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Abstract

Federated Learning (FL) enables the training of machine learning models across de-1

centralized clients while preserving data privacy. However, the presence of anoma-2

lous or corrupted clients—such as those with faulty sensors or non-representative3

data distributions—can significantly degrade model performance. Detecting such4

clients without accessing raw data remains a key challenge. We propose Waffle5

(Wavelet and Fourier representations for Federated Learning) a detection algorithm6

that labels malicious clients before training, using locally computed compressed7

representations derived from either the Wavelet Scattering Transform (WST) or8

the Fourier Transform. Both approaches provide low-dimensional, task-agnostic9

embeddings suitable for unsupervised client separation. A lightweight detector,10

trained on a distillated public dataset, performs the labeling with minimal com-11

munication and computational overhead. While both transforms enable effective12

detection, WST offers theoretical advantages, such as non-invertibility and stability13

to local deformations, that make it particularly well-suited to federated scenarios.14

Experiments on benchmark datasets show that our method improves detection accu-15

racy and downstream classification performance compared to existing FL anomaly16

detection algorithms, validating its effectiveness as a pre-training alternative to17

online detection strategies.18

1 Introduction19

Federated Learning (FL) is a distributed learning framework that enables multiple clients to train20

a global model without sharing raw data [1], making it a promising approach for privacy-sensitive21

decentralized domains [2, 3, 4]. As deployments scale, a central challenge is data heterogeneity,22

where non-IID client data can hinder model convergence and degrade performance [5, 6].23

Beyond natural data heterogeneity, FL systems are also vulnerable to malicious or faulty clients24

[7, 8]. Consider a scenario in a large-scale sensor network FL deployment (e.g., environmental25

monitoring [9] or industrial IoT [10]). Some sensors might be physically damaged, miscalibrated,26

or even deliberately tampered with, causing them to report highly perturbed, noisy, or statistically27

anomalous data streams. Being able to quickly detect them and remove them for training or fixing28

them without accessing raw data is beneficial for monitoring the network, and guaranteeing its correct29

functioning [11]. Defenses against malicious clients in FL often rely on robust aggregation methods30

[12, 7] to reduce the influence of outlier updates, particularly in the presence of Byzantine attacks31

[13]. However, these methods assume most clients are benign and target model-level anomalies,32

not data-level perturbations that subtly alter local objectives [14, 15]. Online detectors that monitor33

client behavior during training offer an alternative but add overhead and may act too late. Crucially,34

neither class of defenses is well-suited to detecting clients with malicious data prior to training, as in35
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compromised sensor networks.36

In this work, we propose Waffle (Wavelet and Fourier representations for Federated Learning), an37

offline detector designed to identify clients with malicious data before FL training begins. Performing38

detection offline [16] and in a privacy-preserving manner is particularly desirable, as it limits39

computational overhead on both the server and client sides, making the approach lightweight and40

scalable. Waffle trains a classifier on spectral features – extracted via Fourier Transform (FT) and41

Wavelet Scattering Transform (WST) [17]– which offer stable, invariant representations robust to42

data perturbations. Detection is performed using a model pre-trained on a distilled public dataset,43

ensuring efficiency and privacy. Clients locally compute low-dimensional statistics via Principal44

Component Analysis (PCA) and spectral embeddings, sending an aggregated, secure, and non-45

invertible information to the server which classifies them as benign or malicious. Malicious clients46

are excluded prior to training. Unlike many existing methods, Waffle does not assume a benign47

majority and can be combined with robust aggregation to strengthen FL security.48

The structure of the paper is the following: Section 2 defines the FL setting, the data attacks considered,49

and the spectral representations (FT and WST). Section 3 details Waffle ’s training and detection.50

Theoretical guarantees are provided in Section 4, showing the benefits of removing malicious clients.51

Section 5 reports experimental results validating Waffle on benchmark datasets.52

Related Works and Contributions.53

Malicious Client Detection in FL Detection-based approaches classify clients as benign or malicious54

based on anomalies in their updates or data distribution [14]. FLDetector[18] identifies malicious55

clients by analyzing the consistency of their updates over time—benign updates follow predictable56

patterns, while malicious ones are erratic. MuDHog[19] leverages historical update trajectories with57

model-agnostic meta-learning to detect temporal inconsistencies, though it assumes long-term client58

participation, which is unrealistic in cross-device settings. VAE [20] uses a variational autoencoder59

to model the benign update distribution and flags deviations, assuming malicious clients are rare60

and the VAE is well-trained. These methods rely on multi-round update access, limiting early-stage61

applicability, and focus on gradients or parameters, making them vulnerable to indirect attacks.62

Robust Aggregation in FL. Robust aggregation methods aim to mitigate the influence of malicious63

clients without explicitly identifying them [21, 7]. KRUM[12] selects the most central update in `264

distance, but requires fewer than half of the clients to be malicious. TrimmedMean[7] discards65

extreme values per coordinate, improving robustness to outliers, though it overlooks dependencies66

across dimensions. FLTrust[8] uses a trusted server-side dataset to normalize and rescale client67

updates, enhancing robustness but breaking strict decentralization. Secure aggregation protocols68

like RFLPA[22] and RoFL [23] ensure client privacy via cryptographic techniques, but do not address69

adversarial robustness. These approaches, unlike detection-based ones, do not label clients, limiting70

their use when malicious participants must be explicitly excluded.71

Spectral Analysis and Frequency-based Defenses. Spectral methods aim to identify or mitigate72

malicious behavior by analyzing updates in the frequency domain [24, 25, 26]. FreqFeD[27] applies73

the Discrete Fourier Transform to client updates, filtering high-frequency components assumed to74

contain adversarial noise, though this may remove relevant information under data heterogeneity.75

FedSSP[28] targets backdoor attacks by smoothing and pruning suspicious spectral patterns in model76

weights, but depends on specific architectures and requires access to full model parameters. Unlike77

these methods, our approach extracts frequency-based embeddings directly from client-side data78

before training, enabling model-agnostic detection.79

Our main contributions are summarized as follows:80

• We propose Waffle , a novel offline detector for identifying clients with data attacks, introducing81

the use of WST for anomaly detection in FL.82

• We provide a theoretical framework motivating WST and FT as robust data representations, and83

mathematically demonstrate that removing malicious clients improves global model estimation.84

