© ©® N O O~ W N =

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Wavelet Scattering Transform and Fourier
Representation for Offline Detection of Malicious
Clients in Federated Learning

Anonymous Author(s)
Affiliation
Address

email

Abstract

Federated Learning (FL) enables the training of machine learning models across de-
centralized clients while preserving data privacy. However, the presence of anoma-
lous or corrupted clients—such as those with faulty sensors or non-representative
data distributions—can significantly degrade model performance. Detecting such
clients without accessing raw data remains a key challenge. We propose Waffle
(Wavelet and Fourier representations for Federated Learning) a detection algorithm
that labels malicious clients before training, using locally computed compressed
representations derived from either the Wavelet Scattering Transform (WST) or
the Fourier Transform. Both approaches provide low-dimensional, task-agnostic
embeddings suitable for unsupervised client separation. A lightweight detector,
trained on a distillated public dataset, performs the labeling with minimal com-
munication and computational overhead. While both transforms enable effective
detection, WST offers theoretical advantages, such as non-invertibility and stability
to local deformations, that make it particularly well-suited to federated scenarios.
Experiments on benchmark datasets show that our method improves detection accu-
racy and downstream classification performance compared to existing FL. anomaly
detection algorithms, validating its effectiveness as a pre-training alternative to
online detection strategies.

1 Introduction

Federated Learning (FL) is a distributed learning framework that enables multiple clients to train
a global model without sharing raw data [[1]], making it a promising approach for privacy-sensitive
decentralized domains [2, 3, 4]. As deployments scale, a central challenge is data heterogeneity,
where non-IID client data can hinder model convergence and degrade performance [3} l6].

Beyond natural data heterogeneity, FL systems are also vulnerable to malicious or faulty clients
[7,18]]. Consider a scenario in a large-scale sensor network FL deployment (e.g., environmental
monitoring [9] or industrial IoT [10]]). Some sensors might be physically damaged, miscalibrated,
or even deliberately tampered with, causing them to report highly perturbed, noisy, or statistically
anomalous data streams. Being able to quickly detect them and remove them for training or fixing
them without accessing raw data is beneficial for monitoring the network, and guaranteeing its correct
functioning [[11]]. Defenses against malicious clients in FL often rely on robust aggregation methods
[12, 7] to reduce the influence of outlier updates, particularly in the presence of Byzantine attacks
[13]]. However, these methods assume most clients are benign and target model-level anomalies,
not data-level perturbations that subtly alter local objectives [[14, [15]. Online detectors that monitor
client behavior during training offer an alternative but add overhead and may act too late. Crucially,
neither class of defenses is well-suited to detecting clients with malicious data prior to training, as in

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79

80

81
82

83
84

compromised sensor networks.

In this work, we propose Waffle (Wavelet and Fourier representations for Federated Learning), an
offline detector designed to identify clients with malicious data before FL training begins. Performing
detection offline [16]] and in a privacy-preserving manner is particularly desirable, as it limits
computational overhead on both the server and client sides, making the approach lightweight and
scalable. Waffle trains a classifier on spectral features — extracted via Fourier Transform (FT) and
Wavelet Scattering Transform (WST) [17]]- which offer stable, invariant representations robust to
data perturbations. Detection is performed using a model pre-trained on a distilled public dataset,
ensuring efficiency and privacy. Clients locally compute low-dimensional statistics via Principal
Component Analysis (PCA) and spectral embeddings, sending an aggregated, secure, and non-
invertible information to the server which classifies them as benign or malicious. Malicious clients
are excluded prior to training. Unlike many existing methods, Waffle does not assume a benign
majority and can be combined with robust aggregation to strengthen FL security.

The structure of the paper is the following: Section[2|defines the FL setting, the data attacks considered,
and the spectral representations (FT and WST). Section [3 details Waffle ’s training and detection.
Theoretical guarantees are provided in Section 4] showing the benefits of removing malicious clients.
Section [5]reports experimental results validating Waff1le on benchmark datasets.

Related Works and Contributions.

Malicious Client Detection in FL Detection-based approaches classify clients as benign or malicious
based on anomalies in their updates or data distribution [[14]. FLDetector[18] identifies malicious
clients by analyzing the consistency of their updates over time—benign updates follow predictable
patterns, while malicious ones are erratic. MuDHog][[19] leverages historical update trajectories with
model-agnostic meta-learning to detect temporal inconsistencies, though it assumes long-term client
participation, which is unrealistic in cross-device settings. VAE [20] uses a variational autoencoder
to model the benign update distribution and flags deviations, assuming malicious clients are rare
and the VAE is well-trained. These methods rely on multi-round update access, limiting early-stage
applicability, and focus on gradients or parameters, making them vulnerable to indirect attacks.

Robust Aggregation in FL. Robust aggregation methods aim to mitigate the influence of malicious
clients without explicitly identifying them [21} [7]]. KRUM[12] selects the most central update in ¢
distance, but requires fewer than half of the clients to be malicious. TrimmedMean[7] discards
extreme values per coordinate, improving robustness to outliers, though it overlooks dependencies
across dimensions. FLTrust[8]] uses a trusted server-side dataset to normalize and rescale client
updates, enhancing robustness but breaking strict decentralization. Secure aggregation protocols
like RFLPA[22] and RoFL [23] ensure client privacy via cryptographic techniques, but do not address
adversarial robustness. These approaches, unlike detection-based ones, do not label clients, limiting
their use when malicious participants must be explicitly excluded.

