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Abstract

Class imbalance problems frequently occur in real-world tasks, and conventional
deep learning algorithms are well known for performance degradation on imbal-
anced training datasets. To mitigate this problem, many approaches have aimed
to balance among given classes by re-weighting or re-sampling training samples.
These re-balancing methods increase the impact of minority classes and reduce
the influence of majority classes on the output of models. Despite extensive recent
studies, no deep analysis has been conducted on determination of classes to be
augmented and strength of augmentation has been conducted. In this study, we
propose a simple and efficient novel curriculum, which is designed to find the
appropriate per-class strength of data augmentation, called CUDA: CUrriculum of
Data Augmentation for long-tailed recognition. CUDA can simply be integrated into
existing long-tailed recognition methods. We persent the results of experiments
showing that CUDA effectively achieves better generalization performance compared
to the state-of-the-art method on imbalanced datasets such as CIFAR-100-LT.

1 Introduction

Deep neural networks (DNNs) have significantly improved over the past few decades on a wide
range of tasks [21, 45, 44]. This effective performance is made possible by come from well-organized
datasets such as MNIST [30], CIFAR-10/100 [27], and ImageNet [48]. However, as Van Horn et
al. [51] indicated, gathering such balanced datasets is notoriously difficult in real-world applications.
In addition, the models perform poorly when trained on an improperly organized dataset, e.g., in
cases with class imbalance, because minority samples can be ignored due to their small portion.

The simplest solution to the class imbalance problem is to prevent the model from ignoring minority
classes. To improve generalization performance, many studies have aimed to emphasize minority
classes or reduce the influence of the majority samples. Reweighting [6, 40] or resampling [4, 52] are
two representative methods that have been frequently applied to achieve this goal.

Although these elaborate rebalancing approaches have been adopted in some applications, limited
information on minority classes due to fewer samples remains problematic. To this end, we first
consider that controlling the strength of class-wise augmentation can provide another dimension to
mitigate the class imbalance problem. In this paper, we use the number of augmentation operations
and their magnitude to control the extent of the augmentation, which we refer to herein as its strength,
e.g., a strength parameter of 2 means that two randomly sampled operations with a pre-defined
magnitude index of 2 are used.

Our key finding is that class-wise augmentation improves performance in the non-augmented classes
while that for the augmented classes may not be significantly improved, and in some cases, per-
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Figure 1: Motivation of CUDA. If one half of the classes (e.g., class indices in 0 to 49) are strongly
augmented, the performance of the other half of the classes (i.e., in 50 to 99) increases. This
phenomenon is also observed in the imbalanced case in which many more instances are present for
the top first half (major) have more samples than the second half classes (minor). Setup and further
analysis are described in Appendix B.

formances may even decrease. As described in Figure 1, regardless of whether a given dataset is
class imbalanced, conventional class imbalance methods show similar trends: when only the major
classes are strongly augmented (e.g., strength 4), the performance of majority classes decreases,
whereas that for the minority classes have better results. This result motivates us to find the proper
augmentation strength for each class to improve the performance for other classes while maintaining
its own performance.

Contribution. We propose a simple algorithm called CUrriculum of Data Augmentation (CUDA) to
find the proper class-wise augmentation strength for long-tailed recognition. The proposed method
consists of two modules, which compute a level-of-learning score for each class and leverage the
score to determine the augmentation. Therefore, CUDA increases and decreases the augmentation
strength of the class that was successfully and wrongly predicted by the trained model.

We empirically examine performance of CUDA on synthetically imbalanced datasets, CIFAR-100-
LT [6]. With the high compatibility of CUDA, we apply our framework to various long-tailed recog-
nition methods and achieve better performance compared to the existing long-tailed recognition
methods. We describe the further experimental results on ImagNet-LT [39] and iNaturalist 2018 [51]
in Appendix D.

2 CUrriculum of Data Augmentation for Long-Tailed Recognition

The core philosophy of CUDA is to “generate an augmented sample that becomes the most difficult
sample without losing its original information.” In this section, we describe design of CUDA in terms
of two parts: (1) a method to generate the augmented samples based on the given strength parameter,
and (2) a method to measure a Level-of-Learning (LoL) score for each class.

2.1 Problem Formulation of Long-tailed Recognition

Suppose that the training dataset D = {(xi, yi)}Ni=1 is composed of images with size d, xi 2
d,

and their corresponding labels yi 2 {1, ..., C}. Dc ⇢ D is a set of class c, i.e., Dc = {(x, y)|y =
c, (x, y) 2 D}. Without loss of generality, we assume |D1| � |D2| � · · · � |DC |, where |D|

denotes the cardinality of the set D. We denote the Nmax := |D1| and Nmin := |DC |. LTR algorithms,
ALTR(f✓,D), mainly focus on training the model f✓ with parameter ✓ when the class distribution of
training dataset Ptrain(y) and test dataset Ptest(y) are not identical. More precisely, Ptrain(y) is highly
imbalanced while Ptest(y) is balanced, i.e., uniform distribution.
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Algorithm 1: CUrriculum of Data Augmentation
Input: LTR algorithm ALTR(f,D), training dataset

D = {(xi, yi)}Ni=1, train epochs E, aug. probability paug,
threshold �, number of sample coefficient T .