• We present experiments on benchmark datasets showing that Waffle significantly improves model85

performance and robustness compared to training with contaminated data or using only robust86

aggregation.87
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Figure 1: Examples of attacked data. Two images downloaded from link1 and link2 . For each image: left:
clean client, center: noisy attack with magnitude � = 0.2, right: blur attack with spread � = 11

2 Theoretical Framework88

In this section, we introduce the mathematical framework that provides the foundation for our89

algorithm. Section 2.1 presents the Federated Learning (FL) setting and defines the class of attacks90

considered on clients’ data. Section 2.2 introduces the WST and the Fourier Transform FT, recalling91

their basic properties that are relevant for anomaly detection.92

2.1 Problem Formulation93

Consider a standard FL scenario [1] with K 2 N clients and a central server. Each client k possesses94

nk data samples (xi
k, y

i
k)

nk
i=1 ⇠ Dk supported in X ⇥ Y . The objective of FL is to learn a shared95

global model ✓ that generalizes across all clients, by solving the following optimization problem:96

✓⇤ 2 argmin
✓2⇥

1

N

KX

k=1

nkLk(✓) (1)

where ⇥ denotes the model’s parameter space, N =
PK

k=1 nk is the total number of data samples,97

and Lk represents the empirical loss function for client k with respect to its local data distribution98

Dk. In each communication round t 2 {1, . . . , T}, a subset of clients Pt is randomly selected to99

participate in training. Each participating client k 2 Pt performs S 2 N local iterations of a stochastic100

optimizer. Subsequently, clients send their updated parameters to the server, which aggregates these101

updates to derive a new global model.102

A critical challenge in realistic FL deployments is the non-i.i.d. nature of client data, which can103

hinder the convergence and performance of the global model. In this work, we specifically address104

non-i.i.d. settings where the data distribution discrepancies are caused by malicious clients perturbing105

their original data samples. This differs from typical attack detection scenarios focusing on model106

poisoning during training.107

Type of Attacks We define two types of feature-level attacks that our algorithms aim to address:108

noisy and blur attackers. Examples of the effect of these attacks are displayed in Figure 1. This109

focus is motivated by the fact that noise and blur are common consequences of real-world faults110

[29, 30] –such as sensor degradation, miscalibration, or environmental interference – that can subtly111

compromise data quality and model performance without exhibiting overtly malicious behavior.112

Definition 1. Let k 2 [K] and �k > 0. Client k is a noisy attacker if its data samples are perturbed113

as x̃i
k = xi

k + �k✏ik, where xi
k is the clean sample, and, (✏ik)

nk
i=1 is a family of independent Wiener114

processes supported in X .115

Let us observe that the severity of the attack is determined by the magnitude of �k. Smaller values116

of �k might represent natural noise inherent in data collection or random transformations, requiring117

careful consideration of what constitutes a ’malicious’ level of perturbation.118

Another feature-wise attack we formally define is the blur attacker. This attack is particularly119

relevant for image or signal data where xi
k can be treated as a function over X .120

Definition 2. Let k 2 [K] and �k > 0. Client k is a blurred attacker if it provides samples perturbed121

according to a convolution operation:122

x̃i
k = xi

k ? ⇣k =

Z

X
xi
k(u

0)⇣k(u� u0)du0 i = 1, . . . , nk (2)
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where ? denotes the convolution operation. Typically, ⇣k is a smooth kernel, and the parameter �k123

controls its spread or blur radius.124

A common choice for the kernel ⇣k falls on Gaussian kernels, and the scalar �k has a role of125

controlling the spread of the kernel. Similarly to noisy attacks, in blur attacks the magnitude of the126

perturbation is controlled by the parameter �k, the larger it is the higher it perturbs the data.127

2.2 Representation Operators: Wavelet Scattering Transform and Fourier Transform128

In this section we recall the notion of a representation operator �, which maps a signal x (e.g., an129

image or a time-series) onto a transformed space. This transformation induces a metric d(x, x0) =130

k�[x] � �[x0]k in the new space [31]. The core idea is that an effective representation operator131

� should possess properties instrumental for accurately detecting and differentiating between data132

samples. Specifically, for the purpose of identifying perturbed data, � should be able to separate133

distinct data characteristics while exhibiting robustness to common variations like slight translations134

or small, non-malicious perturbations. We propose two variants for the representation layer of our135

detection algorithm: one based on the Fourier Transform (FT) and the other on the Wavelet Scattering136

Transform (WST) [17, 31]. The Fourier Transform is by far the most widely used tool for spectral137

analysis in signal processing and data science due to its simplicity and interpretability. However, it138

has been surprisingly underutilized in the context of Federated Learning (FL). We therefore include it139

as an internal baseline in our study, allowing us to contrast its performance against the more structured140

and hierarchical Wavelet Scattering Transform.141

Fourier Representation We first formally define the Fourier Transform.142

Definition 3. Let x 2 L1(X , du), the Fourier Transform of x, denoted by F [x] is a complex valued143

function defined as144

F [x](!) =

Z

X
x(u)e�2⇡i(u·!)du (3)