Spectral Analysis and Frequency-based Defenses. Spectral methods aim to identify or mitigate
malicious behavior by analyzing updates in the frequency domain [24, |25} 26]]. FreqFeD[27] applies
the Discrete Fourier Transform to client updates, filtering high-frequency components assumed to
contain adversarial noise, though this may remove relevant information under data heterogeneity.
FedSSP[28] targets backdoor attacks by smoothing and pruning suspicious spectral patterns in model
weights, but depends on specific architectures and requires access to full model parameters. Unlike
these methods, our approach extracts frequency-based embeddings directly from client-side data
before training, enabling model-agnostic detection.

Our main contributions are summarized as follows:

* We propose Waffle, a novel offline detector for identifying clients with data attacks, introducing
the use of WST for anomaly detection in FL.

* We provide a theoretical framework motivating WST and FT as robust data representations, and
mathematically demonstrate that removing malicious clients improves global model estimation.

* We present experiments on benchmark datasets showing that Waff1le significantly improves model
performance and robustness compared to training with contaminated data or using only robust
aggregation.

88

89
90
91
92

93

94
95
96

97

98

99
100
101
102
103
104
105
106
107

108
109
110
111
112

113
114
115

116
17
118
119
120

121
122

Figure 1: Examples of attacked data. Two images downloaded from [link1|and [link2|. For each image: left:
clean client, center: noisy attack with magnitude o = 0.2, right: blur attack with spread 8 = 11

2 Theoretical Framework

In this section, we introduce the mathematical framework that provides the foundation for our
algorithm. Section [2.T]presents the Federated Learning (FL) setting and defines the class of attacks
considered on clients’ data. Section [2.2]introduces the WST and the Fourier Transform FT, recalling
their basic properties that are relevant for anomaly detection.

2.1 Problem Formulation

Consider a standard FL scenario [1]] with K € N clients and a central server. Each client k possesses
ny, data samples (z},, yi)", ~ Dy supported in X' x). The objective of FL is to learn a shared
global model € that generalizes across all clients, by solving the following optimization problem:

K
0" € arg min kz_l ng Ly (0) (1)

where © denotes the model’s parameter space, N = Zszl ny is the total number of data samples,
and Ly, represents the empirical loss function for client k& with respect to its local data distribution
Dy In each communication round ¢ € {1,...,T}, a subset of clients P; is randomly selected to
participate in training. Each participating client k € P, performs S € N local iterations of a stochastic
optimizer. Subsequently, clients send their updated parameters to the server, which aggregates these
updates to derive a new global model.

A critical challenge in realistic FL deployments is the non-i.i.d. nature of client data, which can
hinder the convergence and performance of the global model. In this work, we specifically address
non-i.i.d. settings where the data distribution discrepancies are caused by malicious clients perturbing
their original data samples. This differs from typical attack detection scenarios focusing on model
poisoning during training.

Type of Attacks We define two types of feature-level attacks that our algorithms aim to address:
noisy and blur attackers. Examples of the effect of these attacks are displayed in Figure[I. This
focus is motivated by the fact that noise and blur are common consequences of real-world faults
[30]] —such as sensor degradation, miscalibration, or environmental interference — that can subtly
compromise data quality and model performance without exhibiting overtly malicious behavior.

Definition 1. Let k € [K] and o}, > 0. Client k is a noisy attacker if its data samples are perturbed
as i, = x}, + oi€}, where x, is the clean sample, and, (€))%, is a family of independent Wiener
processes supported in X.

Let us observe that the severity of the attack is determined by the magnitude of o;. Smaller values
of o, might represent natural noise inherent in data collection or random transformations, requiring
careful consideration of what constitutes a *malicious’ level of perturbation.

Another feature-wise attack we formally define is the blur attacker. This attack is particularly
relevant for image or signal data where z}, can be treated as a function over X.

Definition 2. Let k € [K| and By, > 0. Client k is a blurred attacker if it provides samples perturbed
according to a convolution operation:

:E?;:zf;*ck:/ (W) Ge(u—u)dd i=1,...)
X

%20https://images.app.goo.gl/i3VsHjeJiCjtAEp
https://images.app.goo.gl/VnQKRXtz5mumW2Mp9

123
124

125
126
127

128

129
130
131
132
133
134
135
136
137
138
139
140
141

142

143
144

145
146
147
148
149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165

167
168
169
170
171
172

where x denotes the convolution operation. Typically, i is a smooth kernel, and the parameter [y,
controls its spread or blur radius.

A common choice for the kernel (; falls on Gaussian kernels, and the scalar [has a role of
controlling the spread of the kernel. Similarly to noisy attacks, in blur attacks the magnitude of the
perturbation is controlled by the parameter 3y, the larger it is the higher it perturbs the data.

2.2 Representation Operators: Wavelet Scattering Transform and Fourier Transform

In this section we recall the notion of a representation operator ®, which maps a signal x (e.g., an
image or a time-series) onto a transformed space. This transformation induces a metric d(z,z’) =
|®[z] — ®[z]|| in the new space [31]. The core idea is that an effective representation operator
® should possess properties instrumental for accurately detecting and differentiating between data
samples. Specifically, for the purpose of identifying perturbed data, ® should be able to separate
distinct data characteristics while exhibiting robustness to common variations like slight translations
or small, non-malicious perturbations. We propose two variants for the representation layer of our
detection algorithm: one based on the Fourier Transform (FT) and the other on the Wavelet Scattering
Transform (WST) [L7, 31]. The Fourier Transform is by far the most widely used tool for spectral
analysis in signal processing and data science due to its simplicity and interpretability. However, it
has been surprisingly underutilized in the context of Federated Learning (FL). We therefore include it
as an internal baseline in our study, allowing us to contrast its performance against the more structured
and hierarchical Wavelet Scattering Transform.

