explainer,
{terribly, dement, hack. dreadful} in the Smooth explainer, and {dumb, stupid, tedious} in the
Integrated explainer.
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A.4 OVERLAPPING TOKENS

Table 3: Tokens in Top 50 appearing in both World and Sports classes of AG News dataset

Explainer Overlapping Tokens

Shapely NEW, apologised, FIELD, Defeat, CHAR, ONDON, YORK, UNITED, Thurs-
day, shook, ASHINGTON, Wednesday, Tuesday, ENS, tonight, roared, Reuters,
AP, ANGEL, yesterday

Occlusion NEW, ELS, Calif, AFP, \\, YORK, ONDON, ASHINGTON, Tuesday, ENS, IJ,
UPDATE, Charges, awaits, IGH, ,, Monday, roared, Reuters, VER, AP, ANGEL,
yesterday, BE

Integrated NEW, apologised, FIELD, Calif, chilly, \\, ONDON, YORK, Talks, UNITED,
Thursday, ASHINGTON, Wednesday, ENS, PARK, Update, embattled, quot,
roared, Reuters, AP, ANG, ., ANGEL, yesterday

Decoded Grad-CAM l6 (none)

Table 4: Tokens in Top 50 appearing in both World and Business classes of AG News dataset

Explainer Overlapping Tokens

Shapely NEW, ONDON, YORK, Charges, expected, Thursday, rattled, ASHINGTON,
Reuters, Wednesday, premiums, Tuesday, plunged, surged, ANGEL, yesterday

Occlusion EVA, NEW, ELS, Calif, optimism, \\, ONDON, YORK, ASHINGTON, Tues-
day, UPDATE, Charges, Update, Shares, hammered, Monday, surged, embat-
tled, Reuters, MOV, premiums, Profit, regulators, ANGEL, yesterday

Integrated NEW, negotiators, YORK, ONDON, pledges, Thursday, ASHINGTON,
Wednesday, Tuesday, plunged, tighten, Update, IPO, soared, surged, Says, ex-
pected, yesterday, premiums, ANGEL, Charges

Decoded Grad-CAM l6 ONDON, Funds, ASHINGTON, Reuters, capitalists, ANGEL

Table 5: Tokens in Top 50 appearing in both Sports and Business classes of AG News dataset

Explainer Overlapping Tokens

Shapely NEW, NEY, STON, ONDON, YORK, Thursday, ASHINGTON, Wednesday,
Tuesday, INGTON, eased, OND, woes, HOU, Reuters, ANGEL, MARK, yes-
terday, rallied

Occlusion NEW, OCK, BUR, ELS, STON, Calif, \\, ONDON, YORK, roaring, Thursday,
ASHINGTON, Wednesday, TON, Tuesday, INGTON, STER, eased, UPDATE,
ANC, Charges, –, Monday, HOU, bruised, Reuters, NEWS, BUS, ANGEL, yes-
terday

Integrated ANC, NEW, OCK, YORK, ONDON, HOU, Thursday, Update, ASHINGTON,
Wednesday, INGTON, STER, TOR, ANGEL, MARK, yesterday, rallied

Decoded Grad-CAM l6 \\, yesterday
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Table 6: Tokens in Top 50 appearing in both World and Sci/Tech classes of AG News dataset

Explainer Overlapping Tokens

Shapely NEW, ONDON, YORK, Charges, expected, Thursday, rattled, ASHINGTON,
Reuters, Wednesday, premiums, Tuesday, plunged, surged, ANGEL, yesterday

Occlusion expected, Update, ASHINGTON, ,”, Reuters, terror, Reuters, AFP, Calls, \\

Integrated unveil, AFP, Reuters, ,”, Reuters, AFP, .”, ANGEL, \\

Decoded Grad-CAM l6 ASHINGTON

Table 7: Tokens in Top 50 appearing in both Sports and Sci/Tech classes of AG News dataset

Explainer Overlapping Tokens

Shapely showdown, Reuters, HAS

Occlusion ATT, Boost, –, ASHINGTON, ,”, Reuters, HAEL, WITH, STON, AFP, STER,
sighed, Factor, \\

Integrated showdown, Reuters, HAEL, Adds, .”, pesky, ANGEL, \\

Decoded Grad-CAM l6 (none)

Table 8: Tokens in Top 50 appearing in both Business and Sci/Tech classes of AG News dataset

Explainer Overlapping Tokens

Shapely Quote, Boost, Reuters, trust

Occlusion NEY, Update, –, quot, Quote, Consumers, ASHINGTON, HERE, Reuters,
STON, STER, BlackBerry, Customers, EMBER, Pact, \\, Update

