
Wavelet Scattering Transform and Fourier Representation for Offline Detection of Malicious Clients in Federated Learning

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Federated Learning (FL) enables the training of machine learning models across de-
2 centralized clients while preserving data privacy. However, the presence of anomalous
3 or corrupted clients—such as those with faulty sensors or non-representative
4 data distributions—can significantly degrade model performance. Detecting such
5 clients without accessing raw data remains a key challenge. We propose **Waffle**
6 (**W**avelet and **F**ourier representations for **F**ederated **L**earning) a detection algorithm
7 that labels malicious clients *before training*, using locally computed compressed
8 representations derived from either the Wavelet Scattering Transform (WST) or
9 the Fourier Transform. Both approaches provide low-dimensional, task-agnostic
10 embeddings suitable for unsupervised client separation. A lightweight detector,
11 trained on a distilled public dataset, performs the labeling with minimal com-
12 munication and computational overhead. While both transforms enable effective
13 detection, WST offers theoretical advantages, such as non-invertibility and stability
14 to local deformations, that make it particularly well-suited to federated scenarios.
15 Experiments on benchmark datasets show that our method improves detection accu-
16 racy and downstream classification performance compared to existing FL anomaly
17 detection algorithms, validating its effectiveness as a pre-training alternative to
18 online detection strategies.

19

1 Introduction

20 Federated Learning (FL) is a distributed learning framework that enables multiple clients to train
21 a global model without sharing raw data [1], making it a promising approach for privacy-sensitive
22 decentralized domains [2, 3, 4]. As deployments scale, a central challenge is data heterogeneity,
23 where non-IID client data can hinder model convergence and degrade performance [5, 6].
24 Beyond natural data heterogeneity, FL systems are also vulnerable to malicious or faulty clients
25 [7, 8]. Consider a scenario in a large-scale sensor network FL deployment (e.g., environmental
26 monitoring [9] or industrial IoT [10]). Some sensors might be physically damaged, miscalibrated,
27 or even deliberately tampered with, causing them to report highly perturbed, noisy, or statistically
28 anomalous data streams. Being able to quickly detect them and remove them for training or fixing
29 them without accessing raw data is beneficial for monitoring the network, and guaranteeing its correct
30 functioning [11]. Defenses against malicious clients in FL often rely on robust aggregation methods
31 [12, 7] to reduce the influence of outlier updates, particularly in the presence of Byzantine attacks
32 [13]. However, these methods assume most clients are benign and target model-level anomalies,
33 not data-level perturbations that subtly alter local objectives [14, 15]. Online detectors that monitor
34 client behavior during training offer an alternative but add overhead and may act too late. Crucially,
35 neither class of defenses is well-suited to detecting clients with malicious data prior to training, as in

36 compromised sensor networks.
 37 In this work, we propose **Waffle** (Wavelet and Fourier representations for Federated Learning), an
 38 offline detector designed to identify clients with malicious data before FL training begins. Performing
 39 detection offline [16] and in a privacy-preserving manner is particularly desirable, as it limits
 40 computational overhead on both the server and client sides, making the approach lightweight and
 41 scalable. **Waffle** trains a classifier on spectral features – extracted via Fourier Transform (FT) and
 42 Wavelet Scattering Transform (WST) [17] – which offer stable, invariant representations robust to
 43 data perturbations. Detection is performed using a model pre-trained on a distilled public dataset,
 44 ensuring efficiency and privacy. Clients locally compute low-dimensional statistics via Principal
 45 Component Analysis (PCA) and spectral embeddings, sending an aggregated, secure, and non-
 46 invertible information to the server which classifies them as benign or malicious. Malicious clients
 47 are excluded prior to training. Unlike many existing methods, **Waffle** does not assume a benign
 48 majority and can be combined with robust aggregation to strengthen FL security.
 49 The structure of the paper is the following: Section 2 defines the FL setting, the data attacks considered,
 50 and the spectral representations (FT and WST). Section 3 details **Waffle**’s training and detection.
 51 Theoretical guarantees are provided in Section 4 showing the benefits of removing malicious clients.
 52 Section 5 reports experimental results validating **Waffle** on benchmark datasets.

53 **Related Works and Contributions.**

54 **Malicious Client Detection in FL.** Detection-based approaches classify clients as benign or malicious
 55 based on anomalies in their updates or data distribution [4]. **FLDetector** [18] identifies malicious
 56 clients by analyzing the consistency of their updates over time—benign updates follow predictable
 57 patterns, while malicious ones are erratic. **MuDHog** [19] leverages historical update trajectories with
 58 model-agnostic meta-learning to detect temporal inconsistencies, though it assumes long-term client
 59 participation, which is unrealistic in cross-device settings. **VAE** [20] uses a variational autoencoder
 60 to model the benign update distribution and flags deviations, assuming malicious clients are rare
 61 and the VAE is well-trained. These methods rely on multi-round update access, limiting early-stage
 62 applicability, and focus on gradients or parameters, making them vulnerable to indirect attacks.

63 **Robust Aggregation in FL.** Robust aggregation methods aim to mitigate the influence of malicious
 64 clients without explicitly identifying them [21, 7]. **KRUM** [12] selects the most central update in ℓ_2
 65 distance, but requires fewer than half of the clients to be malicious. **TrimmedMean** [7] discards
 66 extreme values per coordinate, improving robustness to outliers, though it overlooks dependencies
 67 across dimensions. **FLTrust** [8] uses a trusted server-side dataset to normalize and rescale client
 68 updates, enhancing robustness but breaking strict decentralization. Secure aggregation protocols
 69 like **RFLPA** [22] and **RoFL** [23] ensure client privacy via cryptographic techniques, but do not address
 70 adversarial robustness. These approaches, unlike detection-based ones, do not label clients, limiting
 71 their use when malicious participants must be explicitly excluded.

72 **Spectral Analysis and Frequency-based Defenses.** Spectral methods aim to identify or mitigate
 73 malicious behavior by analyzing updates in the frequency domain [24, 25, 26]. **FreqFeD** [27] applies
 74 the Discrete Fourier Transform to client updates, filtering high-frequency components assumed to
 75 contain adversarial noise, though this may remove relevant information under data heterogeneity.
 76 **FedSSP** [28] targets backdoor attacks by smoothing and pruning suspicious spectral patterns in model
 77 weights, but depends on specific architectures and requires access to full model parameters. Unlike
 78 these methods, our approach extracts frequency-based embeddings directly from client-side data
 79 before training, enabling model-agnostic detection.

80 Our *main contributions* are summarized as follows:

- 81 • We propose **Waffle**, a novel offline detector for identifying clients with data attacks, introducing
 82 the use of WST for anomaly detection in FL.
- 83 • We provide a theoretical framework motivating WST and FT as robust data representations, and
 84 mathematically demonstrate that removing malicious clients improves global model estimation.
- 85 • We present experiments on benchmark datasets showing that **Waffle** significantly improves model
 86 performance and robustness compared to training with contaminated data or using only robust
 87 aggregation.

Figure 1: Examples of attacked data. Two images downloaded from [link1](#) and [link2](#). For each image: *left*: clean client, *center*: noisy attack with magnitude $\sigma = 0.2$, *right*: blur attack with spread $\beta = 11$

88 2 Theoretical Framework

89 In this section, we introduce the mathematical framework that provides the foundation for our
90 algorithm. Section 2.1 presents the Federated Learning (FL) setting and defines the class of attacks
91 considered on clients’ data. Section 2.2 introduces the WST and the Fourier Transform FT, recalling
92 their basic properties that are relevant for anomaly detection.

