Pruning Spurious Subgraphs for Graph Out-of-Distribution Generalization

Anonymous Authors¹

Abstract

Graph Neural Networks (GNNs) often encounter significant performance degradation under distribution shifts between training and test data, hindering their applicability in real-world scenarios. Recent studies have proposed various methods to 015 address the out-of-distribution (OOD) generalization challenge, with many methods in the graph domain focusing on directly identifying an invari-018 ant subgraph that is predictive of the target label. However, we argue that identifying the edges from 020 the invariant subgraph directly is challenging and error-prone, especially when some spurious edges exhibit strong correlations with the targets. In this paper, we propose PrunE, the first pruning-based graph OOD method that eliminates spurious edges 025 to improve OOD generalizability. By pruning spurious edges, PrunE retains the invariant subgraph 027 more comprehensively, which is critical for OOD 028 generalization. Specifically, PrunE employs two 029 regularization terms to prune spurious edges: 1) graph size constraint to exclude uninformative spurious edges, and 2) ϵ -probability alignment to further suppress the occurrence of spurious edges. Through theoretical analysis and extensive 034 experiments, we show that PrunE achieves supe-035 rior OOD performance and outperforms previous state-of-the-art methods significantly. Codes will be available upon acceptance.

1. Introduction 041

039

047

049

050

051

052

053

054

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; 043 Xu et al., 2018; Veličković et al., 2017) often encounter significant performance degradation under distribution shifts 045 between training and test data, hindering their applicability 046 in real-world scenarios (Hu et al., 2020; Huang et al., 2021; Koh et al., 2021). To address the out-of-distribution (OOD)

Figure 1. Illustration of two learning paradigms for graph-specific OOD methods. Previous methods seek to identify edges from the invariant subgraph directly, while our approach prunes edges from the spurious subgraph, which is more effective at preserving the invariant substructure.

generalization challenge, recent studies propose to utilize the causally invariant mechanism to learn invariant features that remain stable across different environments (Peters et al., 2016; Arjovsky et al., 2020; Ahuja et al., 2021; Jin et al., 2020; Krueger et al., 2021; Creager et al., 2021). In graph domain, various methods have been proposed to address the OOD generalization problem (Wu et al., 2022b; Li et al., 2022b; Chen et al., 2022; Liu et al., 2022; Sui et al., 2023; Gui et al., 2023; Yao et al., 2024), Most OOD methods, both in the general domain and the graph domain, aim to learn invariant features directly. To achieve this, many graph-specific OOD methods utilize a subgraph selector to model independent edge probabilities to directly identify invariant subgraphs that remain stable across different training environments (Chen et al., 2022; Miao et al., 2022; Wu et al., 2022b; Sui et al., 2023). However, we argue that directly identifying invariant subgraphs can be challenging and error-prone, particularly when spurious edges exhibit strong correlations with target labels. In such scenarios, certain edges in the invariant subgraph G_c may be misclassified (i.e., assigned low predicted probabilities), leading to par*tial* preservation of the invariant substructure and thereby degrading OOD generalization performance. In contrast, while a subset of spurious edges may correlate strongly with targets, the majority of spurious edges are relatively uninformative and easier to identify due to their weak correlations with labels. Consequently, pruning these less informative edges is more likely to preserve the invariant substructure effectively, although some spurious edges may still persist.

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

In this work, we raise the following research question:
 Can we prune spurious edges instead of directly identifying

057 Can we prime spurious eages instead of directly identifying
 invariant edges to enhance OOD generalization ability?

059 To address this question, we propose the first pruning-based 060 OOD method. Unlike most existing graph OOD methods 061 that aim to directly identify edges in the invariant subgraph, 062 our method focuses on pruning spurious edges to achieve 063 OOD generalization (Figure 1). We first begin with a case 064 study to investigate the differences between our method 065 and previous ones that directly identify invariant subgraphs, 066 in terms of how the induced subgraph selector estimates 067 edges from the invariant subgraph G_c and spurious sub-068 graph G_s . Specifically, we observe that previous methods 069 tend to misclassify some edges in G_c as unimportant edges 070 with low probabilities, while assigning high probabilities to 071 certain edges in G_s . As a result, the invariant substructure in the graph is not preserved. In contrast, our pruning-based 073 method preserves the invariant subgraph more effectively 074 (i.e., estimating the edges in G_c with high probabilities), 075 although a small number of spurious edges may still remain 076 due to the strong correlation with the targets. However, by 077 preserving the invariant substructure more effectively, our 078 method PrunE (Pruning spurious Edges for OOD gener-079 alization) achieves enhanced OOD performance compared 080 to previous approaches that directly identify invariant sub-081 graphs.

082 The core insight behind PrunE is that Empirical Risk Mini-083 mization (ERM) (Vapnik, 1995) tends to capture all "useful" 084 features that are correlated with the targets (Kirichenko et al., 085 2023). In our context, ERM pushes the subgraph selector to 086 preserve substructures that are more informative for predic-087 tion. By forcing uninformative edges to be excluded, G_c is 088 preserved due to its strong correlation with the targets and 089 the inherent inductive bias of ERM. To prune spurious edges, 090 our proposed OOD objective consists of two terms that act 091 on the subgraph selector, without adding additional OOD 092 objective: 1) graph size constraint. This constraint limits 093 the total edge weights derived from the subgraph selector to 094 $\eta|G|$ for a graph G, where $\eta < 1$, thereby excluding some 095 uninformative edges. 2) ϵ -probability alignment. This term 096 aligns the probabilities of the lowest K% edges to be close 097 to zero, further suppressing the occurence of uninformative 098 edges. Through theoretical analysis and extensive empirical 099 validation, we demonstrate that PrunE significantly outper-100 forms existing methods in OOD generalization, establishing state-of-the-art performance across various benchmarks. Our contributions are summarized as follows:

• Novel framework. We propose a *pruning-based* graph OOD method PrunE, which introduces a novel paradigm focusing on removing spurious edges rather than directly identifying edges in G_c . By pruning spurious edges, PrunE preserves more edges in G_c than

104

105

106

109

previous methods, thereby improving its OOD generalization performance.

- Theoretical guarantee. We provide theoretical analyses, demonstrating that: 1) The proposed graph size constraint provably enhances OOD generalization ability by reducing the size of G_s ; 2) The proposed learning objective (Eqn. 5) provably identifies the invariant subgraph by pruning spurious edges.
- Strong empirical performance. We conduct experiments on both synthetic datasets and real-world datasets, compare against 15 baselines, PrunE outperforms the second-best method by up to 24.19%, highlighting the superior OOD generalization ability.

2. Preliminary

Notation. Throughout this work, an undirected graph G with n nodes and m edges is denoted by $G := \{\mathcal{V}, \mathcal{E}\}$, where \mathcal{V} is the node set and \mathcal{E} denotes the edge set. G is also represented by the adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and node feature matrix $\mathbf{X} \in \mathbb{R}^{n \times D}$ with D feature dimensions. We use G_c and G_s to denote invariant subgraph and spurious subgraph. \hat{G}_c and \hat{G}_s denote the estimated invariant and spurious subgraph. $t : \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times D} \to \mathbb{R}^{n \times n}$ refers to a learnable subgraph selector that models each independent edge probability, $\tilde{G} \sim t(G)$ represents \tilde{G} is sampled from t(G). We use \mathbf{w} to denote a vector, and \mathbf{W} to denote a matrix respectively. Finally, a random variable is denoted as W, a set is denoted using \mathcal{W} . A more complete set of notations is presented in Appendix A.

OOD Generalization. We consider the problem of graph classification under various forms of distribution shifts in hidden environments. Given a set of graph datasets $\mathcal{G} = \{G^e\}_{e \in \mathcal{E}_{tr}}$, a GNN model $f = \rho \circ h$, comprises an encoder $h: \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times D} \to \mathbb{R}^F$ that learns a representation \mathbf{h}_G for each graph G, followed by a downstream classifier $\rho: \mathbb{R}^F \to \mathbb{Y}$ to predict the label $\hat{Y}_G = \rho(\mathbf{h}_G)$. In addition, a subgraph selector $t(\cdot)$ is employed to generate a graph with structural modifications. The objective of OOD generalization in our work is to learn an optimal composite function $f \circ t$ that encodes stable features by regularizing $t(\cdot)$ to prune spurious edges while preserving the edges in G_c .

Assumption 2.1. Given a graph $G \in \mathcal{G}$, there exists a stable subgraph G_c for every class label $Y \in \mathcal{Y}$, satisfying: a) $\forall e, e' \in \mathcal{E}_{tr}, P^e(Y | G_c) = P^{e'}(Y | G_c)$; b) The target Y can be expressed as $Y = f^*(G_c) + \epsilon$, where $\epsilon \perp G$ represents random noise.

Assumption 2.1 posits the existence of a subgraph G_c that remains stable across different environments and causally determines the target Y, thus is strongly correlated with the target labels. Our goal in this work is to identify edges in G_c by excluding spurious edges to achieve OOD generalization.

3. Should We Identify Invariant Subgraphs or Prune Spurious Subgraphs?

113 In this section, we conduct a case study to explore the differences between previous graph OOD methods and our pro-114 posed approach in the estimated edge probabilities. Through 115 experiments, we observe that our pruning-based method is 116 more effective at preserving G_c compared to previous meth-117 ods that aim to directly identify G_c , thereby facilitating 118 better OOD generalization performance for our approach. 119 Next we detail the experimental setup and observations. 120

Datasets. We use GOODMotif (Gui et al., 2022) dataset
with *base* split for the case study. More details of this dataset
can be found in Appendix G.

Experiment Setup. We use GSAT (Miao et al., 2022), 125 CIGA (Chen et al., 2022), and AIA (Sui et al., 2023) as 126 baseline methods representing three different lines of work 127 for comparison, all of which utilize a subgraph selector to 128 directly identify G_c for OOD generalization. After training 129 and hyperparameter tuning, we obtain a model and a well-130 trained subgraph selector for each method. We evaluate the 131 test performance on the Motif-base dataset and calculate the 132 average number of edges in G_c and G_s among the top-K133 predicted edges for all methods. Here, we set $K = 1.5|G_c|$. 134 For our method, we also present the statistics under different 135 values of K. 136 137

138

139

140

141

142

143

144

145

147

148

Figure 2. Illustration of the average number of edges from G_c and G_s included in the top-K predicted edges, where c denotes $|G_c|$.

152 **Observations.** From Figure 2, we observe that: (1) 153 PrunE outperforms all the baselines by a significant mar-154 gin, demonstrating superior OOD generalization ability; (2) 155 When $K = 1.5 |G_c|$, our method preserves more edges from 156 G_c compared to other methods. Moreover, as K transitions 157 from $5|G_c|$ to $1.5|G_c|$, the average number of edges in G_c 158 remains nearly constant, while the number of edges from G_s 159 decreases significantly. This indicates that most edges from 160 G_c have predicted probabilities greater than those from G_s ; 161 (3) When compared with the oracle, the average number of 162 edges in G_c under our method is still slightly lower than 163 the oracle value, suggesting that a small number of spurious 164

edges are estimated with high probability.

