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Abstract

Graph Neural Networks (GNNs) often encounter
significant performance degradation under distri-
bution shifts between training and test data, hin-
dering their applicability in real-world scenarios.
Recent studies have proposed various methods to
address the out-of-distribution (OOD) generaliza-
tion challenge, with many methods in the graph
domain focusing on directly identifying an invari-
ant subgraph that is predictive of the target label.
However, we argue that identifying the edges from
the invariant subgraph directly is challenging and
error-prone, especially when some spurious edges
exhibit strong correlations with the targets. In this
paper, we propose PrunE, the first pruning-based
graph OOD method that eliminates spurious edges
to improve OOD generalizability. By pruning spu-
rious edges, PrunE retains the invariant subgraph
more comprehensively, which is critical for OOD
generalization. Specifically, PrunE employs two
regularization terms to prune spurious edges: 1)
graph size constraint to exclude uninformative
spurious edges, and 2) ϵ-probability alignment
to further suppress the occurrence of spurious
edges. Through theoretical analysis and extensive
experiments, we show that PrunE achieves supe-
rior OOD performance and outperforms previous
state-of-the-art methods significantly. Codes will
be available upon acceptance.

1. Introduction
Graph Neural Networks (GNNs) (Kipf & Welling, 2017;
Xu et al., 2018; Veličković et al., 2017) often encounter sig-
nificant performance degradation under distribution shifts
between training and test data, hindering their applicability
in real-world scenarios (Hu et al., 2020; Huang et al., 2021;
Koh et al., 2021). To address the out-of-distribution (OOD)
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(a) Identify edges from the 

invariant subgraph  directly

(b) Prune edges from 

the spurious subgraph

node in 

node in 

Identified edges

pruned edges

Figure 1. Illustration of two learning paradigms for graph-specific
OOD methods. Previous methods seek to identify edges from the
invariant subgraph directly, while our approach prunes edges from
the spurious subgraph, which is more effective at preserving the
invariant substructure.

generalization challenge, recent studies propose to utilize
the causally invariant mechanism to learn invariant features
that remain stable across different environments (Peters
et al., 2016; Arjovsky et al., 2020; Ahuja et al., 2021; Jin
et al., 2020; Krueger et al., 2021; Creager et al., 2021). In
graph domain, various methods have been proposed to ad-
dress the OOD generalization problem (Wu et al., 2022b; Li
et al., 2022b; Chen et al., 2022; Liu et al., 2022; Sui et al.,
2023; Gui et al., 2023; Yao et al., 2024), Most OOD meth-
ods, both in the general domain and the graph domain, aim
to learn invariant features directly. To achieve this, many
graph-specific OOD methods utilize a subgraph selector to
model independent edge probabilities to directly identify
invariant subgraphs that remain stable across different train-
ing environments (Chen et al., 2022; Miao et al., 2022; Wu
et al., 2022b; Sui et al., 2023). However, we argue that
directly identifying invariant subgraphs can be challenging
and error-prone, particularly when spurious edges exhibit
strong correlations with target labels. In such scenarios, cer-
tain edges in the invariant subgraph Gc may be misclassified
(i.e., assigned low predicted probabilities), leading to par-
tial preservation of the invariant substructure and thereby
degrading OOD generalization performance. In contrast,
while a subset of spurious edges may correlate strongly with
targets, the majority of spurious edges are relatively uninfor-
mative and easier to identify due to their weak correlations
with labels. Consequently, pruning these less informative
edges is more likely to preserve the invariant substructure
effectively, although some spurious edges may still persist.
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In this work, we raise the following research question:

Can we prune spurious edges instead of directly identifying
invariant edges to enhance OOD generalization ability?

To address this question, we propose the first pruning-based
OOD method. Unlike most existing graph OOD methods
that aim to directly identify edges in the invariant subgraph,
our method focuses on pruning spurious edges to achieve
OOD generalization (Figure 1). We first begin with a case
study to investigate the differences between our method
and previous ones that directly identify invariant subgraphs,
in terms of how the induced subgraph selector estimates
edges from the invariant subgraph Gc and spurious sub-
graph Gs. Specifically, we observe that previous methods
tend to misclassify some edges in Gc as unimportant edges
with low probabilities, while assigning high probabilities to
certain edges in Gs. As a result, the invariant substructure
in the graph is not preserved. In contrast, our pruning-based
method preserves the invariant subgraph more effectively
(i.e., estimating the edges in Gc with high probabilities),
although a small number of spurious edges may still remain
due to the strong correlation with the targets. However, by
preserving the invariant substructure more effectively, our
method PrunE (Pruning spurious Edges for OOD gener-
alization) achieves enhanced OOD performance compared
to previous approaches that directly identify invariant sub-
graphs.

The core insight behind PrunE is that Empirical Risk Mini-
mization (ERM) (Vapnik, 1995) tends to capture all "useful"
features that are correlated with the targets (Kirichenko et al.,
2023). In our context, ERM pushes the subgraph selector to
preserve substructures that are more informative for predic-
tion. By forcing uninformative edges to be excluded, Gc is
preserved due to its strong correlation with the targets and
the inherent inductive bias of ERM. To prune spurious edges,
our proposed OOD objective consists of two terms that act
on the subgraph selector, without adding additional OOD
objective: 1) graph size constraint. This constraint limits
the total edge weights derived from the subgraph selector to
η|G| for a graph G, where η < 1, thereby excluding some
uninformative edges. 2) ϵ-probability alignment. This term
aligns the probabilities of the lowest K% edges to be close
to zero, further suppressing the occurence of uninformative
edges. Through theoretical analysis and extensive empirical
validation, we demonstrate that PrunE significantly outper-
forms existing methods in OOD generalization, establish-
ing state-of-the-art performance across various benchmarks.
Our contributions are summarized as follows:

• Novel framework. We propose a pruning-based
graph OOD method PrunE, which introduces a novel
paradigm focusing on removing spurious edges rather
than directly identifying edges in Gc. By pruning spu-
rious edges, PrunE preserves more edges in Gc than

previous methods, thereby improving its OOD general-
ization performance.

• Theoretical guarantee. We provide theoretical anal-
yses, demonstrating that: 1) The proposed graph size
constraint provably enhances OOD generalization abil-
ity by reducing the size of Gs; 2) The proposed learn-
ing objective (Eqn. 5) provably identifies the invariant
subgraph by pruning spurious edges.

• Strong empirical performance. We conduct ex-
periments on both synthetic datasets and real-world
datasets, compare against 15 baselines, PrunE out-
performs the second-best method by up to 24.19%,
highlighting the superior OOD generalization ability.

2. Preliminary
Notation. Throughout this work, an undirected graph G
with n nodes and m edges is denoted by G := {V, E},
where V is the node set and E denotes the edge set. G is also
represented by the adjacency matrix A ∈ Rn×n and node
feature matrix X ∈ Rn×D with D feature dimensions. We
use Gc and Gs to denote invariant subgraph and spurious
subgraph. Ĝc and Ĝs denote the estimated invariant and
spurious subgraph. t : Rn×n × Rn×D → Rn×n refers to a
learnable subgraph selector that models each independent
edge probability, G̃ ∼ t(G) represents G̃ is sampled from
t(G). We use w to denote a vector, and W to denote a
matrix respectively. Finally, a random variable is denoted
as W , a set is denoted using W . A more complete set of
notations is presented in Appendix A.

OOD Generalization. We consider the problem of graph
classification under various forms of distribution shifts
in hidden environments. Given a set of graph datasets
G = {Ge}e∈Etr

, a GNN model f = ρ ◦ h, comprises an en-
coder h: Rn×n × Rn×D → RF that learns a representation
hG for each graph G, followed by a downstream classifier
ρ : RF → Y to predict the label ŶG = ρ(hG). In addition, a
subgraph selector t(·) is employed to generate a graph with
structural modifications. The objective of OOD generaliza-
tion in our work is to learn an optimal composite function
f ◦ t that encodes stable features by regularizing t(·) to
prune spurious edges while preserving the edges in Gc.
Assumption 2.1. Given a graph G ∈ G, there exists a stable
subgraph Gc for every class label Y ∈ Y , satisfying: a)
∀e, e′ ∈ Etr, P e (Y | Gc) = P e′ (Y | Gc); b) The target
Y can be expressed as Y = f∗ (Gc) + ϵ, where ϵ ⊥⊥ G
represents random noise.