Fourier Representation We first formally define the Fourier Transform.

Definition 3. Let x € L'(X, du), the Fourier Transform of x, denoted by F|z] is a complex valued
function defined as

J-"[J;](w):/X:c(u)e_zm(""")du 3)

FT can be efficiently computed using the FFT algorithm [32]. Beyond its computational efficiency,
the Fourier Transform offers several critical advantages for feature extraction, particularly in the
context of analyzing data perturbations. As a linear operator (F[ax + bx'] = aF|x] + bF[z'] for
scalars a, b and integrable signals z,z’), the FT maps additive perturbations directly to additive
components in the frequency domain. For instance, in the case of a noisy attacker where £ = = + €,
we have F[z] = F[z] + F[e]. This linearity simplifies the analysis of such perturbations. Moreover,
the convolution theorem [33] states that convolution in the spatial domain corresponds to point-
wise multiplication in the frequency domain (F[x x §] = F[z] - F[d]) . This property is highly
advantageous for detecting blur attacker perturbations, which are defined as convolutions. By
examining the frequency spectrum, different types of data manipulations, like blurring (attenuating
high frequencies) or specific noise patterns, reveal distinct signatures. However, FT is an invertible
operator: on one side it preserves all information present in the original signal, on the other hand it is
possible to reconstruct the original data from the FT.

Wavelet Scattering Transform. WST is a non-linear operator that, alternatively to Fourier based
representation, has been designed to be stable to additive perturbations, locally translation invariant
and to small continuous deformation. Moreover, the fact that WST is not invertible makes it
particularly attractive for privacy-enhancing applications in FL, as reconstructing the original input
data from the scattering coefficients is a challenging task. Following the construction in [17,31] we
define the WST and discuss its most relevant properties.

Let ¢(u) € L?*(X, du) be a function referred to as the mother wavelet, and let {a’} ;cz be a family
of scale factors defined with respect to a fixed scalar a > 1. Let r € GG denote a discrete rotation,
where G is the group of discrete rotations acting on the domain &X’. The j-th wavelet function is
then defined as ¢ (u) = a~%+(a=Ir~'u). For a fixed maximal depth J € Z, we define the set of
admissible scale-rotation operators as Ay = {\ = a’r : |A\| = @’ < 2”}. In most implementations,
Morlet wavelets are employed as the mother wavelet, and the scale factor is typically chosen as
a = 2Y/9 for some Q € N [34].

To streamline notation, following [17], we introduce the propagator operator, which acts on a
signal x € L'(X) by cascading modulus and convolution operations. Given a path of scale-rotation

173

174

175
176

177

178
179
180
181

182

183
184

185
186
187

188

189
190
191
192
193
194

195

196
197
198
199
200
201
202
203
204
205
206
207

209
210
211
212
213
214
215
216

operators p = (A1, A2), the propagator applied to x is defined as:

Ulple = [z x x| * s, |-
The definition of the WST naturally follows.

Definition 4. Letp = (\1,...,) C Ay be a path of length m. For any signal x € L'(X), the
WST along p is defined as:
Sylplz = Ulplz x ¢, O]

where ¢ j is a low-pass filter rescaled to recover low-frequency content.

The WST representation shares structural similarities with convolutional neural networks (CNNs),
with the key distinction that the wavelet filters are fixed rather than learned. The WST defines a norm
with properties desirable for detection and classification. Notably, the operator is non-expansive: for
any z, 2’ € L?(X,du), the following inequality holds:

1Sslple = Sslpla’|| < |l — || o)
This implies that small, non-adversarial perturbations do not substantially affect the representation.

Additionally, WST is translation invariant in the limit: for a translated signal z.(u) = z(u — ¢)
with ¢ € X, we have

lim ||S;[plz — Sslplze|| = 0.
J—o0

Finally, the WST is Lipschitz continuous with respect to small C?-diffeomorphisms. That is, if
a signal x undergoes a smooth deformation with small norm, the resulting change in the WST
representation remains bounded.

3 Malicious Client Detector: Waffle

This section details the architecture and training of our server-side detector, Waffle (Wavelet and
Fourier representations for Federated Learning), designed to identify clients contributing potentially
harmful updates based on their data characteristics. Waffle is a parametric classification model,
trained offline on a generated auxiliary dataset D*"* to distinguish between benign and malicious
clients. It operates by analyzing aggregated, non-privacy-leaking spectral embeddings of client data
distributions.

3.1 Offline Detector Training

The training of the Waffle detector is conducted entirely offline, prior to the federated learning
process. This approach offers several advantages: it avoids interfering with live FL rounds, allows for
controlled generation of diverse malicious scenarios, and ensures the detector is fully trained and
ready when FL begins. Coherently with common practices in FL frameworks utilizing auxiliary data
[35], the server has access to a representative auxiliary dataset D*"*. Algorithm [T summarizes the
procedure.

The offline training proceeds over E epochs. In each epoch e € {1, ..., E}, the server simulates a
new FL round by generating a set of K fictitious clients with synthetic data and associated ground-
truth labels (benign or malicious). This dynamic generation of clients each epoch, similar to methods
used for estimating client relationships [36], increases the diversity of simulated scenarios and
helps prevent overfitting. Each training iteration within an epoch consists of two main steps: data
simulation/attack and feature extraction/labeling.