93 2.1 Problem Formulation

94 Consider a standard FL scenario 1 with $K \in \mathbb{N}$ clients and a central server. Each client k possesses
95 n_k data samples $(x_k^i, y_k^i)_{i=1}^{n_k} \sim \mathcal{D}_k$ supported in $\mathcal{X} \times \mathcal{Y}$. The objective of FL is to learn a shared
96 global model θ that generalizes across all clients, by solving the following optimization problem:

$$\theta^* \in \arg \min_{\theta \in \Theta} \frac{1}{N} \sum_{k=1}^K n_k \mathcal{L}_k(\theta) \quad (1)$$

97 where Θ denotes the model’s parameter space, $N = \sum_{k=1}^K n_k$ is the total number of data samples,
98 and \mathcal{L}_k represents the empirical loss function for client k with respect to its local data distribution
99 \mathcal{D}_k . In each communication round $t \in \{1, \dots, T\}$, a subset of clients \mathcal{P}_t is randomly selected to
100 participate in training. Each participating client $k \in \mathcal{P}_t$ performs $S \in \mathbb{N}$ local iterations of a stochastic
101 optimizer. Subsequently, clients send their updated parameters to the server, which aggregates these
102 updates to derive a new global model.

103 A critical challenge in realistic FL deployments is the *non-i.i.d.* nature of client data, which can
104 hinder the convergence and performance of the global model. In this work, we specifically address
105 non-i.i.d. settings where the data distribution discrepancies are caused by malicious clients perturbing
106 their original data samples. This differs from typical attack detection scenarios focusing on model
107 poisoning during training.

108 **Type of Attacks** We define two types of feature-level attacks that our algorithms aim to address:
109 noisy and blur attackers. Examples of the effect of these attacks are displayed in Figure 1. This
110 focus is motivated by the fact that noise and blur are common consequences of real-world faults
111 [29, 30] –such as sensor degradation, miscalibration, or environmental interference – that can subtly
112 compromise data quality and model performance without exhibiting overtly malicious behavior.

113 **Definition 1.** Let $k \in [K]$ and $\sigma_k > 0$. Client k is a **noisy attacker** if its data samples are perturbed
114 as $\tilde{x}_k^i = x_k^i + \sigma_k \epsilon_k^i$, where x_k^i is the clean sample, and, $(\epsilon_k^i)_{i=1}^{n_k}$ is a family of independent Wiener
115 processes supported in \mathcal{X} .

116 Let us observe that the severity of the attack is determined by the magnitude of σ_k . Smaller values
117 of σ_k might represent natural noise inherent in data collection or random transformations, requiring
118 careful consideration of what constitutes a ‘malicious’ level of perturbation.

119 Another feature-wise attack we formally define is the **blur attacker**. This attack is particularly
120 relevant for image or signal data where x_k^i can be treated as a function over \mathcal{X} .

121 **Definition 2.** Let $k \in [K]$ and $\beta_k > 0$. Client k is a **blurred attacker** if it provides samples perturbed
122 according to a convolution operation:

$$\tilde{x}_k^i = x_k^i \star \zeta_k = \int_{\mathcal{X}} x_k^i(u') \zeta_k(u - u') du' \quad i = 1, \dots, n_k \quad (2)$$

123 where \star denotes the convolution operation. Typically, ζ_k is a smooth kernel, and the parameter β_k
 124 controls its spread or blur radius.

125 A common choice for the kernel ζ_k falls on Gaussian kernels, and the scalar β_k has a role of
 126 controlling the spread of the kernel. Similarly to noisy attacks, in blur attacks the magnitude of the
 127 perturbation is controlled by the parameter β_k , the larger it is the higher it perturbs the data.

128 2.2 Representation Operators: Wavelet Scattering Transform and Fourier Transform

129 In this section we recall the notion of a representation operator Φ , which maps a signal x (e.g., an
 130 image or a time-series) onto a transformed space. This transformation induces a metric $d(x, x') =$
 131 $\|\Phi[x] - \Phi[x']\|$ in the new space [31]. The core idea is that an effective representation operator
 132 Φ should possess properties instrumental for accurately detecting and differentiating between data
 133 samples. Specifically, for the purpose of identifying perturbed data, Φ should be able to separate
 134 distinct data characteristics while exhibiting robustness to common variations like slight translations
 135 or small, non-malicious perturbations. We propose two variants for the representation layer of our
 136 detection algorithm: one based on the Fourier Transform (FT) and the other on the Wavelet Scattering
 137 Transform (WST) [17, 31]. The Fourier Transform is by far the most widely used tool for spectral
 138 analysis in signal processing and data science due to its simplicity and interpretability. However, it
 139 has been surprisingly underutilized in the context of Federated Learning (FL). We therefore include it
 140 as an internal baseline in our study, allowing us to contrast its performance against the more structured
 141 and hierarchical Wavelet Scattering Transform.

142 **Fourier Representation** We first formally define the Fourier Transform.

143 **Definition 3.** Let $x \in L^1(\mathcal{X}, du)$, the **Fourier Transform** of x , denoted by $\mathcal{F}[x]$ is a complex valued
 144 function defined as

$$\mathcal{F}[x](\omega) = \int_{\mathcal{X}} x(u) e^{-2\pi i(u \cdot \omega)} du \quad (3)$$

145 FT can be efficiently computed using the FFT algorithm [32]. Beyond its computational efficiency,
 146 the Fourier Transform offers several critical advantages for feature extraction, particularly in the
 147 context of analyzing data perturbations. As a linear operator ($\mathcal{F}[ax + bx'] = a\mathcal{F}[x] + b\mathcal{F}[x']$ for
 148 scalars a, b and integrable signals x, x'), the FT maps additive perturbations directly to additive
 149 components in the frequency domain. For instance, in the case of a *noisy attacker* where $\tilde{x} = x + \epsilon$,
 150 we have $\mathcal{F}[\tilde{x}] = \mathcal{F}[x] + \mathcal{F}[\epsilon]$. This linearity simplifies the analysis of such perturbations. Moreover,
 151 the convolution theorem [33] states that convolution in the spatial domain corresponds to point-
 152 wise multiplication in the frequency domain ($\mathcal{F}[x \star \delta] = \mathcal{F}[x] \cdot \mathcal{F}[\delta]$). This property is highly
 153 advantageous for detecting *blur attacker* perturbations, which are defined as convolutions. By
 154 examining the frequency spectrum, different types of data manipulations, like blurring (attenuating
 155 high frequencies) or specific noise patterns, reveal distinct signatures. However, FT is an invertible
 156 operator: on one side it preserves all information present in the original signal, on the other hand it is
 157 possible to reconstruct the original data from the FT.

158 **Wavelet Scattering Transform.** WST is a non-linear operator that, alternatively to Fourier based
 159 representation, has been designed to be stable to additive perturbations, locally translation invariant
 160 and to small continuous deformation. Moreover, the fact that WST is not invertible makes it
 161 particularly attractive for privacy-enhancing applications in FL, as reconstructing the original input
 162 data from the scattering coefficients is a challenging task. Following the construction in [17, 31] we
 163 define the WST and discuss its most relevant properties.

164 Let $\psi(u) \in L^2(\mathcal{X}, du)$ be a function referred to as the **mother wavelet**, and let $\{a^j\}_{j \in \mathbb{Z}}$ be a family
 165 of scale factors defined with respect to a fixed scalar $a > 1$. Let $r \in G$ denote a discrete rotation,
 166 where G is the group of discrete rotations acting on the domain \mathcal{X} . The j -th **wavelet function** is
 167 then defined as $\psi_j(u) = a^{-dj}\psi(a^{-j}r^{-1}u)$. For a fixed maximal depth $J \in \mathbb{Z}$, we define the set of
 168 admissible scale-rotation operators as $\Lambda_J = \{\lambda = a^j r : |\lambda| = a^j < 2^J\}$. In most implementations,
 169 Morlet wavelets are employed as the mother wavelet, and the scale factor is typically chosen as
 170 $a = 2^{1/Q}$ for some $Q \in \mathbb{N}$ [34].