Assumption 2.1 posits the existence of a subgraph Gc that
remains stable across different environments and causally
determines the target Y , thus is strongly correlated with the
target labels. Our goal in this work is to identify edges in Gc

by excluding spurious edges to achieve OOD generalization.
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3. Should We Identify Invariant Subgraphs or
Prune Spurious Subgraphs?

In this section, we conduct a case study to explore the differ-
ences between previous graph OOD methods and our pro-
posed approach in the estimated edge probabilities. Through
experiments, we observe that our pruning-based method is
more effective at preserving Gc compared to previous meth-
ods that aim to directly identify Gc, thereby facilitating
better OOD generalization performance for our approach.
Next we detail the experimental setup and observations.

Datasets. We use GOODMotif (Gui et al., 2022) dataset
with base split for the case study. More details of this dataset
can be found in Appendix G.

Experiment Setup. We use GSAT (Miao et al., 2022),
CIGA (Chen et al., 2022), and AIA (Sui et al., 2023) as
baseline methods representing three different lines of work
for comparison, all of which utilize a subgraph selector to
directly identify Gc for OOD generalization. After training
and hyperparameter tuning, we obtain a model and a well-
trained subgraph selector for each method. We evaluate the
test performance on the Motif-base dataset and calculate the
average number of edges in Gc and Gs among the top-K
predicted edges for all methods. Here, we set K = 1.5|Gc|.
For our method, we also present the statistics under different
values of K.

GSAT CIGA AIA PrunEOracle
top-K predicted edges

Test Accuracy
GSAT

CIGA

AIA

PrunE

0.604 0.729

0.687 0.914

Figure 2. Illustration of the average number of edges from Gc and
Gs included in the top-K predicted edges, where c denotes |Gc|.

Observations. From Figure 2, we observe that: (1)
PrunE outperforms all the baselines by a significant mar-
gin, demonstrating superior OOD generalization ability; (2)
When K = 1.5|Gc|, our method preserves more edges from
Gc compared to other methods. Moreover, as K transitions
from 5|Gc| to 1.5|Gc|, the average number of edges in Gc

remains nearly constant, while the number of edges from Gs

decreases significantly. This indicates that most edges from
Gc have predicted probabilities greater than those from Gs;
(3) When compared with the oracle, the average number of
edges in Gc under our method is still slightly lower than
the oracle value, suggesting that a small number of spurious

edges are estimated with high probability.

In conclusion, compared to directly identifying invariant
edges (i.e., edges in Gc), pruning spurious edges preserves
more edges in Gc, even if some spurious edges remain
challenging to eliminate. However, the OOD performance
can be substantially improved by retaining the invariant
subgraphs, which explains why our pruning-based method
outperforms previous approaches. We also provide a de-
tailed discussion in Appendix F on why traditional graph
OOD methods tend to assign low probabilities to edges in
Gc, and how our pruning-based approach avoids this pitfall.
Next, we detail the design of our pruning-based method.

4. The Proposed Method
In this section, we present our pruning-based method
PrunE , which directly regularizes the subgraph selector
without requiring any additional OOD regularization. The
pseudocode is shown in Algorithm 1.

Subgraph selector. Following previous studies (Ying et al.,
2019; Luo et al., 2020; Wu et al., 2022b), we model each
edge eij ∼ Bernoulli(pij) independently which is param-
eterized by pij . The probability of the graph G is factorized
over all the edges, i.e., P (G) =

∏
eij∈E pij . To param-

eterize Tθ, we employ a GNN model to derive the node
representation for each node v, followed by an MLP to
obtain the logits wij as following:

hv = GNN(v | G), v ∈ V,
wij = MLP (hi,hj ,hi∥hj) , eij ∈ E ,

(1)

here ∥ denotes the concatenation operator. To ensure
the sampling process from wij is differentiable and facili-
tate gradient-based optimization, we leverage the Gumbel-
Softmax reparameterization trick (Bengio et al., 2013; Mad-
dison et al., 2016), which is applied as follows:

pij = σ ((log ϵ− log(1− ϵ) + ωij) /τ) , ϵ ∼ U(0, 1),

Ãij = 1− sg(pij) + pij ,
(2)

here Ã denotes the sampled adjacency matrix, τ is the
temperature, sg(·) denotes the stop-gradient operator, and
U(0, 1) denotes the uniform distribution. Aij is the edge
weight for eij , which remains binary and differentiable for
the gradient-based optimization.

Next, we introduce the proposed OOD objectives in
PrunE that directly act on the subgraph selector to prune
spurious edges: (1) Graph size constraint, which excludes
a portion of uninformative spurious edges by limiting the
total edge weights in the graph; (2) ϵ-probability align-
ment, which further suppresses the presence of uninforma-
tive edges by aligning the predicted probabilities of certain
edges close to zero.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Pruning Spurious Subgraphs for Graph Out-of-Distribtuion Generalization

Graph size constraint. We first introduce a regularization
term Le which encourages a graph size distinction between
G̃ ∼ t(G) and G:

Le = EG

(∑
(i,j)∈E Ãij

|E|
− η

)2

, (3)

where η is a hyper-parameter that controls the budget for the
total number of edges pruned by t(·). The core insight is that
when Le acts as a regularization term for ERM, the subgraph
selector will prune spurious edges while preserving edges
in Gc, since ERM learns all useful patterns that are highly
correlated with the target labels (Kirichenko et al., 2023).
Therefore, given Assumption 2.1, Gc will be preserved
due to its strong correlation to the targets, and a subset
of edges in Gs will be excluded. Notably, it is critical to
select a suitable η, as an overly aggressive choice, e.g.,
η = 0.1, may result in pruning edges in Gc as well. In
practice, we find that η ∈

{
0.75, 0.85

}
works well for most

datasets. In Proposition 5.1, we demonstrate that the graph
size regularization Le provably prunes spurious edges while
retaining invariant edges.

ϵ-probability alignment. Although Le is able to prune
a subset of spurious edges, it is challenging to get rid off
all spurious edges. To further suppress the occurence of
spurious edges, we propose the following regularization on
t(·):

Ls = EG
1

|Es|
∑

eij∈Es

|pij − ϵ| . (4)

Here,ϵ is a value close to zero, pij denotes the normalized
probability of the edge eij , and Es is the lowest K% of
edges among all estimated edge weights wij ∈ E by the
subgraph selector t(·).

The key insight is that edges from Gc are likely to exhibit
higher predicted probabilities compared to edges in Gs.
Thus, by aligning the bottom K% edges with the lowest pre-
dicted probability to a small probability score ϵ, it becomes
more likely to suppress spurious edges rather than invariant
edges. When K gets larger, Ls will inevitably push down
the probabilities of edges in Gc. However, ERM will drive
up the probabilities of informative edges for accurate pre-
diction, ensuring that the important edges are included in
Ĝc. Therefore, the penalty for Ls should be relatively small
compared to the penalty of ERM. In practice, we find that
λ2 ∈ {1e−2, 1e−3} and K = 90 work stably across most
datasets. In all experiments, we set ϵ = 1

|E| , which works
well for all the datasets.

Final objective. The overall objective is formulated as:

L = LGT + λ1Le + λ2Ls, (5)

here λi, i ∈
{
1, 2
}

are hyperparameters that balance the
contribution of each component to the overall objective, and

LGT denotes the ERM objective:

LGT = −EG
∑
k∈C

Yk log (f(t(G))k) , (6)

where Yk denotes the class label k for graph G, f(t(G))k is
the predicted probability for class k of graph G.

Algorithm 1 The proposed method
1: Input: Graph dataset G, epochs E, learning rates η, hyperpa-

rameters λ1, λ2

2: Output: Optimized GNN model f∗ = ρ∗ ◦ h∗, and the
subgraph selector t∗(·).

3: Initialize: GNN encoder h(·), classifier ρ(·), and the learn-
able data transformation t(·).

4: for epoch e = 1 to E do
5: for each minibatch B ∈ G do
6: Calculate wij using Eqn. 1 for each graph G ∈ B
7: Calculate Le using Eqn. 3
8: Calculate Ls using Eqn. 4
9: Sample G̃ ∼ t(G) using t(·) for each G ∈ B

10: Calculate cross-entropy loss LGT using Eqn. 6
11: Compute the total loss L = LGT + λ1Le + λ2Ldiv

12: Perform backpropagation to update the parameters of
h(·), ρ(·), and t(·)

13: end for
14: end for

5. Theoretical Analysis
In this section, we provide some theoretical analysis on
our proposed method PrunE . All proofs are included in
Appendix D.
Proposition 5.1. Under Assumption 2.1, the size constraint
loss Le, when acting as a regularizer for the ERM loss LGT ,
will prune edges from the spurious subgraph Gs, while
preserving the invariant subgraph Gc given a suitable η.