Step 1: Data Simulation and Attack For each sample x € D**, the server decides whether
to simulate an attack on that sample or keep it clean. This decision is made by drawing from a
Bernoulli distribution with probability p = 1/2 of being attacked. If selected for attack, the server
randomly chooses between two types of data perturbations with equal probability: blur or noise. If a
sample is selected for blurring, the server samples a blur severity parameter 8 ~ Unif(3y, 1) and
applies a blurring operation according to Definition[2] This simulates clients whose data might be of
lower quality or intentionally blurred to impair model training or target specific vulnerabilities. If a
sample is selected for adding noise, the server samples a noise variance o ~ Unif(oy, o1) and applies
additive noise according to Definition [I. This simulates clients whose data might be corrupted by

217
218
219

220
221
222
223
224

225
226
227
228

229
230
231
232
233
234

235
236
237
238
239
240
241
242
243
244

245
246
247
248

249

250
251
252
253
254
255
256
257

259
260
261
262
263
264
265
266

sensor noise or intentionally perturbed with adversarial noise patterns. After processing all samples
in D** in this manner, the server possesses a modified dataset where each sample is either clean,
blurred, or noisy, with the attack type and parameters recorded.

Step 2: Fictitious Client Creation and Feature Extraction The modified dataset from Step 1 is
then partitioned to create the data for K fictitious clients. These clients are equally divided into two
groups: K /2 benign and K /2 malicious. Clean data samples are assigned to benign clients, while
attacked data samples (either blurred or noisy) are assigned to malicious clients. Let {2 }"*, denote
the data points assigned to the k-th fictitious client, where 7, is the number of samples for client k.

Principal Component Analysis For each simulated client k, PCA [37] is applied to their local
dataset {z},}"*, to analyze the covariance structure and extract the top r principal components v},
with eigenvalues A}, capturing dominant directions of variance. A compact representation vector is
defined as:

s 7

Ty = Zazvz, with o}, = E:T/\k)\j

i=1 j=1"%k

This PCA-derived vector Z;, summarizes the client data’s intrinsic structure by weighting principal

directions by their explained variance. The PCA step supports dimensionality reduction and noise

filtering, extracting features sensitive to structural perturbations such as blur or noise. Notably, it

is performed offline on simulated data at the server: in real FL deployments, clients neither share

raw data nor PCA results. Instead, this offline PCA informs training, while clients transmit only the
privacy-preserving spectral embedding ¢y, discussed next.

(6)

Spectral Embedding Following this PCA step, the spectral representation ¢y is computed for
each fictitious client k. This is achieved by applying a spectral operator @ (either the WST or FT) to
statistics derived from the client’s data distribution, such as the PCA-derived representation vector 2y,
or the set of principal eigenvalues \%. Spectral transforms are particularly sensitive to frequency and
texture information, making them effective at capturing the systematic changes introduced by attacks
like blur and noise. The output ¢y = |®[Z]|, where the modulus is taken element-wise, results in a
fixed-size vector representation for each client. This ¢y, is designed to be an aggregate statistic that
captures characteristics of the data distribution without revealing individual data points, making it
suitable as a non-privacy-leaking feature for the detector in a live FL setting.

Finally, for each epoch, we obtain a dataset of client representations and their corresponding labels:
{(¢r, pr) H |, where p1x, € {B (Benign), A (Attacker)}. The detector weights w are updated using
a stochastic optimizer (e.g., SGD, Adam) to minimize a binary classification loss, such as Binary
Cross-Entropy (BCE) [38]], between the detector’s prediction based on (j, and the ground-truth label

K-

3.2 Offline Detection and Filtering

Once the Waffle detector model w has been trained offline on the simulated auxiliary dataset D***
and prior to the first FL communication round, each client & € {1, ..., K} in the federation processes
its local training data {z% }!'*, privately on their device. This processing involves a sequence of
steps performed locally. First, each client computes the PCA of their local training samples to
derive the representation vector 2, as defined in Equation (6).Then, each client computes its spectral
embedding ¢, = ®[Z], by applying the spectral operator ® (WST or FT).

After completing these local computations and obtaining ¢y, each client k securely transmits only
this resulting spectral embedding vector to the server. The server, upon receiving ¢ from each
participating client, inputs it into the pre-trained Waffle detector w. Clients that are classified as
malicious by the detector are then excluded from participating in the federated training process for
the global model 6. This preemptive filtering step enhances the stability and reliability of the global
model training process, leading to potentially faster and more robust convergence by ensuring that
aggregation occurs over updates from predominantly benign sources.

Moreover, due to its modular nature, Waffle operates as an initial defense layer. The set of clients
validated as benign by Waffle can proceed with any federated learning aggregation methods, allowing
Waffle to be easily combined with other online robust aggregation techniques to further strengthen
the overall defense strategy.

