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Abstract

In this paper we tackle the problem of Generalized Category Discovery (GCD).
Specifically, given a dataset with labelled and unlabelled images, the task is to
cluster all images in the unlabelled subset, whether or not they belong to the
labelled categories. Our first contribution is to recognize that most existing GCD
benchmarks only contain labels for a single clustering of the data, making it difficult
to ascertain whether models are using the available labels to solve the GCD task, or
simply solving an unsupervised clustering problem. As such, we present a synthetic
dataset, named ‘Clevr-4’, for category discovery. Clevr-4 contains four equally
valid partitions of the data, i.e. based on object shape, texture, color or count. To
solve the task, models are required to extrapolate the taxonomy specified by the
labelled set, rather than simply latching onto a single natural grouping of the data.
We use this dataset to demonstrate the limitations of unsupervised clustering in the
GCD setting, showing that even very strong unsupervised models fail on Clevr-4.
We further use Clevr-4 to examine the weaknesses of existing GCD algorithms, and
propose a new method which addresses these shortcomings, leveraging consistent
findings from the representation learning literature to do so. Our simple solution,
which is based on ‘mean teachers’ and termed µGCD, substantially outperforms
implemented baselines on Clevr-4. Finally, when we transfer these findings to
real data on the challenging Semantic Shift Benchmark (SSB), we find that µGCD
outperforms all prior work, setting a new state-of-the-art.

1 Introduction

Developing algorithms which can classify images within complex visual taxonomies, i.e. image
recognition, remains a fundamental task in machine learning [1–3]. However, most models require
these taxonomies to be pre-defined and fully specified, and are unable to construct them automatically
from data. The ability to build a taxonomy is not only desirable in many applications, but is also
considered a core aspect of human cognition [4–6]. The task of constructing a taxonomy is epitomized
by the Generalized Category Discovery (GCD) problem [7, 8]: given a dataset of images which is
labelled only in part, the goal is to label all remaining images, using categories that occur in the
labelled subset, or by identifying new ones. For instance, in a supermarket, given only labels for
‘spaghetti’ and ‘penne’ pasta products, a model must understand the concept of ‘pasta shape’ well
enough to generalize to ‘macaroni’ and ‘fusilli’. It must not cluster new images based on, for instance,
the color of the packaging, even though the latter also yields a valid, but different, taxonomy.

GCD is related to self-supervised learning [9] and unsupervised clustering [10], which can discover
some meaningful taxonomies automatically [11]. However, these cannot solve the GCD problem,
which requires recovering any of the different and incompatible taxonomies that apply to the same
data. Instead, the key to GCD is in extrapolating a taxonomy which is only partially known. In this
paper, our objective is to better understand the GCD problem and improve algorithms’ performance.
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Figure 1: What is the key difference between Generalized Category Discovery (GCD) and tasks
like self-supervised learning or unsupervised clustering? GCD’s key challenge is extrapolating the
desired clustering of data given only a subset of possible category labels. We present a synthetic
dataset, Clevr-4, which contains four possible clusterings of the same images, and hence can be used
to isolate the GCD task. Above, one can cluster the data based on object count, shape or texture.

To this end, in section 3, we first introduce the Clevr-4 dataset. Clevr-4 is a synthetic dataset where
each image is fully parameterized by a set of four attributes, and where each attribute defines an
equally valid grouping of the data (see fig. 1). Clevr-4 extends the original CLEVR dataset [12] by
introducing new shapes, colors and textures, as well as allowing different object counts to be present
in the image. Using these four attributes, the same set of images can be clustered according to four
statistically independent taxonomies. This feature sets it apart from most existing GCD benchmarks,
which only contain sufficient annotations to evaluate a single clustering of the data.

Clevr-4 allows us to probe large pre-trained models for biases, i.e., for their preference to emphasize
a particular aspect of images, such as color or texture, which influences which taxonomy can be
learned. For instance, contrary to findings from Geirhos et al. [13], we find almost every large model
exhibits a strong shape bias. Specifically, in section 4, we find unsupervised clustering – even with
very strong representations like DINO [14] and CLIP [15] – fails on many splits of Clevr-4, despite
CLEVR being considered a ‘toy’ problem in other contexts [16]. As a result, we find that different
pre-trained models yield different performance traits across Clevr-4 when used as initialization for
category discovery. We further use Clevr-4 to characterize the weaknesses of existing category
discovery methods; namely, the harms of jointly training feature-space and classifier losses, as well
as insufficiently robust pseudo-labelling strategies for ‘New’ classes.