Output: trained model f✓
Initialize: L0

c = 0 8c 2 {1, ..., C}

for e  E do
Update Le

c = VLoL(Dc, Le�1
c , f✓, �, T ) 8c // Alg. 2

Generate DCUDA = {(x̄i, yi)|(xi, yi) 2 D} where

x̄i =

⇢
O(xi, Le

yi
) with prob. paug

xi otherwise.

Run LTR algorithm using DCUDA, i.e., ALTR (f✓,DCUDA).
end

Algorithm 2: VLoL: Update LoL score
Input: Dc, L, f✓, �, T
Output: updated L
Initialize: check = 1
for l  L do

/* Vcorrect(Dc, l, f✓, T ) */
Sample D

0
c ⇢ Dc s.t. |D0

c| = T (l + 1)
Compute v =

P
x2D0

c
{f(O(x;l)=c}

if v  �T (l + 1) then
check 0; break

end
end
if check = 1 then L L+ 1
else L L� 1

2.2 Curriculum of Data Augmentation

In this section, we describe our proposed DA with strength parameter, and the methods used to
measured the LoL score. Then, we integrate the two methods in a single framework to propose CUDA.

DA with a strength parameter. Let us assume that there exist pre-defined K augmentation opera-
tions. We utilize visual augmentation operations which is indiced as k 2 {1, · · · ,K}, e.g., Gaussian
blur, Rotation, Horizontal flip. Each augmentation operation O

mk(s)
k : d

!
d has its own pre-

defined augmentation magnitude function mk(s) where the strength parameter s 2 {0, ..., S}. These
operations are described in detail along with each magnitude functions in Appendix E.

Given an augmentation strength parameter s and an input image x, we model a sequence of augmen-
tation operations O(x; s) as follows:

O(x; s) = O
mks (s)
ks

�O
mks�1

(s)

ks�1
� · · · �O

mk1 (s)
k1

(x), ki ⇠ Cat(K,U(K)) 8i = {1, . . . , s},

where, Cat(·) and U(·) denote categorical and discrete uniform distributions, respectively. The
sequential augmentation operation O(x; s) samples s operations from the categorical distribution
when the probability of seeing the operations follows uniform distribution.

Level-of-Learning (LoL). To control the strength of augmentation properly, we check whether the
model can correctly predict augmented versions without losing the original information. To enable
this, we define the LoL for each class c at epoch e, i.e., Le

c, which is adaptively updated as the training
continues as follows:

Le
c = VLoL(Dc, L

e�1
c , f✓, �, T ),

where

VLoL(Dc, Le�1
c , f✓, �, T ) =

⇢
Le�1
c + 1 if VCorrect(Dc, l, f✓, T ) � �T (l + 1) 8l 2 {0, ..., Le�1

c }

Le�1
c � 1 otherwise

.

Here, � 2 [0, 1] is threshold hyperparameter, T is coefficient of the number of samples used to
updating LoL. Vcorrect is a function which outputs the number of correctly predicted examples by the
model f✓ among l + 1 randomly augmented samples with strength l. Vcorrect is defined as:

VCorrect(Dc, l, f✓, T ) =
P

x2D0
c

{f✓(O(x;l))=c} where D
0
c ⇢ Dc.

Note that D0
c is a randomly sampled subset of Dc with replacement and its size is T (l + 1).

The key philosophy of this criterion is two fold. (1) If samples in the class c are trained sufficiently
with an augmentation strength of Le

c, the model is ready to learn a more difficult version with
augmentation strength of Le+1

c  Le
c + 1. In contrast, if the model predicts incorrectly, it should

re-learn the easier sample with an augmentation strength of Le+1
c  Le

c � 1. (2) As the strength
parameter increases, the number of candidates for the sequential augmentation operation O(x;L)
increases exponentially. For example, the amount of increment is NL(N � 1) when L is increases to
L+ 1. To control the LoL in a large sequential augmentation operation space, we take more random
samples to check as the strength parameter gets bigger. In our experiments, linearly increasing the
number of samples to evaluate corresponding to the strength with a small additional computation
time was sufficient. VLoL is described in Algorithm 2.
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Figure 2: Validation accuracy on CIFAR-100-LT dataset. This experiments conducted on ResNet-32
architecture on CIFAR-100-LT with imbalance ratio 100.

Curriculum of DA. By combining two components, including DA with a strength parameter and
LoL, our CUDA provides class-wise adaptive augmentation to enhance the performance of the others
without losing its own information. As shown in algorithm 1, we measure the LoL score Lc for all
classes in the training dataset to determine the augmentation strength for every epoch. Based on Lc,
we generate the augmented version O(x;Lc) for x 2 Dc and train the model with the augmented
samples. Additionally, we randomly use the original sample instead of the augmented sample with
probability paug so that the trained models do not forget the original information. In our experiments,
this operation improved performance robustly on a wide range of paug values.

Advantage of CUDA design. Our proposed approach mainly has three advantages. (1) CUDA adaptively
finds proper augmentation strengths for each class without need for a validation set. (2) Following
the spirits of existing curriculum learning methods [19, 62, 55], CUDA enables modeling by first
presenting easier examples earlier during training to improve generalization. This encourages the
model to learn difficult samples (i.e., within high augmentation strength) better. (3) Moreover, owing
to the universality of data augmentation, CUDA is easily compatible with other LTR algorithms, such
as [6, 46, 54].

3 Experiments

In this section, we present empirical evaluation, the results of which demonstrate the superior
performance of our proposed algorithm for class imbalance. We describe the experimental results on
CIFAR-100-LT, a synthetic long-tailed benchmark. CIFAR-100-LT is examined with imbalance ratio
of 100, where an imbalance ratio is defined as Nmax/Nmin. The related works, implementation setups,
and additional results are detailed in Appendix.