171 To streamline notation, following [17], we introduce the **propagator operator**, which acts on a
 172 signal $x \in L^1(\mathcal{X})$ by cascading modulus and convolution operations. Given a path of scale-rotation

173 operators $p = (\lambda_1, \lambda_2)$, the propagator applied to x is defined as:

$$U[p]x = | |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2} | .$$

174 The definition of the WST naturally follows.

175 **Definition 4.** Let $p = (\lambda_1, \dots, \lambda_m) \subset \Lambda_J$ be a path of length m . For any signal $x \in L^1(\mathcal{X})$, the
176 WST along p is defined as:

$$S_J[p]x = U[p]x \star \phi_J, \quad (4)$$

177 where ϕ_J is a low-pass filter rescaled to recover low-frequency content.

178 The WST representation shares structural similarities with convolutional neural networks (CNNs),
179 with the key distinction that the wavelet filters are fixed rather than learned. The WST defines a norm
180 with properties desirable for detection and classification. Notably, the operator is **non-expansive**: for
181 any $x, x' \in L^2(\mathcal{X}, du)$, the following inequality holds:

$$\|S_J[p]x - S_J[p]x'\| \leq \|x - x'\|. \quad (5)$$

182 This implies that small, non-adversarial perturbations do not substantially affect the representation.

183 Additionally, WST is **translation invariant** in the limit: for a translated signal $x_c(u) = x(u - c)$
184 with $c \in \mathcal{X}$, we have

$$\lim_{J \rightarrow \infty} \|S_J[p]x - S_J[p]x_c\| = 0.$$

185 Finally, the WST is **Lipschitz continuous** with respect to small C^2 -diffeomorphisms. That is, if
186 a signal x undergoes a smooth deformation with small norm, the resulting change in the WST
187 representation remains bounded.

188 3 Malicious Client Detector: Waffle

189 This section details the architecture and training of our server-side detector, **Waffle** (Wavelet and
190 Fourier representations for Federated Learning), designed to identify clients contributing potentially
191 harmful updates based on their data characteristics. **Waffle** is a parametric classification model,
192 trained offline on a generated auxiliary dataset \mathcal{D}^{aux} to distinguish between benign and malicious
193 clients. It operates by analyzing aggregated, non-privacy-leaking spectral embeddings of client data
194 distributions.

195 3.1 Offline Detector Training

196 The training of the **Waffle** detector is conducted entirely offline, prior to the federated learning
197 process. This approach offers several advantages: it avoids interfering with live FL rounds, allows for
198 controlled generation of diverse malicious scenarios, and ensures the detector is fully trained and
199 ready when FL begins. Coherently with common practices in FL frameworks utilizing auxiliary data
200 [35], the server has access to a representative auxiliary dataset \mathcal{D}^{aux} . Algorithm 1 summarizes the
201 procedure.

202 The offline training proceeds over E epochs. In each epoch $e \in \{1, \dots, E\}$, the server simulates a
203 new FL round by generating a set of \tilde{K} fictitious clients with synthetic data and associated ground-
204 truth labels (benign or malicious). This dynamic generation of clients each epoch, similar to methods
205 used for estimating client relationships [36], increases the diversity of simulated scenarios and
206 helps prevent overfitting. Each training iteration within an epoch consists of two main steps: *data
207 simulation/attack* and *feature extraction/labeling*.

208 **Step 1: Data Simulation and Attack** For each sample $x \in \mathcal{D}^{\text{aux}}$, the server decides whether
209 to simulate an attack on that sample or keep it clean. This decision is made by drawing from a
210 Bernoulli distribution with probability $p = 1/2$ of being attacked. If selected for attack, the server
211 randomly chooses between two types of data perturbations with equal probability: blur or noise. If a
212 sample is selected for blurring, the server samples a blur severity parameter $\beta \sim \text{Unif}(\beta_0, \beta_1)$ and
213 applies a blurring operation according to Definition 2. This simulates clients whose data might be of
214 lower quality or intentionally blurred to impair model training or target specific vulnerabilities. If a
215 sample is selected for adding noise, the server samples a noise variance $\sigma \sim \text{Unif}(\sigma_0, \sigma_1)$ and applies
216 additive noise according to Definition 1. This simulates clients whose data might be corrupted by

217 sensor noise or intentionally perturbed with adversarial noise patterns. After processing all samples
 218 in \mathcal{D}^{aux} in this manner, the server possesses a modified dataset where each sample is either clean,
 219 blurred, or noisy, with the attack type and parameters recorded.

220 **Step 2: Fictitious Client Creation and Feature Extraction** The modified dataset from Step 1 is
 221 then partitioned to create the data for \tilde{K} fictitious clients. These clients are equally divided into two
 222 groups: $\tilde{K}/2$ benign and $\tilde{K}/2$ malicious. Clean data samples are assigned to benign clients, while
 223 attacked data samples (either blurred or noisy) are assigned to malicious clients. Let $\{x_k^i\}_{i=1}^{n_k}$ denote
 224 the data points assigned to the k -th fictitious client, where n_k is the number of samples for client k .

225 **Principal Component Analysis** For each simulated client k , PCA [37] is applied to their local
 226 dataset $\{x_k^i\}_{i=1}^{n_k}$ to analyze the covariance structure and extract the top r principal components v_k^i
 227 with eigenvalues λ_k^i , capturing dominant directions of variance. A compact representation vector is
 228 defined as:

$$\hat{x}_k = \sum_{i=1}^r \alpha_k^i v_k^i, \quad \text{with } \alpha_k^i = \frac{\lambda_k^i}{\sum_{j=1}^r \lambda_k^j} \quad (6)$$

229 This PCA-derived vector \hat{x}_k summarizes the client data's intrinsic structure by weighting principal
 230 directions by their explained variance. The PCA step supports dimensionality reduction and noise
 231 filtering, extracting features sensitive to structural perturbations such as blur or noise. Notably, it
 232 is performed offline on simulated data at the server: in real FL deployments, clients neither share
 233 raw data nor PCA results. Instead, this offline PCA informs training, while clients transmit only the
 234 privacy-preserving spectral embedding φ_k , discussed next.

235 **Spectral Embedding** Following this PCA step, the spectral representation φ_k is computed for
 236 each fictitious client k . This is achieved by applying a spectral operator Φ (either the WST or FT) to
 237 statistics derived from the client's data distribution, such as the PCA-derived representation vector \hat{x}_k
 238 or the set of principal eigenvalues λ_k^i . Spectral transforms are particularly sensitive to frequency and
 239 texture information, making them effective at capturing the systematic changes introduced by attacks
 240 like blur and noise. The output $\varphi_k = |\Phi[\hat{x}_k]|$, where the modulus is taken element-wise, results in a
 241 fixed-size vector representation for each client. This φ_k is designed to be an aggregate statistic that
 242 captures characteristics of the data distribution without revealing individual data points, making it
 243 suitable as a non-privacy-leaking feature for the detector in a live FL setting.

244 Finally, for each epoch, we obtain a dataset of client representations and their corresponding labels:
 245 $\{(\varphi_k, \mu_k)\}_{k=1}^{\tilde{K}}$, where $\mu_k \in \{\text{B (Benign), A (Attacker)}\}$. The detector weights w are updated using
 246 a stochastic optimizer (e.g., SGD, Adam) to minimize a binary classification loss, such as Binary
 247 Cross-Entropy (BCE) [38], between the detector's prediction based on φ_k and the ground-truth label
 248 μ_k .

249 3.2 Offline Detection and Filtering

250 Once the **Waffle** detector model w has been trained offline on the simulated auxiliary dataset \mathcal{D}^{aux}
 251 and prior to the first FL communication round, each client $k \in \{1, \dots, K\}$ in the federation processes
 252 its local training data $\{x_k^i\}_{i=1}^{n_k}$ privately on their device. This processing involves a sequence of
 253 steps performed locally. First, each client computes the PCA of their local training samples to
 254 derive the representation vector \hat{x}_k , as defined in Equation (6). Then, each client computes its spectral
 255 embedding $\varphi_k = \Phi[\hat{x}_k]$, by applying the spectral operator Φ (WST or FT).