FT can be efficiently computed using the FFT algorithm [32]. Beyond its computational efficiency,145

the Fourier Transform offers several critical advantages for feature extraction, particularly in the146

context of analyzing data perturbations. As a linear operator (F [ax + bx0] = aF [x] + bF [x0] for147

scalars a, b and integrable signals x, x0), the FT maps additive perturbations directly to additive148

components in the frequency domain. For instance, in the case of a noisy attacker where x̃ = x+ ✏,149

we have F [x̃] = F [x] + F [✏]. This linearity simplifies the analysis of such perturbations. Moreover,150

the convolution theorem [33] states that convolution in the spatial domain corresponds to point-151

wise multiplication in the frequency domain (F [x ? �] = F [x] · F [�]) . This property is highly152

advantageous for detecting blur attacker perturbations, which are defined as convolutions. By153

examining the frequency spectrum, different types of data manipulations, like blurring (attenuating154

high frequencies) or specific noise patterns, reveal distinct signatures. However, FT is an invertible155

operator: on one side it preserves all information present in the original signal, on the other hand it is156

possible to reconstruct the original data from the FT.157

Wavelet Scattering Transform. WST is a non-linear operator that, alternatively to Fourier based158

representation, has been designed to be stable to additive perturbations, locally translation invariant159

and to small continuous deformation. Moreover, the fact that WST is not invertible makes it160

particularly attractive for privacy-enhancing applications in FL, as reconstructing the original input161

data from the scattering coefficients is a challenging task. Following the construction in [17, 31] we162

define the WST and discuss its most relevant properties.163

Let  (u) 2 L2(X , du) be a function referred to as the mother wavelet, and let {aj}j2Z be a family164

of scale factors defined with respect to a fixed scalar a > 1. Let r 2 G denote a discrete rotation,165

where G is the group of discrete rotations acting on the domain X . The j-th wavelet function is166

then defined as  j(u) = a�dj (a�jr�1u). For a fixed maximal depth J 2 Z, we define the set of167

admissible scale-rotation operators as ⇤J = {� = ajr : |�| = aj < 2J}. In most implementations,168

Morlet wavelets are employed as the mother wavelet, and the scale factor is typically chosen as169

a = 21/Q for some Q 2 N [34].170

To streamline notation, following [17], we introduce the propagator operator, which acts on a171

signal x 2 L1(X ) by cascading modulus and convolution operations. Given a path of scale-rotation172
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operators p = (�1,�2), the propagator applied to x is defined as:173

U [p]x = | |x ?  �1 | ?  �2 | .

The definition of the WST naturally follows.174

Definition 4. Let p = (�1, . . . ,�m) ⇢ ⇤J be a path of length m. For any signal x 2 L1(X ), the175

WST along p is defined as:176

SJ [p]x = U [p]x ? �J , (4)
where �J is a low-pass filter rescaled to recover low-frequency content.177

The WST representation shares structural similarities with convolutional neural networks (CNNs),178

with the key distinction that the wavelet filters are fixed rather than learned. The WST defines a norm179

with properties desirable for detection and classification. Notably, the operator is non-expansive: for180

any x, x0 2 L2(X , du), the following inequality holds:181

kSJ [p]x� SJ [p]x
0k  kx� x0k. (5)

This implies that small, non-adversarial perturbations do not substantially affect the representation.182

Additionally, WST is translation invariant in the limit: for a translated signal xc(u) = x(u � c)183

with c 2 X , we have184

lim
J!1

kSJ [p]x� SJ [p]xck = 0.

Finally, the WST is Lipschitz continuous with respect to small C2-diffeomorphisms. That is, if185

a signal x undergoes a smooth deformation with small norm, the resulting change in the WST186

representation remains bounded.187

3 Malicious Client Detector: Waffle188

This section details the architecture and training of our server-side detector, Waffle (Wavelet and189

Fourier representations for Federated Learning), designed to identify clients contributing potentially190

harmful updates based on their data characteristics. Waffle is a parametric classification model,191

trained offline on a generated auxiliary dataset Daux to distinguish between benign and malicious192

clients. It operates by analyzing aggregated, non-privacy-leaking spectral embeddings of client data193

distributions.194

3.1 Offline Detector Training195

The training of the Waffle detector is conducted entirely offline, prior to the federated learning196

process. This approach offers several advantages: it avoids interfering with live FL rounds, allows for197

controlled generation of diverse malicious scenarios, and ensures the detector is fully trained and198

ready when FL begins. Coherently with common practices in FL frameworks utilizing auxiliary data199

[35], the server has access to a representative auxiliary dataset Daux. Algorithm 1 summarizes the200

procedure.201

The offline training proceeds over E epochs. In each epoch e 2 {1, . . . , E}, the server simulates a202

new FL round by generating a set of K̃ fictitious clients with synthetic data and associated ground-203

truth labels (benign or malicious). This dynamic generation of clients each epoch, similar to methods204

used for estimating client relationships [36], increases the diversity of simulated scenarios and205

helps prevent overfitting. Each training iteration within an epoch consists of two main steps: data206

simulation/attack and feature extraction/labeling.207

Step 1: Data Simulation and Attack For each sample x 2 Daux, the server decides whether208

to simulate an attack on that sample or keep it clean. This decision is made by drawing from a209

Bernoulli distribution with probability p = 1/2 of being attacked. If selected for attack, the server210

randomly chooses between two types of data perturbations with equal probability: blur or noise. If a211

sample is selected for blurring, the server samples a blur severity parameter � ⇠ Unif(�0,�1) and212

applies a blurring operation according to Definition 2. This simulates clients whose data might be of213

lower quality or intentionally blurred to impair model training or target specific vulnerabilities. If a214

sample is selected for adding noise, the server samples a noise variance � ⇠ Unif(�0,�1) and applies215

additive noise according to Definition 1. This simulates clients whose data might be corrupted by216
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sensor noise or intentionally perturbed with adversarial noise patterns. After processing all samples217

in Daux in this manner, the server possesses a modified dataset where each sample is either clean,218

blurred, or noisy, with the attack type and parameters recorded.219

Step 2: Fictitious Client Creation and Feature Extraction The modified dataset from Step 1 is220

then partitioned to create the data for K̃ fictitious clients. These clients are equally divided into two221

groups: K̃/2 benign and K̃/2 malicious. Clean data samples are assigned to benign clients, while222

attacked data samples (either blurred or noisy) are assigned to malicious clients. Let {xi
k}

nk
i=1 denote223

the data points assigned to the k-th fictitious client, where nk is the number of samples for client k.224

Principal Component Analysis For each simulated client k, PCA [37] is applied to their local225

dataset {xi
k}

nk
i=1 to analyze the covariance structure and extract the top r principal components vik226

with eigenvalues �ik, capturing dominant directions of variance. A compact representation vector is227

defined as:228

x̂k =
rX

i=1

↵i
kv

i
k, with ↵i

k =
�ikPr
j=1 �

j
k

(6)