In Figure 2, we report the performance when CUDA is applied to the various algorithms: CE, CE-
DRW [6], LDAM-DRW [6], BS [46], RIDE [54] with 3 experts, RIDE+CMO [42], and BCL [63].
We include four different categories of accuracy: all, many, med(ium), and few. Each represents
the average accuracy of all samples, classes containing more than 100 samples, 20 to 100 samples,
and under 20 samples, respectively. Compared to the case without CUDA cases, balanced validation
performance is increased when we apply the proposed approach.

4 Conclusion

In this study, we proposed CUDA to address the class imbalance problem. The proposed approach is
also compatible with existing methods. To design a proper augmentation for LTR, we first studied
the impact of augmentation strength for LTR. We found that the strength of augmentation for a
specific type of class (e.g., major class) could affect the performance of the other type (e.g., minor
class). From this finding, we designed CUDA to adaptively find an appropriate augmentation strength
without any further searching phase by measuring the LoL score for each epoch and determining
the augmentation accordingly. To verify the superior performance of the proposed approach, we
examined each performance with various methods and obtained the best performance among the
methods compared to CIFAR-100-LT, synthetically generated benchmarks.
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Appendix
CUDA: Curriculum of Data Augmentation for Long-tailed Learning

Owing to the page limitation of the main manuscript, we provide detailed information in this
supplementary as follows. (1) In Appendix A, we provide the related works for long-tailed recognition
and data augmentation. (2) In Appendix B, we summarize the experimental setup of Figure 1, and
further explain why augmentation on one side causes performance degradation on the opposite side.
(3) In Appendix C, we describe in detail our experimental setting, including dataset configuration, data
preprocessing, and training implementation. (4) In Appendix D, we show ImageNet-LT performance
on different size and architecture networks, training time analysis, and accuracy on the balanced
dataset case. (5) In Appendix E, we present in detail the augmentation operations that CUDA utilizes.
(6) In Appendix F, we describe the experimental setting of Figure 9d.

A Related works
Long-tailed Recognition (LTR). The datasets with class imbalances can lead DNNs to learn biases
toward training data, and their performance may decrease significantly on the balanced test data.
To improve the robustness of such models to imbalance, LTR methods have been evolving in two
main directions: (1) reweighting [15, 6, 43] methods that reweight the loss for each class by a factor
inversely proportional to the number of data points, and (2) resampling methods [28, 7, 2] that balance
the number of training samples for each class in the training set. However, studies along these lines
commonly sacrifice performance on majority classes to enhance that on minority classes, because the
overfitting problem occurs with limited information on minority classes as a result of increasing the
weight of a small number of minority samples.

Several methods have recently been developed to alleviate the overfitting issues in various categories:
(1) two-stage training [6, 24, 39], (2) ensemble methods [61, 56, 54, 5], and (3) contrastive learning
approach [23, 14, 63, 31, 34]. To re-balance the classifier layers after achieving a good representation
on the imbalanced training dataset in an early phase, Cao et al. [6] proposed deferred resampling
(DRS) and reweighting (DRW) approaches. Kang et al. [24] decoupled the learning procedure into
representation learning and training linear classifier, achieved higher performance than previous
balancing methods. Wang et al. [54] and Cai et al. [5] suggested efficient ensemble methods using
multiple experts with a routing module and a shared architecture for experts to capture various
representations. Liu et al. [38] found that self-supervised representations are more robust to class
imbalance than supervised representations, and some works have developed supervised contrastive
learning methods [25] for imbalanced datasets [14, 63, 34].

Another line of research has considered augmentation methods in terms of both input and feature
spaces [26, 11, 33]. Recently, Park et al. [42] mixed minority and majority images by using CutMix
with different sampling strategies to enhance balancing and robustness simultaneously. These methods
commonly focus on utilizing the rich context of majority samples to improve the diversity of minority
samples. Moreover, these augmentation-based methods are relatitvely in easy to apply orthogonally
with other LTR methods.

Data Augmentation (DA). DA has been studied to mitigate overfitting which may occur due to a
lack of data samples. Some works have been proposed to erase random parts of images to enhance
the generalization performance of neural networks [16, 60, 29, 9]. Recently, variants of MixUp [59]
have been proposed; this method combines two images with specific weights [50, 18, 49, 16, 53].
By aggregating two approaches, CutMix [58] was proposed to erase and replace a small rectangular
part of an image into another image. In another line of research, methods have been proposed to
automatically configure augmentation operations [12, 37, 35, 20, 17]. In addition, Cubuk et al. [13]
randomly selected augmentation operations using the given hyperparameters of the number of
sampling augmentation and their magnitudes. Recently, class-wise or per-sample auto-augmentation
methods have also been proposed [8, 47].

B Detail for Figure 1

B.1 Experimental Settings

Major and minor group decomposition. To check the impact of augmentation on majority and
minority classes, we split the training dataset into two clusters. The majority cluster is the top 50
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classes by sorting through the number of samples for each class. The bottom 50 classes are in the
minority cluster. For simplicity, we utilize class indices of 0 to 49 as the majority and 50 to 99 as the
minority, respectively. For the balanced case, we utilize 0 to 49 classes as cluster 1, and the others as
cluster 2.