Next, in section 5, we leverage our findings on Clevr-4 to develop a simple but performant method
for GCD. Since category discovery has substantial overlap with self-supervised learning, we identify
elements of these methods that are also beneficial for GCD. In particular, mean-teacher based
algorithms [17] have been very effective in representation learning [14, 18], and we show that they
can boost GCD performance as well. Here, a ‘teacher’ model provides supervision through pseudo-
labels, and is maintained as the moving average of the model being trained (the ‘student’). The slowly
updated teacher is less affected by the noisy pseudo-labels which it produces, allowing clean pseudo-
labels to be produced for new categories. Our proposed method, ‘µGCD’ (‘mean-GCD’), extends
the existing state-of-the-art [19], substantially outperforming it on Clevr-4. Finally, in section 6, we
compare µGCD against prior work on real images, by evaluating on the challenging Semantic Shift
Benchmark (SSB) [20]. We substantially improve state-of-the-art on this evaluation.

In summary, we make the following key contributions: (i) We propose a new benchmark dataset,
Clevr-4, for GCD. Clevr-4 contains four independent taxonomies and can be used to better study the
category discovery problem. (ii) We use Clevr-4 to garner insights on the biases of large pre-trained
models as well as the weaknesses of existing category discovery methods. We demonstrate that even
very strong unsupervised models fail on this ‘toy’ benchmark. (iii) We present a novel method for
GCD, µGCD, inspired by the mean-teacher algorithm. (iv) We show µGCD outperforms baselines
on Clevr-4, and further sets a new state-of-the-art on the challenging Semantic Shift Benchmark.
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2 Related Work

Representation learning. The common goal of self-, semi- and unsupervised learning is to learn
representations with minimal labelled data. A popular technique is contrastive learning [21, 22],
which encourages representations of different augmentations of the same training sample to be similar.
Contrastive methods are typically either based on: InfoNCE [23] (e.g., MoCo [24] and SimCLR [21]);
or online pseudo-labelling (e.g., SWaV [9] and DINO [14]). Almost all contrastive learning methods
now adopt a variant of these techniques [25–28]. Another important component in many pseudo-
labelling based methods is ‘mean-teachers’ [17] (or momentum encoders [24]), in which a ‘teacher’
network providing pseudo-labels is maintained as the moving average of a ‘student’ model. Other
learning methods include cross-stitch [29], context-prediction [30], and reconstruction [31]. In this
work, we use mean-teachers to build a strong recipe for GCD.

Attribute learning. We propose a new synthetic dataset which contains multiple taxonomies based
on various attributes. Attribute learning has a long history in computer vision, including real-world
datasets such as the Visual Genome [32], with millions of attribute annotations, and VAW, with
600 attributes types [33]. Furthermore, the disentanglement literature [34–36] often uses synthetic
attribute datasets for investigation [37, 38]. We find it necessary to develop a new dataset, Clevr-
4, for category discovery as real-world datasets have either: noisy/incomplete attributes for each
image [32, 39]; or contain sensitive information (e.g. contain faces) [40]. We find existing synthetic
datasets unsuitable as they do not have enough categorical attributes which represent ‘semantic’
factors, with attributes often describing continuous ‘nuisance’ factors such as object location or
camera pose [37, 38, 41].

Category Discovery. Novel Category Discovery (NCD) was initially formalized in [42]. It differs
from GCD as the unlabelled images are known to be drawn from a disjoint set of categories to
the labelled ones [43–47]. This is different from unsupervised clustering [10, 48], which clusters
unlabelled data without reference to labels at all. It is also distinct from semi-supervised learning [17,
26, 49], where unlabelled images come from the same set of categories as the labelled data. GCD [7, 8]
was recently proposed as a challenging task in which assumptions about the classes in the unlabelled
data are largely removed: images in the unlabelled data may belong to the labelled classes or to
new ones [19, 50–52]. We particularly highlight concurrent work in SimGCD [19], which reports
the best current performance on standard GCD benchmarks. Our method differs from SimGCD by
the adoption of a mean-teacher [17] to provide more stable pseudo-labels training, and by careful
consideration of model initialization and data augmentations. [52] also adopt a momentum-encoder,
though only for a set of class prototypes rather than in a mean-teacher setup.