In conclusion, compared to directly identifying invariant edges (i.e., edges in G_c), pruning spurious edges preserves more edges in G_c , even if some spurious edges remain challenging to eliminate. However, the OOD performance can be substantially improved by retaining the invariant subgraphs, which explains why our pruning-based method outperforms previous approaches. We also provide a detailed discussion in Appendix F on why traditional graph OOD methods tend to assign low probabilities to edges in G_c , and how our pruning-based approach avoids this pitfall. Next, we detail the design of our pruning-based method.

4. The Proposed Method

In this section, we present our pruning-based method PrunE, which directly regularizes the subgraph selector without requiring any additional OOD regularization. The pseudocode is shown in Algorithm 1.

Subgraph selector. Following previous studies (Ying et al., 2019; Luo et al., 2020; Wu et al., 2022b), we model each edge $e_{ij} \sim Bernoulli(p_{ij})$ independently which is parameterized by p_{ij} . The probability of the graph *G* is factorized over all the edges, i.e., $P(G) = \prod_{e_{ij} \in \mathcal{E}} p_{ij}$. To parameterize \mathcal{T}_{θ} , we employ a GNN model to derive the node representation for each node v, followed by an MLP to obtain the logits w_{ij} as following:

$$\mathbf{h}_{v} = \text{GNN}(v \mid G), \ v \in \mathcal{V},$$

$$w_{ij} = \text{MLP}\left(\mathbf{h}_{i}, \mathbf{h}_{j}, \mathbf{h}_{i} \| \mathbf{h}_{j}\right), e_{ij} \in \mathcal{E},$$
(1)

here \parallel denotes the concatenation operator. To ensure the sampling process from w_{ij} is differentiable and facilitate gradient-based optimization, we leverage the Gumbel-Softmax reparameterization trick (Bengio et al., 2013; Maddison et al., 2016), which is applied as follows:

$$p_{ij} = \sigma \left(\left(\log \epsilon - \log(1 - \epsilon) + \omega_{ij} \right) / \tau \right), \epsilon \sim \mathcal{U}(0, 1),$$
$$\widetilde{\mathbf{A}}_{ij} = 1 - \mathrm{sg}(p_{ij}) + p_{ij},$$
(2)

here \mathbf{A} denotes the sampled adjacency matrix, τ is the temperature, $sg(\cdot)$ denotes the stop-gradient operator, and $\mathcal{U}(0,1)$ denotes the uniform distribution. \mathbf{A}_{ij} is the edge weight for e_{ij} , which remains binary and differentiable for the gradient-based optimization.

Next, we introduce the proposed OOD objectives in PrunE that directly act on the subgraph selector to prune spurious edges: (1) *Graph size constraint*, which excludes a portion of uninformative spurious edges by limiting the total edge weights in the graph; (2) ϵ -probability alignment, which further suppresses the presence of uninformative edges by aligning the predicted probabilities of certain edges close to zero.

165 **Graph size constraint.** We first introduce a regularization 166 term \mathcal{L}_e which encourages a graph size distinction between 167 $\tilde{G} \sim t(G)$ and G: 168

169

170

171

193

194

195

196

197

198

216

217

218

219

$$\mathcal{L}_e = \mathbb{E}_{\mathcal{G}} \left(\frac{\sum_{(i,j) \in \mathcal{E}} \widetilde{\mathbf{A}}_{ij}}{|\mathcal{E}|} - \eta \right)^2, \tag{3}$$

172 where η is a hyper-parameter that controls the budget for the total number of edges pruned by $t(\cdot)$. The core insight is that 174 when \mathcal{L}_e acts as a regularization term for ERM, the subgraph selector will prune spurious edges while preserving edges 176 in G_c , since ERM learns all useful patterns that are highly correlated with the target labels (Kirichenko et al., 2023). 178 Therefore, given Assumption 2.1, G_c will be preserved 179 due to its strong correlation to the targets, and a subset 180 of edges in G_s will be excluded. Notably, it is critical to 181 select a suitable η , as an overly aggressive choice, e.g., 182 $\eta = 0.1$, may result in pruning edges in G_c as well. In 183 practice, we find that $\eta \in \{0.75, 0.85\}$ works well for most 184 datasets. In Proposition 5.1, we demonstrate that the graph 185 size regularization \mathcal{L}_e provably prunes spurious edges while 186 retaining invariant edges.

187 188 189 189 190 191 192 ϵ -probability alignment. Although \mathcal{L}_e is able to prune a subset of spurious edges, it is challenging to get rid off all spurious edges. To further suppress the occurence of spurious edges, we propose the following regularization on $t(\cdot)$:

$$\mathcal{L}_{s} = \mathbb{E}_{\mathcal{G}} \frac{1}{|\mathcal{E}_{s}|} \sum_{e_{ij} \in \mathcal{E}_{s}} |p_{ij} - \epsilon|.$$
(4)

Here, ϵ is a value close to zero, p_{ij} denotes the normalized probability of the edge e_{ij} , and \mathcal{E}_s is the lowest K% of edges among all estimated edge weights $w_{ij} \in \mathcal{E}$ by the subgraph selector $t(\cdot)$.

199 The key insight is that edges from G_c are likely to exhibit 200 higher predicted probabilities compared to edges in G_s . 201 Thus, by aligning the bottom K% edges with the lowest pre-202 dicted probability to a small probability score ϵ , it becomes more likely to suppress spurious edges rather than invariant 204 edges. When K gets larger, \mathcal{L}_s will inevitably push down 205 the probabilities of edges in G_c . However, ERM will drive 206 up the probabilities of informative edges for accurate pre-207 diction, ensuring that the important edges are included in \widehat{G}_c . Therefore, the penalty for \mathcal{L}_s should be relatively small 209 compared to the penalty of ERM. In practice, we find that 210 $\lambda_2 \in \{1e-2, 1e-3\}$ and K = 90 work stably across most 211 datasets. In all experiments, we set $\epsilon = \frac{1}{|\mathcal{E}|}$, which works 212 well for all the datasets. 213

Final objective. The overall objective is formulated as:

$$\mathcal{L} = \mathcal{L}_{GT} + \lambda_1 \mathcal{L}_e + \lambda_2 \mathcal{L}_s, \tag{5}$$

here $\lambda_i, i \in \{1, 2\}$ are hyperparameters that balance the contribution of each component to the overall objective, and

 \mathcal{L}_{GT} denotes the ERM objective:

$$\mathcal{L}_{GT} = -\mathbb{E}_{\mathcal{G}} \sum_{k \in \mathcal{C}} Y_k \log\left(f(t(G))_k\right), \tag{6}$$

where Y_k denotes the class label k for graph G, $f(t(G))_k$ is the predicted probability for class k of graph G.

Algorithm 1 The proposed method

- 1: **Input:** Graph dataset \mathcal{G} , epochs E, learning rates η , hyperparameters λ_1, λ_2
- 2: **Output:** Optimized GNN model $f^* = \rho^* \circ h^*$, and the subgraph selector $t^*(\cdot)$.
- Initialize: GNN encoder h(·), classifier ρ(·), and the learnable data transformation t(·).

```
4: for epoch e = 1 to E do
```

- 5: **for** each minibatch $\mathcal{B} \in \mathcal{G}$ **do**
- 6: Calculate w_{ij} using Eqn. 1 for each graph $G \in \mathcal{B}$
- 7: Calculate \mathcal{L}_e using Eqn. 3
- 8: Calculate \mathcal{L}_s using Eqn. 4
- 9: Sample $G \sim t(G)$ using $t(\cdot)$ for each $G \in \mathcal{B}$
- 10: Calculate cross-entropy loss \mathcal{L}_{GT} using Eqn. 6
- 11: Compute the total loss $\mathcal{L} = \mathcal{L}_{GT} + \lambda_1 \mathcal{L}_e + \lambda_2 \mathcal{L}_{div}$
- 12: Perform backpropagation to update the parameters of $h(\cdot), \rho(\cdot)$, and $t(\cdot)$
- 13: end for
- 14: end for

5. Theoretical Analysis

In this section, we provide some theoretical analysis on our proposed method PrunE . All proofs are included in Appendix D.

Proposition 5.1. Under Assumption 2.1, the size constraint loss \mathcal{L}_e , when acting as a regularizer for the ERM loss \mathcal{L}_{GT} , will prune edges from the spurious subgraph G_s , while preserving the invariant subgraph G_c given a suitable η .

Prop. 5.1 demonstrates that by enforcing graph size constraint, \mathcal{L}_e will only prune spurious edges, thus making the size of G_s to be smaller. Next we show that \mathcal{L}_e provably improves OOD generalization ability by shrinking $|G_s|$.

Theorem 5.2. Let $l((x_i, x_j, y, G); \theta)$ denote the 0-1 loss function for predicting whether edge e_{ij} presents in graph G using $t(\cdot)$, and

$$L(\theta; D) := \frac{1}{n} \sum_{(x_i, x_j, y, G) \sim D} l((x_i, x_j, y, G); \theta), \forall e_{ij} \in \mathcal{E}.$$
$$L(\theta; S) := \frac{1}{m} \sum_{(x_i, x_j, y, G) \sim S} l((x_i, x_j, y, G); \theta), \forall e_{ij} \in \mathcal{E}.$$
(7)

where D and S represent the training and test set distributions, respectively, c is a constant, and n and m denotes the sample size in training set and test set respectively. Then, with probability at least $1 - \delta$ and $\forall \theta \in \Theta$, we have:

$$|L(\theta; D) - L(\theta; S)| \le 2(c|G_s| + 1)M,$$
 (8)

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Theorem 5.3 demonstrates the ability to retain only G_c by sampling from $t^*(G)$. While previous methods aim to directly identify G_c , PrunE is able to achieve the similar goal more effectively by pruning spurious edges.

6. Related Work

target label y.

241 OOD generalization on graphs. To tackle the OOD gener-242 alization challenge on graph, various methods have been pro-243 244 posed recently. MoleOOD (Yang et al., 2022), GIL (Li et al., 2022b) and MILI (Wang et al., 2024) aim to learn graph 245 invariant features with environment inference. CIGA (Chen 246 et al., 2022) adopts supervised contrastive learning to iden-247 tify invariant subgraphs for OOD generalization. Several 248 249 methods (Wu et al., 2022b; Liu et al., 2022; Sui et al., 2023; Jia et al., 2024; Li et al., 2024) utilize graph data augmenta-250 tion to enlarge the training distribution without perturbing 251 the stable patterns in the graph, enabling OOD general-252 ization by identifying stable features across different aug-253 mented environments. SizeShiftReg (Buffelli et al., 2022) 254 255 proposes a method for size generalization for graph-level classification using coarsening techniques. GSAT (Miao 256 et al., 2022) and DGIB (Yuan et al., 2024) use the infor-257 mation bottleneck principle (Tishby & Zaslavsky, 2015) 258 to identify the minimum sufficient subgraph that explains 259 the model's prediction. Many existing methods attempt to directly identify the invariant subgraph to learn invariant fea-261 tures. However, this approach can be error-prone, especially when spurious substructures exhibit strong correlations with 263 the targets, leading to the failure to preserve the invariant 264 substructure and ultimately limiting the OOD generalization 265 capability. In contrast, PrunE aims to exclude spurious 266 edges without directly identifying invariant edges, resulting 267 in preserving the invariant substructure more effectively, 269 and enhanced generalization performance.