Controlling augmentation strength. We set the augmentation strength as the number of augmenta-
tion and its augmentation magnitude by following the augmentation rule of CUDA. For example, the
samples in the majority classes with magnitude parameter 4 represents that they are augmented with
randomly sampled 4 augmentations with their own pre-defined augmentation magnitude.

Training setting. For heatmaps in Figure 1, we follow the training recipe of CIFAR-100-LT for CE
case, e.g., ResNet-32, learning rate of 0.1, and so on. Further details, hyperparameters, and datasets
are described in section 3 and Appendix C.
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Figure 3: Analysis on Balanced CIFAR-100.
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Figure 4: Analysis on CIFAR-100-LT (IR 100).

B.2 Analysis

Analysis for Figure 1. To figure out the reason for the phenomena in Figure 1, we conduct further
analysis as shown in Figure 3 and Figure 4. Our experimental setups are as follows:

• Train the networks with three augmentation strategies, respectively (without, partial, and
all), then measure the class-wise feature alignment and linear classifier weight norm for all
networks. (Experiment 1)

• From a trained network without augmentation in Experiment 1, we freeze the feature
extractor and train the linear classifier layer with augmenting partial classes. Then, we
measure the class-wise L1-norm for all linear classifiers. (Experiment 2)

From the Figure 3 and Figure 4, we have three observations from Experiment 1:

1. When we conduct augmentation only for partial classes (0-49 classes), the feature alignment
for augmented classes of the training dataset is degraded compared to the non-augmented
classes. This is because the augmentation classes have more diversified training data than
non-augmentation classes, which leads to more diversification in feature space. We observe
the balance between alignment between classes in the cases of without augmentation and
with all augmentation since all classes have similar diversity. (See the first rows in Figure 3, 4)

2. However, all three augmentation strategies have balanced class-wise feature alignment for the
same test dataset. This tendency can be observed in both balanced and imbalanced datasets.
This result is consistent with [24]. Furthermore, the values for feature alignment are increased
when we conduct augmentation partially or all, compared to without augmentation. This
result shows that augmentation enhances the feature extraction ability, which is consistent
with conventional studies. (See the second rows in Figure 3, 4)

3. When we conduct augmentation only for partial classes on a balanced dataset, the class-wise
weight norm of the linear classifier is larger for non-augmentation classes. This result incurs
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performance improvement for non-augmentation classes and reduction for augmentation
classes since this linear classifier has a tendency to classify non-augmented classes with
larger weight values. However, we observe that class-wise weight norms are balanced in
“without augmentation” and “all augmentation” cases. (See the third row in Figure 3)

4. We observe that the class-wise weight norm of the linear classifier is larger for majorities
for all classes that have the same augmentation strength. These results are consistent with
previous works [24, 1]. However, when we conduct augmentation only for majorities, the
class-wise weight norm is more balanced. This phenomenon is similar to the balanced
case in that partial augmentation incurs a reduction in the norm of the linear classifier for
augmented classes. (See the third row in Figure 4)
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Our observations from Experiment 1 are highly consistent in both balanced and imbalanced datasets.
The results in Figure 1, Figure 3 and Figure 4 highly motivate the design of CUDA. Moreover, our
results for Experiment 2 can explain these observations as shown in Figure 5 and Figure 6.

We observe that in the presence of feature alignment degradation from augmentation, the correspond-
ing norm is relatively small, as shown in Figure 5. This is because in the class that has lower feature
alignment, the variation of the gradient for the linear classifier is larger than in the class with high
feature alignment. As shown in Figure 6, from Experiment 2, we observe that k�wk, the norm of
class-wise difference of between current and initialize linear classifier parameters �w := w �w0,
have smaller value in augmented classes than non-augmented classes. From our experimental analysis
in Figure 3, 4, and 6, we can conclude that augmentation breaks the consistency of feature alignment
and it makes the weight norm of the linear classifier decreases.

C Implementation detail in section 3

C.1 Implementation Detail

Baselines. We compare CUDA with previous long-tailed learning algorithms , including cross-entropy
loss (CE), two-stage approaches: CE-DRW [6] and cRT [24], balanced loss approaches: LDAM-
DRW [6] and Balanced Softmax (BS; [46]), the ensemble method: RIDE with three experts [54], re-
sampling algorithms: Remix [10] and CMO [42], and contrastive learning-based approach: BCL [63].
We integrate CUDA with CE, CE-DRW, LDAM-DRW, BS, RIDE, and BCL algorithms. For longer
epochs, we compare CUDA with PaCo [14], BCL, and NCL [31], by combining CUDA with BCL and
NCL. For a fair comparison of the computational cost, we train the network with the official one-stage
implementation of RIDE (i.e., without distillation and routing).

Implementation. For CIFAR-100-LT dataset, almost all implementations follow the general setting
from [6], whereas cRT [24], BCL, NCL and RIDE follow the settings used in their original implemen-
tation. Following [6], we use ResNet-32 [22] as a backbone network for CIFAR-100-LT. The network
is trained on SGD with a momentum of 0.9 and a weight decay of 2⇥ 10�4. The initial learning rate
is 0.1 and a linear learning rate warm-up is used in the first 5 epochs to reach the initial learning rate.
During training over 200 epochs, the learning rate is decayed at the 160th and 180th epochs by 0.01.
For the ImageNet-LT and iNaturalist, the ResNet-50 is used as a backbone network and is trained
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for 100 epochs. The learning rate is decayed at the 60th and 80th epochs by 0.1. As with CIFAR, for
cRT, RIDE, and BCL, we follow the original experimental settings of the official released code. For
the hyperparameter values of CUDA, we apply a paug of 0.5 and T of 10 for all experiments. For �, we
set the values as 0.6 for CIFAR-100-LT and 0.4 for ImageNet-LT and iNaturalist 2018. The detailed
implementation for baselines are in Appendix C.