This PCA-derived vector x̂k summarizes the client data’s intrinsic structure by weighting principal229

directions by their explained variance. The PCA step supports dimensionality reduction and noise230

filtering, extracting features sensitive to structural perturbations such as blur or noise. Notably, it231

is performed offline on simulated data at the server: in real FL deployments, clients neither share232

raw data nor PCA results. Instead, this offline PCA informs training, while clients transmit only the233

privacy-preserving spectral embedding 'k, discussed next.234

Spectral Embedding Following this PCA step, the spectral representation 'k is computed for235

each fictitious client k. This is achieved by applying a spectral operator � (either the WST or FT) to236

statistics derived from the client’s data distribution, such as the PCA-derived representation vector x̂k237

or the set of principal eigenvalues �ik. Spectral transforms are particularly sensitive to frequency and238

texture information, making them effective at capturing the systematic changes introduced by attacks239

like blur and noise. The output 'k = |�[x̂k]|, where the modulus is taken element-wise, results in a240

fixed-size vector representation for each client. This 'k is designed to be an aggregate statistic that241

captures characteristics of the data distribution without revealing individual data points, making it242

suitable as a non-privacy-leaking feature for the detector in a live FL setting.243

Finally, for each epoch, we obtain a dataset of client representations and their corresponding labels:244

{('k, µk)}K̃k=1, where µk 2 {B (Benign),A (Attacker)}. The detector weights w are updated using245

a stochastic optimizer (e.g., SGD, Adam) to minimize a binary classification loss, such as Binary246

Cross-Entropy (BCE) [38], between the detector’s prediction based on 'k and the ground-truth label247

µk.248

3.2 Offline Detection and Filtering249

Once the Waffle detector model w has been trained offline on the simulated auxiliary dataset Daux250

and prior to the first FL communication round, each client k 2 {1, . . . ,K} in the federation processes251

its local training data {xi
k}

nk
i=1 privately on their device. This processing involves a sequence of252

steps performed locally. First, each client computes the PCA of their local training samples to253

derive the representation vector x̂k, as defined in Equation (6).Then, each client computes its spectral254

embedding 'k = �[x̂k], by applying the spectral operator � (WST or FT).255

After completing these local computations and obtaining 'k, each client k securely transmits only256

this resulting spectral embedding vector to the server. The server, upon receiving 'k from each257

participating client, inputs it into the pre-trained Waffle detector w. Clients that are classified as258

malicious by the detector are then excluded from participating in the federated training process for259

the global model ✓. This preemptive filtering step enhances the stability and reliability of the global260

model training process, leading to potentially faster and more robust convergence by ensuring that261

aggregation occurs over updates from predominantly benign sources.262

Moreover, due to its modular nature, Waffle operates as an initial defense layer. The set of clients263

validated as benign by Waffle can proceed with any federated learning aggregation methods, allowing264

Waffle to be easily combined with other online robust aggregation techniques to further strengthen265

the overall defense strategy.266
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Algorithm 1 Waffle Offline Training
Require: Auxiliary dataset Daux, Number of epochs E, Number of fictitious clients K̃, Number of

top PCs r, Spectral operator �, Learning rate ⌘
Ensure: Trained detector weights w

1: Initialize detector weights w
2: for e = 1 . . . E do

3: // Simulate Data and Clients for Epoch e
4: Dsimulated

e  SimulateAttackedData(Daux) . Applies random attacks to Daux

5: {(Dk, µk)}K̃k=1  PartitionData(Dsimulated
e , K̃) . Creates K̃ clients with labels

6: // Extract Features for Each Simulated Client

7: Initialize epoch dataset Se = ; . Stores ('k, µk) pairs
8: for k = 1 . . . K̃ do

9: {xi
k}

nk
i=1  Dk

10: Compute PCA-derived representation x̂k from {xi
k} . Eq. (6)

11: Compute spectral embedding 'k  |�[x̂k]| . Apply FT or WST to x̂k

12: Add ('k, µk) to Se

13: end for

14: // Update Detector Model

15: w  Opt(LBCE(w;Se)) . Optimization step
16: end for

17: return w

4 Theoretical Guarantees267

In this section, we establish a theoretical foundation for our proposed algorithm, which we refer268

to as Waffle . Our primary focus is to demonstrate the benefits of removing adversarial clients in269

FL scenarios. We show that by filtering out malicious updates, Waffle provides a more accurate270

estimate of the true global model compared to standard FedAvg [1], which is susceptible to adversarial271

poisoning. We provide general error bounds with detailed proofs presented in Appendix A.272

Let B ⇢ {1, . . . ,K} denote the set of benign clients and M ⇢ {1, . . . ,K} the set of malicious273

clients in a federated system with K total clients. We assume these sets are disjoint and their union274

covers all clients, i.e., B \M = ; and B [M = {1, . . . ,K}. To model the heterogeneity and275

potential adversarial influence in client updates, we adopt the following statistical framework:276

Assumption 1. For each benign client k 2 B, the local model update ✓k is an independent random277

variable drawn from a distribution ⇢k(✓̄b,�b). This distribution is centered around a common benign278

mean ✓̄b with variance (�b)2, i.e., E[✓k] = ✓̄b and Var[✓k] = (�b)2. Similarly, for malicious clients279

k 2 M, the local updates ✓k are independent random variables drawn from ⇢k(✓̄m,�m) with280

E[✓k] = ✓̄m and Var[✓k] = (�m)2.281

Assumption 2. We posit that malicious clients exhibit significantly higher update variance com-282

pared to benign clients, reflecting a diverse range of attack strategies and the potential for large,283

destabilizing updates. Formally, we assume �m � �b
.284

The standard federated averaging estimator is defined as a weighted average of client updates:285

✓avg = 1/K
PK

k=1 ✓k. Our objective is to obtain an estimator that is unbiased with respect to the286

benign client distribution, meaning E[✓avg] = ✓̄b. We demonstrate that removing malicious clients287

is crucial for achieving this goal. We analyze two scenarios: one where the benign and malicious288

updates have different means (Lemma 1) and one where they share the same mean but differ in289

variance (Lemma 2).290

Lemma 1. If the benign and malicious client updates have different mean parameter values, i.e.,291