256 After completing these local computations and obtaining φ_k , each client k securely transmits only
 257 this resulting spectral embedding vector to the server. The server, upon receiving φ_k from each
 258 participating client, inputs it into the pre-trained **Waffle** detector w . Clients that are classified as
 259 malicious by the detector are then excluded from participating in the federated training process for
 260 the global model θ . This preemptive filtering step enhances the stability and reliability of the global
 261 model training process, leading to potentially faster and more robust convergence by ensuring that
 262 aggregation occurs over updates from predominantly benign sources.

263 Moreover, due to its modular nature, **Waffle** operates as an initial defense layer. The set of clients
 264 validated as benign by **Waffle** can proceed with any federated learning aggregation methods, allowing
 265 **Waffle** to be easily combined with other online robust aggregation techniques to further strengthen
 266 the overall defense strategy.

Algorithm 1 Waffle Offline Training

Require: Auxiliary dataset \mathcal{D}^{aux} , Number of epochs E , Number of fictitious clients \tilde{K} , Number of top PCs r , Spectral operator Φ , Learning rate η
Ensure: Trained detector weights w

```
1: Initialize detector weights  $w$ 
2: for  $e = 1 \dots E$  do
3:   // Simulate Data and Clients for Epoch  $e$ 
4:    $\mathcal{D}_e^{\text{simulated}} \leftarrow \text{SimulateAttackedData}(\mathcal{D}^{\text{aux}})$                                  $\triangleright$  Applies random attacks to  $\mathcal{D}^{\text{aux}}$ 
5:    $\{(\mathcal{D}_k, \mu_k)\}_{k=1}^{\tilde{K}} \leftarrow \text{PartitionData}(\mathcal{D}_e^{\text{simulated}}, \tilde{K})$            $\triangleright$  Creates  $\tilde{K}$  clients with labels
6:   // Extract Features for Each Simulated Client
7:   Initialize epoch dataset  $\mathcal{S}_e = \emptyset$                                                $\triangleright$  Stores  $(\varphi_k, \mu_k)$  pairs
8:   for  $k = 1 \dots \tilde{K}$  do
9:      $\{x_k^i\}_{i=1}^{n_k} \leftarrow \mathcal{D}_k$ 
10:    Compute PCA-derived representation  $\hat{x}_k$  from  $\{x_k^i\}$                                  $\triangleright$  Eq. (6)
11:    Compute spectral embedding  $\varphi_k \leftarrow |\Phi[\hat{x}_k]|$                            $\triangleright$  Apply FT or WST to  $\hat{x}_k$ 
12:    Add  $(\varphi_k, \mu_k)$  to  $\mathcal{S}_e$ 
13:   end for
14:   // Update Detector Model
15:    $w \leftarrow \text{Opt}(\mathcal{L}_{\text{BCE}}(w; \mathcal{S}_e))$                                       $\triangleright$  Optimization step
16: end for
17: return  $w$ 
```

267 **4 Theoretical Guarantees**

268 In this section, we establish a theoretical foundation for our proposed algorithm, which we refer
269 to as **Waffle**. Our primary focus is to demonstrate the benefits of removing adversarial clients in
270 FL scenarios. We show that by filtering out malicious updates, **Waffle** provides a more accurate
271 estimate of the true global model compared to standard FedAvg [1], which is susceptible to adversarial
272 poisoning. We provide general error bounds with detailed proofs presented in Appendix [A].

273 Let $\mathcal{B} \subset \{1, \dots, K\}$ denote the set of benign clients and $\mathcal{M} \subset \{1, \dots, K\}$ the set of malicious
274 clients in a federated system with K total clients. We assume these sets are disjoint and their union
275 covers all clients, i.e., $\mathcal{B} \cap \mathcal{M} = \emptyset$ and $\mathcal{B} \cup \mathcal{M} = \{1, \dots, K\}$. To model the heterogeneity and
276 potential adversarial influence in client updates, we adopt the following statistical framework:

277 **Assumption 1.** For each benign client $k \in \mathcal{B}$, the local model update θ_k is an independent random
278 variable drawn from a distribution $\rho_k(\bar{\theta}^b, \sigma^b)$. This distribution is centered around a common benign
279 mean $\bar{\theta}^b$ with variance $(\sigma^b)^2$, i.e., $\mathbb{E}[\theta_k] = \bar{\theta}^b$ and $\text{Var}[\theta_k] = (\sigma^b)^2$. Similarly, for malicious clients
280 $k \in \mathcal{M}$, the local updates θ_k are independent random variables drawn from $\rho_k(\bar{\theta}^m, \sigma^m)$ with
281 $\mathbb{E}[\theta_k] = \bar{\theta}^m$ and $\text{Var}[\theta_k] = (\sigma^m)^2$.

282 **Assumption 2.** We posit that malicious clients exhibit significantly higher update variance com-
283 pared to benign clients, reflecting a diverse range of attack strategies and the potential for large,
284 destabilizing updates. Formally, we assume $\sigma^m \gg \sigma^b$.

285 The standard federated averaging estimator is defined as a weighted average of client updates:
286 $\theta_{\text{avg}} = 1/K \sum_{k=1}^K \theta_k$. Our objective is to obtain an estimator that is unbiased with respect to the
287 benign client distribution, meaning $\mathbb{E}[\theta_{\text{avg}}] = \bar{\theta}^b$. We demonstrate that removing malicious clients
288 is crucial for achieving this goal. We analyze two scenarios: one where the benign and malicious
289 updates have different means (Lemma [1]) and one where they share the same mean but differ in
290 variance (Lemma [2]).

291 **Lemma 1.** If the benign and malicious client updates have different mean parameter values, i.e.,
292 $\bar{\theta}^m \neq \bar{\theta}^b$, then the standard federated averaging estimator θ_{avg} is a **biased estimator** of $\bar{\theta}^b$, meaning
293 $\mathbb{E}[\theta_{\text{avg}}] \neq \bar{\theta}^b$.

294 **Lemma 2.** Let $\theta_{avg}^{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{k \in \mathcal{B}} \theta_k$ be the federated averaging estimator computed using only
 295 benign client updates. Under Assumption 2 if $(\sigma^m)^2 > \left(2 + \frac{|\mathcal{M}|}{|\mathcal{B}|}\right) (\sigma^b)^2$, then the variance of the
 296 standard federated averaging estimator is higher than that of our estimator: $\text{Var}[\theta_{avg}] \geq \text{Var}[\theta_{avg}^{\mathcal{B}}]$.

297 Lemmas 1 and 2 provide the foundation for the following proposition, which formally establishes the
 298 advantage of removing malicious clients from the federated aggregation process.

299 **Proposition 1.** Under Assumptions 1 and 2, removing malicious clients (those in \mathcal{M}) from the
 300 federation yields a superior estimator of the global model. Specifically, the resulting estimator is
 301 unbiased (in the sense of Lemma 1) and exhibits a reduced variance (as shown in Lemma 2), leading
 302 to improved model accuracy and robustness.

303 5 Experiments

304 In this section, we present experimental results on widely used federated learning benchmark
 305 datasets [39, 40, 41], comparing the performance of Waffle in its two variants—one using the
 306 WST representation and the other using FT—with established baselines from the Byzantine-resilient
 307 FL literature. Details on implementation settings, datasets, and models are provided in Appendix B.
 308 Section 5.1 evaluates the detection performance of the two variants of Waffle, highlighting the
 309 differences between the WST and FT representations. In Section 5.2, we compare Waffle against
 310 standard Byzantine-resilient FL baselines, including FedAvg [1], Krum and mKrum [12], GeoMed [42],
 311 and TrimmedMean [7]. Additionally, we demonstrate that Waffle can be applied on top of any
 312 aggregation algorithm, improving their performance. Further experiments, comparisons and code
 313 release details are reported in Appendix B and the metrics used for evaluation—both for detection
 and classification—are detailed in Appendix C.