Prop. 5.1 demonstrates that by enforcing graph size con-
straint, Le will only prune spurious edges, thus making the
size of Gs to be smaller. Next we show that Le provably
improves OOD generalization ability by shrinking |Gs|.
Theorem 5.2. Let l((xi, xj , y,G); θ) denote the 0-1 loss
function for predicting whether edge eij presents in graph
G using t(·), and

L(θ;D) :=
1

n

∑
(xi,xj ,y,G)∼D

l((xi, xj , y,G); θ),∀eij ∈ E .

L(θ;S) :=
1

m

∑
(xi,xj ,y,G)∼S

l((xi, xj , y,G); θ),∀eij ∈ E .

(7)
where D and S represent the training and test set distribu-
tions, respectively,c is a constant, and n and m denotes the
sample size in training set and test set respectively. Then,
with probability at least 1− δ and ∀θ ∈ Θ, we have:

|L(θ;D)− L(θ;S)| ≤ 2(c|Gs|+ 1)M, (8)

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Pruning Spurious Subgraphs for Graph Out-of-Distribtuion Generalization

where M =
√

ln(4|Θ|)−ln(δ)
2n +

√
ln(4|Θ|)−ln(δ)

2m .

Theorem 5.2 establishes an OOD generalization bound that
incorporates |Gs| due to domain shifts. When |Gs| = 0,
Eqn. 8 reduces to the traditional in-distribution generaliza-
tion bound. Theorem 5.2 shows that Le enhances the OOD
generalization ability by reducing the size of Gs and tight-
ens the generalization bound.

Theorem 5.3. Let Θ∗ = arg infΘ L(Θ), where Θ∗ =
{ρ∗(·), h∗(·), t∗(·)}. For any graph G with target label y ∈
Y , we have Gc ≈ EG[t

∗(G)]. Consequently, sampling from
t∗(G) in expectation will retain only the invariant subgraph
Gc, which remains stable and sufficiently predictive for the
target label y.

Theorem 5.3 demonstrates the ability to retain only Gc

by sampling from t∗(G). While previous methods aim to
directly identify Gc, PrunE is able to achieve the similar
goal more effectively by pruning spurious edges.

6. Related Work
OOD generalization on graphs. To tackle the OOD gener-
alization challenge on graph, various methods have been pro-
posed recently. MoleOOD (Yang et al., 2022), GIL (Li et al.,
2022b) and MILI (Wang et al., 2024) aim to learn graph
invariant features with environment inference. CIGA (Chen
et al., 2022) adopts supervised contrastive learning to iden-
tify invariant subgraphs for OOD generalization. Several
methods (Wu et al., 2022b; Liu et al., 2022; Sui et al., 2023;
Jia et al., 2024; Li et al., 2024) utilize graph data augmenta-
tion to enlarge the training distribution without perturbing
the stable patterns in the graph, enabling OOD general-
ization by identifying stable features across different aug-
mented environments. SizeShiftReg (Buffelli et al., 2022)
proposes a method for size generalization for graph-level
classification using coarsening techniques. GSAT (Miao
et al., 2022) and DGIB (Yuan et al., 2024) use the infor-
mation bottleneck principle (Tishby & Zaslavsky, 2015)
to identify the minimum sufficient subgraph that explains
the model’s prediction. Many existing methods attempt to
directly identify the invariant subgraph to learn invariant fea-
tures. However, this approach can be error-prone, especially
when spurious substructures exhibit strong correlations with
the targets, leading to the failure to preserve the invariant
substructure and ultimately limiting the OOD generalization
capability. In contrast, PrunE aims to exclude spurious
edges without directly identifying invariant edges, resulting
in preserving the invariant substructure more effectively,
and enhanced generalization performance.

Feature learning in the presence of spurious features.
Several studies have explored the inductive bias and SGD
training dynamics of neural networks in the presence of
spurious features (Pezeshki et al., 2021; Rahaman et al.,

2019; Shah et al., 2020). Shah et al. (2020) shows that in
certain scenarios neural networks can suffer from simplicity
bias and rely on simple spurious features, while ignoring the
core features. More recently, Kirichenko et al. (2023) has
found that even when neural networks heavily rely on spuri-
ous features, the core (causal) features can still be learned
sufficiently well. Inspired by Kirichenko et al. (2023), the
subgraph selector should be able to include Gc to encode in-
variant features using ERM as the learning objective, given
that Gc is both strongly correlated with and predictive of
the targets (Assumption 2.1). This insight motivates us to
propose a pruning-based graph OOD method. Compared
to previous approaches, PrunE is capable of preserving a
more intact set of edges from Gc to enhance OOD perfor-
mance, at the cost that certain spurious edges may remain
difficult to eliminate.

7. Experiments
In this section, we evaluate the effectiveness of PrunE on
both synthetic datasets and real-world datasets, and answer
the following research questions. RQ1. How does our
method perform compared with SOTA baselines? RQ2.
How do the individual components and hyperparameters in
PrunE affect the overall performance? RQ3. Can the op-
timal subgraph selector t∗(G) correctly identify Gc? RQ4.
Do edges in Gc predicted by t(·) exhibit higher probability
scores than edges in Gs? RQ5. How does PrunE perform
on datasets with concept shift? RQ6. How do different
GNN architectures impact the OOD performance? More
details on the datasets, experiment setup and experimental
results are presented in Appendix G.

7.1. Experimental Setup

Datasets. We adopt GOOD datasets (Gui et al., 2022),
OGBG-Molbbbp datasets (Hu et al., 2020; Wu et al., 2018),
and DrugOOD datasets (Ji et al., 2022) to comprehensively
evaluate the OOD generalization performance of our pro-
posed framework.

Baselines. Besides ERM (Vapnik, 1995), we compare our
method against two lines of OOD baselines: (1) OOD
algorithms on Euclidean data, including IRM (Arjovsky
et al., 2020), VREx (Krueger et al., 2021), and Group-
DRO (Sagawa et al., 2019); (2) graph-specific OOD meth-
ods and data augmentation methods, including DIR (Wu
et al., 2022b), GSAT (Miao et al., 2022), GREA (Liu et al.,
2022), DisC (Fan et al., 2022), CIGA (Chen et al., 2022),
AIA (Sui et al., 2023), DropEdge (Rong et al., 2019), G-
Mixup (Han et al., 2022), FLAG (Kong et al., 2022), and
LiSA (Yu et al., 2023).

Evaluation. We report the ROC-AUC score for GOOD-HIV,
OGBG-Molbbbp, and DrugOOD datasets, where the tasks

5
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Figure 3. Ablation study on Le and Ls.

are binary classification. For GOOD-Motif and SPMotif
datasets, we use accuracy as the evaluation metric. We run
experiments 4 times with different random seeds, select
models based on the validation performance, and report the
mean and standard deviations on the test set.

7.2. Experimental Results

In this section, we report the main results on both synthetic
and real-world datasets.

Synthetic datasets. The GOOD-Motif datasets fully align
with our assumptions, making them a suitable benchmark
for evaluating the effectiveness of our proposed method. Our
approach outperforms second-best method AIA by 24.19%
and 19.13% in Motif-base and Motif-size datasets respec-
tively. This demonstrates the excellent OOD generalization
capability of PrunE by pruning spurious edges. While most
(graph) OOD methods perform similarly, or even underper-
form ERM, PrunE outperforms all the baseline methods
by a large margin. Notably, the in-distribution performance
of ERM on Motif-base dataset is 92.60% (Gui et al., 2022),
while our approach achieves a comparable result of 91.48%,
further highlighting the superiority of the novel paradigm
of pruning spurious edges over the traditional approach of
directly identifying invariant edges.

Real-world datasets. In real-world datasets, which present
more complex and realistic distribution shifts, many graph
OOD algorithms exhibit instability, occasionally under-
performing ERM. In contrast, our approach consistently
achieves stable and superior performance across a diverse
set of distribution shifts, and outperform the second-best
method by an average of 2.38% in 7 real-world datasets.
This also demonstrates that the proposed pruning-based
method can be effectively applied to various real-world sce-
narios, highlighting its applicability.