267

268
269
270
271
272

273
274
275
276

277
278
279
280
281

282
283
284

285
286

287
288
289

291
292
293

Algorithm 1 Waffle Offline Training

Require: Auxiliary dataset D**, Number of epochs E, Number of fictitious clients K , Number of
top PCs r, Spectral operator ®, Learning rate n
Ensure: Trained detector weights w

1: Initialize detector weights w
2: fore=1...FEdo
3: // Simulate Data and Clients for Epoch ¢

4: Dsimulated < SimulateAttackedData(D*™) > Applies random attacks to D**
5. {(Dy, pur)}i, « PartitionData(Dsmulaed |) > Creates K clients with labels
6: // Extract Features for Each Simulated Client
7: Initialize epoch dataset S, =) > Stores (¢, pir;) pairs
8: fork=1...K do
9: {1‘2 ;n:kl <~ Dy,
10 Compute PCA-derived representation 2, from {xz} } > Eq. (6)
11: Compute spectral embedding ¢y <+ |P[Z]| > Apply FT or WST to &y,
12: Add ((pk, ,uk) to S,

13: end for

14: // Update Detector Model

15: w < Opt(Lpce(w; Se)) > Optimization step
16: end for

17: return w

4 Theoretical Guarantees

In this section, we establish a theoretical foundation for our proposed algorithm, which we refer
to as Waffle . Our primary focus is to demonstrate the benefits of removing adversarial clients in
FL scenarios. We show that by filtering out malicious updates, Waffle provides a more accurate
estimate of the true global model compared to standard FedAvg [1]], which is susceptible to adversarial
poisoning. We provide general error bounds with detailed proofs presented in Appendix [A.

Let B C {1,..., K} denote the set of benign clients and M C {1,..., K} the set of malicious
clients in a federated system with K total clients. We assume these sets are disjoint and their union
covers all clients, i.e., BOM =) and BUM = {1,...,K}. To model the heterogeneity and
potential adversarial influence in client updates, we adopt the following statistical framework:

Assumption 1. For each benign client k € B, the local model update 0y, is an independent random
variable drawn from a distribution py,(0°, a®). This distribution is centered around a common benign
mean 0° with variance (a°)?, i.e., E[0}] = 0° and Var[0;] = (¢*)2. Similarly, for malicious clients
k € M, the local updates 0y, are independent random variables drawn from pp(0™,c™) with
E[0)] = 0™ and Var[0y] = (c™)>2.

Assumption 2. We posit that malicious clients exhibit significantly higher update variance com-
pared to benign clients, reflecting a diverse range of attack strategies and the potential for large,
destabilizing updates. Formally, we assume o™ > o

The standard federated averaging estimator is defined as a weighted average of client updates:
Oavg =1 /K Zszl 05.. Our objective is to obtain an estimator that is unbiased with respect to the
benign client distribution, meaning E[0,,,] = 6°. We demonstrate that removing malicious clients
is crucial for achieving this goal. We analyze two scenarios: one where the benign and malicious
updates have different means (Lemma[I) and one where they share the same mean but differ in
variance (Lemma/[2)).

Lemma 1. If the benign and malicious client updates have different mean parameter values, i.e.,
0™ + 0°, then the standard federated averaging estimator 0,4 is a biased estimator of 0°, meaning

E[0ag] # 0°.

294

295

296

297
298

299
300
301
302

303

304
305
306

308
309
310
311
312

314

315

316
317
318
319
320
321
322
323
324
325
326
327
328

330
331

Lemma 2. Let 08 = ﬁ > ren Ok be the federated averaging estimator computed using only

avg
benign client updates. Under Assumption@ if (0™)? > (2 + %) ()2, then the variance of the
standard federated averaging estimator is higher than that of our estimator: Var[0,,4] > Var[05, gl

Lemmas [T|and 2] provide the foundation for the following proposition, which formally establishes the
advantage of removing malicious clients from the federated aggregation process.

Proposition 1. Under Assumptions[I and 2, removing malicious clients (those in M) from the
federation yields a superior estimator of the global model. Specifically, the resulting estimator is
unbiased (in the sense of Lemmall) and exhibits a reduced variance (as shown in Lemma[2)), leading
to improved model accuracy and robustness.

5 Experiments

In this section, we present experimental results on widely used federated learning benchmark
datasets [39} 40, 41]], comparing the performance of Waffle in its two variants—one using the
WST representation and the other using FT—with established baselines from the Byzantine-resilient
FL literature. Details on implementation settings, datasets, and models are provided in Appendix
Section [5.1] evaluates the detection performance of the two variants of Waffle , highlighting the
differences between the WST and FT representations. In Section[5.2] we compare Waffle against
standard Byzantine-resilient FL baselines, including FedAvg [1], Krum and mKrum [[12], GeoMed [42]],
and TrimmedMean [7]. Additionally, we demonstrate that Waffle can be applied on top of any
aggregation algorithm, improving their performance. Further experiments, comparisons and code
release details are reported in Appendix [B] and the metrics used for evaluation—both for detection
and classification—are detailed in Appendix

Table 1: Client Detection. Comparison between variants of Waff1e using WST and FT representations, under
two attack scenarios (40% top, 90% bottom). Metrics (F1 score, Precision, Recall, Accuracy [43]) refer to the
detection of malicious clients.

\ Method FashionMNIST CIFAR-10 \ CIFAR-100
F1 Prec. Rec. Acc. F1 Prec. Rec. Acc. ‘ F1 Prec. Rec. Acc.