270 Feature learning in the presence of spurious features. 271 Several studies have explored the inductive bias and SGD 272 training dynamics of neural networks in the presence of 273 spurious features (Pezeshki et al., 2021; Rahaman et al., 274

2019; Shah et al., 2020). Shah et al. (2020) shows that in certain scenarios neural networks can suffer from simplicity bias and rely on simple spurious features, while ignoring the core features. More recently, Kirichenko et al. (2023) has found that even when neural networks heavily rely on spurious features, the core (causal) features can still be learned sufficiently well. Inspired by Kirichenko et al. (2023), the subgraph selector should be able to include G_c to encode invariant features using ERM as the learning objective, given that G_c is both strongly correlated with and predictive of the targets (Assumption 2.1). This insight motivates us to propose a pruning-based graph OOD method. Compared to previous approaches, PrunE is capable of preserving a more intact set of edges from G_c to enhance OOD performance, at the cost that certain spurious edges may remain difficult to eliminate.

7. Experiments

In this section, we evaluate the effectiveness of PrunE on both synthetic datasets and real-world datasets, and answer the following research questions. RQ1. How does our method perform compared with SOTA baselines? RO2. How do the individual components and hyperparameters in PrunE affect the overall performance? RQ3. Can the optimal subgraph selector $t^*(G)$ correctly identify G_c ? **RQ4.** Do edges in G_c predicted by $t(\cdot)$ exhibit higher probability scores than edges in G_s ? **RQ5.** How does PrunE perform on datasets with concept shift? **RQ6.** How do different GNN architectures impact the OOD performance? More details on the datasets, experiment setup and experimental results are presented in Appendix G.

7.1. Experimental Setup

Datasets. We adopt GOOD datasets (Gui et al., 2022), OGBG-Molbbbp datasets (Hu et al., 2020; Wu et al., 2018), and DrugOOD datasets (Ji et al., 2022) to comprehensively evaluate the OOD generalization performance of our proposed framework.

Baselines. Besides ERM (Vapnik, 1995), we compare our method against two lines of OOD baselines: (1) OOD algorithms on Euclidean data, including IRM (Arjovsky et al., 2020), VREx (Krueger et al., 2021), and Group-DRO (Sagawa et al., 2019); (2) graph-specific OOD methods and data augmentation methods, including DIR (Wu et al., 2022b), GSAT (Miao et al., 2022), GREA (Liu et al., 2022), DisC (Fan et al., 2022), CIGA (Chen et al., 2022), AIA (Sui et al., 2023), DropEdge (Rong et al., 2019), G-Mixup (Han et al., 2022), FLAG (Kong et al., 2022), and LiSA (Yu et al., 2023).

Evaluation. We report the ROC-AUC score for GOOD-HIV, OGBG-Molbbbp, and DrugOOD datasets, where the tasks

Pruning Spurious Subgraphs for Graph Out-of-Distribtuion Generalization

Figure 3. Ablation study on \mathcal{L}_e and \mathcal{L}_s .

are binary classification. For GOOD-Motif and SPMotif
datasets, we use accuracy as the evaluation metric. We run
experiments 4 times with different random seeds, select
models based on the validation performance, and report the
mean and standard deviations on the test set.

295**7.2. Experimental Results**

287

In this section, we report the main results on both syntheticand real-world datasets.

299 Synthetic datasets. The GOOD-Motif datasets fully align 300 with our assumptions, making them a suitable benchmark 301 for evaluating the effectiveness of our proposed method. Our 302 approach outperforms second-best method AIA by 24.19%303 and 19.13% in Motif-base and Motif-size datasets respec-304 tively. This demonstrates the excellent OOD generalization 305 capability of PrunE by pruning spurious edges. While most 306 (graph) OOD methods perform similarly, or even underper-307 form ERM, PrunE outperforms all the baseline methods 308 by a large margin. Notably, the in-distribution performance 309 of ERM on Motif-base dataset is 92.60% (Gui et al., 2022), 310 while our approach achieves a comparable result of 91.48%, 311 further highlighting the superiority of the novel paradigm 312 of pruning spurious edges over the traditional approach of 313 directly identifying invariant edges. 314

Real-world datasets. In real-world datasets, which present 315 more complex and realistic distribution shifts, many graph 316 OOD algorithms exhibit instability, occasionally underperforming ERM. In contrast, our approach consistently 318 achieves stable and superior performance across a diverse 319 set of distribution shifts, and outperform the second-best 320 method by an average of 2.38% in 7 real-world datasets. This also demonstrates that the proposed pruning-based 322 method can be effectively applied to various real-world sce-323 narios, highlighting its applicability. 324

7.3. Ablation Study

325

326

327

328

329

In this section, η and K we evaluate the impact of \mathcal{L}_e and \mathcal{L}_{div} using the GOODMotif and GOODHIV datasets by

(b) GOODHIV-size dataset

Figure 4. Hyperparameter sensitivity. $\eta \in \{0.75, 0.85\}$ and K = 90 yield stable performance across various datasets.

setting $\lambda_1 = 0$ or $\lambda_2 = 0$ in Eqn. 5 to observe the impacts on model performance. As illustrated in Figure 3, removing either \mathcal{L}_e or \mathcal{L}_s leads to a significant drop in test performance across all datasets, and a larger variance. The removal of \mathcal{L}_e results in a more significant decline, as this regularization penalty is stronger (e.g., λ_1 is set to 10 in the experiments). However, even with \mathcal{L}_e , some spurious edges may still exhibit high probabilities, potentially inducing a large variance. By further employing \mathcal{L}_s , PrunE effectively reduce predicted probabilities for most spurious edges, thus further reduce the variance and improve the performance.

7.4. Hyper-parameter Sensitivity

We study the impact of hyperparameter sensitivity on the edge budget η in \mathcal{L}_e and the K% edges with the lowest probability in \mathcal{L}_s . Additionally, we investigate the effects of varying the penalty weights for \mathcal{L}_e and \mathcal{L}_s (i.e., λ_1 and λ_2). As illustrated in Figure 4, an unsuitable choice of η can negatively impact test performance, e.g., in the GOOD-Motif dataset with *base* split, setting $\eta = 0.5$ may prune too many edges, potentially corrupting G_c and consequently reducing test performance. However, with a suitable η , test performance remains stable across different values of K. Notably, a larger K (e.g., K = 90) consistently leads to optimal performance. Readers may raise concerns that a large value of K could also push down the probability of edges in G_c , seemingly contradicting the optimal test performance observed at K = 90. However, since ERM exerts a stronger influence in driving up the probability of invariant edges to achieve accurate predictions, this compensates for the negative effect of \mathcal{L}_s . Notably, when $\lambda_2 \in \{1, 10\}$, the test performance declines significantly for $\forall K \in \{50, 70, 90\}$, as the regularization strengths surpass those of ERM. Re-

3 33 33 33

350

351

352

353

354

355

356

357

358 359

360

361

362

363

374

3 3

30	Table 1. Performance on synthetic and real-world datasets. Numbers in bold indicate the best performance, while the <u>underlined</u> numbers
31	indicate the second best performance. * denotes the test performance is statistically significantly better than the second-best method, with
32	p-value less than 0.05.

Method	GOOE	OMotif	GOO	DHIV	EC50			OGBG-Molbbbp	
nieurou	base	size	scaffold	size	scaffold	size	assay	scaffold	size
ERM	68.66±4.25	51.74±2.88	69.58±2.51	59.94±2.37	62.77 ± 2.14	61.03 ± 1.88	$64.93{\scriptstyle\pm 6.25}$	68.10±1.68	78.29±3.76
IRM	$70.65{\scriptstyle \pm 4.17}$	51.41±3.78	$67.97{\scriptstyle\pm1.84}$	$59.00{\scriptstyle\pm2.92}$	63.96 ± 3.21	62.47 ± 1.15	72.27 ± 3.41	67.22 ± 1.15	$77.56{\scriptstyle \pm 2.48}$
GroupDRO	68.24 ± 8.92	$51.95{\scriptstyle\pm 5.86}$	70.64 ± 2.57	$58.98{\scriptstyle\pm2.16}$	64.13 ± 1.81	59.06 ± 1.50	$70.52{\scriptstyle\pm3.38}$	$66.47{\scriptstyle\pm2.39}$	$79.27{\scriptstyle\pm2.43}$
VREx	$71.47{\scriptstyle\pm6.69}$	$52.67{\scriptstyle\pm}5.54$	$70.77{\scriptstyle\pm2.84}$	$58.53{\scriptstyle\pm2.88}$	$64.23{\scriptstyle\pm1.76}$	$63.54{\scriptstyle\pm1.03}$	68.23±3.19	$68.74{\scriptstyle\pm1.03}$	$78.76{\scriptstyle \pm 2.37}$
DropEdge	45.08±4.46	45.63±4.61	70.78±1.38	58.53±1.26	63.91±2.56	61.93±1.41	73.79±4.06	66.49±1.55	78.32±3.44
G-Mixup	59.66±7.03	52.81±6.73	$70.01 {\pm} 2.52$	$59.34{\scriptstyle\pm2.43}$	$61.90{\scriptstyle\pm2.08}$	61.06 ± 1.74	69.28 ± 1.36	67.44 ± 1.62	$78.55{\scriptstyle \pm 4.16}$
FLAG	61.12±5.39	51.66±4.14	68.45 ± 2.30	60.59 ± 2.95	$64.98{\scriptstyle \pm 0.87}$	64.28 ± 0.54	74.91 ± 1.18	$67.69{\scriptstyle\pm2.36}$	$79.26{\scriptstyle \pm 2.26}$
LiSA	$54.59{\scriptstyle\pm4.81}$	53.46±3.41	70.38 ± 1.45	52.36±3.73	62.60±3.62	60.96 ± 1.07	$69.73{\scriptstyle \pm 0.62}$	$68.11{\scriptstyle \pm 0.52}$	78.62 ± 3.74
DIR	62.07 ± 8.75	52.27±4.56	68.07±2.29	$58.08{\scriptstyle\pm2.31}$	$63.91 {\pm} 2.92$	61.91±3.92	66.13±3.01	$66.86{\scriptstyle \pm 2.25}$	$76.40{\scriptstyle\pm4.43}$
DisC	$51.08{\scriptstyle\pm3.08}$	50.39 ± 1.15	68.07±1.75	58.76 ± 0.91	59.10±5.69	57.64±1.57	61.94±7.76	$67.12{\scriptstyle\pm2.11}$	$56.59{\scriptstyle\pm10.09}$
CAL	65.63±4.29	51.18 ± 5.60	67.37 ± 3.61	$57.95{\scriptstyle\pm2.24}$	65.03 ± 1.12	$60.92{\scriptstyle\pm2.02}$	$74.93{\scriptstyle\pm 5.12}$	$68.06{\scriptstyle\pm2.60}$	$79.50{\scriptstyle\pm4.81}$
GREA	56.74±9.23	$54.13{\scriptstyle\pm10.02}$	$67.79{\scriptstyle\pm2.56}$	60.71 ± 2.20	64.67 ± 1.43	62.17 ± 1.78	71.12 ± 1.87	69.72 ± 1.66	$77.34{\scriptstyle \pm 3.52}$
GSAT	60.42 ± 9.32	53.20±8.35	68.66 ± 1.35	58.06 ± 1.98	65.12 ± 1.07	61.90 ± 2.12	74.77 ± 4.31	66.78 ± 1.45	75.63 ± 3.83
CIGA	68.71 ± 10.9	49.14 ± 8.34	69.40 ± 2.39	$59.55{\scriptstyle\pm2.56}$	65.42 ± 1.53	64.47 ± 0.73	74.94 ± 1.91	$64.92{\scriptstyle\pm2.09}$	65.98 ± 3.31
AIA	$\underline{72.91{\scriptstyle\pm}5.62}$	55.85±7.98	$\underline{71.15{\scriptstyle\pm1.81}}$	$\underline{61.64{\scriptstyle\pm3.37}}$	64.71 ± 0.50	63.43±1.35	$\underline{76.01{\scriptstyle\pm1.18}}$	$70.79{\scriptstyle \pm 1.53}$	$\underline{81.03{\scriptstyle\pm5.15}}$
PrunE	$91.48^*{\scriptstyle\pm0.40}$	$66.53^*{\scriptstyle\pm8.55}$	$71.84^*{\scriptstyle\pm0.61}$	$64.99^*{\scriptstyle\pm1.63}$	$67.56^*{\scriptstyle\pm0.34}$	$65.46^*{\scriptstyle\pm0.88}$	$\textbf{78.01}^{*}{\scriptstyle\pm0.42}$	$\underline{70.32{\scriptstyle\pm1.73}}$	$81.59{\scriptstyle\pm 5.35}$