7.3. Ablation Study

In this section, η and K we evaluate the impact of Le and
Ldiv using the GOODMotif and GOODHIV datasets by

(a) Motif-base dataset

(b) GOODHIV-size dataset

Figure 4. Hyperparameter sensitivity. η ∈ {0.75, 0.85} and K =
90 yield stable performance across various datasets.

setting λ1 = 0 or λ2 = 0 in Eqn. 5 to observe the im-
pacts on model performance. As illustrated in Figure 3,
removing either Le or Ls leads to a significant drop in test
performance across all datasets, and a larger variance. The
removal of Le results in a more significant decline, as this
regularization penalty is stronger (e.g., λ1 is set to 10 in the
experiments). However, even with Le, some spurious edges
may still exhibit high probabilities, potentially inducing a
large variance. By further employing Ls, PrunE effectively
reduce predicted probabilities for most spurious edges, thus
further reduce the variance and improve the performance.

7.4. Hyper-parameter Sensitivity

We study the impact of hyperparameter sensitivity on the
edge budget η in Le and the K% edges with the lowest
probability in Ls. Additionally, we investigate the effects
of varying the penalty weights for Le and Ls (i.e., λ1 and
λ2). As illustrated in Figure 4, an unsuitable choice of η
can negatively impact test performance, e.g., in the GOOD-
Motif dataset with base split, setting η = 0.5 may prune
too many edges, potentially corrupting Gc and consequently
reducing test performance. However, with a suitable η, test
performance remains stable across different values of K.
Notably, a larger K (e.g., K = 90) consistently leads to op-
timal performance. Readers may raise concerns that a large
value of K could also push down the probability of edges in
Gc, seemingly contradicting the optimal test performance
observed at K = 90. However, since ERM exerts a stronger
influence in driving up the probability of invariant edges
to achieve accurate predictions, this compensates for the
negative effect of Ls. Notably, when λ2 ∈ {1, 10}, the test
performance declines significantly for ∀K ∈ {50, 70, 90},
as the regularization strengths surpass those of ERM. Re-

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Pruning Spurious Subgraphs for Graph Out-of-Distribtuion Generalization

Table 1. Performance on synthetic and real-world datasets. Numbers in bold indicate the best performance, while the underlined numbers
indicate the second best performance. ∗ denotes the test performance is statistically significantly better than the second-best method, with
p-value less than 0.05.

Method GOODMotif GOODHIV EC50 OGBG-Molbbbp

base size scaffold size scaffold size assay scaffold size

ERM 68.66±4.25 51.74±2.88 69.58±2.51 59.94±2.37 62.77±2.14 61.03±1.88 64.93±6.25 68.10±1.68 78.29±3.76

IRM 70.65±4.17 51.41±3.78 67.97±1.84 59.00±2.92 63.96±3.21 62.47±1.15 72.27±3.41 67.22±1.15 77.56±2.48

GroupDRO 68.24±8.92 51.95±5.86 70.64±2.57 58.98±2.16 64.13±1.81 59.06±1.50 70.52±3.38 66.47±2.39 79.27±2.43

VREx 71.47±6.69 52.67±5.54 70.77±2.84 58.53±2.88 64.23±1.76 63.54±1.03 68.23±3.19 68.74±1.03 78.76±2.37

DropEdge 45.08±4.46 45.63±4.61 70.78±1.38 58.53±1.26 63.91±2.56 61.93±1.41 73.79±4.06 66.49±1.55 78.32±3.44

G-Mixup 59.66±7.03 52.81±6.73 70.01±2.52 59.34±2.43 61.90±2.08 61.06±1.74 69.28±1.36 67.44±1.62 78.55±4.16

FLAG 61.12±5.39 51.66±4.14 68.45±2.30 60.59±2.95 64.98±0.87 64.28±0.54 74.91±1.18 67.69±2.36 79.26±2.26

LiSA 54.59±4.81 53.46±3.41 70.38±1.45 52.36±3.73 62.60±3.62 60.96±1.07 69.73±0.62 68.11±0.52 78.62±3.74

DIR 62.07±8.75 52.27±4.56 68.07±2.29 58.08±2.31 63.91±2.92 61.91±3.92 66.13±3.01 66.86±2.25 76.40±4.43

DisC 51.08±3.08 50.39±1.15 68.07±1.75 58.76±0.91 59.10±5.69 57.64±1.57 61.94±7.76 67.12±2.11 56.59±10.09

CAL 65.63±4.29 51.18±5.60 67.37±3.61 57.95±2.24 65.03±1.12 60.92±2.02 74.93±5.12 68.06±2.60 79.50±4.81

GREA 56.74±9.23 54.13±10.02 67.79±2.56 60.71±2.20 64.67±1.43 62.17±1.78 71.12±1.87 69.72±1.66 77.34±3.52

GSAT 60.42±9.32 53.20±8.35 68.66±1.35 58.06±1.98 65.12±1.07 61.90±2.12 74.77±4.31 66.78±1.45 75.63±3.83

CIGA 68.71±10.9 49.14±8.34 69.40±2.39 59.55±2.56 65.42±1.53 64.47±0.73 74.94±1.91 64.92±2.09 65.98±3.31

AIA 72.91±5.62 55.85±7.98 71.15±1.81 61.64±3.37 64.71±0.50 63.43±1.35 76.01±1.18 70.79±1.53 81.03±5.15

PrunE 91.48*±0.40 66.53*±8.55 71.84*±0.61 64.99*±1.63 67.56*±0.34 65.46*±0.88 78.01*±0.42 70.32±1.73 81.59±5.35

Table 2. Test performance with varying ϵ.

Motif-base Motif-size EC50-sca

ϵ = 0.01 91.63±0.73 60.38±8.35 77.76±1.11

ϵ = 0.1 88.14±0.67 62.38±10.76 76.65±1.92

ϵ = 0.3 80.93±4.33 50.65±4.95 76.07±2.65

ϵ = 0.5 74.52±19.89 50.28±8.35 75.93±1.27

ϵ = 1
|E| 91.48±0.40 66.53±8.55 78.01±0.42

garding real-world datasets, such as GOODHIV-size and
other datasets in Appendix G, the test OOD performance
demonstrates stability across various hyperparameters, un-
derscoring the robustness of PrunE.

Furthermore, we investigate the impact of ϵ in Ls. As shown
in Table 2, the optimal performance is observed when ϵ is a
small value close to zero. However, as ϵ increases, the test
performance declines, especially on synthetic datasets. This
decline occurs because larger values of ϵ weaken the sup-
pression effect, potentially leading to adverse effect that hin-
der generalization. Notably, when ϵ = 1

|E| , the suppression
strength is dynamically adjusted for each graph instance,
resulting in stable performance across diverse datasets.

7.5. In-depth Analysis

Can t∗(·) identify Gc? To verify whether t∗(·) can indeed
identify Gc, we conduct experiments using GOOD-Motif
datasets with both base and size splits. These synthetic
datasets are suitable for this analysis as they provide ground-
truth labels for edges and nodes that are causally related to
the targets. First, we collect the target label for each edge,
and the predicted probability score from t∗(·) for correctly
predicted samples and plot the ROC-AUC curve for both the

validation and test sets for the two datasets. As illustrated in
Figure 5(b), the AUC scores for both datasets exhibit high
values, demonstrating that t∗(·) accurately identifies Gc,
which is consistent with the theoretical insights provided in
Theorem 5.3. Figure 5(a) illustrates some visualization re-
sults using t∗(·), demonstrating that t∗(·) correctly identify
invariant edges from Gc. More visualization results for the
identified edges using t∗(·) are provided in Appendix G.

Do edges in Gc exhibit a higher probability than edges
in Gs? We assess the probability scores and ranking of
edges in Gc compared to those in Gs using the GOOD-
Motif datasets. Specifically, we plot the average probability
and ranking of edges in Gc over the first 40 epochs (ex-
cluding the first 10 epochs for ERM pretraining), using the
ground-truth edge labels. As shown in Figure 6, for both
the Motif-base and Motif-size datasets, the invariant edges
in Gc exhibit high probability scores, ranking among the
top 50% in both datasets. This demonstrates that the edges
from the invariant subgraph generally get higher predicted
probability scores compared to spurious edges. However,
certain spurious edges may still be overestimated due to
their strong correlation with the target labels.