\ \
‘ Waffle - FT ‘ 65.11 609 70.0 70.0 ‘ 79.75 6842 9559 67.0 ‘ 56.69 4138 90.0 45.0

R

S | Waffle- WST | 71.88 9583 575 82.0 | 9487 9736 925 96.0 | 83.33 9375 750 88.0
® | Waffle - FT 81.81 9545 7159 72.0 | 93.05 89.69 96.67 87.0 | 88.1 88.1 88.1 80.0
K | Wwaffle- WST | 65.65 100.0 48.86 55.0 | 9091 100.0 8333 86.0 | 88.85 100.0 67.86 73.0

5.1 Waffle: WST vs Fourier

We compare the detection performance of Waffle to assess the differences between the WST
and FT representations. As illustrated in Figure [2, both representations yield a clear separation
between benign and malicious clients. The visualizations—obtained via two-dimensional PCA
embeddings—show that the method effectively distinguishes between the different attacker groups
and benign clients, regardless of the chosen representation. However, as shown in Table I, the
quantitative results at the client level differ between the two variants. We report standard detection
metrics: precision, F1 score, recall, and accuracy [43]], setting 40% and 90% of attackers. The WST
variant consistently achieves higher precision and F1 scores, while the FT variant tends to yield
higher recall. In the context of malicious client detection, higher recall is often desirable, as it reduces
the likelihood of overlooking faulty clients. Table [T highlights the robustness of Waffle : unlike
most Byzantine-resilient FL. methods, it maintains strong predictive performance even when the vast
majority of clients are malicious. Notably, in the extreme case with 90% adversarial clients, Waffle
with WST achieves 100% precision across all datasets.

5.2 Comparison with Baselines and Orthogonality of Waffle

In this section, we compare Waffle with established Byzantine-resilient FL. methods, highlighting its
advantages in two complementary settings: (1) we evaluate the impact of applying the two Waffle

332
333
334
335
336

338
339
340
341
342
343

344

345
346
347
348
349
350
351
352
353

355
356
357
358
359
360

361
362

364
365
366
367
368

Table 2: Comparison between baselines for detecting malicious clients and Waffle (with both WST and FT).
Waffle -WST combined with FedAvg achieves the highest test accuracy across all datasets, outperforming
baselines designed to mitigate Byzantine attacks. Results also highlight the orthogonality of Waffle to aggrega-
tion methods, consistently improving their performance. For reference, the test accuracy of FedAvg without
malicious clients is: FashionMNIST 75.08%, CIFAR-10 50.24%, CIFAR-100 17.72%.

Dataset Setting | FedAvg Krum mKrum GeoMed TrimmedMean
w/o detector 7333 73.85 70.56 7275 74.84
FashionMNIST Waffle-WST | 76.18 7026 7475 74.18 75.21
Waffle - FT 7338 72.10 7440 7535 74.98
w/o detector 48.75 45.2 47.4 48.51 48.22
CIFAR-10 Waffle-WST | 49.70 46.28 49.08 49.41 49.0
Waffle - FT 4695 44.13 4758 47.14 46.86
w/o detector 16.35 9.61 14.73 16.83 16.85
CIFAR-100 Waffle-WST | 17.12 850 14.85 16.32 15.89
Waffle - FT 11.58 724 10.15 12.25 10.29

variants to FedAvg, compared to using different aggregation rules without detection; and (2) we
assess the effect of applying Waff1le on top of robust aggregation algorithms. As shown in Table[2]
the WST variant of Waffle combined with FedAvg consistently outperforms all baselines across all
datasets. Furthermore, Waff1le improves the performance of each aggregation method it is applied to,
demonstrating its orthogonality to the choice of aggregator. These results indicate that Waffle is
effective in identifying and removing malicious clients without compromising benign contributions.
In contrast, the FT variant exhibits more variable performance, further confirming the suitability of
WST representations for this detection task. For reference, we also report the test accuracy of FedAvg
trained on a clean federation (i.e., without malicious clients, corresponding to va g in the notation
of Lemma @: FashionMNIST 75.08%, CIFAR-10 50.24%, CIFAR-100 17.72%. These values
demonstrate that Waffle enables recovery of near-optimal performance, effectively neutralizing the
impact of adversarial clients.

6 Conclusion

We propose Waffle , a novel offline algorithm to detect malicious client data in Federated Learning
(FL) before training. Exploiting stable spectral features extracted via the Wavelet Scattering Transform
(WST) and Fourier Transform (FT), it enables robust anomaly detection from private, low-dimensional
client-side summaries built on publicly distilled data. By filtering out compromised clients prior to
training, Waf f1le significantly improves convergence speed, final model accuracy, and robustness to
data contamination. It achieves near-perfect precision (100% in our benchmarks) even in extreme
scenarios with up to 90% malicious clients, outperforming strategies that rely solely on robust
aggregation. This early detection mechanism also reduces training time, communication overhead,
and energy consumption—factors crucial in large-scale deployments. Furthermore, Waffle is model-
agnostic and can be seamlessly integrated with existing FL. defenses to enhance overall system
security.

Future work will focus on extending Waffle to defend against more sophisticated threats, including
backdoor attacks, model poisoning, and sybil-based infiltration. In parallel, we plan to adapt
the approach to support wider neural architectures capable of handling more complex and high-
dimensional datasets, such as CIFAR-100 or even ImageNet-scale benchmarks. These directions aim
to broaden the applicability of Waffle to realistic FL scenarios in vision, healthcare, and IoT.

Limitations. Waffle targets data-level attacks altering client input features, not model-level attacks
(e.g., gradient manipulation, backdoors), which necessitate different defense strategies. However,
combining Waffle with robust aggregation can help mitigate such hybrid threats.

Broader Impact. Our method enhances FL robustness and trustworthiness, crucial for deployments in
sensitive domains (e.g., healthcare, finance), and reduces resource consumption. Potential misuse (e.g.,
unfairly excluding outlier populations) warrants careful auditing and fairness-aware deployments,
though Waffle itself introduces no new privacy or fairness risks beyond those inherent in existing
FL pipelines.