CIFAR-100-LT. CIFAR-100-LT is a subset of CIFAR-100. Following [54, 42, 63], we use the
same long-tailed version for a fair comparison. The number of samples of kth class is determined
as follows: (1) Compute the imbalanced factor Nmax/Nmin, which reflects the degree of imbalance
in the data. (2) |Dk| between |D1| = Nmax and |D100| = Nmin follows an exponential decay
(i.e., |Dk| = |D1|⇥ (Nmax/Nmin)k/100). The imbalance factors used in the experiment are set to 100,
50, and 10.

ImageNet-LT. ImageNet-LT [39] is a modified version of the large-scale real-world dataset [48].
Subsampling is conducted by following the Pareto distribution with power value ↵ = 0.6. It consists
of 115.8K images of 1, 000 classes in total. The most common or rare class has 1, 280 or 5 images,
respectively.

iNaturalist 2018. iNaturalist [51] is a large-scale real-world dataset which consists of 437.5K images
from 8, 142 classes. It has long-tailed property by nature, with an extremely class imbalanced. In ad-
dition to long-tailed recognition, this dataset is also used for evaluating the fine-grained classification
task.

C.2 Data Preprocessing

For data preprocessing, we follow the default settings of [6]. For CIFAR-100-LT, each side of the
image is padded with 4 pixels, and a 32⇥ 32 crop is randomly selected from the padded image or
its horizontal flip. For ImageNet-LT and iNaturalist 2018, after resizing each image by setting the
shorter side to 256 pixels, a 224⇥ 224 crop is randomly sampled from an image or its horizontal flip.

For BCL and NCL, which use AutoAugment [12] or RandAugment [13] as default data augmen-
tation, we apply them after random cropping by following their original papers [63, 31]. Then, we
finally conduct CUDA after all default augmentation operations, and then normalize the image with
following mean and standard deviation values sequentially: CIFAR-100-LT ((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)), ImageNet-LT ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), and iNaturalist
2019 ((0.466, 0.471, 0.380), (0.195, 0.194, 0.192)).

C.3 Detailed Implementation

Because some official codes do not open their entire implementations, we re-implement by following
the rules. For re-implementation, we reproduce the code based on their partial code and the authors’
responses.

RIDE. We follow the officially offered code2. Among various experimental configurations of
official code (e.g., one-stage RIDE, RIDE-EA, Distill-RIDE), for fair comparison (to leverage similar
computation resources), we utilize one-stage training (i.e., one-stage RIDE) for all cases. We confirm
that CMO [42] also utilizes this setup for RIDE + CMO from the response of the authors.

CMO. We re-implement all CMO results from their official code3 in our work. However, the official
code of CMO does not contain code for RIDE + CMO. Therefore, we re-implement by injecting
the CMO part for BS in the official code (weighted sampler and mixup part) into the RIDE code.
Furthermore, for iNaturalist 2018, we train the model for 100 epochs for a fair comparison with other
methods (whereas the original RIDE + CMO is trained for 200 epochs on iNaturalist 2018).

BCL. The officially released code4 of BCL only contains ImageNet-LT and iNaturalist 2018.
Whereas the official code applies a cosine classifier for ImageNet-LT and iNaturalist 2018, we apply
an ordinary linear classifier for CIFAR-100-LT from the author’s response. All hyperparameters are
the same as the experiment settings of the original work [63].

2https://github.com/frank-xwang/RIDE-LongTailRecognition
3https://github.com/naver-ai/cmo
4https://github.com/FlamieZhu/Balanced-Contrastive-Learning
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Table 1: Validation accuracy on CIFAR-100-LT dataset. This experiments are conducted on ResNet-
32 on CIFAR-100-LT with different imbalance ratios. † are from [42] and ‡, ? are from the original
papers [26, 63]. Other results are from our implementation. We format the first and second best results
as bold and underline .

Algorithm Imbalance Ratio (IR) Statistics (IR 100)
100 50 10 Many Med Few

CE 38.7 43.4 56.5 66.2 37.3 8.2
CE + CMO [42] 42.0 47.0 60.0 69.1 41.2 11.3
CE + CUDA 42.7 47.2 59.6 71.6 42.3 9.4
CE + CMO + CUDA 43.5 48.7 60.0 70.0 43.4 12.7
CE-DRW [6] 41.4 45.5 57.8 62.8 41.7 16.1
CE-DRW + Remix [10]† 45.8 49.5 59.2 - - -
CE-DRW + CUDA 47.7 52.4 61.6 64.3 49.2 26.7
LDAM-DRW [6] 42.5 47.4 57.6 62.8 42.3 19.0
LDAM + M2m [26]‡ 43.5 - 57.6 - - -
LDAM-DRW + CUDA 47.6 51.1 58.4 67.3 50.4 21.4
BS [46] 43.3 46.9 58.3 61.6 42.3 23.0
BS + CUDA 47.7 52.1 61.7 63.3 48.4 28.7
RIDE (3 experts) [54]† 48.6 51.4 59.8 - - -
RIDE (3 experts) 49.7 52.7 60.2 67.7 51.5 26.7
RIDE + CMO [42]† 50.0 53.0 60.2 - - -
RIDE + CMO 49.9 53.0 58.9 67.3 51.3 28.1
RIDE (3 experts) + CUDA 50.7 53.7 60.2 69.2 52.8 27.3
BCL [63]? 51.0 54.9 64.4 67.2 53.1 32.9
BCL + CUDA 52.3 56.2 64.6 66.4 54.2 33.9

Table 2: Validation accuracy on ImageNet-LT and iNaturalist 2018 datasets. † indicates reported
results from the [42] and ‡ indicates those from the original paper [24]. ? means we train the network
with the official code in an one-stage RIDE.