✓̄m 6= ✓̄b, then the standard federated averaging estimator ✓avg is a biased estimator of ✓̄b, meaning292

E[✓avg] 6= ✓̄b.293

7



Lemma 2. Let ✓Bavg = 1
|B|

P
k2B ✓k be the federated averaging estimator computed using only294

benign client updates. Under Assumption 2, if (�m)2 >
⇣
2 + |M|

|B|

⌘
(�b)2 , then the variance of the295

standard federated averaging estimator is higher than that of our estimator: Var[✓avg] � Var[✓Bavg].296

Lemmas 1 and 2 provide the foundation for the following proposition, which formally establishes the297

advantage of removing malicious clients from the federated aggregation process.298

Proposition 1. Under Assumptions 1 and 2, removing malicious clients (those in M) from the299

federation yields a superior estimator of the global model. Specifically, the resulting estimator is300

unbiased (in the sense of Lemma 1) and exhibits a reduced variance (as shown in Lemma 2), leading301

to improved model accuracy and robustness.302

5 Experiments303

In this section, we present experimental results on widely used federated learning benchmark304

datasets [39, 40, 41], comparing the performance of Waffle in its two variants—one using the305

WST representation and the other using FT—with established baselines from the Byzantine-resilient306

FL literature. Details on implementation settings, datasets, and models are provided in Appendix B.307

Section 5.1 evaluates the detection performance of the two variants of Waffle , highlighting the308

differences between the WST and FT representations. In Section 5.2, we compare Waffle against309

standard Byzantine-resilient FL baselines, including FedAvg [1], Krum and mKrum [12], GeoMed [42],310

and TrimmedMean [7]. Additionally, we demonstrate that Waffle can be applied on top of any311

aggregation algorithm, improving their performance. Further experiments, comparisons and code312

release details are reported in Appendix B, and the metrics used for evaluation—both for detection313

and classification—are detailed in Appendix C.

Table 1: Client Detection. Comparison between variants of Waffle using WST and FT representations, under
two attack scenarios (40% top, 90% bottom). Metrics (F1 score, Precision, Recall, Accuracy [43]) refer to the
detection of malicious clients.

Method FashionMNIST CIFAR-10 CIFAR-100

F1 Prec. Rec. Acc. F1 Prec. Rec. Acc. F1 Prec. Rec. Acc.

4
0
% Waffle - FT 65.11 60.9 70.0 70.0 79.75 68.42 95.59 67.0 56.69 41.38 90.0 45.0

Waffle - WST 71.88 95.83 57.5 82.0 94.87 97.36 92.5 96.0 83.33 93.75 75.0 88.0

9
0
% Waffle - FT 81.81 95.45 71.59 72.0 93.05 89.69 96.67 87.0 88.1 88.1 88.1 80.0

Waffle - WST 65.65 100.0 48.86 55.0 90.91 100.0 83.33 86.0 88.85 100.0 67.86 73.0

314

5.1 Waffle : WST vs Fourier315

We compare the detection performance of Waffle to assess the differences between the WST316

and FT representations. As illustrated in Figure 2, both representations yield a clear separation317

between benign and malicious clients. The visualizations—obtained via two-dimensional PCA318

embeddings—show that the method effectively distinguishes between the different attacker groups319

and benign clients, regardless of the chosen representation. However, as shown in Table 1, the320

quantitative results at the client level differ between the two variants. We report standard detection321

metrics: precision, F1 score, recall, and accuracy [43], setting 40% and 90% of attackers. The WST322

variant consistently achieves higher precision and F1 scores, while the FT variant tends to yield323

higher recall. In the context of malicious client detection, higher recall is often desirable, as it reduces324

the likelihood of overlooking faulty clients. Table 1 highlights the robustness of Waffle : unlike325

most Byzantine-resilient FL methods, it maintains strong predictive performance even when the vast326

majority of clients are malicious. Notably, in the extreme case with 90% adversarial clients, Waffle327

with WST achieves 100% precision across all datasets.328

5.2 Comparison with Baselines and Orthogonality of Waffle329

In this section, we compare Waffle with established Byzantine-resilient FL methods, highlighting its330

advantages in two complementary settings: (1) we evaluate the impact of applying the two Waffle331
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Table 2: Comparison between baselines for detecting malicious clients and Waffle (with both WST and FT).
Waffle -WST combined with FedAvg achieves the highest test accuracy across all datasets, outperforming
baselines designed to mitigate Byzantine attacks. Results also highlight the orthogonality of Waffle to aggrega-
tion methods, consistently improving their performance. For reference, the test accuracy of FedAvg without
malicious clients is: FashionMNIST 75.08%, CIFAR-10 50.24%, CIFAR-100 17.72%.

Dataset Setting FedAvg Krum mKrum GeoMed TrimmedMean

FashionMNIST
w/o detector 73.33 73.85 70.56 72.75 74.84
Waffle - WST 76.18 70.26 74.75 74.18 75.21
Waffle - FT 73.38 72.10 74.40 75.35 74.98

CIFAR-10
w/o detector 48.75 45.2 47.4 48.51 48.22
Waffle - WST 49.70 46.28 49.08 49.41 49.0
Waffle - FT 46.95 44.13 47.58 47.14 46.86

CIFAR-100
w/o detector 16.35 9.61 14.73 16.83 16.85
Waffle - WST 17.12 8.50 14.85 16.32 15.89
Waffle - FT 11.58 7.24 10.15 12.25 10.29

variants to FedAvg, compared to using different aggregation rules without detection; and (2) we332

assess the effect of applying Waffle on top of robust aggregation algorithms. As shown in Table 2,333

the WST variant of Waffle combined with FedAvg consistently outperforms all baselines across all334

datasets. Furthermore, Waffle improves the performance of each aggregation method it is applied to,335

demonstrating its orthogonality to the choice of aggregator. These results indicate that Waffle is336

effective in identifying and removing malicious clients without compromising benign contributions.337