How does PrunE perform on datasets with concept
shift? In the main results, we use covariate shift to evaluate
the OOD performance of various methods, where unseen
environments arise in validation and test datasets. We also
adopt concept shift to evaluate the effectiveness of PrunE,
where spurious correlation strength varies in training and
test sets. As shown in Table 3, PrunE also outperforms the
SOTA methods significantly. For Motif-base dataset, most
of the methods underperform ERM, while PrunE achieves
90.28% test accuracy, which is 8.84% higher than ERM.
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Motif-base Motif-size

(a) Visualizations on learned subgraph by t∗(·), where blue nodes are ground-truth nodes
in Gc, and red nodes are ground-truth nodes in Gs. The highlighted blue edges are top-K

edges predicted by t∗(·), where K is the number of ground-truth invariant edges.
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(b) The ROC-AUC curve for predicted edges
and ground-truth edges on GOODMotif-base

and GOODMotif-size datasets.

Figure 5. Empirical visualization and analysis on t∗(·).

Motif-base Motif-size

Figure 6. Average probability and ranking of edges in Gc for every
training epoch. In both datasets, the edges from the invariant sub-
graph generally get higher predicted probability scores compared
to spurious edges. However, certain spurious edges may still be
overestimated due to their strong correlation with the target labels.

Table 3. Model performance on datasets with concept shift.

Method SPMotif GOODHIV GOODMotif

b = 0.40 b = 0.60 size base

ERM 59.42±2.63 60.45±5.21 63.26±2.47 81.44±0.45

IRM 59.89±4.87 58.10±4.86 59.90±3.15 80.71±0.46

VRex 61.16±3.06 56.88±1.19 60.23±1.70 81.56±0.35

GSAT 64.49±1.60 61.27±1.42 56.76±7.16 76.07±3.48

GREA 62.08±4.63 59.07±5.94 60.07±5.40 78.27±4.29

CIGA 65.23±3.58 62.17±2.28 73.62±0.86 81.68±3.01

AIA 65.11±2.47 59.46±6.23 74.21±1.81 82.51±2.81

PrunE 67.78±3.98 65.50±3.53 79.50±1.57 90.28±1.72

How do different GNN encoders affect the model per-
formance? We examine the effect of using different GNN
encoders, specifically GCN (Kipf & Welling, 2017) and
GIN (Xu et al., 2018), with the same hidden dimensions and
number of layers as h(·). As illustrated in Figure 7, across
all four datasets, employing GIN as the feature encoder
leads to a increase in test performance. This is likely due to
GIN’s higher expressivity than GCN (Xu et al., 2018), being
as powerful as the 1-WL test (Leman & Weisfeiler, 1968),
which allows it to generate more distinguishable features
compared to GCN. These enhanced features benefits the
optimization of t(·), thereby improving the identification of
Gc for OOD generalization. This also highlights another ad-

Motif-Base Motif-Size HIV-Sca HIV-Size
40

50

60

70

80

90

Te
st

 A
cc

GIN GCN

Figure 7. Test performance with different GNN encoders.
PrunE achieves improved OOD performance with more expres-
sive GNN architecture.

vantage of PrunE: utilizing a GNN encoder with enhanced
expressivity may further facilitate OOD generalization by
more accurately identifying Gc through t(·).

8. Conclusion
Many graph-specific OOD methods aim to directly iden-
tify edges in the invariant subgraph to achieve OOD gen-
eralization, which can be challenging and prone to errors.
In response, we propose PrunE, a pruning-based OOD
method that focuses on removing spurious edges by impos-
ing regularization terms on the subgraph selector, without
introducing any additional OOD objectives. Through a
case study, we demonstrate that, compared to conventional
methods, PrunE exhibits enhanced OOD generalization
capability by retaining more edges in the invariant subgraph.
Theoretical analysis and extensive experiments across vari-
ous datasets validate the effectiveness of this novel learning
paradigm. Future research directions include: (1) Extend-
ing the pruning-based paradigm to a self-supervised set-
ting without relying on the power of ERM; (2) Expanding
this learning paradigm to other scenarios, such as dynamic
graphs under distribution shifts.
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A. Notations
We present a set of notations used throughout our paper for clarity. Below are the main notations along with their definitions.

Table 4. Notation Table
Symbols Definitions

G Set of graph datasets
Etr Set of environments used for training
Eall Set of all possible environments
G An undirected graph with node set V and edge set E
V Node set of graph G
E Edge set of graph G
A Adjacency matrix of graph G
X Node feature matrix of graph G
D Feature dimension of node features in X

Gc Invariant subgraph of G
Gs Spurious subgraph of G
Ĝc Estimated invariant subgraph
Ĝs Estimated spurious subgraph
|G| The number of edges in graph G.
Y Target label variable

w A vector
W A matrix
W A random variable
W A set

f = ρ ◦ h A GNN model comprising encoder h(·) and classifier ρ(·)
t(·) Learnable data transformation function for structural modifications

G̃ ∼ t(·) A view sampled from t(·), e.g., G̃ ∼ t(·). We may use t(G) to denote a sampled view
from G via t(·), e.g., I(G; t(G))

hv Representation of node v ∈ V of graph G

B. More Preliminaries
Graph Neural Networks. In this work, we adopt message-passing GNNs for graph classification due to their expressiveness.
Given a simple and undirected graph G = (A,X) with n nodes and m edges, where A ∈ {0, 1}n×n is the adjacency
matrix, and X ∈ Rn×d is the node feature matrix with d feature dimensions, the graph encoder h : G → Rh aims to learn a
meaningful graph-level representation hG, and the classifier ρ : Rh → Y is used to predict the graph label ŶG = ρ(hG). To
obtain the graph representation hG, the representation h

(l)
v of each node v in a graph G is iteratively updated by aggregating

information from its neighbors N (v). For the l-th layer, the updated representation is obtained via an AGGREGATE
operation followed by an UPDATE operation:

m(l)
v = AGGREGATE(l)

({
h(l−1)
u : u ∈ N (v)

})
, (9)

h(l)
v = UPDATE(l)

(
h(l−1)
v ,m(l)

v

)
, (10)

where h
(0)
v = xv is the initial node feature of node v in graph G. Then GNNs employ a READOUT function to aggregate

the final layer node features
{
h
(L)
v : v ∈ V

}
into a graph-level representation hG:

hG = READOUT
({

h(L)
v : v ∈ V

})
. (11)
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C. Additional Related Work
OOD Generalization on Graphs. Recently, there has been a growing interest in learning graph-level representations that
are robust under distribution shifts, particularly from the perspective of invariant learning. MoleOOD (Yang et al., 2022) and
GIL (Li et al., 2022b) propose to infer environmental labels to assist in identifying invariant substructures within graphs.
DIR (Wu et al., 2022b), GREA (Liu et al., 2022) and iMoLD (Zhuang et al., 2023) employ environment augmentation
techniques to facilitate the learning of invariant graph-level representations. These methods typically rely on the explicit
manipulation of unobserved environmental variables to achieve generalization across unseen distributions. AIA (Sui et al.,
2023) employs an adversarial augmenter to explore OOD data by generating new environments while maintaining stable
feature consistency. To circumvent the need for environmental inference or augmentation, CIGA (Chen et al., 2022) and
GALA (Chen et al., 2023) utilizes supervised contrastive learning to identify invariant subgraphs based on the assumption
that samples sharing the same label exhibit similar invariant subgraphs. LECI (Gui et al., 2023) and G-Splice (Li et al., 2023b)
assume the availability of environment labels, and study environment exploitation strategies for graph OOD generalization.
LECI (Gui et al., 2023) proposes to learn a causal subgraph selector by jointly optimizing label and environment causal
independence, and G-Splice (Li et al., 2023b) studies graph and feature space extrapolation for environment augmentation,
which maintains causal validity. On the other hand, some works do not utilize the invariance principle for graph OOD
generalization. DisC (Fan et al., 2022) initially learns a biased graph representation and subsequently focuses on unbiased
graphs to discover invariant subgraphs. GSAT (Miao et al., 2022) utilizes information bottleneck principle (Tishby &
Zaslavsky, 2015) to learn a minimal sufficient subgraph for GNN explainability, which is shown to be generalizable under
distribution shifts. OOD-GNN (Li et al., 2022a) proposes to learn disentangled graph representation by computing global
weights of all data.

Node-level OOD Generalization. There has been substantial work on OOD generalization for node-level classification
tasks. Most existing methods (Wu et al., 2022a; Liu et al., 2023; Li et al., 2023a; Yu et al., 2023) adopt invariant learning to
address node-level OOD challenges. Compared to graph-level OOD generalization, node-level OOD problems face unique
difficulties, including: (1) distinct types of distribution shifts (e.g., structural or feature-level shifts), (2) non-i.i.d. node
dependencies due to the interconnected nature, and (3) computational bottlenecks from subgraph extraction when reducing
to graph-level OOD tasks. Due to these challenges, our pruning-based approach cannot be directly extended to node-level
tasks. We leave this adaptation to future work.