Algorithm ImageNet-LT iNaturalist 2018
Many Med Few All Many Med Few All

CE† 64.0 33.8 5.8 41.6 73.9 63.5 55.5 61.0
CE + CUDA 67.1 47.1 13.4 47.2 74.6 65.0 57.2 62.5
CE-DRW [6] 61.7 47.3 28.8 50.1 68.2 67.3 66.4 67.0
CE-DRW + CUDA 61.7 48.4 30.5 51.1 68.8 67.9 66.5 67.4
LWS [24]‡ 57.1 45.2 29.3 47.7 65.0 66.3 65.5 65.9
cRT [24]‡ 58.8 44.0 26.1 47.3 69.0 66.0 63.2 65.2
cRT + CUDA 62.3 47.2 28.1 50.2 68.2 67.9 66.4 67.3
LDAM-DRW [6]† 60.4 46.9 30.7 49.8 - - - 66.1
LDAM-DRW + CUDA 63.2 48.2 31.2 51.5 68.0 67.5 66.8 67.3
BS [46] 60.9 48.8 32.1 51.0 65.7 67.4 67.5 67.3
BS + CUDA 61.8 49.1 31.8 51.5 67.6 68.2 68.3 68.2
RIDE (3 experts) [54]? 64.9 50.4 34.4 53.6 70.4 71.8 71.8 71.6
RIDE + CMO [42]? 65.6 50.6 34.8 54.0 68.0 70.6 72.0 70.9
RIDE (3 experts) + CUDA? 66.0 51.7 34.7 54.7 70.6 72.6 72.7 72.4
BCL [63] 65.3 53.5 36.3 55.6 69.4 72.4 71.8 71.8
BCL + CUDA 66.8 53.9 36.6 56.3 70.8 72.7 72.0 72.2

Table 3: Comparison
for CIFAR-LT-100 per-
formance on ResNet-32
with 400 epochs.

Algorithm Imbalance Ratio
100 50

PaCo 52.0 56.0
BCL 52.6 57.2
NCL 54.2 58.2
BCL + CUDA 53.5 57.4
NCL + CUDA 54.8 59.6

Table 4: Augmentation analysis on CIFAR-100-LT with IR 100.
AA [12], FAA [37], DADA [35], and RA [13] with n = 1,m = 2
policies are used. C, S, I represent CIFAR, SVHN, and ImageNet
policy.

Vanilla AA FAA DADA RAC S I C I C I CUDA

CE 38.7 41.7 40.7 40.1 42.3 40.8 41.0 41.2 40.5 42.7
CE-DRW 41.4 46.5 44.7 45.5 46.3 44.8 45.6 45.7 45.8 47.4
LDAM-DRW 42.5 47.0 44.7 44.9 46.6 45.6 45.9 46.5 44.0 47.2
BS 43.3 47.0 46.1 45.5 46.5 45.0 45.0 46.9 45.2 47.7
RIDE (3 experts) 49.7 49.5 47.3 45.5 49.8 50.6 50.4 50.5 47.9 50.7

D Analyses

CIFAR-100-LT. In Figure 2, we report the performance when CUDA is applied to the various algo-
rithms: CE, CE-DRW [6], LDAM-DRW [6], BS [46], RIDE [54] with 3 experts, RIDE+CMO [42],
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Figure 7: Analysis of how CUDA improves long-tailed recognition performance, classifier weight
norm (top row) and feature alignment (bottom row) of the CIFAR-100-LT validation set. Notably that
weight norm and feature alignment represent class-wise weight magnitude of classifier and ability of
feature extractor, respectively. The detailed analysis is described in Section D.1.
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Figure 8: Evolution of LoL score on various algorithms, CE, CE-DRW, LDAM-DRW, BS, and RIDE.

and BCL [63]. Compared to the case without CUDA cases, balanced validation performance is in-
creased when we apply the proposed approach.

Recently, some works [14, 1, 63, 31] have shown impressive performances with diverse augmentation
strategies and longer training epochs. For a fair comparison with these methods, we examine CUDA
using the same experimental setups from PaCo ([14]; 400 epochs with batch size of 64). Table 3 shows
that augmented image using CUDA can enhance LTR performance compare to the other baselines. In
particular, CUDA with NCL obtains the best performance over 400 epochs. As noted by [31], the NCL
algorithm utilizes six times as much memory compared to the vanilla architecture with three experts.
Hereinafter in large-scale benchmarks, we focus on the cases with similar network size.