Tabl	<i>Table 2.</i> Test performance with varying ϵ .					
	Motif-base	Motif-size	EC50-sca			
$\epsilon = 0.01$	91.63±0.73	60.38±8.35	77.76±1.11			
$\epsilon = 0.1$	$88.14 {\pm} 0.67$	$62.38 {\pm} 10.76$	76.65±1.92			
$\epsilon = 0.3$	80.93±4.33	$50.65 {\pm} 4.95$	76.07 ± 2.65			
$\epsilon = 0.5$	$74.52{\pm}19.89$	$50.28 {\pm} 8.35$	75.93±1.27			
$\epsilon = \frac{1}{ \mathcal{E} }$	91.48±0.40	66.53±8.55	78.01±0.42			

garding real-world datasets, such as GOODHIV-size and other datasets in Appendix G, the test OOD performance demonstrates stability across various hyperparameters, underscoring the robustness of PrunE.

Furthermore, we investigate the impact of ϵ in \mathcal{L}_s . As shown in Table 2, the optimal performance is observed when ϵ is a small value close to zero. However, as ϵ increases, the test 367 performance declines, especially on synthetic datasets. This decline occurs because larger values of ϵ weaken the sup-369 pression effect, potentially leading to adverse effect that hin-370 der generalization. Notably, when $\epsilon = \frac{1}{|\mathcal{E}|}$, the suppression 371 strength is dynamically adjusted for each graph instance, 372 resulting in stable performance across diverse datasets. 373

7.5. In-depth Analysis 375

376 **Can** $t^*(\cdot)$ **identify** G_c ? To verify whether $t^*(\cdot)$ can indeed 377 identify G_c , we conduct experiments using GOOD-Motif 378 datasets with both base and size splits. These synthetic 379 datasets are suitable for this analysis as they provide ground-380 truth labels for edges and nodes that are causally related to 381 the targets. First, we collect the target label for each edge, 382 and the predicted probability score from $t^*(\cdot)$ for correctly 383 predicted samples and plot the ROC-AUC curve for both the 384

validation and test sets for the two datasets. As illustrated in Figure 5(b), the AUC scores for both datasets exhibit high values, demonstrating that $t^*(\cdot)$ accurately identifies G_c , which is consistent with the theoretical insights provided in Theorem 5.3. Figure 5(a) illustrates some visualization results using $t^*(\cdot)$, demonstrating that $t^*(\cdot)$ correctly identify invariant edges from G_c . More visualization results for the identified edges using $t^*(\cdot)$ are provided in Appendix G.

Do edges in G_c exhibit a higher probability than edges in G_s ? We assess the probability scores and ranking of edges in G_c compared to those in G_s using the GOOD-Motif datasets. Specifically, we plot the average probability and ranking of edges in G_c over the first 40 epochs (excluding the first 10 epochs for ERM pretraining), using the ground-truth edge labels. As shown in Figure 6, for both the Motif-base and Motif-size datasets, the invariant edges in G_c exhibit high probability scores, ranking among the top 50% in both datasets. This demonstrates that the edges from the invariant subgraph generally get higher predicted probability scores compared to spurious edges. However, certain spurious edges may still be overestimated due to their strong correlation with the target labels.

How does PrunE perform on datasets with concept shift? In the main results, we use covariate shift to evaluate the OOD performance of various methods, where unseen environments arise in validation and test datasets. We also adopt concept shift to evaluate the effectiveness of PrunE, where spurious correlation strength varies in training and test sets. As shown in Table 3, PrunE also outperforms the SOTA methods significantly. For Motif-base dataset, most of the methods underperform ERM, while PrunE achieves 90.28% test accuracy, which is 8.84% higher than ERM.

(a) Visualizations on learned subgraph by $t^*(\cdot)$, where blue nodes are ground-truth nodes (b) The ROC-AUC curve for predicted edges in G_c , and red nodes are ground-truth nodes in G_s . The highlighted blue edges are top-K and ground-truth edges on GOODMotif-base edges predicted by $t^*(\cdot)$, where K is the number of ground-truth invariant edges. and GOODMotif-size datasets.

Figure 5. Empirical visualization and analysis on $t^*(\cdot)$.

387

396

399

409

410

411

412

413

414

415 416

417

418

419 420

421 422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

Figure 6. Average probability and ranking of edges in G_c for every training epoch. In both datasets, the edges from the invariant subgraph generally get higher predicted probability scores compared to spurious edges. However, certain spurious edges may still be overestimated due to their strong correlation with the target labels.

Table 3. Model performance on datasets with concept shift.

Method	SPM	lotif	GOODHIV	GOODMotif
	b = 0.40	b = 0.60	size	base
ERM	59.42±2.63	60.45±5.21	63.26±2.47	$81.44 {\pm 0.45}$
IRM	$59.89{\scriptstyle\pm4.87}$	$58.10{\scriptstyle\pm4.86}$	59.90±3.15	$80.71{\scriptstyle\pm0.46}$
VRex	$61.16{\scriptstyle\pm3.06}$	$56.88{\scriptstyle\pm1.19}$	60.23 ± 1.70	$81.56{\scriptstyle \pm 0.35}$
GSAT	$64.49{\scriptstyle\pm1.60}$	$61.27{\scriptstyle\pm1.42}$	56.76±7.16	76.07±3.48
GREA	$62.08{\scriptstyle\pm4.63}$	$59.07{\scriptstyle\pm5.94}$	60.07 ± 5.40	78.27 ± 4.29
CIGA	$\underline{65.23{\scriptstyle\pm3.58}}$	62.17 ± 2.28	$73.62{\scriptstyle \pm 0.86}$	81.68 ± 3.01
AIA	$65.11 {\pm} 2.47$	$59.46{\scriptstyle\pm 6.23}$	74.21 ± 1.81	$\underline{82.51{\scriptstyle\pm2.81}}$
PrunE	$67.78{\scriptstyle\pm3.98}$	$65.50{\scriptstyle\pm3.53}$	79.50±1.57	$90.28{\scriptstyle\pm1.72}$

How do different GNN encoders affect the model performance? We examine the effect of using different GNN encoders, specifically GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2018), with the same hidden dimensions and number of layers as $h(\cdot)$. As illustrated in Figure 7, across all four datasets, employing GIN as the feature encoder leads to a increase in test performance. This is likely due to GIN's higher expressivity than GCN (Xu et al., 2018), being as powerful as the 1-WL test (Leman & Weisfeiler, 1968), which allows it to generate more distinguishable features compared to GCN. These enhanced features benefits the optimization of $t(\cdot)$, thereby improving the identification of G_c for OOD generalization. This also highlights another ad-

Figure 7. Test performance with different GNN encoders. PrunE achieves improved OOD performance with more expressive GNN architecture.

vantage of PrunE: utilizing a GNN encoder with enhanced expressivity may further facilitate OOD generalization by more accurately identifying G_c through $t(\cdot)$.

8. Conclusion

Many graph-specific OOD methods aim to directly identify edges in the invariant subgraph to achieve OOD generalization, which can be challenging and prone to errors. In response, we propose PrunE, a pruning-based OOD method that focuses on removing spurious edges by imposing regularization terms on the subgraph selector, without introducing any additional OOD objectives. Through a case study, we demonstrate that, compared to conventional methods, PrunE exhibits enhanced OOD generalization capability by retaining more edges in the invariant subgraph. Theoretical analysis and extensive experiments across various datasets validate the effectiveness of this novel learning paradigm. Future research directions include: (1) Extending the pruning-based paradigm to a self-supervised setting without relying on the power of ERM; (2) Expanding this learning paradigm to other scenarios, such as dynamic graphs under distribution shifts.

440 Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none of which we feel must be specifically highlighted here.

References

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

- Ahuja, K., Caballero, E., Zhang, D., Gagnon-Audet, J.-C., Bengio, Y., Mitliagkas, I., and Rish, I. Invariance principle meets information bottleneck for out-of-distribution generalization. *Advances in Neural Information Processing Systems*, 34:3438–3450, 2021.
- Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. Invariant risk minimization, 2020.
- Bemis, G. W. and Murcko, M. A. The properties of known drugs. 1. molecular frameworks. *Journal of medicinal chemistry*, 39(15):2887–2893, 1996.
- Bengio, Y., Léonard, N., and Courville, A. Estimating or
 propagating gradients through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.
- Buffelli, D., Liò, P., and Vandin, F. Sizeshiftreg: a regularization method for improving size-generalization in graph neural networks. *Advances in Neural Information Processing Systems*, 35:31871–31885, 2022.
- Chen, Y., Zhang, Y., Bian, Y., Yang, H., Kaili, M., Xie, B., Liu, T., Han, B., and Cheng, J. Learning causally invariant representations for out-of-distribution generalization on graphs. *Advances in Neural Information Processing Systems*, 35:22131–22148, 2022.
- Chen, Y., Bian, Y., Zhou, K., Xie, B., Han, B., and Cheng, J. Does invariant graph learning via environment augmentation learn invariance? In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum? id=EqpR9Vtt13.
- Creager, E., Jacobsen, J.-H., and Zemel, R. Environment inference for invariant learning. In *International Conference on Machine Learning*, pp. 2189–2200. PMLR, 2021.
- Fan, S., Wang, X., Mo, Y., Shi, C., and Tang, J. Debiasing
 graph neural networks via learning disentangled causal
 substructure. *Advances in Neural Information Processing Systems*, 35:24934–24946, 2022.
- Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing for quantum chemistry. In *International Conference on Machine Learning*, pp. 1263–1272. PMLR, 2017.