Table 1: **Client Detection.** Comparison between variants of Waffle using WST and FT representations, under two attack scenarios (40% top, 90% bottom). Metrics (F1 score, Precision, Recall, Accuracy [43]) refer to the detection of malicious clients.

Method	FashionMNIST				CIFAR-10				CIFAR-100				
	F1	Prec.	Rec.	Acc.	F1	Prec.	Rec.	Acc.	F1	Prec.	Rec.	Acc.	
40%	Waffle - FT	65.11	60.9	70.0	70.0	79.75	68.42	95.59	67.0	56.69	41.38	90.0	
	Waffle - WST	71.88	95.83	57.5	82.0	94.87	97.36	92.5	96.0	83.33	93.75	75.0	88.0
90%	Waffle - FT	81.81	95.45	71.59	72.0	93.05	89.69	96.67	87.0	88.1	88.1	88.1	80.0
	Waffle - WST	65.65	100.0	48.86	55.0	90.91	100.0	83.33	86.0	88.85	100.0	67.86	73.0

314

315 5.1 Waffle : WST vs Fourier

316 We compare the detection performance of Waffle to assess the differences between the WST
 317 and FT representations. As illustrated in Figure 2, both representations yield a clear separation
 318 between benign and malicious clients. The visualizations—obtained via two-dimensional PCA
 319 embeddings—show that the method effectively distinguishes between the different attacker groups
 320 and benign clients, regardless of the chosen representation. However, as shown in Table 1, the
 321 quantitative results at the client level differ between the two variants. We report standard detection
 322 metrics: precision, F1 score, recall, and accuracy [43], setting 40% and 90% of attackers. The WST
 323 variant consistently achieves higher precision and F1 scores, while the FT variant tends to yield
 324 higher recall. In the context of malicious client detection, higher recall is often desirable, as it reduces
 325 the likelihood of overlooking faulty clients. Table 1 highlights the robustness of Waffle : unlike
 326 most Byzantine-resilient FL methods, it maintains strong predictive performance even when the vast
 327 majority of clients are malicious. Notably, in the extreme case with 90% adversarial clients, Waffle
 328 with WST achieves 100% precision across all datasets.

329 5.2 Comparison with Baselines and Orthogonality of Waffle

330 In this section, we compare Waffle with established Byzantine-resilient FL methods, highlighting its
 331 advantages in two complementary settings: (1) we evaluate the impact of applying the two Waffle

Table 2: Comparison between baselines for detecting malicious clients and **Waffle** (with both WST and FT). **Waffle** -WST combined with FedAvg achieves the highest test accuracy across all datasets, outperforming baselines designed to mitigate Byzantine attacks. Results also highlight the orthogonality of **Waffle** to aggregation methods, consistently improving their performance. For reference, the test accuracy of FedAvg without malicious clients is: FashionMNIST 75.08%, CIFAR-10 50.24%, CIFAR-100 17.72%.

Dataset	Setting	FedAvg	Krum	mKrum	GeoMed	TrimmedMean
FashionMNIST	w/o detector	73.33	73.85	70.56	72.75	74.84
	Waffle - WST	76.18	70.26	74.75	74.18	75.21
	Waffle - FT	73.38	72.10	74.40	75.35	74.98
CIFAR-10	w/o detector	48.75	45.2	47.4	48.51	48.22
	Waffle - WST	49.70	46.28	49.08	49.41	49.0
	Waffle - FT	46.95	44.13	47.58	47.14	46.86
CIFAR-100	w/o detector	16.35	9.61	14.73	16.83	16.85
	Waffle - WST	17.12	8.50	14.85	16.32	15.89
	Waffle - FT	11.58	7.24	10.15	12.25	10.29

332 variants to FedAvg, compared to using different aggregation rules without detection; and (2) we
 333 assess the effect of applying **Waffle** on top of robust aggregation algorithms. As shown in Table 2
 334 the WST variant of **Waffle** combined with FedAvg consistently outperforms all baselines across all
 335 datasets. Furthermore, **Waffle** improves the performance of each aggregation method it is applied to,
 336 demonstrating its orthogonality to the choice of aggregator. These results indicate that **Waffle** is
 337 effective in identifying and removing malicious clients without compromising benign contributions.
 338 In contrast, the FT variant exhibits more variable performance, further confirming the suitability of
 339 WST representations for this detection task. For reference, we also report the test accuracy of FedAvg
 340 trained on a clean federation (i.e., without malicious clients, corresponding to θ_{avg}^B in the notation
 341 of Lemma 2): FashionMNIST 75.08%, CIFAR-10 50.24%, CIFAR-100 17.72%. These values
 342 demonstrate that **Waffle** enables recovery of near-optimal performance, effectively neutralizing the
 343 impact of adversarial clients.

344 6 Conclusion

345 We propose **Waffle**, a novel offline algorithm to detect malicious client data in Federated Learning
 346 (FL) before training. Exploiting stable spectral features extracted via the Wavelet Scattering Transform
 347 (WST) and Fourier Transform (FT), it enables robust anomaly detection from private, low-dimensional
 348 client-side summaries built on publicly distilled data. By filtering out compromised clients prior to
 349 training, **Waffle** significantly improves convergence speed, final model accuracy, and robustness to
 350 data contamination. It achieves near-perfect precision (100% in our benchmarks) even in extreme
 351 scenarios with up to 90% malicious clients, outperforming strategies that rely solely on robust
 352 aggregation. This early detection mechanism also reduces training time, communication overhead,
 353 and energy consumption—factors crucial in large-scale deployments. Furthermore, **Waffle** is model-
 354 agnostic and can be seamlessly integrated with existing FL defenses to enhance overall system
 355 security.

356 Future work will focus on extending **Waffle** to defend against more sophisticated threats, including
 357 backdoor attacks, model poisoning, and sybil-based infiltration. In parallel, we plan to adapt
 358 the approach to support wider neural architectures capable of handling more complex and high-
 359 dimensional datasets, such as CIFAR-100 or even ImageNet-scale benchmarks. These directions aim
 360 to broaden the applicability of **Waffle** to realistic FL scenarios in vision, healthcare, and IoT.

361 **Limitations.** **Waffle** targets data-level attacks altering client input features, not model-level attacks
 362 (e.g., gradient manipulation, backdoors), which necessitate different defense strategies. However,
 363 combining **Waffle** with robust aggregation can help mitigate such hybrid threats.

364 **Broader Impact.** Our method enhances FL robustness and trustworthiness, crucial for deployments in
 365 sensitive domains (e.g., healthcare, finance), and reduces resource consumption. Potential misuse (e.g.,
 366 unfairly excluding outlier populations) warrants careful auditing and fairness-aware deployments,
 367 though **Waffle** itself introduces no new privacy or fairness risks beyond those inherent in existing
 368 FL pipelines.

369 **References**

370 [1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
371 Communication-efficient learning of deep networks from decentralized data. In *Artificial
372 intelligence and statistics*, pages 1273–1282. PMLR, 2017.

373 [2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingberman, Vladimir
374 Ivanov, Chloe Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, et al. Towards
375 federated learning at scale: System design. *Proceedings of machine learning and systems*,
376 1:374–388, 2019.

377 [3] Rodolfo Stoffel Antunes, Cristiano André da Costa, Arne Küderle, Imrana Abdullahi Yari, and
378 Björn Eskofier. Federated learning for healthcare: Systematic review and architecture proposal.
379 *ACM Transactions on Intelligent Systems and Technology (TIST)*, 13(4):1–23, 2022.

380 [4] Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking.
381 In *Federated learning: privacy and incentive*, pages 240–254. Springer, 2020.