D. Proofs of Theoretical Results
D.1. Proof of Proposition 5.1

Proof. We begin by expanding the cross-entropy loss LGT as:

LGT = −EG

[
logP(Y | f(G̃))

]
, (12)

where G̃ ∼ t(G). Supposing that |G̃| > |Gc|, which can be controlled by the hyperparameter η in Eqn. 3, further assume
that G̃ does not include the invariant subgraph Gc. Let a subgraph g be substracted from G̃ and |g| = |Gc|, we then define a
new subgraph G′ = G̃ \ g, and we add Gc to G′ to form the new graph G′ ∪Gc.

Under Assumption 2.1, we know that the invariant subgraph Gc holds sufficient predictive power to Y , and Gc is more
informative to Y than Gs, therefore including Gc will always make the prediction more certain, i.e.,

P(Y | f(G′ ∪Gc)) > P(Y | f(G′ ∪ g)),∀g ⊆ G̃, (13)

As a result, LGT will become smaller. Therefore, we conclude that under the graph size regularization imposed by Le, the
optimal solution G̃ ∼ t(G) will always include the invariant subgraph Gc, while pruning edges from the spurious subgraph
Gs. This completes the proof.

Remark. When η is set too small, the loss term Le may inadvertently prune edges in Gc, thereby corrupting the invariant
substructure and degrading OOD generalization performance. In practice, we observe that η =

{
0.5, 0.75

}
works well

across most datasets stably.
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D.2. Proof of Theorem 5.2

Proof. We first formally define the notations in our proof. Let l((xi, xj , y,G); θ) denote the 0-1 loss for the edge eij being
presented in graph G, and

L(θ;D) :=
1

n

∑
(xi,xj ,y,G)∼D

l ((xi, xj , y,G) ; θ) ,

L(θ;S) :=
1

m

∑
(xi,xj ,y,G)∼S

l ((xi, xj , y,G) ; θ) ,

(14)

where D and S represent the training and test distributions, with n and m being their respective sample sizes. We define:

Lc(θ;D) =
1

n

∑
(xi,xj ,y,G)∼D

l((xi, xj , y,Gc) ; θ),∀eij ∈ Gc.

Ls(θ;D) =
1

n

∑
(xi,xj ,y,G)∼D

l ((xi, xj , y,Gs) ; θ) ,∀eij ∈ Gs.

(15)

Similarly, Lc(θ;S) and Ls(θ;S) can be defined for the test distribution. Under Assumption 2.1, Lc(θ;D) and Lc(θ;S) are
identically distributed due to the stability of Gc across environments, while Ls(θ;D) and Ls(θ;S) differ because of domain
shifts in Gs. We assume:

Ls(θ; ·) := c |Gs|Lc(θ; ·), (16)

where c is a proportionality constant. As Ls(·) is defined to a summation over all spurious edges, we put |Gs| in the r.h.s to
account for this factor. When |Gs| = 0, the loss reduces to the in-distribution case Lc(θ; ·).

|L(θ;D)− L(θ;S)| = |Lc(θ;D) + Ls(θ;D)− Lc(θ;S)− Ls(θ;S)| (17)
≤ |Lc(θ;D)− Lc(θ;S)|+ |Ls(θ;D)− Ls(θ;S)| (18)
= |Lc(θ;D)− Lc(θ;S)|+ c |Gs| |Lc(θ;D)− Lc(θ;S)| (19)
= (c |Gs|+ 1) |Lc(θ;D)− Lc(θ;S)| . (20)

To bound |Lc(θ;D)− Lc(θ;S)|, we decompose it as:

|Lc(θ;D)− Lc(θ;S)| ≤ |Lc(θ;D)− E [Lc(θ;D)]|+ |E [Lc(θ;S)]− Lc(θ;S)| . (21)

Applying Hoeffding’s Inequality to each term:

P (|E [Lc(θ;D)]− Lc(θ;D)| ≥ ϵ) ≤ 2 exp
(
−2ϵ2n

)
, (22)

P (|E [Lc(θ;S)]− Lc(θ;S)| ≥ ϵ) ≤ 2 exp
(
−2ϵ2m

)
. (23)

Union bounding over all θ ∈ Θ:

P (∃θ ∈ Θ : |E [Lc(θ;D)]− Lc(θ;D)| ≥ ϵ) ≤ 2|Θ| exp
(
−2ϵ2n

)
, (24)

P (∃θ ∈ Θ : |E [Lc(θ;S)]− Lc(θ;S)| ≥ ϵ) ≤ 2|Θ| exp
(
−2ϵ2m

)
. (25)

Setting both probabilities to δ/2 and solving for ϵ:

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Pruning Spurious Subgraphs for Graph Out-of-Distribtuion Generalization

ϵD =

√
ln(4|Θ|)− ln(δ)

2n
, (26)

ϵS =

√
ln(4|Θ|)− ln(δ)

2m
. (27)

Thus, with probability at least 1− δ:

|Lc(θ;D)− Lc(θ;S)| ≤ ϵD + ϵS (28)

=

√
ln(4|Θ|)− ln(δ)

2n
+

√
ln(4|Θ|)− ln(δ)

2m
. (29)

Substituting into Eqn. 20:

|L(θ;D)− L(θ;S)| ≤ 2(c|Gs|+ 1)

(√
ln(4|Θ|)− ln(δ)

2n
+

√
ln(4|Θ|)− ln(δ)

2m

)
. (30)

Letting M =
√

ln(4|Θ|)−ln(δ)
2n +

√
ln(4|Θ|)−ln(δ)

2m , we obtain the final bound:

|L(θ;D)− L(θ;S)| ≤ 2(c|Gs|+ 1)M. (31)

D.3. Proof of Theorem 5.3

Proof. Our proof consists of the following steps.

Step 1. We start by decomposing E[t∗(G)] into two components: the invariant subgraph Gc and a partially retained spurious
subgraph GP

s .

E[t∗(G)] = E
[
Gc +GP

s

]
= E [Gc] + E

[
GP

s

]
= Gc + E

[
GP

s

] (32)

In Eqn. 32, E [Gc] = Gc is due to that for any given label y, Gc is a constant according to Assumption 2.1, while GP
s is a

random variable.

Step 2. We then model GP
s as a set of independent edges, and calculate the expected total edge weights of Gc and GP

s

respectively. First, we define Wc as the sum of binary random variables corresponding to the edges in Gc. Each edge eij in
Gc is associated with a Bernoulli random variable Xij such that:

Wc =
∑

eij∈Gc

Xij . (33)

Similarly, we define WP
s as the sum of binary random variables corresponding to the edges in GP

s . Each edge eij in GP
s is

associated with a Bernoulli random variable X ′
ij such that:

WP
s =

∑
eij∈GP

s

X ′
ij . (34)

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Pruning Spurious Subgraphs for Graph Out-of-Distribtuion Generalization

Wc and WP
s are denoted as random r.v. for the total edge weights of Gc and GP

s .

Step 3. We then calculate the expected edge weights E[Wc] and E[WP
s ] as following.

E[Wc] = E[
∑

eij∈Gc

Xij ] =
∑

eij∈Gc

E[Xij ] = |Gc| , (35)

E[WP
s ] = E[

∑
eij∈GP

s

X ′
ij ] =

∑
eij∈GP

s

E[X ′
ij ] =

|GP
s |

|E|
=

η|E| − |Gc|
|E|

. (36)

Here E is the set of edges in graph G, η|E| is the total edge number limits due to Le. In Eqn. 35, E[Xij ] = 1,∀eij ∈ Gc is
due to that P(Xij) = 1, as t∗(G) always include Gc using the results from Prop. 5.1; In Eqn. 36, E[X ′

ij ] =
1
|E| ,∀eij ∈ GP

s ,
due to that P(X ′

ij) =
1
|E| enforced by ϵ-probability alignment penalty Ls. Therefore, given a suitable η that prunes spurious

edges from Gs, |E||Gc| ≫ η|E| − |Gc|, i.e., E[t∗(G)] will be dominated by Gc in terms of edge probability mass, therefore,
we conclude that Gc ≈ E[t∗(G)].