- Gui, S., Li, X., Wang, L., and Ji, S. GOOD: A graph out-of-distribution benchmark. In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2022. URL https://openreview.net/forum?id=8hHg-zs_p-h.
- Gui, S., Liu, M., Li, X., Luo, Y., and Ji, S. Joint learning of label and environment causal independence for graph out-of-distribution generalization. *Advances in Neural Information Processing Systems*, 36, 2023.
- Han, X., Jiang, Z., Liu, N., and Hu, X. G-mixup: Graph data augmentation for graph classification. In *International Conference on Machine Learning*, pp. 8230–8248. PMLR, 2022.
- Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open graph benchmark: Datasets for machine learning on graphs. *Advances in Neural Information Processing Systems*, 33:22118– 22133, 2020.
- Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C. W., Xiao, C., Sun, J., and Zitnik, M. Therapeutics data commons: Machine learning datasets and tasks for drug discovery and development. *arXiv preprint arXiv:2102.09548*, 2021.
- Ji, Y., Zhang, L., Wu, J., Wu, B., Huang, L.-K., Xu, T., Rong, Y., Li, L., Ren, J., Xue, D., et al. Drugood: Out-of-distribution (ood) dataset curator and benchmark for ai-aided drug discovery–a focus on affinity prediction problems with noise annotations. arXiv preprint arXiv:2201.09637, 2022.
- Jia, T., Li, H., Yang, C., Tao, T., and Shi, C. Graph invariant learning with subgraph co-mixup for out-of-distribution generalization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 8562–8570, 2024.
- Jin, W., Barzilay, R., and Jaakkola, T. Domain extrapolation via regret minimization. *arXiv preprint arXiv:2006.03908*, 3, 2020.
- Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations, 2017. URL https://openreview.net/forum? id=SJU4ayYgl.
- Kirichenko, P., Izmailov, P., and Wilson, A. G. Last layer re-training is sufficient for robustness to spurious correlations. In *The Eleventh International Conference on Learning Representations*, 2023. URL https: //openreview.net/forum?id=Zb6c8A-Fghk.

- 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
- Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
 M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
 R. L., Gao, I., et al. Wilds: A benchmark of in-thewild distribution shifts. In *International Conference on Machine Learning*, pp. 5637–5664. PMLR, 2021.
 - Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem, B.,
 Taylor, G., and Goldstein, T. Robust optimization as data
 augmentation for large-scale graphs. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 60–69, 2022.
 - Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Binas, J., Zhang, D., Le Priol, R., and Courville, A. Outof-distribution generalization via risk extrapolation (rex).
 In *International Conference on Machine Learning*, pp. 5815–5826. PMLR, 2021.
 - Leman, A. and Weisfeiler, B. A reduction of a graph to a canonical form and an algebra arising during this reduction. *Nauchno-Technicheskaya Informatsiya*, 2(9):12–16, 1968.
 - Li, H., Wang, X., Zhang, Z., and Zhu, W. Ood-gnn:
 Out-of-distribution generalized graph neural network.
 IEEE Transactions on Knowledge and Data Engineering, 2022a.
 - Li, H., Zhang, Z., Wang, X., and Zhu, W. Learning invariant graph representations for out-of-distribution generalization. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances in Neural Information Processing Systems, 2022b. URL https://openreview.net/ forum?id=acKK8MQe2xc.
 - Li, H., Zhang, Z., Wang, X., and Zhu, W. Invariant node representation learning under distribution shifts with multiple latent environments. *ACM Transactions on Information Systems*, 42(1):1–30, 2023a.
 - Li, X., Gui, S., Luo, Y., and Ji, S. Graph structure and feature extrapolation for out-of-distribution generalization. *arXiv* preprint arXiv:2306.08076, 2023b.
- Li, X., Gui, S., Luo, Y., and Ji, S. Graph structure extrapolation for out-of-distribution generalization. In *Fortyfirst International Conference on Machine Learning*, 2024. URL https://openreview.net/forum? id=Xgrey8uQhr.
- Liu, G., Zhao, T., Xu, J., Luo, T., and Jiang, M. Graph rationalization with environment-based augmentations. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '22. ACM, August 2022. doi: 10.1145/3534678.3539347. URL http: //dx.doi.org/10.1145/3534678.3539347.

- Liu, Y., Ao, X., Feng, F., Ma, Y., Li, K., Chua, T.-S., and He, Q. Flood: A flexible invariant learning framework for outof-distribution generalization on graphs. In *Proceedings* of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1548–1558, 2023.
- Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., and Zhang, X. Parameterized explainer for graph neural network. *Advances in Neural Information Processing Systems*, 33:19620–19631, 2020.
- Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete distribution: A continuous relaxation of discrete random variables. *arXiv preprint arXiv:1611.00712*, 2016.
- Miao, S., Liu, M., and Li, P. Interpretable and generalizable graph learning via stochastic attention mechanism. In *International Conference on Machine Learning*, pp. 15524–15543. PMLR, 2022.
- Peters, J., Bühlmann, P., and Meinshausen, N. Causal inference by using invariant prediction: identification and confidence intervals. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 78(5):947–1012, 2016.
- Pezeshki, M., Kaba, O., Bengio, Y., Courville, A. C., Precup, D., and Lajoie, G. Gradient starvation: A learning proclivity in neural networks. *Advances in Neural Information Processing Systems*, 34:1256–1272, 2021.
- Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., and Courville, A. On the spectral bias of neural networks: International conference on machine learning. *arXiv*, 2019.
- Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge: Towards deep graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.
- Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. *arXiv preprint arXiv:1911.08731*, 2019.
- Shah, H., Tamuly, K., Raghunathan, A., Jain, P., and Netrapalli, P. The pitfalls of simplicity bias in neural networks, 2020.
- Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. Recursive deep models for semantic compositionality over a sentiment treebank. In Yarowsky, D., Baldwin, T., Korhonen, A., Livescu, K., and Bethard, S. (eds.), *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL https://aclanthology.org/D13–1170.

- 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
- Sui, Y., Wu, Q., Wu, J., Cui, Q., Li, L., Zhou, J., Wang,
 X., and He, X. Unleashing the power of graph data augmentation on covariate distribution shift. *Advances in Neural Information Processing Systems*, 36, 2023.
 - Tishby, N. and Zaslavsky, N. Deep learning and the information bottleneck principle, 2015.
 - Vapnik, V. N. *The nature of statistical learning theory*. Springer-Verlag New York, Inc., 1995. ISBN 0-387-94559-8.
 - Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.
 - Wang, R., Dai, H., Yang, C., Song, L., and Shi, C. Advancing molecule invariant representation via privileged
 substructure identification. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 3188–3199, 2024.
 - Wu, Q., Zhang, H., Yan, J., and Wipf, D. Handling distribution shifts on graphs: An invariance perspective, 2022a.
 - Wu, Y., Wang, X., Zhang, A., He, X., and Chua, T.-S. Discovering invariant rationales for graph neural networks.
 In *International Conference on Learning Representations*, 2022b. URL https://openreview.net/forum?id=hGXij5rfiHw.
 - Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K., and Pande, V.
 Moleculenet: A benchmark for molecular machine learning, 2018.
 - Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? *arXiv preprint arXiv:1810.00826*, 2018.
 - Yang, N., Zeng, K., Wu, Q., Jia, X., and Yan, J. Learning substructure invariance for out-of-distribution molecular representations. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=2nWUNTnFijm.
- Yao, T., Chen, Y., Chen, Z., Hu, K., Shen, Z., and Zhang,
 K. Empowering graph invariance learning with deep
 spurious infomax. In *Forty-first International Confer- ence on Machine Learning*, 2024. URL https://
 openreview.net/forum?id=u9oSQtujCF.
- Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J.
 Gnnexplainer: Generating explanations for graph neural networks. *Advances in Neural Information Processing Systems*, 32, 2019.

- Yu, J., Liang, J., and He, R. Mind the label shift of augmentation-based graph ood generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11620–11630, 2023.
- Yuan, H., Yu, H., Gui, S., and Ji, S. Explainability in graph neural networks: A taxonomic survey. *IEEE transactions* on pattern analysis and machine intelligence, 45(5):5782– 5799, 2022.
- Yuan, H., Sun, Q., Fu, X., Ji, C., and Li, J. Dynamic graph information bottleneck. In *Proceedings of the ACM on Web Conference 2024*, pp. 469–480, 2024.
- Zhuang, X., Zhang, Q., Ding, K., Bian, Y., Wang, X., Lv, J., Chen, H., and Chen, H. Learning invariant molecular representation in latent discrete space. *Advances in Neural Information Processing Systems*, 36, 2023.

605 A. Notations

We present a set of notations used throughout our paper for clarity. Below are the main notations along with their definitions.

	Table 4. Notation Table
Symbols	Definitions
${\mathcal G}$	Set of graph datasets
$\mathcal{E}_{ ext{tr}}$	Set of environments used for training
$\mathcal{E}_{\mathrm{all}}$	Set of all possible environments
G	An undirected graph with node set \mathcal{V} and edge set \mathcal{E}
\mathcal{V}	Node set of graph G
ε	Edge set of graph G
\mathbf{A}	Adjacency matrix of graph G
\mathbf{X}	Node feature matrix of graph G
D	Feature dimension of node features in X
G_c	Invariant subgraph of G
G_s	Spurious subgraph of G
\widehat{G}_{c}	Estimated invariant subgraph
\widehat{G}_s	Estimated spurious subgraph
G	The number of edges in graph G .
Y	Target label variable
w	A vector
\mathbf{W}	A matrix
W	A random variable
\mathcal{W}	A set
$f = \rho \circ h$	A GNN model comprising encoder $h(\cdot)$ and classifier $\rho(\cdot)$
$t(\cdot)$	Learnable data transformation function for structural modifications
$\widetilde{G} \sim t(\cdot)$	A view sampled from $t(\cdot)$, e.g., $\widetilde{G} \sim t(\cdot)$. We may use $t(G)$ to denote a sampled view
. /	from G via $t(\cdot)$, e.g., $I(G; t(G))$
\mathbf{h}_v	Representation of node $v \in \mathcal{V}$ of graph G