382 [5] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
383 Smith. Federated optimization in heterogeneous networks. *Proceedings of Machine learning
384 and systems*, 2:429–450, 2020.

385 [6] Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen.
386 Local learning matters: Rethinking data heterogeneity in federated learning. In *Proceedings
387 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8397–8406,
388 2022.

389 [7] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
390 learning: Towards optimal statistical rates. In *International conference on machine learning*,
391 pages 5650–5659. Pmlr, 2018.

392 [8] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust
393 federated learning via trust bootstrapping. In *ISOC Network and Distributed System Security
394 Symposium (NDSS)*, 2021.

395 [9] Daniel Leiria, Hicham Johra, Justus Anoruo, Imants Praelins, Marco Savino Piscitelli, Alfonso
396 Capozzoli, Anna Marszal-Pomianowska, and Michal Zbigniew Pomianowski. Is it returning
397 too hot? time series segmentation and feature clustering of end-user substation faults in district
398 heating systems. *Applied Energy*, 381:125122, 2025.

399 [10] Merim Dzaferagic, Nicola Marchetti, and Irene Macaluso. Fault detection and classification in
400 industrial iot in case of missing sensor data. *IEEE Internet of Things Journal*, 9(11):8892–8900,
401 2021.

402 [11] Shaashwat Agrawal, Sagnik Sarkar, Ons Aouedi, Gokul Yenduri, Kandaraj Piamrat, Mamoun
403 Alazab, Sweta Bhattacharya, Praveen Kumar Reddy Maddikunta, and Thippa Reddy Gadekallu.
404 Federated learning for intrusion detection system: Concepts, challenges and future directions.
405 *Computer Communications*, 195:346–361, 2022.

406 [12] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
407 with adversaries: Byzantine tolerant gradient descent. *Advances in neural information
408 processing systems*, 30, 2017.

409 [13] Stefano Marano, Vincenzo Matta, and Lang Tong. Distributed detection in the presence of
410 byzantine attacks. *IEEE Transactions on Signal Processing*, 57(1):16–29, 2008.

411 [14] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning
412 poisoning. *arXiv preprint arXiv:1808.04866*, 2018.

413 [15] Francesco Colosimo and Floriano De Rango. Median-krum: A joint distance-statistical based
414 byzantine-robust algorithm in federated learning. In *Proceedings of the Int'l ACM Symposium
415 on Mobility Management and Wireless Access*, pages 61–68, 2023.

416 [16] Hangyu Zhu, Haoyu Zhang, and Yaochu Jin. From federated learning to federated neural
 417 architecture search: a survey. *Complex & Intelligent Systems*, 7(2):639–657, 2021.

418 [17] Stéphane Mallat. Group invariant scattering. *Communications on Pure and Applied Mathematics*,
 419 65(10):1331–1398, 2012.

420 [18] Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. FlDetector: Defending federated
 421 learning against model poisoning attacks via detecting malicious clients. In *Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining*, pages 2545–2555,
 422 2022.

424 [19] Ashish Gupta, Tie Luo, Mao V Ngo, and Sajal K Das. Long-short history of gradients is all you
 425 need: Detecting malicious and unreliable clients in federated learning. In *European Symposium
 426 on Research in Computer Security*, pages 445–465. Springer, 2022.

427 [20] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. Learning to detect malicious
 428 clients for robust federated learning. *arXiv preprint arXiv:2002.00211*, 2020.

429 [21] Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability of distributed learning in
 430 byzantium. In *International conference on machine learning*, pages 3521–3530. PMLR, 2018.

431 [22] Peihua Mai, Ran Yan, and Yan Pang. Rflpa: A robust federated learning framework against
 432 poisoning attacks with secure aggregation. *Advances in Neural Information Processing Systems*,
 433 37:104329–104356, 2024.

434 [23] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Küchler, and Anwar Hithnawi.
 435 Rofl: Robustness of secure federated learning. In *2023 IEEE Symposium on Security and
 436 Privacy (SP)*, pages 453–476. IEEE, 2023.

437 [24] Zexin Wang, Changhua Pei, Minghua Ma, Xin Wang, Zhihan Li, Dan Pei, Saravan Rajmohan,
 438 Dongmei Zhang, Qingwei Lin, Haiming Zhang, et al. Revisiting vae for unsupervised time
 439 series anomaly detection: A frequency perspective. In *Proceedings of the ACM Web Conference
 440 2024*, pages 3096–3105, 2024.

441 [25] Chi-ho Chan and Grantham KH Pang. Fabric defect detection by fourier analysis. *IEEE
 442 transactions on Industry Applications*, 36(5):1267–1276, 2000.

443 [26] Ran Tao, Xudong Zhao, Wei Li, Heng-Chao Li, and Qian Du. Hyperspectral anomaly detection
 444 by fractional fourier entropy. *IEEE Journal of Selected Topics in Applied Earth Observations
 445 and Remote Sensing*, 12(12):4920–4929, 2019.

446 [27] Hossein Fereidooni, Alessandro Pegoraro, Phillip Rieger, Alexandra Dmitrienko, and Ahmad-
 447 Reza Sadeghi. Freqfed: A frequency analysis-based approach for mitigating poisoning attacks
 448 in federated learning. *arXiv preprint arXiv:2312.04432*, 2023.

449 [28] Yu Chen and Zihan Tan. Fedssp: Federated graph learning with spectral knowledge and
 450 personalized preference. In *Advances in Neural Information Processing Systems 38: Annual
 451 Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC,
 452 Canada, December 10 - 15, 2024*, 2024.

453 [29] Abhishek B Sharma, Leana Golubchik, and Ramesh Govindan. Sensor faults: Detection
 454 methods and prevalence in real-world datasets. *ACM Transactions on Sensor Networks (TOSN)*,
 455 6(3):1–39, 2010.

456 [30] Yeping Peng, Zhen Tang, Genping Zhao, Guangzhong Cao, and Chao Wu. Motion blur removal
 457 for uav-based wind turbine blade images using synthetic datasets. *Remote Sensing*, 14(1):87,
 458 2021.

459 [31] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. *IEEE transactions
 460 on pattern analysis and machine intelligence*, 35(8):1872–1886, 2013.

461 [32] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
 462 fourier series. *Mathematics of computation*, 19(90):297–301, 1965.

463 [33] Ronald N Bracewell. The fourier transform. *Scientific American*, 260(6):86–95, 1989.

464 [34] Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Rochette,
465 Louis Thiry, John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky, et al. Kymatio:
466 Scattering transforms in python. *Journal of Machine Learning Research*, 21(60):1–6, 2020.

467 [35] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
468 *arXiv preprint arXiv:1811.10959*, 2018.

469 [36] Wenxuan Bao, Haohan Wang, Jun Wu, and Jingrui He. Optimizing the collaboration structure
470 in cross-silo federated learning. In *International Conference on Machine Learning*, pages
471 1718–1736. PMLR, 2023.

472 [37] Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary
473 reviews: computational statistics*, 2(4):433–459, 2010.

474 [38] Usha Ruby, Vamsidhar Yendapalli, et al. Binary cross entropy with deep learning technique for
475 image classification. *Int. J. Adv. Trends Comput. Sci. Eng.*, 9(10), 2020.

476 [39] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H Brendan
477 McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
478 *arXiv preprint arXiv:1812.01097*, 2018.

479 [40] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
480 benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

481 [41] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
482 research).

483 [42] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
484 settings: Byzantine gradient descent. *Proceedings of the ACM on Measurement and Analysis of
485 Computing Systems*, 1(2):1–25, 2017.

486 [43] Jake Lever. Classification evaluation: It is important to understand both what a classification
487 metric expresses and what it hides. *Nature methods*, 13(8):603–605, 2016.

488 **NeurIPS Paper Checklist**

489 **1. Claims**

490 Question: Do the main claims made in the abstract and introduction accurately reflect the
491 paper's contributions and scope?