Integrated daq, Quote, Craigslist, checks, ?, uters, ANGEL, profits, Update

Decoded Grad-CAM l6 ASHINGTON

Table 9: Tokens in Top 50 appearing in both classes of SST-2 dataset

Explainer Overlapping Tokens

Simple slick, ‘ ‘, pokemon
Smooth pokemon, creepy, shameless, dreadful, painfully, ‘ ‘
Integrated dumb, creepy, stupid, tedious, ‘ ‘
Decoded Grad-CAM l7 (none)
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(a) SST-2 dataset (b) AG News dataset

Figure 9: Number of tokens that appear in multiple classes for the top k most important tokens.

A.5 EXAMPLES OF HIGHLIGHTED EXPLANATIONS

The underlined text above each snippet is the predicted class for that method with corresponding
prediction probability and the intensity of the highlighted color reflects the relative importance of
each token normalized for each input sequence. All snippets shown are of correctly predicted
examples. We have provided highlights of all input sentences in the validation / test sets for both
datasets in an attached supplementary file.

Simple

Smooth

Integrated

Decoded
Grad-CAM l7

STT-2 Example 1: For the left column example, Decoded Grad-CAM l7 and to an extent AllenNLP
Interpret’s Simple highlight the negative sentiment words ”bleak” and ”desperate”, but all three of
AllenNLP Interpret’s methods also focus on ”and”. For the right column example, all four methods
focus on ”awful” and ”unrem”(ittingly), but the AllenNLP Interpret’s methods are more noisy with
highlights on unrelated terms such as ”it”, ”dog” and ”constitutes”.

20



Under review as a conference paper at ICLR 2023

Simple

Smooth

Integrated

Decoded
Grad-CAM l7

STT-2 Example 2: For the left column example, Decoded Grad-CAM l7 focuses strongly on the pos-
itive phrases ”is an amusing joy” and ”surprising”. The other methods also highlight these terms,
but less clearly with unrelated words such as ”moment” and potentially negative words such as
”violent”. For the right column example, all methods focus on the positive words ”romantic”, ”sat-
isfying”, ”original”, and ”emotional”; however the AllenNLP Interpret’s methods are more noisy
and highlight many other words too.

Shapely

Occlusion

Integrated

Decoded
Grad-CAM l6

AG News Example 1: Decoded Grad-CAM l6 and Shapely focus on highlighting ”Apple” (a tech
company) along with technology terms like ”Download” and ”Computer”. Occlusion focuses on
terms related to the Netherlands such as ”AMSTERDAM” and ”Dutch”, which do not have an
obvious connection to technology. Integrated lightly highlights a large number of words, but some
are technology related ones.
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Shapely

Occlusion

Integrated

Decoded
Grad-CAM l6

AG News Example 2: Decoded Grad-CAM l6 highlights the words ”chief” and ”kidnapped” along
with terms related to the Middle East region (”Iraq” and ”Baghdad”). Occlusion lightly highlights
the phrases ”kidnapped in Iraq” and ”kidnapped in Baghdad”, which also are meaningful. Shapely
and Integrated have less clear explanations with focus on the words ”in”, ”Care”, and the punctua-
tion.

Shapely

Occlusion

Integrated

Decoded
Grad-CAM l6

AG News Example 3: Decoded Grad-CAM l6 heavily highlights the word ”Hockey”. The other
methods also have some focus on hockey terms such as the phrase ”National Hockey League labor”,
but are noisy and also highlight many unrelated terms such as ”The talks” and ”after each”.
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Shapely

Occlusion

Integrated

Decoded
Grad-CAM l6

AG News Example 4: Decoded Grad-CAM l6 heavily highlights the word ”pensions” with some
additional focus on ”union”; however, it also does highlight some less clear terms such as ”carrier”,
”drop”, and ”Airlines”. Shapely and Integrated also highlight key business terms such as ”traditional
pensions”, ”contract”, and ”union leaders”; although Shapely also puts a lot of emphasis on ”United”
and Integrated on ”Airlines pilots”. Occlusion lightly highlights everything and does not have an
clear explanations.

23


	Introduction
	Related Work

	Proposed Saliency Method
	Calculating Layer Saliency Scores
	Interpreting the Hidden Layers

	Experiments
	The Hiding /Revealing Game
	Token Overlap

	Discussion
	Appendix
	Experimental Setup
	Hiding / Revealing Game for All Layers
	Word Clouds
	Overlapping Tokens
	Examples of Highlighted Explanations