3 Clevr-4: a synthetic dataset for generalized category discovery

Generalized Category Discovery (GCD). GCD [7] is the task of fully labelling a dataset which
is only partially labelled, with labels available only for a subset of the categories. Formally, we are
presented with a dataset D, containing both labelled and unlabelled subsets, DL = {(xi, yi)}Nl

i=1 ∈
X ×YL and DU = {(xi, yi)}Nu

i=1 ∈ X ×YU . The model is then tasked with categorizing all instances
in DU . The unlabelled data contains instances of categories which do not appear in the labelled set,
meaning that YL ⊂ YU . Here, we assume knowledge of the number of categories in the unlabelled
set, i.e. k = |YU |. Though estimating k is an interesting problem, methods for tackling it are typically
independent of the downstream recognition algorithm [7, 42]. GCD is related to Novel Category
Discovery (NCD) [42], but the latter makes the not-so-realistic assumption that YL ∩ YU = ∅.

The category discovery challenge. The key to category discovery (generalized or not) is to use the
labelled subset of the data to extrapolate a taxonomy and discover novel categories in unlabelled
images. This task of extrapolating a taxonomy sets category discovery apart from related problems.
For instance, unsupervised clustering [10] aims to find the single most natural grouping of unlabelled
images given only weak inductive biases (e.g., invariance to specific data augmentations), but permits
limited control on which taxonomy is discovered. Meanwhile, semi-supervised learning [26] assumes
supervision for all categories in the taxonomy, which therefore must be known, in full, a-priori.

A problem with many current benchmarks for category discovery is that there is no clear taxonomy
underlying the object categories (e.g., CIFAR [53]) and, when there is, it is often ill-posed to
understand it given only a few classes (e.g., ImageNet-100 [42]). Furthermore, in practise, there
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are likely to be many taxonomies of interest. However, few datasets contain sufficiently complete
annotations to evaluate multiple possible groupings of the same data. This makes it difficult to
ascertain whether a model is extrapolating information from the labelled set (category discovery)
or just finding its own most natural grouping of the unlabelled data (unsupervised clustering).

Table 1: Clevr-4 statistics for the different splits of
the dataset. Note that the same data must be classified
along independent taxonomies in the different splits.

Texture Color Shape Count

Examples {metal, rubber} {red, blue} {torus, cube} {1, 2}
|YL| 5 5 5 5
|YU | 10 10 10 10

|DL| 2.1K 2.3K 2.1K 2.1K
|DU | 6.3K 6.1K 6.4K 6.3K
|DL|+ |DU | 8.4K 8.4K 8.4K 8.4K

Clevr-4. In order to better study this prob-
lem, we introduce Clevr-4, a synthetic
benchmark which contains four equally
valid groupings of the data. Clevr-4
extends the CLEVR dataset [12], using
Blender [54] to render images of multiple
objects and place them in a static scene.
This is well suited for category discovery,
as each object attribute defines a different taxonomy for the data (e.g., it enables clustering images
based on object shape, color etc.). The original dataset is limited as it contains only three shapes and
two textures, reducing the difficulty of the respective clustering tasks. We introduce 2 new colors, 7
new shapes and 8 new textures to the dataset, placing between 1 and 10 objects in each scene.

Each image is therefore parameterized by object shape, texture, color and count. The value for each
attribute is sampled uniformly and independently from the others, meaning the image label with
respect to one taxonomy gives us no information about the label with respect to another. Note that this
sets Clevr-4 apart from existing GCD benchmarks such as CIFAR-100 [53] and FGVC-Aircraft [55].
These datasets only contain taxonomies at different granularities, and as such the taxonomies are
highly correlated with each other. Furthermore, the number of categories provides no information
regarding the specified taxonomy, as all Clevr-4 taxonomies contain k = 10 object categories.