492 Answer: [\[Yes\]](#)

493 Justification: As clarified by experiments, our proposed method not only outperform existing
494 FL methods, but also have the critical advantage to work offline and not during training.

495 Guidelines:

- 496 • The answer NA means that the abstract and introduction do not include the claims
497 made in the paper.
- 498 • The abstract and/or introduction should clearly state the claims made, including the
499 contributions made in the paper and important assumptions and limitations. A No or
500 NA answer to this question will not be perceived well by the reviewers.
- 501 • The claims made should match theoretical and experimental results, and reflect how
502 much the results can be expected to generalize to other settings.
- 503 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
504 are not attained by the paper.

505 **2. Limitations**

506 Question: Does the paper discuss the limitations of the work performed by the authors?

507 Answer: [\[Yes\]](#)

508 Justification: We discuss limitations in a paragraph of the Conclusions section.

509 Guidelines:

- 510 • The answer NA means that the paper has no limitation while the answer No means that
511 the paper has limitations, but those are not discussed in the paper.
- 512 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 513 • The paper should point out any strong assumptions and how robust the results are to
514 violations of these assumptions (e.g., independence assumptions, noiseless settings,
515 model well-specification, asymptotic approximations only holding locally). The authors
516 should reflect on how these assumptions might be violated in practice and what the
517 implications would be.
- 518 • The authors should reflect on the scope of the claims made, e.g., if the approach was
519 only tested on a few datasets or with a few runs. In general, empirical results often
520 depend on implicit assumptions, which should be articulated.
- 521 • The authors should reflect on the factors that influence the performance of the approach.
522 For example, a facial recognition algorithm may perform poorly when image resolution
523 is low or images are taken in low lighting. Or a speech-to-text system might not be
524 used reliably to provide closed captions for online lectures because it fails to handle
525 technical jargon.
- 526 • The authors should discuss the computational efficiency of the proposed algorithms
527 and how they scale with dataset size.
- 528 • If applicable, the authors should discuss possible limitations of their approach to
529 address problems of privacy and fairness.
- 530 • While the authors might fear that complete honesty about limitations might be used by
531 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
532 limitations that aren't acknowledged in the paper. The authors should use their best
533 judgment and recognize that individual actions in favor of transparency play an impor-
534 tant role in developing norms that preserve the integrity of the community. Reviewers
535 will be specifically instructed to not penalize honesty concerning limitations.

536 **3. Theory assumptions and proofs**

537 Question: For each theoretical result, does the paper provide the full set of assumptions and
538 a complete (and correct) proof?

539 Answer: [\[Yes\]](#)

540 Justification: We provide full and revised proofs in Appendix A

541 Guidelines:

- 542 • The answer NA means that the paper does not include theoretical results.
- 543 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
544 referenced.
- 545 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 546 • The proofs can either appear in the main paper or the supplemental material, but if
547 they appear in the supplemental material, the authors are encouraged to provide a short
548 proof sketch to provide intuition.
- 549 • Inversely, any informal proof provided in the core of the paper should be complemented
550 by formal proofs provided in appendix or supplemental material.
- 551 • Theorems and Lemmas that the proof relies upon should be properly referenced.

552 4. Experimental result reproducibility

553 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
554 perimental results of the paper to the extent that it affects the main claims and/or conclusions
555 of the paper (regardless of whether the code and data are provided or not)?

556 Answer: [Yes]

557 Justification: Indeed, all relevant information is thoroughly addressed within the paper.
558 Moreover, the implementation details are meticulously elaborated upon in Appendix B.

559 Guidelines:

- 560 • The answer NA means that the paper does not include experiments.
- 561 • If the paper includes experiments, a No answer to this question will not be perceived
562 well by the reviewers: Making the paper reproducible is important, regardless of
563 whether the code and data are provided or not.
- 564 • If the contribution is a dataset and/or model, the authors should describe the steps taken
565 to make their results reproducible or verifiable.
- 566 • Depending on the contribution, reproducibility can be accomplished in various ways.
567 For example, if the contribution is a novel architecture, describing the architecture fully
568 might suffice, or if the contribution is a specific model and empirical evaluation, it may
569 be necessary to either make it possible for others to replicate the model with the same
570 dataset, or provide access to the model. In general, releasing code and data is often
571 one good way to accomplish this, but reproducibility can also be provided via detailed
572 instructions for how to replicate the results, access to a hosted model (e.g., in the case
573 of a large language model), releasing of a model checkpoint, or other means that are
574 appropriate to the research performed.
- 575 • While NeurIPS does not require releasing code, the conference does require all submis-
576 sions to provide some reasonable avenue for reproducibility, which may depend on the
577 nature of the contribution. For example
 - 578 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
579 to reproduce that algorithm.
 - 580 (b) If the contribution is primarily a new model architecture, the paper should describe
581 the architecture clearly and fully.
 - 582 (c) If the contribution is a new model (e.g., a large language model), then there should
583 either be a way to access this model for reproducing the results or a way to reproduce
584 the model (e.g., with an open-source dataset or instructions for how to construct
585 the dataset).
 - 586 (d) We recognize that reproducibility may be tricky in some cases, in which case
587 authors are welcome to describe the particular way they provide for reproducibility.
588 In the case of closed-source models, it may be that access to the model is limited in
589 some way (e.g., to registered users), but it should be possible for other researchers
590 to have some path to reproducing or verifying the results.

591 5. Open access to data and code

592 Question: Does the paper provide open access to the data and code, with sufficient instruc-
593 tions to faithfully reproduce the main experimental results, as described in supplemental
594 material?

595 Answer: [Yes]

596 Justification: Indeed, we offer an anonymized GitHub repository containing all necessary
597 information to accurately reproduce the results as well as the algorithms detailed and
598 presented within the paper. The datasets used are public and easily downloadable, and splits
599 are reproducible.

600 Guidelines:

- 601 • The answer NA means that paper does not include experiments requiring code.
- 602 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 603 • While we encourage the release of code and data, we understand that this might not be
604 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
605 including code, unless this is central to the contribution (e.g., for a new open-source
606 benchmark).
- 607 • The instructions should contain the exact command and environment needed to run to
608 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 609 • The authors should provide instructions on data access and preparation, including how
610 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 611 • The authors should provide scripts to reproduce all experimental results for the new
612 proposed method and baselines. If only a subset of experiments are reproducible, they
613 should state which ones are omitted from the script and why.
- 614 • At submission time, to preserve anonymity, the authors should release anonymized
615 versions (if applicable).
- 616 • Providing as much information as possible in supplemental material (appended to the
617 paper) is recommended, but including URLs to data and code is permitted.

618 6. Experimental setting/details

619 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
620 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
621 results?

622 Answer: [Yes]

623 Justification: All implementation details on splits, hyperparameters, optimizers and architectures are detailed in Appendix B.

624 Guidelines:

- 625 • The answer NA means that the paper does not include experiments.
- 626 • The experimental setting should be presented in the core of the paper to a level of detail
627 that is necessary to appreciate the results and make sense of them.
- 628 • The full details can be provided either with the code, in appendix, or as supplemental
629 material.

630 7. Experiment statistical significance

631 Question: Does the paper report error bars suitably and correctly defined or other appropriate
632 information about the statistical significance of the experiments?

633 Answer: [Yes]

634 Justification: Appendix B contains the results obtained from experiments conducted with
635 three distinct random seeds, thereby ensuring statistical significance for our findings and
636 experiments.

637 Guidelines:

- 638 • The answer NA means that the paper does not include experiments.
- 639 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
640 dence intervals, or statistical significance tests, at least for the experiments that support
641 the main claims of the paper.
- 642 • The factors of variability that the error bars are capturing should be clearly stated (for
643 example, train/test split, initialization, random drawing of some parameter, or overall
644 run with given experimental conditions).