369

370
371
372

373
374
375
376

377
378
379

380
381

382
383
384

385
386
387
388

389
390
391

392
393
394

395
396
397
398

399

401

402
403
404
405

406
407
408

409
410

411
412

413
414
415

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273-1282. PMLR, 2017.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Kone¢ny, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of machine learning and systems,
1:374-388, 2019.

Rodolfo Stoffel Antunes, Cristiano André da Costa, Arne Kiiderle, Imrana Abdullahi Yari, and
Bjorn Eskofier. Federated learning for healthcare: Systematic review and architecture proposal.
ACM Transactions on Intelligent Systems and Technology (TIST), 13(4):1-23, 2022.

Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking.
In Federated learning: privacy and incentive, pages 240-254. Springer, 2020.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning
and systems, 2:429-450, 2020.

Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen.
Local learning matters: Rethinking data heterogeneity in federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8397-8406,
2022.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International conference on machine learning,
pages 5650-5659. Pmlr, 2018.

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqgiang Gong. Fltrust: Byzantine-robust
federated learning via trust bootstrapping. In ISOC Network and Distributed System Security
Symposium (NDSS), 2021.

Daniel Leiria, Hicham Johra, Justus Anoruo, Imants Praulins, Marco Savino Piscitelli, Alfonso
Capozzoli, Anna Marszal-Pomianowska, and Michal Zbigniew Pomianowski. Is it returning
too hot? time series segmentation and feature clustering of end-user substation faults in district
heating systems. Applied Energy, 381:125122, 2025.

Merim Dzaferagic, Nicola Marchetti, and Irene Macaluso. Fault detection and classification in
industrial iot in case of missing sensor data. IEEE Internet of Things Journal, 9(11):8892-8900,
2021.

Shaashwat Agrawal, Sagnik Sarkar, Ons Aouedi, Gokul Yenduri, Kandaraj Piamrat, Mamoun
Alazab, Sweta Bhattacharya, Praveen Kumar Reddy Maddikunta, and Thippa Reddy Gadekallu.
Federated learning for intrusion detection system: Concepts, challenges and future directions.
Computer Communications, 195:346-361, 2022.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learn-
ing with adversaries: Byzantine tolerant gradient descent. Advances in neural information
processing systems, 30, 2017.

Stefano Marano, Vincenzo Matta, and Lang Tong. Distributed detection in the presence of
byzantine attacks. IEEE Transactions on Signal Processing, 57(1):16-29, 2008.

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning
poisoning. arXiv preprint arXiv:1808.04866, 2018.

Francesco Colosimo and Floriano De Rango. Median-krum: A joint distance-statistical based

byzantine-robust algorithm in federated learning. In Proceedings of the Int’l ACM Symposium
on Mobility Management and Wireless Access, pages 61-68, 2023.

10

416
417

418
419

420
421
422
423

424
425
426

427
428

429
430

431
432
433

434

443
444
445

446
447
448

449
450
451
452

453
454
455

[16] Hangyu Zhu, Haoyu Zhang, and Yaochu Jin. From federated learning to federated neural
architecture search: a survey. Complex & Intelligent Systems, 7(2):639—-657, 2021.

[17] Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics,
65(10):1331-1398, 2012.

[18] Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhengiang Gong. Fldetector: Defending feder-
ated learning against model poisoning attacks via detecting malicious clients. In Proceedings of
the 28th ACM SIGKDD conference on knowledge discovery and data mining, pages 2545-2555,
2022.

[19] Ashish Gupta, Tie Luo, Mao V Ngo, and Sajal K Das. Long-short history of gradients is all you
need: Detecting malicious and unreliable clients in federated learning. In European Symposium
on Research in Computer Security, pages 445-465. Springer, 2022.

[20] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. Learning to detect malicious
clients for robust federated learning. arXiv preprint arXiv:2002.00211, 2020.

[21] Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability of distributed learning in
byzantium. In International conference on machine learning, pages 3521-3530. PMLR, 2018.

[22] Peihua Mai, Ran Yan, and Yan Pang. Rflpa: A robust federated learning framework against
poisoning attacks with secure aggregation. Advances in Neural Information Processing Systems,
37:104329-104356, 2024.

[23] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Kiichler, and Anwar Hithnawi.
Rofl: Robustness of secure federated learning. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 453—476. IEEE, 2023.

[24] Zexin Wang, Changhua Pei, Minghua Ma, Xin Wang, Zhihan Li, Dan Pei, Saravan Rajmohan,
Dongmei Zhang, Qingwei Lin, Haiming Zhang, et al. Revisiting vae for unsupervised time
series anomaly detection: A frequency perspective. In Proceedings of the ACM Web Conference
2024, pages 3096-3105, 2024.

[25] Chi-ho Chan and Grantham KH Pang. Fabric defect detection by fourier analysis. IEEE
transactions on Industry Applications, 36(5):1267-1276, 2000.

[26] Ran Tao, Xudong Zhao, Wei Li, Heng-Chao Li, and Qian Du. Hyperspectral anomaly detection
by fractional fourier entropy. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 12(12):4920-4929, 2019.

[27] Hossein Fereidooni, Alessandro Pegoraro, Phillip Rieger, Alexandra Dmitrienko, and Ahmad-
Reza Sadeghi. Freqfed: A frequency analysis-based approach for mitigating poisoning attacks
in federated learning. arXiv preprint arXiv:2312.04432, 2023.