ImageNet-LT and iNaturalist 2018. To evaluate the performance of CUDA on larger datasets,
we conduct experiments on ImageNet-LT [39] and iNaturalist 2018 [51]. Table 2 summarizes the
performance of various LTR methods and the performance gain when integrated with CUDA. Our
proposed method consistently improves performance regardless of the LTR method and target dataset
by simply adding class-wise data augmentation without complicated methodological modification.
Additionally, to evaluate the performance gain of CUDA on other architectures, we experiment with
CUDA on ImageNet-LT with ResNet-10 [39] and ResNeXt-50 [57], as reported in Appendix D.

D.1 Analysis

We design our analyses to answer the following questions. (1) How does CUDA perform? (2) Does
CUDA perform better than other augmentation methods? (3) How does LoL score change over training
epochs when combined with various LTR methods? (4) Which part of CUDA is important to improvet
performance? These analyses provide additional explanations to understand CUDA. All experiments
are conducted on CIFAR-100-LT with imbalance ratio of 100.

How does CUDA mitigate the class imbalance problem? To deeply understand CUDA, we observe
two types of metrics: (1) variance of classifier weight L1-norm, (2) feature alignment gain (i.e., cosine
similarity with and without CUDA) on validation dataset. The classifier weight norm is usually used to
measure how balanced the model consider the input from a class-wise perspective [24, 1]. Feature
alignment, especially feature cosine similarity amongst samples belonging to the same class, is a
measure of the extent to which the extracted features are aligned [41]. As shown in Figure 7, CUDA
has two forces for alleviating imbalance. For all cases, CUDA reduces the variance of the weight norm
(i.e., balance the weight norm), and thus the trained model consider the minority classes in a balanced
manner. Note that because LDAM-DRW and RIDE utilize a cosine classifier (i.e., utilizing L2
normalized linear weight), their standard deviation scale is quite different from those other methods.
Because LDAM-DRW, BS, and RIDE include balancing logic in their loss function, they exibit lower
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Figure 9: Additional analysis of CUDA. (a) sensitivity of augmentation probability paug, (b) sensitivity
analysis of number of sample coefficient T , (c) sensitivity of acceptance threshold �, and (d) impact
of curriculum. The dotted lines in (a), (b) and (c) represents the performance of CE.

variance reduction compared to the CE and CE-DRW. Second, as shown in the bottom row in Figure 7,
CUDA obtains feature alignment gains for almost all classes. This shows that CUDA facilitates a network
to learn to extract meaningful features.

Compared with other augmentations. To verify the impact of CUDA, we examine the other
augmentation methods as follows. We compare five augmentation methods, including AutoAugment
(AA, [12]), Fast AutoAugment (FAA, [37]), DADA [35], RandAugment (RA, [13]), and the proposed
method CUDA. Because AA, FAA, and DADA provide their policies searched by using CIFAR, SVHN
(for AA), and ImageNet, we leverage their results. Furthermore, RA suggests using their parameter
(n,m) = (1, 2) for CIFAR, and we follow their guidelines. As shown in Table 4, even though the
augmentation policies use additional computation resources to search, CUDA outperforms the other
pre-searched augmentations. This shows that CUDA is computationally efficient.

Dynamics of LoL score. We evaluate how LoL scores vary with algorithms: CE, CE-DRW, LDAM-
DRW, BS, and RIDE. Note that we set a lower class index (i.e., 0) as the most common class (i.e., the
number of samples is 500), while an index of 100 represents the rarest class (i.e., with five samples).
As described in Figure 8, as training progressed, the LoL score of all algorithms increase. After
learning rate decay (i.e., 160 epoch) all algorithms are able to learn to classify minority classes more
easily than before. In particular, except for BS, the majority classes of most algorithms show a steep
increment. The reason that BS exhibit a similar increasing speed for majority and minority classes is
that it includes a module to balance the impact of majority and minority samples. Moreover, because
RIDE can promote when all experts satisfying promotion criterion, its increasing speed is moderate.

Parameter sensitivity. For further analysis, we conduct a sensitivity analysis of hyperparameters
in CUDA. More precisely, we study three kinds of parameters, including augmentation probability
paug (Figure 9a), number of tests T (Figure 9b), and LoL update threshold � (Figure 9c). We examine
each hyperparameter sensitivity on a CUDA case with RIDE and the remainder of the hyperparameters
are fixed to the default values in Section ??. All results show that the performance gains of CUDA
decreases if the parameters are adjusted to make the augmentation too strong or weak. For example,
the augmentation strength of all classes steeply increases when � becomes small. The strength cannot
increase when � becomes large, and thus it cannot improve the performance of the model. Moreover,
as shown in Figure 9b, the performance of CUDA increases as T increases. However, larger T spends
computational overhead, we set T as 10 and obtained cost-effective performance gain.

Impact of curriculum. In addition to studying the impact of CUDA, we examine its performance
component-wise. In particular, we test the case where class-wise augmentation strength is searched
based on the hyperparameter optimization algorithm. We check five cases overall: vanilla algorithm,
hyperparameter optimization (HO), re-searched DADA for CIFAR-100-LT, CUDA without curricu-
lum, (i.e., re-training utilizing the final augmentation strength of CUDA), and CUDA. As described
in Figure 9d, CUDA finds better augmentation strengths compare to the hyperparameter search case.
This means that CUDA exhibits not only a lower searching time but also obtains better augmentation
strength. Moreover, by comparing the performance of with or without curriculum, the curriculum
also can provide additional advance to the model to achieve better generalization. Additionally, as
Figure 8, lower augmentation strength at the beginning of training is more effective than static higher
augmentation strength. These results are consistent with the results of previous studies on curriculum
learning methods [19, 62].