648 • The method for calculating the error bars should be explained (closed form formula,
 649 call to a library function, bootstrap, etc.)
 650 • The assumptions made should be given (e.g., Normally distributed errors).
 651 • It should be clear whether the error bar is the standard deviation or the standard error
 652 of the mean.
 653 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 654 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 655 of Normality of errors is not verified.
 656 • For asymmetric distributions, the authors should be careful not to show in tables or
 657 figures symmetric error bars that would yield results that are out of range (e.g. negative
 658 error rates).
 659 • If error bars are reported in tables or plots, The authors should explain in the text how
 660 they were calculated and reference the corresponding figures or tables in the text.

661 **8. Experiments compute resources**

662 Question: For each experiment, does the paper provide sufficient information on the com-
 663 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 664 the experiments?

665 Answer: [\[Yes\]](#)

666 Justification: We thoroughly describe computational resources in Appendix [B](#), specifying
 667 the characteristics of the machines on which experiments have been conducted.

668 Guidelines:

- 669 • The answer NA means that the paper does not include experiments.
- 670 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 671 or cloud provider, including relevant memory and storage.
- 672 • The paper should provide the amount of compute required for each of the individual
 673 experimental runs as well as estimate the total compute.
- 674 • The paper should disclose whether the full research project required more compute
 675 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 676 didn't make it into the paper).

677 **9. Code of ethics**

678 Question: Does the research conducted in the paper conform, in every respect, with the
 679 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

680 Answer: [\[Yes\]](#)

681 Justification: The paper conforms in every respect, with the NeurIPS Code of Ethics

682 Guidelines:

- 683 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- 684 • If the authors answer No, they should explain the special circumstances that require a
 685 deviation from the Code of Ethics.
- 686 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 687 eration due to laws or regulations in their jurisdiction).

688 **10. Broader impacts**

689 Question: Does the paper discuss both potential positive societal impacts and negative
 690 societal impacts of the work performed?

691 Answer: [\[Yes\]](#)

692 Justification: Broader impacts are discussed in the Conclusions

693 Guidelines:

- 694 • The answer NA means that there is no societal impact of the work performed.
- 695 • If the authors answer NA or No, they should explain why their work has no societal
 696 impact or why the paper does not address societal impact.

- 697 • Examples of negative societal impacts include potential malicious or unintended uses
698 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
699 (e.g., deployment of technologies that could make decisions that unfairly impact specific
700 groups), privacy considerations, and security considerations.
- 701 • The conference expects that many papers will be foundational research and not tied
702 to particular applications, let alone deployments. However, if there is a direct path to
703 any negative applications, the authors should point it out. For example, it is legitimate
704 to point out that an improvement in the quality of generative models could be used to
705 generate deepfakes for disinformation. On the other hand, it is not needed to point out
706 that a generic algorithm for optimizing neural networks could enable people to train
707 models that generate Deepfakes faster.
- 708 • The authors should consider possible harms that could arise when the technology is
709 being used as intended and functioning correctly, harms that could arise when the
710 technology is being used as intended but gives incorrect results, and harms following
711 from (intentional or unintentional) misuse of the technology.
- 712 • If there are negative societal impacts, the authors could also discuss possible mitigation
713 strategies (e.g., gated release of models, providing defenses in addition to attacks,
714 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
715 feedback over time, improving the efficiency and accessibility of ML).

716 11. Safeguards

717 Question: Does the paper describe safeguards that have been put in place for responsible
718 release of data or models that have a high risk for misuse (e.g., pretrained language models,
719 image generators, or scraped datasets)?

720 Answer: [NA]

721 Justification: Paper poses no such risks.

722 Guidelines:

- 723 • The answer NA means that the paper poses no such risks.
- 724 • Released models that have a high risk for misuse or dual-use should be released with
725 necessary safeguards to allow for controlled use of the model, for example by requiring
726 that users adhere to usage guidelines or restrictions to access the model or implementing
727 safety filters.
- 728 • Datasets that have been scraped from the Internet could pose safety risks. The authors
729 should describe how they avoided releasing unsafe images.
- 730 • We recognize that providing effective safeguards is challenging, and many papers do
731 not require this, but we encourage authors to take this into account and make a best
732 faith effort.

733 12. Licenses for existing assets

734 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
735 the paper, properly credited and are the license and terms of use explicitly mentioned and
736 properly respected?

737 Answer: [Yes]

738 Justification: Code and data sources are acknowledged through explicit citations.

739 Guidelines:

- 740 • The answer NA means that the paper does not use existing assets.
- 741 • The authors should cite the original paper that produced the code package or dataset.
- 742 • The authors should state which version of the asset is used and, if possible, include a
743 URL.
- 744 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 745 • For scraped data from a particular source (e.g., website), the copyright and terms of
746 service of that source should be provided.
- 747 • If assets are released, the license, copyright information, and terms of use in the
748 package should be provided. For popular datasets, paperswithcode.com/datasets
749 has curated licenses for some datasets. Their licensing guide can help determine the
750 license of a dataset.

751 • For existing datasets that are re-packaged, both the original license and the license of
752 the derived asset (if it has changed) should be provided.
753 • If this information is not available online, the authors are encouraged to reach out to
754 the asset's creators.

755 **13. New assets**

756 Question: Are new assets introduced in the paper well documented and is the documentation
757 provided alongside the assets?

758 Answer: [NA]

759 Justification: The paper does not release new assets

760 Guidelines:

761 • The answer NA means that the paper does not release new assets.
762 • Researchers should communicate the details of the dataset/code/model as part of their
763 submissions via structured templates. This includes details about training, license,
764 limitations, etc.
765 • The paper should discuss whether and how consent was obtained from people whose
766 asset is used.
767 • At submission time, remember to anonymize your assets (if applicable). You can either
768 create an anonymized URL or include an anonymized zip file.

769 **14. Crowdsourcing and research with human subjects**

770 Question: For crowdsourcing experiments and research with human subjects, does the paper
771 include the full text of instructions given to participants and screenshots, if applicable, as
772 well as details about compensation (if any)?

773 Answer: [NA]

774 Justification: The paper does not involve crowdsourcing nor research with human subjects.

775 Guidelines:

776 • The answer NA means that the paper does not involve crowdsourcing nor research with
777 human subjects.
778 • Including this information in the supplemental material is fine, but if the main contribu-
779 tion of the paper involves human subjects, then as much detail as possible should be
780 included in the main paper.
781 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
782 or other labor should be paid at least the minimum wage in the country of the data
783 collector.

784 **15. Institutional review board (IRB) approvals or equivalent for research with human
785 subjects**

786 Question: Does the paper describe potential risks incurred by study participants, whether
787 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
788 approvals (or an equivalent approval/review based on the requirements of your country or
789 institution) were obtained?

790 Answer: [NA]

791 Justification: The paper does not involve crowdsourcing nor research with human subjects.

792 Guidelines:

793 • The answer NA means that the paper does not involve crowdsourcing nor research with
794 human subjects.
795 • Depending on the country in which research is conducted, IRB approval (or equivalent)
796 may be required for any human subjects research. If you obtained IRB approval, you
797 should clearly state this in the paper.
798 • We recognize that the procedures for this may vary significantly between institutions
799 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
800 guidelines for their institution.
801 • For initial submissions, do not include any information that would break anonymity (if
802 applicable), such as the institution conducting the review.

803 **16. Declaration of LLM usage**

804 Question: Does the paper describe the usage of LLMs if it is an important, original, or
805 non-standard component of the core methods in this research? Note that if the LLM is used
806 only for writing, editing, or formatting purposes and does not impact the core methodology,
807 scientific rigorousness, or originality of the research, declaration is not required.

808 Answer: [NA]

809 Justification: The core method development in this research does not involve LLMs as any
810 important, original, or non-standard components

811 Guidelines:

812 • The answer NA means that the core method development in this research does not
813 involve LLMs as any important, original, or non-standard components.

814 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
815 for what should or should not be described.