In contrast, the FT variant exhibits more variable performance, further confirming the suitability of338

WST representations for this detection task. For reference, we also report the test accuracy of FedAvg339

trained on a clean federation (i.e., without malicious clients, corresponding to ✓Bavg in the notation340

of Lemma 2): FashionMNIST 75.08%, CIFAR-10 50.24%, CIFAR-100 17.72%. These values341

demonstrate that Waffle enables recovery of near-optimal performance, effectively neutralizing the342

impact of adversarial clients.343

6 Conclusion344

We propose Waffle , a novel offline algorithm to detect malicious client data in Federated Learning345

(FL) before training. Exploiting stable spectral features extracted via the Wavelet Scattering Transform346

(WST) and Fourier Transform (FT), it enables robust anomaly detection from private, low-dimensional347

client-side summaries built on publicly distilled data. By filtering out compromised clients prior to348

training, Waffle significantly improves convergence speed, final model accuracy, and robustness to349

data contamination. It achieves near-perfect precision (100% in our benchmarks) even in extreme350

scenarios with up to 90% malicious clients, outperforming strategies that rely solely on robust351

aggregation. This early detection mechanism also reduces training time, communication overhead,352

and energy consumption—factors crucial in large-scale deployments. Furthermore, Waffle is model-353

agnostic and can be seamlessly integrated with existing FL defenses to enhance overall system354

security.355

Future work will focus on extending Waffle to defend against more sophisticated threats, including356

backdoor attacks, model poisoning, and sybil-based infiltration. In parallel, we plan to adapt357

the approach to support wider neural architectures capable of handling more complex and high-358

dimensional datasets, such as CIFAR-100 or even ImageNet-scale benchmarks. These directions aim359

to broaden the applicability of Waffle to realistic FL scenarios in vision, healthcare, and IoT.360

Limitations. Waffle targets data-level attacks altering client input features, not model-level attacks361

(e.g., gradient manipulation, backdoors), which necessitate different defense strategies. However,362

combining Waffle with robust aggregation can help mitigate such hybrid threats.363

Broader Impact. Our method enhances FL robustness and trustworthiness, crucial for deployments in364

sensitive domains (e.g., healthcare, finance), and reduces resource consumption. Potential misuse (e.g.,365

unfairly excluding outlier populations) warrants careful auditing and fairness-aware deployments,366

though Waffle itself introduces no new privacy or fairness risks beyond those inherent in existing367

FL pipelines.368
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NeurIPS Paper Checklist488

1. Claims489

Question: Do the main claims made in the abstract and introduction accurately reflect the490

paper’s contributions and scope?491

Answer: [Yes]492

Justification: As clarified by experiments, our proposed method not only outperform existing493

FL methods, but also have the critical advantage to work offline and not during training.494

Guidelines:495

• The answer NA means that the abstract and introduction do not include the claims496

made in the paper.497

• The abstract and/or introduction should clearly state the claims made, including the498

contributions made in the paper and important assumptions and limitations. A No or499

NA answer to this question will not be perceived well by the reviewers.500

• The claims made should match theoretical and experimental results, and reflect how501

much the results can be expected to generalize to other settings.502

• It is fine to include aspirational goals as motivation as long as it is clear that these goals503

are not attained by the paper.504

2. Limitations505

Question: Does the paper discuss the limitations of the work performed by the authors?506

Answer: [Yes]507

Justification: We discuss limitations in a paragraph of the Conclusions section.508

Guidelines:509

• The answer NA means that the paper has no limitation while the answer No means that510

the paper has limitations, but those are not discussed in the paper.511

• The authors are encouraged to create a separate "Limitations" section in their paper.512

• The paper should point out any strong assumptions and how robust the results are to513

violations of these assumptions (e.g., independence assumptions, noiseless settings,514

model well-specification, asymptotic approximations only holding locally). The authors515

should reflect on how these assumptions might be violated in practice and what the516

implications would be.517

• The authors should reflect on the scope of the claims made, e.g., if the approach was518

only tested on a few datasets or with a few runs. In general, empirical results often519

depend on implicit assumptions, which should be articulated.520

• The authors should reflect on the factors that influence the performance of the approach.521

For example, a facial recognition algorithm may perform poorly when image resolution522

is low or images are taken in low lighting. Or a speech-to-text system might not be523

used reliably to provide closed captions for online lectures because it fails to handle524

technical jargon.525

• The authors should discuss the computational efficiency of the proposed algorithms526

and how they scale with dataset size.527

• If applicable, the authors should discuss possible limitations of their approach to528

address problems of privacy and fairness.529

• While the authors might fear that complete honesty about limitations might be used by530

reviewers as grounds for rejection, a worse outcome might be that reviewers discover531

limitations that aren’t acknowledged in the paper. The authors should use their best532

judgment and recognize that individual actions in favor of transparency play an impor-533

tant role in developing norms that preserve the integrity of the community. Reviewers534

will be specifically instructed to not penalize honesty concerning limitations.535

3. Theory assumptions and proofs536

Question: For each theoretical result, does the paper provide the full set of assumptions and537

a complete (and correct) proof?538

Answer: [Yes]539
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Justification: We provide full and revised proofs in Appendix A540

Guidelines:541

• The answer NA means that the paper does not include theoretical results.542

• All the theorems, formulas, and proofs in the paper should be numbered and cross-543

referenced.544

• All assumptions should be clearly stated or referenced in the statement of any theorems.545

• The proofs can either appear in the main paper or the supplemental material, but if546

they appear in the supplemental material, the authors are encouraged to provide a short547

proof sketch to provide intuition.548

• Inversely, any informal proof provided in the core of the paper should be complemented549

by formal proofs provided in appendix or supplemental material.550

• Theorems and Lemmas that the proof relies upon should be properly referenced.551

4. Experimental result reproducibility552

Question: Does the paper fully disclose all the information needed to reproduce the main ex-553

perimental results of the paper to the extent that it affects the main claims and/or conclusions554

of the paper (regardless of whether the code and data are provided or not)?555

Answer: [Yes]556

Justification: Indeed, all relevant information is thoroughly addressed within the paper.557