B. More Preliminaries

Graph Neural Networks. In this work, we adopt message-passing GNNs for graph classification due to their expressiveness. Given a simple and undirected graph $G = (\mathbf{A}, \mathbf{X})$ with n nodes and m edges, where $\mathbf{A} \in \{0, 1\}^{n \times n}$ is the adjacency matrix, and $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the node feature matrix with d feature dimensions, the graph encoder $h : \mathbb{G} \to \mathbb{R}^h$ aims to learn a meaningful graph-level representation h_G , and the classifier $\rho : \mathbb{R}^h \to \mathbb{Y}$ is used to predict the graph label $\hat{Y}_G = \rho(h_G)$. To obtain the graph representation h_G , the representation $\mathbf{h}_v^{(l)}$ of each node v in a graph G is iteratively updated by aggregating information from its neighbors $\mathcal{N}(v)$. For the *l*-th layer, the updated representation is obtained via an AGGREGATE operation followed by an UPDATE operation:

$$\mathbf{m}_{v}^{(l)} = \operatorname{AGGREGATE}^{(l)}\left(\left\{\mathbf{h}_{u}^{(l-1)} : u \in \mathcal{N}(v)\right\}\right),\tag{9}$$

$$\mathbf{h}_{v}^{(l)} = \text{UPDATE}^{(l)} \left(\mathbf{h}_{v}^{(l-1)}, \mathbf{m}_{v}^{(l)} \right), \tag{10}$$

where $\mathbf{h}_{v}^{(0)} = \mathbf{x}_{v}$ is the initial node feature of node v in graph G. Then GNNs employ a READOUT function to aggregate the final layer node features $\left\{\mathbf{h}_{v}^{(L)}: v \in \mathcal{V}\right\}$ into a graph-level representation \mathbf{h}_{G} :

$$\mathbf{h}_{G} = \operatorname{READOUT}\left(\left\{\mathbf{h}_{v}^{(L)} : v \in \mathcal{V}\right\}\right).$$
(11)

660 C. Additional Related Work

661 OOD Generalization on Graphs. Recently, there has been a growing interest in learning graph-level representations that 662 are robust under distribution shifts, particularly from the perspective of invariant learning. MoleOOD (Yang et al., 2022) and 663 GIL (Li et al., 2022b) propose to infer environmental labels to assist in identifying invariant substructures within graphs. 664 DIR (Wu et al., 2022b), GREA (Liu et al., 2022) and iMoLD (Zhuang et al., 2023) employ environment augmentation 665 techniques to facilitate the learning of invariant graph-level representations. These methods typically rely on the explicit 666 manipulation of unobserved environmental variables to achieve generalization across unseen distributions. AIA (Sui et al., 667 2023) employs an adversarial augmenter to explore OOD data by generating new environments while maintaining stable 668 feature consistency. To circumvent the need for environmental inference or augmentation, CIGA (Chen et al., 2022) and 669 GALA (Chen et al., 2023) utilizes supervised contrastive learning to identify invariant subgraphs based on the assumption 670 that samples sharing the same label exhibit similar invariant subgraphs. LECI (Gui et al., 2023) and G-Splice (Li et al., 2023b) 671 assume the availability of environment labels, and study environment exploitation strategies for graph OOD generalization. 672 LECI (Gui et al., 2023) proposes to learn a causal subgraph selector by jointly optimizing label and environment causal 673 independence, and G-Splice (Li et al., 2023b) studies graph and feature space extrapolation for environment augmentation, 674 which maintains causal validity. On the other hand, some works do not utilize the invariance principle for graph OOD 675 generalization. DisC (Fan et al., 2022) initially learns a biased graph representation and subsequently focuses on unbiased 676 graphs to discover invariant subgraphs. GSAT (Miao et al., 2022) utilizes information bottleneck principle (Tishby & 677 Zaslavsky, 2015) to learn a minimal sufficient subgraph for GNN explainability, which is shown to be generalizable under 678 distribution shifts. OOD-GNN (Li et al., 2022a) proposes to learn disentangled graph representation by computing global 679 weights of all data. 680

Node-level OOD Generalization. There has been substantial work on OOD generalization for node-level classification tasks. Most existing methods (Wu et al., 2022a; Liu et al., 2023; Li et al., 2023a; Yu et al., 2023) adopt invariant learning to address node-level OOD challenges. Compared to graph-level OOD generalization, node-level OOD problems face unique difficulties, including: (1) distinct types of distribution shifts (e.g., structural or feature-level shifts), (2) non-i.i.d. node dependencies due to the interconnected nature, and (3) computational bottlenecks from subgraph extraction when reducing to graph-level OOD tasks. Due to these challenges, our pruning-based approach cannot be directly extended to node-level tasks. We leave this adaptation to future work.

D. Proofs of Theoretical Results

691 **D.1. Proof of Proposition 5.1**692

689

690

701

Proof. We begin by expanding the cross-entropy loss \mathcal{L}_{GT} as:

$$\mathcal{L}_{GT} = -\mathbb{E}_{\mathcal{G}}\left[\log \mathbb{P}(Y \mid f(\widetilde{G}))\right],\tag{12}$$

697 698 where $\tilde{G} \sim t(G)$. Supposing that $|\tilde{G}| > |G_c|$, which can be controlled by the hyperparameter η in Eqn. 3, further assume 699 that \tilde{G} does not include the invariant subgraph G_c . Let a subgraph g be substracted from \tilde{G} and $|g| = |G_c|$, we then define a 700 new subgraph $G' = \tilde{G} \setminus g$, and we add G_c to G' to form the new graph $G' \cup G_c$.

Under Assumption 2.1, we know that the invariant subgraph G_c holds sufficient predictive power to Y, and G_c is more informative to Y than G_s , therefore including G_c will always make the prediction more certain, i.e.,

$$\mathbb{P}(Y \mid f(G' \cup G_c)) > \mathbb{P}(Y \mid f(G' \cup g)), \forall g \subseteq \widetilde{G},$$
(13)

As a result, \mathcal{L}_{GT} will become smaller. Therefore, we conclude that under the graph size regularization imposed by \mathcal{L}_e , the optimal solution $\tilde{G} \sim t(G)$ will always include the invariant subgraph G_c , while pruning edges from the spurious subgraph G_s . This completes the proof.

711 712 713 **Remark.** When η is set too small, the loss term \mathcal{L}_e may inadvertently prune edges in G_c , thereby corrupting the invariant substructure and degrading OOD generalization performance. In practice, we observe that $\eta = \{0.5, 0.75\}$ works well across most datasets stably.

D.2. Proof of Theorem 5.2

⁷¹⁶ ⁷¹⁷ ⁷¹⁸ *Proof.* We first formally define the notations in our proof. Let $l((x_i, x_j, y, G); \theta)$ denote the 0-1 loss for the edge e_{ij} being ⁷¹⁸ presented in graph *G*, and

 $L(\theta; D) := \frac{1}{n} \sum_{(x_i, x_j, y, G) \sim D} l((x_i, x_j, y, G); \theta),$ $L(\theta; S) := \frac{1}{m} \sum_{(x_i, x_j, y, G) \sim S} l((x_i, x_j, y, G); \theta),$ (14)

where D and S represent the training and test distributions, with n and m being their respective sample sizes. We define:

$$L_{c}(\theta; D) = \frac{1}{n} \sum_{(x_{i}, x_{j}, y, G) \sim D} l((x_{i}, x_{j}, y, G_{c}); \theta), \forall e_{ij} \in G_{c}.$$

$$L_{s}(\theta; D) = \frac{1}{n} \sum_{(x_{i}, x_{j}, y, G) \sim D} l((x_{i}, x_{j}, y, G_{s}); \theta), \forall e_{ij} \in G_{s}.$$
(15)

Similarly, $L_c(\theta; S)$ and $L_s(\theta; S)$ can be defined for the test distribution. Under Assumption 2.1, $L_c(\theta; D)$ and $L_c(\theta; S)$ are identically distributed due to the stability of G_c across environments, while $L_s(\theta; D)$ and $L_s(\theta; S)$ differ because of domain shifts in G_s . We assume:

$$L_s(\theta; \cdot) := c |G_s| L_c(\theta; \cdot), \tag{16}$$

where c is a proportionality constant. As $L_s(\cdot)$ is defined to a summation over all spurious edges, we put $|G_s|$ in the r.h.s to account for this factor. When $|G_s| = 0$, the loss reduces to the in-distribution case $L_c(\theta; \cdot)$.

$$|L(\theta; D) - L(\theta; S)| = |L_c(\theta; D) + L_s(\theta; D) - L_c(\theta; S) - L_s(\theta; S)|$$

$$(17)$$

$$\leq |L_c(\theta; D) - L_c(\theta; S)| + |L_s(\theta; D) - L_s(\theta; S)|$$
(18)

$$= |L_c(\theta; D) - L_c(\theta; S)| + c |G_s| |L_c(\theta; D) - L_c(\theta; S)|$$
(19)

$$= (c |G_s| + 1) |L_c(\theta; D) - L_c(\theta; S)|.$$
(20)

To bound $|L_c(\theta; D) - L_c(\theta; S)|$, we decompose it as:

 $|L_c(\theta; D) - L_c(\theta; S)| \le |L_c(\theta; D) - \mathbb{E}[L_c(\theta; D)]| + |\mathbb{E}[L_c(\theta; S)] - L_c(\theta; S)|.$ (21)

Applying Hoeffding's Inequality to each term:

$$\mathbb{P}\left(\left|\mathbb{E}\left[L_c(\theta; D)\right] - L_c(\theta; D)\right| \ge \epsilon\right) \le 2\exp\left(-2\epsilon^2 n\right),\tag{22}$$

$$\mathbb{P}\left(\left|\mathbb{E}\left[L_c(\theta;S)\right] - L_c(\theta;S)\right| \ge \epsilon\right) \le 2\exp\left(-2\epsilon^2 m\right).$$
(23)

Union bounding over all $\theta \in \Theta$:

$$\mathbb{P}\left(\exists \theta \in \Theta : |\mathbb{E}\left[L_c(\theta; D)\right] - L_c(\theta; D)| \ge \epsilon\right) \le 2|\Theta| \exp\left(-2\epsilon^2 n\right),\tag{24}$$

$$\mathbb{P}\left(\exists \theta \in \Theta : |\mathbb{E}\left[L_c(\theta; S)\right] - L_c(\theta; S)| \ge \epsilon\right) \le 2|\Theta| \exp\left(-2\epsilon^2 m\right).$$
(25)

⁷⁶⁸₇₆₉ Setting both probabilities to $\delta/2$ and solving for ϵ :

 $\epsilon_D = \sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2n}},$ (26) $\sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2n}},$

$$\epsilon_S = \sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2m}}.$$
(27)

Thus, with probability at least $1 - \delta$:

$$L_c(\theta; D) - L_c(\theta; S)| \le \epsilon_D + \epsilon_S \tag{28}$$

$$=\sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2n}} + \sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2m}}.$$
(29)

Substituting into Eqn. 20:

$$|L(\theta;D) - L(\theta;S)| \le 2(c|G_s| + 1) \left(\sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2n}} + \sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2m}}\right). \tag{30}$$

792 Letting $M = \sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2n}} + \sqrt{\frac{\ln(4|\Theta|) - \ln(\delta)}{2m}}$, we obtain the final bound:

$$|L(\theta; D) - L(\theta; S)| \le 2(c|G_s| + 1)M.$$

$$(31)$$

D.3. Proof of Theorem 5.3

Proof. Our proof consists of the following steps.