E. Complexity Analysis
Time Complexity. The time complexity is O(CkmF ), where k is the number of GNN layers, m is the total number of
edges in graph G, and F is the feature dimensions. Compared to ERM, PrunE incurs an additional constant C > 1, as it
uses a GNN model t(·) for edge selection, and another GNN encoder h(·) for learning feature representations. However, C
is a small constant, hence the time cost is on par with standard ERM.

Space Complexity. The space complexity for PrunE is O(C ′|B|mkF ), where |B| denotes the batch size. The constant
C ′ > 1 is due to the additional subgraph selector t(·). As C ′ is also a small integer, the space complexity of PrunE is also
on par with standard ERM.

F. The Pitfall of Directly Identifying Edges in Gc

Most graph-specific OOD methods that model edge probabilities incorporate OOD objectives as regularization terms for
ERM. These OOD objectives attempt to directly identify the invariant subgraph for OOD generalization. For example,
GSAT (Miao et al., 2022) utilizes the information bottleneck to learn a minimal sufficient subgraph for accurate model
prediction; CIGA (Chen et al., 2022) adopt supervised contrastive learning to identify the invariant subgraph that remains
stable across different environments within the same class; DIR (Wu et al., 2022b) and AIA (Sui et al., 2023) identify the
invariant subgraph through training environments augmentation. However, when spurious substructures exhibit comparable
or stronger correlation strength than invariant edges (i.e., edges in Gc) with the targets, these methods are unlikely to identify
all invariant edges, and preserve the invariant subgraph patterns Since the spurious substructure may be mistakenly identified
as the stable pattern. Consequently, while achieving high training accuracy, these methods suffer from poor validation and
test performance.

In contrast, PrunE avoids this pitfall by proposing OOD objectives that focus on pruning uninformative spurious edges
rather than directly identifying causal ones. While strongly correlated spurious edges may still persist, edges in Gc are
preserved due to their strong correlation with targets. As a key conclusion, PrunE achieves enhanced OOD performance
compared to prior methods, as the invariant patterns are more likely to be retained, even if some spurious edges cannot be
fully excluded.

G. More Details about Experiments
G.1. Datasets details

In our experimental setup, we utilize five datasets: GOOD-HIV, GOOD-Motif, SPMotif, OGBG-Molbbbp, and DrugOOD.
The statistics of the datasets are illustrated in Table 5.

GOOD-HIV (Gui et al., 2022). GOOD-HIV is a molecular dataset derived from the MoleculeNet (Wu et al., 2018)
benchmark, where the primary task is to predict the ability of molecules to inhibit HIV replication. The molecular structures
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are represented as graphs, with nodes as atoms and edges as chemical bonds. Following (Gui et al., 2022), We adopt the
covariate shift split, which refers to changes in the input distribution between training and testing datasets while maintaining
the same conditional distribution of labels given inputs. This setup ensures that the model must generalize to unseen
molecular structures that differ in these domain features from those seen during training. We focus on the Bemis-Murcko
scaffold (Bemis & Murcko, 1996) and the number of nodes in the molecular graph as two domain features to evaluate our
method.

GOOD-Motif (Gui et al., 2022). GOOD-Motif is a synthetic dataset designed to test structure shifts. Each graph in this
dataset is created by combining a base graph and a motif, with the motif solely determining the label. The base graph type
and the size are selected as domain features to introduce covariate shifts. By generating different base graphs such as wheels,
trees, or ladders, the dataset challenges the model’s ability to generalize to new graph structures not seen during training. We
employ the covariate shift split, where these domain features vary between training and testing datasets, reflecting real-world
scenarios where underlying graph structures may change.

SPMotif (Wu et al., 2022b). In SPMotif datasets (Wu et al., 2022b), each graph comprises a combination of invariant
and spurious subgraphs. The spurious subgraphs include three structures (Tree, Ladder, and Wheel), while the invariant
subgraphs consist of Cycle, House, and Crane. The task for a model is to determine which one of the three motifs (Cycle,
House, and Crane) is present in a graph. A controllable distribution shift can be achieved via a pre-defined parameter
b. This parameter manipulates the spurious correlation between the spurious subgraph Gs and the ground-truth label Y ,
which depends solely on the invariant subgraph Gc. Specifically, given the predefined bias b, the probability of a specific
motif (e.g., House) and a specific base graph (Tree) will co-occur is b while for the others is (1− b)/2 (e.g., House-Ladder,
House-Wheel). When b = 1

3 , the invariant subgraph is equally correlated to the three spurious subgraphs in the dataset.

OGBG-Molbbbp (Hu et al., 2020). OGBG-Molbbbp is a real-world molecular dataset included in the Open Graph
Benchmark (Hu et al., 2020). This dataset focuses on predicting the blood-brain barrier penetration of molecules, a critical
property in drug discovery. The molecular graphs are detailed, with nodes representing atoms and edges representing bonds.
Following Sui et al. (2023), we create scaffold shift and graph size shift to evaluate our method. Similarly to Gui et al.
(2022), the Bemis-Murcko scaffold (Bemis & Murcko, 1996) and the number of nodes in the molecular graph are used as
domain features to create scaffold shift and size shift respectively.

DrugOOD (Ji et al., 2022). DrugOOD dataset is designed for OOD challenges in AI-aided drug discovery. This benchmark
offers three environment-splitting strategies: Assay, Scaffold, and Size. In our study, we adopt the EC50 measurement.
Consequently, this setup results in three distinct datasets, each focusing on a binary classification task for predicting
drug-target binding affinity.

Table 5. Details about the datasets used in our experiments.
DATASETS Split # TRAINING # VALIDATION # TESTING # CLASSES METRICS

GOOD-Motif Base 18000 3000 3000 3 ACC
Size 18000 3000 3000 3 ACC

SPMotif Correlation 9000 3000 3000 3 ACC

GOOD-HIV Scaffold 24682 4113 4108 2 ROC-AUC
Size 26169 4112 3961 2 ROC-AUC

OGBG-Molbbbp Scaffold 1631 204 204 2 ROC-AUC

OGBG-Molbace Scaffold 1210 152 151 2 ROC-AUC

EC50
Assay 4978 2761 2725 2 ROC-AUC

Scaffold 2743 2723 2762 2 ROC-AUC
Size 5189 2495 2505 2 ROC-AUC

G.2. Detailed experiment setting

GNN Encoder. For GOOD-Motif datasets, we utilize a 4-layer GIN (Xu et al., 2018) without Virtual Nodes (Gilmer et al.,
2017), with a hidden dimension of 300; For GOOD-HIV datasets, we employ a 4-layer GIN without Virtual Nodes, and
with a hidden dimension of 128; For the OGBG-Molbbbp dataset, we adopt a 4-layer GIN with Virtual Nodes, and the
dimensions of hidden layers is 64; For the DrugOOD datasets, we use a 4-layer GIN without Virtual Nodes. For SPMotif
datasets, we use a 5-layer GIN without Virtual Nodes. All GNN backbones adopt sum pooling for graph readout.
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Training and Validation. By default, we use Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1e− 3 and a
batch size of 64 for all experiments. For DrugOOD, GOOD-Motif and GOOD-HIV datasets, our method is pretrained for
10 epochs with ERM, and for other datasets, we do not use ERM pretraining. We employ an early stopping of 10 epochs
according to the validation performance for DrugOOD datasets and GOOD-Motif datasets, and do not employ early stopping
for other datasets. Test accuracy or ROC-AUC is obtained according to the best validation performance for all experiments.
All experiments are run with 4 different random seeds, the mean and standard deviation are reported using the 4 runs of
experiments.

Baseline setup and hyperparameters. In our experiments, for the GOOD and OGBG-Molbbbp datasets, the results of
ERM, IRM, GroupDRO, and VREx are reported from Gui et al. (2022), while the results for DropEdge, DIR, GSAT, CIGA,
GREA, FLAG, G-Mixup and AIA on GOOD and OGBG datasets are reported from Sui et al. (2023). To ensure fairness, we
adopt the same GIN backbone architecture as reported in Sui et al. (2023). For the EC50 datasets and SPMotif datasets, we
conduct experiments using the provided source codes from the baseline methods. The hyperparameter search is detailed as
follows.