Moreover, the implementation details are meticulously elaborated upon in Appendix B.558

Guidelines:559

• The answer NA means that the paper does not include experiments.560

• If the paper includes experiments, a No answer to this question will not be perceived561

well by the reviewers: Making the paper reproducible is important, regardless of562

whether the code and data are provided or not.563

• If the contribution is a dataset and/or model, the authors should describe the steps taken564

to make their results reproducible or verifiable.565

• Depending on the contribution, reproducibility can be accomplished in various ways.566

For example, if the contribution is a novel architecture, describing the architecture fully567

might suffice, or if the contribution is a specific model and empirical evaluation, it may568

be necessary to either make it possible for others to replicate the model with the same569

dataset, or provide access to the model. In general. releasing code and data is often570

one good way to accomplish this, but reproducibility can also be provided via detailed571

instructions for how to replicate the results, access to a hosted model (e.g., in the case572

of a large language model), releasing of a model checkpoint, or other means that are573

appropriate to the research performed.574

• While NeurIPS does not require releasing code, the conference does require all submis-575

sions to provide some reasonable avenue for reproducibility, which may depend on the576

nature of the contribution. For example577

(a) If the contribution is primarily a new algorithm, the paper should make it clear how578

to reproduce that algorithm.579

(b) If the contribution is primarily a new model architecture, the paper should describe580

the architecture clearly and fully.581

(c) If the contribution is a new model (e.g., a large language model), then there should582

either be a way to access this model for reproducing the results or a way to reproduce583

the model (e.g., with an open-source dataset or instructions for how to construct584

the dataset).585

(d) We recognize that reproducibility may be tricky in some cases, in which case586

authors are welcome to describe the particular way they provide for reproducibility.587

In the case of closed-source models, it may be that access to the model is limited in588

some way (e.g., to registered users), but it should be possible for other researchers589

to have some path to reproducing or verifying the results.590

5. Open access to data and code591

Question: Does the paper provide open access to the data and code, with sufficient instruc-592

tions to faithfully reproduce the main experimental results, as described in supplemental593

material?594
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Answer: [Yes]595

Justification: Indeed, we offer an anonymized GitHub repository containing all necessary596

information to accurately reproduce the results as well as the algorithms detailed and597

presented within the paper. The datasets used are public and easily downloadable, and splits598

are reproducible.599

Guidelines:600

• The answer NA means that paper does not include experiments requiring code.601

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/602

public/guides/CodeSubmissionPolicy) for more details.603

• While we encourage the release of code and data, we understand that this might not be604

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not605

including code, unless this is central to the contribution (e.g., for a new open-source606

benchmark).607

• The instructions should contain the exact command and environment needed to run to608

reproduce the results. See the NeurIPS code and data submission guidelines (https:609

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.610

• The authors should provide instructions on data access and preparation, including how611

to access the raw data, preprocessed data, intermediate data, and generated data, etc.612

• The authors should provide scripts to reproduce all experimental results for the new613

proposed method and baselines. If only a subset of experiments are reproducible, they614

should state which ones are omitted from the script and why.615

• At submission time, to preserve anonymity, the authors should release anonymized616

versions (if applicable).617

• Providing as much information as possible in supplemental material (appended to the618

paper) is recommended, but including URLs to data and code is permitted.619

6. Experimental setting/details620

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-621

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the622

results?623

Answer: [Yes]624

Justification: All implementation details on splits, hyperparameters, optimizers and architec-625

tures are detailed in Appendix B.626

Guidelines:627

• The answer NA means that the paper does not include experiments.628

• The experimental setting should be presented in the core of the paper to a level of detail629

that is necessary to appreciate the results and make sense of them.630

• The full details can be provided either with the code, in appendix, or as supplemental631

material.632

7. Experiment statistical significance633

Question: Does the paper report error bars suitably and correctly defined or other appropriate634

information about the statistical significance of the experiments?635

Answer: [Yes]636

Justification: Appendix B contains the results obtained from experiments conducted with637

three distinct random seeds, thereby ensuring statistical significance for our findings and638

experiments.639

Guidelines:640

• The answer NA means that the paper does not include experiments.641

• The authors should answer "Yes" if the results are accompanied by error bars, confi-642

dence intervals, or statistical significance tests, at least for the experiments that support643

the main claims of the paper.644

• The factors of variability that the error bars are capturing should be clearly stated (for645

example, train/test split, initialization, random drawing of some parameter, or overall646

run with given experimental conditions).647
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• The method for calculating the error bars should be explained (closed form formula,648

call to a library function, bootstrap, etc.)649

• The assumptions made should be given (e.g., Normally distributed errors).650

• It should be clear whether the error bar is the standard deviation or the standard error651

of the mean.652

• It is OK to report 1-sigma error bars, but one should state it. The authors should653

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis654

of Normality of errors is not verified.655

• For asymmetric distributions, the authors should be careful not to show in tables or656

figures symmetric error bars that would yield results that are out of range (e.g. negative657

error rates).658

• If error bars are reported in tables or plots, The authors should explain in the text how659

they were calculated and reference the corresponding figures or tables in the text.660

8. Experiments compute resources661

Question: For each experiment, does the paper provide sufficient information on the com-662

puter resources (type of compute workers, memory, time of execution) needed to reproduce663

the experiments?664

Answer: [Yes]665

Justification: We thoroughly describe computational resources in Appendix B, specifying666

the characteristics of the machines on which experiments have been conducted.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,670

or cloud provider, including relevant memory and storage.671

• The paper should provide the amount of compute required for each of the individual672

experimental runs as well as estimate the total compute.673

• The paper should disclose whether the full research project required more compute674

than the experiments reported in the paper (e.g., preliminary or failed experiments that675

didn’t make it into the paper).676

9. Code of ethics677

Question: Does the research conducted in the paper conform, in every respect, with the678

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?679

Answer: [Yes]680

Justification: The paper conforms in every respect, with the NeurIPS Code of Ethics681