Training Time Analysis. CUDA requires additional computation for computing LoL score. We
measure the additional training time for adding CUDA on various algorithms. As shown in Figure 11,
when utilizing CUDA additional training time is spent. However, the additional operation for searching
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Figure 11: Training time.

the LoL score does not require a large value. For example, BS with CUDA spends⇥1.29 time to obtain
adequate augmentation strength.

Network Architecture Analysis. We also present our ResNet-10 [39] and ResNeXt-50 [57] ex-
periments on the ImageNet-LT dataset in Figure 10, respectively. These results show that CUDA
consistently improves performance regardless of network sizes and corresponding LTR methods.

Table 5: Balanced case. † mark represents the reported value in [35]
Augmentation Acc. Searching time (Overhead)

CE 68.5 -
AutoAug 70.7 5, 000 GPU hours†
RandAug 69.4 -

FAA 70.7 3.5 GPU hours†
DADA 70.9 0.2 GPU hours†
CUDA 70.4 0.07 GPU hours

What if CUDA is ran on the balanced dataset. We examine that if CUDA is applied to the balanced
case, i.e., imbalance ratio is 1. As described in the Table 5 CUDA obtains 1.9% accuracy gain, which
is lower than the other auto augmentation methods. However, other autoaugmentation methods
spend more computation time searching a good augmentation than CUDA. Furthermore, as described
in Figure 8, CUDA has higher performance than the others when the class imbalance dataset is given.

E Augmentation Preset

E.1 Data augmentation operations used in CUDA.

There have been numerous data augmentation operations in vision tasks. We used totally 22 aug-
mentations for CUDA with their own parameter set. Details of the operation set and parameters are
described in Table 6. For augmentation magnitude parameter mk(s), we divide parameters into
thirty values linearly. For example of, ShearX case, its max and min values are 3 and 0, respectively.
Therefore, mShearX(s) = (3� 0)/30 ⇤ s, thus mShearX(1) = 0.01 = (3� 0)/30 ⇤ 1.

F Experimental setting of Figure 9d

To further analyze the impact of curriculum, we compare CUDA with the performance of previous
hyper-parameter search algorithms and auto-augmentation methods, especially DADA [35]. We
describe each setting in detail as follows.

Hyper-parameter search. We utilize the strength score-based augmentation module in CUDA to
verify the hyper-parameter search. In other words, samples in each class utilize K augmentation
operations. Therefore, we search the class-wise augmentation on the search space KN where N is
the number of classes. We leverage the hyper-parameter searching open-source library, Ray [36], for
search KN space efficiently. Among various search modules, we utilize the HyperOptSearch module,
which is the implementation of the Tree-structured Parzen Estimator [3]. Moreover, for fast search,
we use the Asynchronous Successive Halving Algorithm (ASHA) [32]. We run 1, 000 trials for each
algorithms which spends almost 20 GPU hours (i.e., ⇥80 overhead compare to CUDA).
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(a) Raw (b) Flip (c) Mirror (d) Edge Enhance (e) Detail (f) Smooth

(g) AutoContrast (h) Equalize (i) Invert (j) Gaussian Blur (k) Resize Crop (l) Rotate

(m) Posterize (n) Solarize (o) SolarizeAdd (p) Color (q) Contrast (r) Brightness

(s) Sharpness (t) ShearX (u) ShearY (v) Translate X (w) Translate Y

Table 6: Description of augmentation operations utilized in CUDA. We show the examples of each
augmentation with maximum augmentation parameters.

Operation Parameter Description
Flip On/Off Flip top and bottom

Mirror On/Off Flip left and right
Edge Enhancement On/Off Increasing the contrast of the pixels around the targeted edges

Detail On/Off Utilize convolutional kernel [[0,�1, 0], [�1, 10,�1], [0,�1, 0]]
Smooth On/Off Utilize convolutional kernel [[1, 1, 1], [1, 5, 1], [1, 1, 1]]

AutoContrast On/Off Remove a specific percent of the lightest and darkest pixels
Equalize On/Off apply non-linear mapping to make uniform distribution
Invert On/Off Negate the image

Gaussian Blur [0,2] Blurring an image using Gaussian function
Resize Crop [1,1.3] Resizing and center random cropping

Rotate [0,30] Rotate the image
Posterize [0,4] Reduce the number of bits for each channel
Solarize [0,256] Invert all pixel values above a threshold

SolarizeAdd [0,110] Adding value and run solarize
Color [0.1, 1.9] Colorize gray scale values

Contrast [0.1,1.9] Distance between the colors
Brightness [0.1,1.9] Adjust image brightness
Sharpness [0.1,1.9] Adjust image sharp
Shear X [0,0.3] Shearing X-axis
Shear Y [0,0.3] Shearing Y-axis

Translate X [0,100] Shift X-axis
Translate Y [0,100] Shifting Y-axis

Researched DADA operation on imbalanced CIFAR. Because the officially offered policies
on CIFAR by DADA [35] are searched for a balanced CIFAR dataset, we have to re-search the

18



augmentation policy for the imbalanced dataset. We utilize the official code of DADA and replace
the dataloader to re-search the operations. It spends 48 minutes for searching the augmentation
policy (⇥8.6 than the overhead of CUDA). Despite this additional overhead, DADA outputs worse
performance than CUDA (even CUDA without curriculum case). This is because (1) DADA does not
consider class-wise augmentation and (2) it does not consider the impact of class imbalance.
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