Step 1. We start by decomposing $\mathbb{E}[t^*(G)]$ into two components: the invariant subgraph G_c and a partially retained spurious subgraph $G_s^{\mathcal{P}}$.

$$\mathbb{E}[t^*(G)] = \mathbb{E}\left[G_c + G_s^{\mathcal{P}}\right]$$

= $\mathbb{E}\left[G_c\right] + \mathbb{E}\left[G_s^{\mathcal{P}}\right]$
= $G_c + \mathbb{E}\left[G_s^{\mathcal{P}}\right]$ (32)

In Eqn. 32, $\mathbb{E}[G_c] = G_c$ is due to that for any given label y, G_c is a constant according to Assumption 2.1, while $G_s^{\mathcal{P}}$ is a random variable.

811 Step 2. We then model $G_s^{\mathcal{P}}$ as a set of independent edges, and calculate the expected total edge weights of G_c and $G_s^{\mathcal{P}}$ 812 respectively. First, we define W_c as the sum of binary random variables corresponding to the edges in G_c . Each edge e_{ij} in 813 G_c is associated with a Bernoulli random variable X_{ij} such that:

$$W_c = \sum_{e_{ij} \in G_c} X_{ij}.$$
(33)

Similarly, we define $W_s^{\mathcal{P}}$ as the sum of binary random variables corresponding to the edges in $G_s^{\mathcal{P}}$. Each edge e_{ij} in $G_s^{\mathcal{P}}$ is associated with a Bernoulli random variable X'_{ij} such that:

$$W_s^{\mathcal{P}} = \sum_{e_{ij} \in G_s^{\mathcal{P}}} X_{ij}'.$$
(34)

 $\mathbb{E}[W_c] = \mathbb{E}\left[\sum_{e_{ij} \in G_c} X_{ij}\right] = \sum_{e_{ij} \in G_c} \mathbb{E}[X_{ij}] = |G_c|,$

 W_c and $W_s^{\mathcal{P}}$ are denoted as random r.v. for the total edge weights of G_c and $G_s^{\mathcal{P}}$.

Step 3. We then calculate the expected edge weights $\mathbb{E}[W_c]$ and $\mathbb{E}[W_s^{\mathcal{P}}]$ as following.

827 828

825 826

- 829 830
- 831
- 832
- 833
- 834 835

842

843 844

845

846

847

848

849

850

851 852

871

872 873

874

875

876

$$\mathbb{E}[W_s^{\mathcal{P}}] = \mathbb{E}\left[\sum_{e_{ij} \in G_s^{\mathcal{P}}} X_{ij}'\right] = \sum_{e_{ij} \in G_s^{\mathcal{P}}} \mathbb{E}[X_{ij}'] = \frac{|G_s^{\mathcal{P}}|}{|\mathcal{E}|} = \frac{\eta|\mathcal{E}| - |G_c|}{|\mathcal{E}|}.$$
(36)

(35)

Here \mathcal{E} is the set of edges in graph G, $\eta | \mathcal{E} |$ is the total edge number limits due to \mathcal{L}_e . In Eqn. 35, $\mathbb{E}[X_{ij}] = 1, \forall e_{ij} \in G_c$ is due to that $\mathbb{P}(X_{ij}) = 1$, as $t^*(G)$ always include G_c using the results from Prop. 5.1; In Eqn. 36, $\mathbb{E}[X'_{ij}] = \frac{1}{|\mathcal{E}|}, \forall e_{ij} \in G_c^{\mathcal{P}}$, due to that $\mathbb{P}(X'_{ij}) = \frac{1}{|\mathcal{E}|}$ enforced by ϵ -probability alignment penalty \mathcal{L}_s . Therefore, given a suitable η that prunes spurious edges from G_s , $|\mathcal{E}||G_c| \gg \eta |\mathcal{E}| - |G_c|$, i.e., $\mathbb{E}[t^*(G)]$ will be dominated by G_c in terms of edge probability mass, therefore, we conclude that $G_c \approx \mathbb{E}[t^*(G)]$.

E. Complexity Analysis

Time Complexity. The time complexity is $\mathcal{O}(CkmF)$, where k is the number of GNN layers, m is the total number of edges in graph G, and F is the feature dimensions. Compared to ERM, PrunE incurs an additional constant C > 1, as it uses a GNN model $t(\cdot)$ for edge selection, and another GNN encoder $h(\cdot)$ for learning feature representations. However, C is a small constant, hence the time cost is on par with standard ERM.

Space Complexity. The space complexity for PrunE is $\mathcal{O}(C'|\mathcal{B}|mkF)$, where $|\mathcal{B}|$ denotes the batch size. The constant C' > 1 is due to the additional subgraph selector $t(\cdot)$. As C' is also a small integer, the space complexity of PrunE is also on par with standard ERM.

⁸⁵³ F. The Pitfall of Directly Identifying Edges in G_c

854 Most graph-specific OOD methods that model edge probabilities incorporate OOD objectives as regularization terms for 855 ERM. These OOD objectives attempt to directly identify the invariant subgraph for OOD generalization. For example, 856 GSAT (Miao et al., 2022) utilizes the information bottleneck to learn a minimal sufficient subgraph for accurate model 857 prediction; CIGA (Chen et al., 2022) adopt supervised contrastive learning to identify the invariant subgraph that remains 858 stable across different environments within the same class; DIR (Wu et al., 2022b) and AIA (Sui et al., 2023) identify the 859 invariant subgraph through training environments augmentation. However, when spurious substructures exhibit comparable 860 or stronger correlation strength than invariant edges (i.e., edges in G_c) with the targets, these methods are unlikely to identify 861 all invariant edges, and preserve the invariant subgraph patterns Since the spurious substructure may be mistakenly identified 862 as the stable pattern. Consequently, while achieving high training accuracy, these methods suffer from poor validation and 863 test performance. 864

In contrast, PrunE avoids this pitfall by proposing OOD objectives that focus on pruning uninformative spurious edges rather than directly identifying causal ones. While strongly correlated spurious edges may still persist, edges in G_c are preserved due to their strong correlation with targets. As a key conclusion, PrunE achieves enhanced OOD performance compared to prior methods, as the invariant patterns are more likely to be retained, even if some spurious edges cannot be fully excluded.

G. More Details about Experiments

G.1. Datasets details

In our experimental setup, we utilize five datasets: GOOD-HIV, GOOD-Motif, SPMotif, OGBG-Molbbbp, and DrugOOD. The statistics of the datasets are illustrated in Table 5.

GOOD-HIV (Gui et al., 2022). GOOD-HIV is a molecular dataset derived from the MoleculeNet (Wu et al., 2018) benchmark, where the primary task is to predict the ability of molecules to inhibit HIV replication. The molecular structures

Pruning Spurious Subgraphs for Graph Out-of-Distribution Generalization

are represented as graphs, with nodes as atoms and edges as chemical bonds. Following (Gui et al., 2022), We adopt the covariate shift split, which refers to changes in the input distribution between training and testing datasets while maintaining the same conditional distribution of labels given inputs. This setup ensures that the model must generalize to unseen molecular structures that differ in these domain features from those seen during training. We focus on the Bemis-Murcko scaffold (Bemis & Murcko, 1996) and the number of nodes in the molecular graph as two domain features to evaluate our method.

GOOD-Motif (Gui et al., 2022). GOOD-Motif is a synthetic dataset designed to test structure shifts. Each graph in this dataset is created by combining a base graph and a motif, with the motif solely determining the label. The base graph type and the size are selected as domain features to introduce covariate shifts. By generating different base graphs such as wheels, trees, or ladders, the dataset challenges the model's ability to generalize to new graph structures not seen during training. We employ the covariate shift split, where these domain features vary between training and testing datasets, reflecting real-world scenarios where underlying graph structures may change.

893 SPMotif (Wu et al., 2022b). In SPMotif datasets (Wu et al., 2022b), each graph comprises a combination of invariant 894 and spurious subgraphs. The spurious subgraphs include three structures (Tree, Ladder, and Wheel), while the invariant 895 subgraphs consist of Cycle, House, and Crane. The task for a model is to determine which one of the three motifs (Cycle, 896 House, and Crane) is present in a graph. A controllable distribution shift can be achieved via a pre-defined parameter 897 b. This parameter manipulates the spurious correlation between the spurious subgraph G_s and the ground-truth label Y, 898 which depends solely on the invariant subgraph G_c . Specifically, given the predefined bias b, the probability of a specific 899 motif (e.g., House) and a specific base graph (Tree) will co-occur is b while for the others is (1 - b)/2 (e.g., House-Ladder, 900 House-Wheel). When $b = \frac{1}{3}$, the invariant subgraph is equally correlated to the three spurious subgraphs in the dataset.

OGBG-Molbbbp (Hu et al., 2020). OGBG-Molbbbp is a real-world molecular dataset included in the Open Graph
Benchmark (Hu et al., 2020). This dataset focuses on predicting the blood-brain barrier penetration of molecules, a critical
property in drug discovery. The molecular graphs are detailed, with nodes representing atoms and edges representing bonds.
Following Sui et al. (2023), we create scaffold shift and graph size shift to evaluate our method. Similarly to Gui et al.
(2022), the Bemis-Murcko scaffold (Bemis & Murcko, 1996) and the number of nodes in the molecular graph are used as
domain features to create scaffold shift and size shift respectively.

DrugOOD (Ji et al., 2022). DrugOOD dataset is designed for OOD challenges in AI-aided drug discovery. This benchmark
 offers three environment-splitting strategies: Assay, Scaffold, and Size. In our study, we adopt the EC50 measurement.
 Consequently, this setup results in three distinct datasets, each focusing on a binary classification task for predicting
 drug-target binding affinity.

Table 5. Details about the datasets used in our experiments. DATASETS # TRAINING **# VALIDATION # TESTING** # CLASSES Split METRICS 3 ACC Base 18000 3000 3000 GOOD-Motif 3 3000 Size 18000 3000 ACC 3 SPMotif Correlation 9000 3000 3000 ACC 24682 4113 4108 2 ROC-AUC Scaffold GOOD-HIV 4112 3961 2 ROC-AUC Size 26169 2 204 204 ROC-AUC OGBG-Molbbbp Scaffold 1631 2 OGBG-Molbace Scaffold 1210 152 151 ROC-AUC 2 4978 2761 2725 ROC-AUC Assay **EC50** Scaffold 2743 2723 2762 2 ROC-AUC 2 2495 2505 Size 5189 ROC-AUC

927 928 **G.2. Detailed experiment setting**

913

914

915

917

918 919

920 921

922

923

924

925

926

GNN Encoder. For GOOD-Motif datasets, we utilize a 4-layer GIN (Xu et al., 2018) without Virtual Nodes (Gilmer et al., 2017), with a hidden dimension of 300; For GOOD-HIV datasets, we employ a 4-layer GIN without Virtual Nodes, and with a hidden dimension of 128; For the OGBG-Molbbbp dataset, we adopt a 4-layer GIN with Virtual Nodes, and the dimensions of hidden layers is 64; For the DrugOOD datasets, we use a 4-layer GIN without Virtual Nodes. For SPMotif datasets, we use a 5-layer GIN without Virtual Nodes. All GNN backbones adopt sum pooling for graph readout.