For IRM and VREx, the weight of the penalty loss is searched over {1e− 2, 1e− 1, 1, 1e1}. For GroupDRO, the step size
is searched over {1.0, 1e− 1, 1e− 2}. The causal subgraph ratio for DIR is searched across {1e− 2, 1e− 1, 0.2, 0.4, 0.6}.
For DropEdge, the edge masking ratio is seached over: {0.1, 0.2, 0.3}. For GREA, the weight of the penalty loss is tuned
over {1e− 2, 1e− 1, 1.0}, and the causal subgraph size ratio is tuned over {0.05, 0.1, 0.2, 0.3, 0.5}. For GSAT, the causal
graph size ratio is searched over {0.3, 0.5, 0.7}. For CIGA, the contrastive loss and hinge loss weights are searched over
{0.5, 1.0, 2.0, 4.0, 8.0}. For DisC, we search over q in the GCE loss: {0.5, 0.7, 0.9}. For LiSA, the loss penalty weights are
searched over:{1, 1e− 1, 1e− 2, 1e− 3}. For G-Mixup, the augmented ratio is tuned over {0.15, 0.25, 0.5}. For FLAG,
the ascending steps are set to 3 as recommended in the paper, and the step size is searched over {1e− 3, 1e− 2, 1e− 1}.
For AIA, the stable feature ratio is searched over {0.1, 0.3, 0.5, 0.7, 0.9}, and the adversarial penalty weight is searched
over {0.01, 0.1, 0.2, 0.5, 1.0, 3.0, 5.0}.

Hyperparameter search for PrunE. For PrunE, the edge budget η in Le is searched over: {0.5, 0.75, 0.85}; K for
the K% edges with lowest probability score in Ls is searched over:{50, 70, 90}; λ1, λ2 for balancing Le and Ls are
searched over: {10, 40} and {1e− 1, 1e− 2, 1e− 3} respectively. The encoder of subgraph selector t(·) is searched over
{GIN,GCN}, with the number of layers: {2, 3}.

G.3. More Experimental Results

We provide more experiment details regarding: (1) Experiment results when there are multiple invariant substructures in a
graph. (2) Experiment results for more application domains. (3) Ablation study on ERM pretraining. (4) The capability of
PrunE of identifying spurious edges. (5) More visualization results on GOOD-Motif datasets in Figure 8 and Figure 9. (6)
Hyperparameter sensitivity analysis on GOODHIV scaffold, OGBG-Molbbbp, and EC50 assay datasets, in Figure 10.

Table 6. Experimental results on SPMotif datasets with 2 invariant subgraphs in each graph.

Method SPMotif (#Gc = 2)

b = 0.40 b = 0.60 b = 0.90

ERM 53.48±3.31 52.59±4.61 56.76±8.06

IRM 52.47±3.63 55.62±7.90 48.66±2.33

VRex 49.68±8.66 48.89±4.79 47.97±2.61

GSAT 59.34±7.96 58.43±10.64 55.68±3.18

GREA 64.87±5.76 67.66±6.29 59.40±10.26

CIGA 69.74±6.81 71.19±2.46 65.83±10.41

AIA 71.61±2.09 72.01±2.13 58.14±4.21

PrunE 70.41±7.53 74.61±3.17 66.75±4.33

Model performance for graphs with multiple invariant subgraphs. While Assumption 2.1 assumes the existence of a
single invariant substructure causally related to each target label, many real-world graph applications (Hu et al., 2020; Gui
et al., 2022) may contain multiple such invariant subgraphs. However, Assumption 2.1 can be reformulated to accommodate
multiple Gc without compromising the validity of our assumptions and theoretical results. Specifically, suppose there are
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K invariant subgraphs, denoted as Gc,i for i ∈ [K]. For any specific Gc,i, the spurious subgraph G′
s can be redefined as

G′
s = Gs ∪ {Gc,j | j ̸= i}. Given this redefinition, and under the presence of Gs, Assumption 2.1 still holds. Consequently,

the assumptions and theoretical results presented in this work remain valid, even when multiple Gc exist within the datasets.
To further support our claim, we curated a dataset based on SPMotif (Wu et al., 2022b), where in the train/valid/test datasets,
two invariant substructures are attached to the spurious subgraph. Our method performs effectively under this scenario, as
shown in Table 6.

The results of ERM, IRM and VRex for GOODHIV-size are obtained from Gui et al. (2022). As shown in the table, our
method achieves the best test performance, indicating that PrunE effectively handles concept shift by pruning spurious
edges.

Experiment results on more application domains. To further evaluate the effectiveness of PrunE across different
application domains, we conduct experiments on GOOD-CMNIST (Gui et al., 2022) and Graph-Twitter (Socher et al., 2013;
Yuan et al., 2022) datasets, the evaluation metric for these datasets is accuracy.

Table 7. Test performance on GOOD-CMNIST and Graph-Twitter datasets.

Method CMNIST Graph-Twitter

ERM 28.60±1.87 60.47±2.24

IRM 27.83±2.13 56.93±0.99

Vrex 28.48±2.87 57.54±0.93

DisC 24.99±1.78 48.61±8.86

GSAT 28.17±1.26 60.96±1.18

GREA 29.02±3.26 59.47±2.09

CIGA 32.22±2.67 62.31±1.63

AIA 36.37±4.44 61.10±0.47

PrunE 33.89±1.65 63.37±0.76

As demonstrated in Table 7, PrunE also achieves superior performance in application domains beyond molecular applica-
tions, indicating its superior OOD performance and broad applicability.

Ablation study on ERM pretraining. We conduct ablation study across 5 datasets without using ERM pretraining. The
results are presented in Table 8. As illustrated, incorporating ERM pretraining improves OOD performance in most cases,
as the GNN encoder is able to learn useful representations before incorporating Le and Ls to train t(·). Intuitively, this
facilitates the optimization of t(·), therefore improving the test performance.

Table 8. Ablation study on test datasets.

Motif-basis Motif-size EC50-Assay EC50-Sca HIV-size

w/ pretraining 91.48±0.40 66.53±8.55 78.01±0.42 67.56±1.63 64.99±1.63

w/o pretraining 91.04±0.76 61.48±8.29 76.58±2.14 66.19±1.56 65.46±1.85

The capability of PrunE to identify spurious edges. To verify the ability of PrunE to identify spurious edges while
preserving critical edges in Gc, we conduct experiments and provide empirical results on Recall@K and Precision@K on
GOODMotif datasets, where K denotes the K% edges with lowest estimated probability scores. As illustrated in Table 9,
PrunE is able to identify a subset of spurious edges with precision higher than 90% across all datasets, even with K = 50,
indicating that PrunE can preserve Gc, thus enhancing the OOD generalization performance.

Visualization results on GOOD-Motif datasets. We provide more visualization results on GOOD-Motif datasets in
Figure 8 and Figure 9, in which the blue nodes represent the ground-truth nodes in Gc, and blue edges are estimated edges by
t∗(·). We visualize top-K edges with highest probability scores derived from t(·). As shown, PrunE is able to identify edges
in Gc, demonstrating the effectiveness of pruning spurious edges, and aligns with the theoretical results from Theorem 5.3.

Hyperparameter sensitivity. We provide more experimental results on hyperparameter sensitivity on real-world datasets.
As shown in Figure 10, PrunE exhibits stable performance across the real-world datasets, highlighting its robustness to
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Table 9. Recall@K and Precision@K for Motif-base and Motif-size datasets, where K denotes the K% edges with lowest estimated
probability scores.

K% Motif-base Motif-size

Recall Precision Recall Precision

10% 0.1467 1.0000 0.0963 0.9199
20% 0.3076 0.9831 0.2023 0.9602
30% 0.4556 0.9465 0.3093 0.9735
40% 0.6056 0.9374 0.4153 0.9801
50% 0.7356 0.9017 0.5243 0.9841

Figure 8. More visualization results on Motif-base dataset. The blue nodes are ground-truth nodes in Gc, and red nodes are ground-truth
nodes in Gs. The highlighted blue edges are top-K edges predicted by t∗(·), where K is the number of ground-truth edges from Gc in a
graph.

Figure 9. More visualization results on Motif-size dataset. The blue nodes are ground-truth nodes in Gc, and red nodes are ground-truth
nodes in Gs. The highlighted blue edges are top-K edges predicted by t∗(·), where K is the number of ground-truth edges from Gc in a
graph.

varying hyperparameter configurations.
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(a) Hyperparameter sensitivity on GOODHIV scaffold.
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(b) Hyperparameter sensitivity on OGBG-Molbbbp size.
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(c) Hyperparameter sensitivity on EC50 assay.

Figure 10. Hyperparameter sensitivity analysis across different datasets.
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