Guidelines:682

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.683

• If the authors answer No, they should explain the special circumstances that require a684

deviation from the Code of Ethics.685

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-686

eration due to laws or regulations in their jurisdiction).687

10. Broader impacts688

Question: Does the paper discuss both potential positive societal impacts and negative689

societal impacts of the work performed?690

Answer: [Yes]691

Justification: Broader impacts are discussed in the Conclusions692

Guidelines:693

• The answer NA means that there is no societal impact of the work performed.694

• If the authors answer NA or No, they should explain why their work has no societal695

impact or why the paper does not address societal impact.696
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• Examples of negative societal impacts include potential malicious or unintended uses697

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations698

(e.g., deployment of technologies that could make decisions that unfairly impact specific699

groups), privacy considerations, and security considerations.700

• The conference expects that many papers will be foundational research and not tied701

to particular applications, let alone deployments. However, if there is a direct path to702

any negative applications, the authors should point it out. For example, it is legitimate703

to point out that an improvement in the quality of generative models could be used to704

generate deepfakes for disinformation. On the other hand, it is not needed to point out705

that a generic algorithm for optimizing neural networks could enable people to train706

models that generate Deepfakes faster.707

• The authors should consider possible harms that could arise when the technology is708

being used as intended and functioning correctly, harms that could arise when the709

technology is being used as intended but gives incorrect results, and harms following710

from (intentional or unintentional) misuse of the technology.711

• If there are negative societal impacts, the authors could also discuss possible mitigation712

strategies (e.g., gated release of models, providing defenses in addition to attacks,713

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from714

feedback over time, improving the efficiency and accessibility of ML).715

11. Safeguards716

Question: Does the paper describe safeguards that have been put in place for responsible717

release of data or models that have a high risk for misuse (e.g., pretrained language models,718

image generators, or scraped datasets)?719

Answer: [NA]720

Justification: Paper poses no such risks.721

Guidelines:722

• The answer NA means that the paper poses no such risks.723

• Released models that have a high risk for misuse or dual-use should be released with724

necessary safeguards to allow for controlled use of the model, for example by requiring725

that users adhere to usage guidelines or restrictions to access the model or implementing726

safety filters.727

• Datasets that have been scraped from the Internet could pose safety risks. The authors728

should describe how they avoided releasing unsafe images.729

• We recognize that providing effective safeguards is challenging, and many papers do730

not require this, but we encourage authors to take this into account and make a best731

faith effort.732

12. Licenses for existing assets733

Question: Are the creators or original owners of assets (e.g., code, data, models), used in734

the paper, properly credited and are the license and terms of use explicitly mentioned and735

properly respected?736

Answer: [Yes]737

Justification: Code and data sources are acknowledged through explicit citations.738

Guidelines:739

• The answer NA means that the paper does not use existing assets.740

• The authors should cite the original paper that produced the code package or dataset.741

• The authors should state which version of the asset is used and, if possible, include a742

URL.743

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.744

• For scraped data from a particular source (e.g., website), the copyright and terms of745

service of that source should be provided.746

• If assets are released, the license, copyright information, and terms of use in the747

package should be provided. For popular datasets, paperswithcode.com/datasets748

has curated licenses for some datasets. Their licensing guide can help determine the749

license of a dataset.750
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• For existing datasets that are re-packaged, both the original license and the license of751

the derived asset (if it has changed) should be provided.752

• If this information is not available online, the authors are encouraged to reach out to753

the asset’s creators.754

13. New assets755

Question: Are new assets introduced in the paper well documented and is the documentation756

provided alongside the assets?757

Answer: [NA]758

Justification: The paper does not release new assets759

Guidelines:760

• The answer NA means that the paper does not release new assets.761

• Researchers should communicate the details of the dataset/code/model as part of their762

submissions via structured templates. This includes details about training, license,763

limitations, etc.764

• The paper should discuss whether and how consent was obtained from people whose765

asset is used.766

• At submission time, remember to anonymize your assets (if applicable). You can either767

create an anonymized URL or include an anonymized zip file.768

14. Crowdsourcing and research with human subjects769

Question: For crowdsourcing experiments and research with human subjects, does the paper770

include the full text of instructions given to participants and screenshots, if applicable, as771

well as details about compensation (if any)?772

Answer: [NA]773

Justification: The paper does not involve crowdsourcing nor research with human subjects.774

Guidelines:775

• The answer NA means that the paper does not involve crowdsourcing nor research with776

human subjects.777

• Including this information in the supplemental material is fine, but if the main contribu-778

tion of the paper involves human subjects, then as much detail as possible should be779

included in the main paper.780

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,781

or other labor should be paid at least the minimum wage in the country of the data782

collector.783

15. Institutional review board (IRB) approvals or equivalent for research with human784

subjects785

Question: Does the paper describe potential risks incurred by study participants, whether786

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)787

approvals (or an equivalent approval/review based on the requirements of your country or788

institution) were obtained?789

Answer: [NA]790

Justification: The paper does not involve crowdsourcing nor research with human subjects.791

Guidelines:792

• The answer NA means that the paper does not involve crowdsourcing nor research with793

human subjects.794

• Depending on the country in which research is conducted, IRB approval (or equivalent)795

may be required for any human subjects research. If you obtained IRB approval, you796

should clearly state this in the paper.797

• We recognize that the procedures for this may vary significantly between institutions798

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the799

guidelines for their institution.800

• For initial submissions, do not include any information that would break anonymity (if801

applicable), such as the institution conducting the review.802
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16. Declaration of LLM usage803

Question: Does the paper describe the usage of LLMs if it is an important, original, or804

non-standard component of the core methods in this research? Note that if the LLM is used805

only for writing, editing, or formatting purposes and does not impact the core methodology,806

scientific rigorousness, or originality of the research, declaration is not required.807

Answer: [NA]808

Justification: The core method development in this research does not involve LLMs as any809

important, original, or non-standard components810

Guidelines:811

• The answer NA means that the core method development in this research does not812

involve LLMs as any important, original, or non-standard components.813

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)814

for what should or should not be described.815
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