935**Training and Validation.** By default, we use Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1e - 3 and a936batch size of 64 for all experiments. For DrugOOD, GOOD-Motif and GOOD-HIV datasets, our method is pretrained for93710 epochs with ERM, and for other datasets, we do not use ERM pretraining. We employ an early stopping of 10 epochs938according to the validation performance for DrugOOD datasets and GOOD-Motif datasets, and do not employ early stopping939for other datasets. Test accuracy or ROC-AUC is obtained according to the best validation performance for all experiments.940All experiments are run with 4 different random seeds, the mean and standard deviation are reported using the 4 runs of941experiments.

Baseline setup and hyperparameters. In our experiments, for the GOOD and OGBG-Molbbbp datasets, the results of ERM, IRM, GroupDRO, and VREx are reported from Gui et al. (2022), while the results for DropEdge, DIR, GSAT, CIGA, GREA, FLAG, *G*-Mixup and AIA on GOOD and OGBG datasets are reported from Sui et al. (2023). To ensure fairness, we adopt the same GIN backbone architecture as reported in Sui et al. (2023). For the EC50 datasets and SPMotif datasets, we conduct experiments using the provided source codes from the baseline methods. The hyperparameter search is detailed as follows.

949 For IRM and VREx, the weight of the penalty loss is searched over $\{1e-2, 1e-1, 1, 1e1\}$. For GroupDRO, the step size 950 is searched over $\{1.0, 1e-1, 1e-2\}$. The causal subgraph ratio for DIR is searched across $\{1e-2, 1e-1, 0.2, 0.4, 0.6\}$. 951 For DropEdge, the edge masking ratio is seached over: $\{0.1, 0.2, 0.3\}$. For GREA, the weight of the penalty loss is tuned 952 over $\{1e-2, 1e-1, 1.0\}$, and the causal subgraph size ratio is tuned over $\{0.05, 0.1, 0.2, 0.3, 0.5\}$. For GSAT, the causal 953 graph size ratio is searched over $\{0.3, 0.5, 0.7\}$. For CIGA, the contrastive loss and hinge loss weights are searched over 954 $\{0.5, 1.0, 2.0, 4.0, 8.0\}$. For DisC, we search over q in the GCE loss: $\{0.5, 0.7, 0.9\}$. For LiSA, the loss penalty weights are 955 searched over: $\{1, 1e - 1, 1e - 2, 1e - 3\}$. For \mathcal{G} -Mixup, the augmented ratio is tuned over $\{0.15, 0.25, 0.5\}$. For FLAG, 956 the ascending steps are set to 3 as recommended in the paper, and the step size is searched over $\{1e-3, 1e-2, 1e-1\}$. 957 For AIA, the stable feature ratio is searched over $\{0.1, 0.3, 0.5, 0.7, 0.9\}$, and the adversarial penalty weight is searched 958 over $\{0.01, 0.1, 0.2, 0.5, 1.0, 3.0, 5.0\}$.

Hyperparameter search for PrunE. For PrunE, the edge budget η in \mathcal{L}_e is searched over: {0.5, 0.75, 0.85}; K for the K% edges with lowest probability score in \mathcal{L}_s is searched over: {50, 70, 90}; λ_1 , λ_2 for balancing \mathcal{L}_e and \mathcal{L}_s are searched over: {10, 40} and {1e - 1, 1e - 2, 1e - 3} respectively. The encoder of subgraph selector $t(\cdot)$ is searched over {GIN, GCN}, with the number of layers: {2, 3}.

964 965 G.3. More Experimental Results

We provide more experiment details regarding: (1) Experiment results when there are multiple invariant substructures in a graph. (2) Experiment results for more application domains. (3) Ablation study on ERM pretraining. (4) The capability of PrunE of identifying spurious edges. (5) More visualization results on GOOD-Motif datasets in Figure 8 and Figure 9. (6)
Hyperparameter sensitivity analysis on GOODHIV scaffold, OGBG-Molbbbp, and EC50 assay datasets, in Figure 10.

Table 6. Experimental results on SPMotif datasets with 2 invariant subgraphs in each graph.

Method	SPMotif ($\#G_c = 2$)					
Method	b = 0.40	b = 0.60	b = 0.90			
ERM	53.48±3.31	52.59±4.61	56.76±8.06			
IRM	52.47 ± 3.63	55.62 ± 7.90	48.66 ± 2.33			
VRex	$49.68{\scriptstyle\pm8.66}$	$48.89{\scriptstyle\pm4.79}$	$47.97{\scriptstyle\pm2.61}$			
GSAT	59.34 ± 7.96	$58.43{\scriptstyle\pm10.64}$	55.68±3.18			
GREA	$64.87{\scriptstyle\pm5.76}$	$67.66{\scriptstyle\pm6.29}$	59.40 ± 10.26			
CIGA	$69.74{\scriptstyle\pm6.81}$	$71.19{\scriptstyle \pm 2.46}$	65.83 ± 10.41			
AIA	71.61±2.09	$\underline{72.01{\scriptstyle\pm2.13}}$	58.14±4.21			
PrunE	70.41±7.53	74.61±3.17	66.75±4.33			

983 984

971

990 *K* invariant subgraphs, denoted as $G_{c,i}$ for $i \in [K]$. For any specific $G_{c,i}$, the spurious subgraph G'_s can be redefined as 991 $G'_s = G_s \cup \{G_{c,j} \mid j \neq i\}$. Given this redefinition, and under the presence of G_s , Assumption 2.1 still holds. Consequently, 992 the assumptions and theoretical results presented in this work remain valid, even when multiple G_c exist within the datasets. 993 To further support our claim, we curated a dataset based on SPMotif (Wu et al., 2022b), where in the train/valid/test datasets, 994 two invariant substructures are attached to the spurious subgraph. Our method performs effectively under this scenario, as 995 shown in Table 6.

The results of ERM, IRM and VRex for GOODHIV-size are obtained from Gui et al. (2022). As shown in the table, our
 method achieves the best test performance, indicating that PrunE effectively handles concept shift by pruning spurious
 edges.

1000 **Experiment results on more application domains.** To further evaluate the effectiveness of PrunE across different 1001 application domains, we conduct experiments on GOOD-CMNIST (Gui et al., 2022) and Graph-Twitter (Socher et al., 2013; 1002 Yuan et al., 2022) datasets, the evaluation metric for these datasets is accuracy.

1003 1004 1005

1014

1016 1017

1029

Table 7. Test performance on GOOD-CMNIST and Graph-Twitter datasets.

Method	CMNIST	Graph-Twitter
ERM	$28.60{\scriptstyle \pm 1.87}$	60.47 ± 2.24
IRM	$27.83{\scriptstyle\pm2.13}$	$56.93{\scriptstyle\pm0.99}$
Vrex	$28.48{\scriptstyle\pm2.87}$	$57.54{\scriptstyle\pm0.93}$
DisC	$24.99{\scriptstyle \pm 1.78}$	48.61±8.86
GSAT	$28.17{\scriptstyle\pm1.26}$	60.96 ± 1.18
GREA	$29.02{\scriptstyle\pm3.26}$	$59.47 {\pm 2.09}$
CIGA	$32.22{\pm}2.67$	62.31 ± 1.63
AIA	$36.37{\scriptstyle\pm4.44}$	61.10 ± 0.47
PrunE	$\underline{33.89{\scriptstyle\pm1.65}}$	63.37±0.76

As demonstrated in Table 7, PrunE also achieves superior performance in application domains beyond molecular applications, indicating its superior OOD performance and broad applicability.

1021 Ablation study on ERM pretraining. We conduct ablation study across 5 datasets without using ERM pretraining. The 1022 results are presented in Table 8. As illustrated, incorporating ERM pretraining improves OOD performance in most cases, 1023 as the GNN encoder is able to learn useful representations before incorporating \mathcal{L}_e and \mathcal{L}_s to train $t(\cdot)$. Intuitively, this 1024 facilitates the optimization of $t(\cdot)$, therefore improving the test performance.

	Table 8	3. Ablation stud	ly on test datasets	.	
	Motif-basis	Motif-size	EC50-Assay	EC50-Sca	HIV-size
w/ pretraining	91.48±0.40	66.53±8.55	78.01±0.42	67.56±1.63	64.99±1.63

The capability of PrunE to identify spurious edges. To verify the ability of PrunE to identify spurious edges while preserving critical edges in G_c , we conduct experiments and provide empirical results on *Recall@K* and *Precision@K* on GOODMotif datasets, where K denotes the K% edges with lowest estimated probability scores. As illustrated in Table 9, PrunE is able to identify a subset of spurious edges with precision higher than 90% across all datasets, even with K = 50, indicating that PrunE can preserve G_c , thus enhancing the OOD generalization performance.

1038 **Visualization results on GOOD-Motif datasets.** We provide more visualization results on GOOD-Motif datasets in 1039 Figure 8 and Figure 9, in which the blue nodes represent the ground-truth nodes in G_c , and blue edges are estimated edges by 1040 $t^*(\cdot)$. We visualize top-K edges with highest probability scores derived from $t(\cdot)$. As shown, PrunE is able to identify edges 1041 in G_c , demonstrating the effectiveness of pruning spurious edges, and aligns with the theoretical results from Theorem 5.3.

Hyperparameter sensitivity. We provide more experimental results on hyperparameter sensitivity on real-world datasets. As shown in Figure 10, PrunE exhibits stable performance across the real-world datasets, highlighting its robustness to

)48		K%	Motif-base		Motif-size	
)49		11/0	Recall	Precision	Recall	Precision
)50		10%	0 1467	1 0000	0.0963	0.9199
)51		20%	0.3076	0.9831	0.2023	0.9602
J52		30%	0.4556	0.9465	0.3093	0.9735
JS3 D54		40%	0.6056	0.9374	0.4153	0.9801
)55		50%	0.7356	0.9017	0.5243	0.9841
)57)58)59)60)61)62	•		•••	••	0	• • • • •
)02)62	•		•			78
)64	e e	•	000	•		0 0 0 0 0

Table 9. Recall@K and Precision@K for Motif-base and Motif-size datasets, where K denotes the K% edges with lowest estimated probability scores.

Figure 8. More visualization results on Motif-base dataset. The blue nodes are ground-truth nodes in G_c , and red nodes are ground-truth nodes in G_s . The highlighted blue edges are top-K edges predicted by $t^*(\cdot)$, where K is the number of ground-truth edges from G_c in a graph.

Figure 9. More visualization results on Motif-size dataset. The blue nodes are ground-truth nodes in G_c , and red nodes are ground-truth nodes in G_s . The highlighted blue edges are top-K edges predicted by $t^*(\cdot)$, where K is the number of ground-truth edges from G_c in a graph.

varying hyperparameter configurations.

Pruning Spurious Subgraphs for Graph Out-	of-Distribtuion	Generalization
---	-----------------	----------------