[28] Yu Chen and Zihan Tan. Fedssp: Federated graph learning with spectral knowledge and
personalized preference. In Advances in Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024.

[29] Abhishek B Sharma, Leana Golubchik, and Ramesh Govindan. Sensor faults: Detection
methods and prevalence in real-world datasets. ACM Transactions on Sensor Networks (TOSN),
6(3):1-39, 2010.

[30] Yeping Peng, Zhen Tang, Genping Zhao, Guangzhong Cao, and Chao Wu. Motion blur removal
for uav-based wind turbine blade images using synthetic datasets. Remote Sensing, 14(1):87,
2021.

[31] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions
on pattern analysis and machine intelligence, 35(8):1872-1886, 2013.

[32] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297-301, 1965.

11

463

464
465
466

467

469
470
471

472
473

474
475

476
477
478

479
480

481
482

483
484

486
487

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Ronald N Bracewell. The fourier transform. Scientific American, 260(6):86-95, 1989.

Mathieu Andreux, Tomds Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Rochette,
Louis Thiry, John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky, et al. Kymatio:
Scattering transforms in python. Journal of Machine Learning Research, 21(60):1-6, 2020.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018.

Wenxuan Bao, Haohan Wang, Jun Wu, and Jingrui He. Optimizing the collaboration structure
in cross-silo federated learning. In International Conference on Machine Learning, pages
1718-1736. PMLR, 2023.

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary
reviews: computational statistics, 2(4):433-459, 2010.

Usha Ruby, Vamsidhar Yendapalli, et al. Binary cross entropy with deep learning technique for
image classification. Int. J. Adv. Trends Comput. Sci. Eng, 9(10), 2020.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konecny, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research).

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):1-25, 2017.

Jake Lever. Classification evaluation: It is important to understand both what a classification
metric expresses and what it hides. Nature methods, 13(8):603—605, 2016.

12

488

489

490
491

492

494

495

496
497

499
500

501
502

503
504
505
506
507
508
509
510
511
512

513
514
515
516
517
518
519
520
521
522
523
524
525

527

528
529

530

532
533
534
535

536

537
538

539

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As clarified by experiments, our proposed method not only outperform existing
FL methods, but also have the critical advantage to work offline and not during training.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in a paragraph of the Conclusions section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

540

541

542
543
544

546
547
548
549
550
551

552

553
554
555

556

557
558

559

560

562
563
564
565
566
567
568
569
570
571
572
573
574
575

577
578
579
580
581
582
583

585
586
587
588
589
590

591

593
594

Justification: We provide full and revised proofs in Appendix [A

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Indeed, all relevant information is thoroughly addressed within the paper.
Moreover, the implementation details are meticulously elaborated upon in Appendix B}

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

595

596
597
598
599

600

601

602
603

604
605

607

608
609
610

611
612

613
614
615

616
617

618
619
620

621
622
623
624
625
626

627

629
630

631

633

634
635

636

637
638
639

640

641

642
643
644

646
647

Answer: [Yes]

Justification: Indeed, we offer an anonymized GitHub repository containing all necessary
information to accurately reproduce the results as well as the algorithms detailed and
presented within the paper. The datasets used are public and easily downloadable, and splits
are reproducible.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All implementation details on splits, hyperparameters, optimizers and architec-
tures are detailed in Appendix B}

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Appendix [B]contains the results obtained from experiments conducted with
three distinct random seeds, thereby ensuring statistical significance for our findings and
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

648
649

650

651
652

653
654
655

656

658

659
660

661

662
663
664

665

666

668

669

670
671

672
673

674
675

677

678

680

681

682

683

684
685

686

688

689
690

691

692

693

694

695
696

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We thoroughly describe computational resources in Appendix [B] specifying
the characteristics of the machines on which experiments have been conducted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms in every respect, with the NeurIPS Code of Ethics
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in the Conclusions
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

697
698
699
700
701
702
703
704
705
706
707
708
709
710
71
712
713
714
715

716

717
718
719

720

721

722

723

724
725
726
727

728
729

730
731
732

733

734
735
736

737

738

739

740
741
742
743
744
745
746
747
748
749
750

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Code and data sources are acknowledged through explicit citations.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets

751
752
753
754
755

756
757

758

759

760

761
762
763
764

766
767
768
769

770
771
772

773

774

775

776

777

778
779
780
781
782
783

784

786
787
788
789

791

792

793
794
795
796
797
798
799
800
801
802

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

803 16. Declaration of LLLM usage

804 Question: Does the paper describe the usage of LLMs if it is an important, original, or
805 non-standard component of the core methods in this research? Note that if the LLM is used
806 only for writing, editing, or formatting purposes and does not impact the core methodology,
807 scientific rigorousness, or originality of the research, declaration is not required.

808 Answer: [NA]

809 Justification: The core method development in this research does not involve LLMs as any
810 important, original, or non-standard components

811 Guidelines:

812 * The answer NA means that the core method development in this research does not
813 involve LLMs as any important, original, or non-standard components.

814 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
815 for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Theoretical Framework
	Problem Formulation
	Representation Operators: Wavelet Scattering Transform and Fourier Transform

	Malicious Client Detector: Waffle
	Offline Detector Training
	Offline Detection and Filtering

	Theoretical Guarantees
	Experiments
	Waffle : WST vs Fourier
	Comparison with Baselines and Orthogonality of Waffle

	Conclusion
	Theoretical Guarantes
	Implementation Details and Further Experiments
	Metrics