Finally, we create GCD splits for each taxonomy in Clevr-4, following standard practise and reserving
half the categories for the labelled set, and half for the unlabelled set. We further subsample 50%
of the images from the labelled categories and add them to the unlabelled set. We synthesize 8.4K
images for GCD development (summarized in table 1), and further make a larger 100K image dataset
available. The full generation procedure is detailed in appendix A.1.

Performance metrics. We follow standard practise [7, 47] and report clustering accuracy for
evaluation. Given predictions, ŷi, and ground truth labels, yi, the clustering accuracy is ACC =

maxΠ∈Sk

1
Nu

∑Nu

i=1 1{ŷi = Π(yi)}, where Sk is the symmetry group of order k. Here Nu is the
number of unlabelled images and the max operation is performed (with the Hungarian algorithm [56])
to find the optimal matching between the predicted cluster indices and ground truth labels. For GCD
models, we also report ACC on subsets belonging to ‘Old’ (yi ∈ YL) and ‘New’ (yi ∈ YU \ YL)
classes. The most important metric is the ‘All’ accuracy (overall clustering performance), as the
precise ‘Old’ and ‘New’ figures are subject to the assignments selected in the Hungarian matching.

4 Learnings from Clevr-4 for category discovery

In this section, we use Clevr-4 to gather insights into the category discovery problem. In section 4.1,
we assess the limitations of large-scale pre-training for the problem, before using Clevr-4 to examine
the weaknesses of existing category discovery methods in section 4.2. Next, in section 4.3, we use
our findings to motivate a stronger method for GCD (which we describe in full in section 5), finding
that this substantially outperforms implemented baselines on Clevr-4.

4.1 Limitations of large-scale pre-training for category discovery

Here, we show that pre-trained representations develop certain ‘biases’ which limit their performance
when used directly or as initialization for category discovery.

Unsupervised clustering of pre-trained representations (table 2). We first demonstrate the limita-
tions of unsupervised clustering of features as an approach for category discovery (reporting results
with semi-supervised clustering in fig. 11). Specifically, we run k-means clustering [57] on top of
features extracted with self- [9, 14, 21], weakly- [15], and fully-supervised [2, 3, 58] backbones,
reporting performance on each of the four taxonomies in Clevr-4. The representations are trained on
up to 400M images and are commonly used in the vision literature.
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Table 2: Unsupervised clustering accuracy (ACC) of pre-trained models on Clevr-4. We find
most models are strongly biased towards shape, while MAE [31] exhibits a color bias.

Pre-training Method Pre-training Data Backbone Texture Shape Color Count Average

SWaV [9] ImageNet-1K ResNet50 13.1 65.5 12.1 18.9 27.4
MoCoV2 [22] ImageNet-1K ResNet50 13.0 77.5 12.3 18.8 30.4
Supervised [2] ImageNet-1K ResNet50 13.2 76.8 15.2 12.9 29.5
Supervised [3] ImageNet-1K ConvNeXT-B 13.4 83.5 12.1 13.1 30.5

DINO [14] ImageNet-1K ViT-B/16 16.0 86.2 11.5 13.0 31.7
MAE [31] ImageNet-1K ViT-B/16 15.1 13.5 64.7 13.9 26.8
iBOT [59] ImageNet-1K ViT-B/16 14.4 85.9 11.5 13.0 31.2

CLIP [15] WIP-400M ViT-B/16 12.4 78.7 12.3 17.9 30.3
DINOv2 [60] LVD-142M ViT-B/14 11.6 98.1 11.6 12.8 33.5
Supervised [58] ImageNet-21K ViT-B/16 11.8 96.2 11.7 13.0 33.2

Table 3: Effects of large-scale pre-training on category discovery accuracy (ACC) on Clevr-4.
Contrary to dominant findings in the vision literature, we find that large-scale pre-training provides
inconsistent gains on Clevr-4. For instance, on count, training a lightweight model (ResNet18) from
scratch substantially outperforms initializing from DINOv2 (ViT-B/14) trained on 142M images.

Method Backbone Pre-training (Data) Texture Shape Color Count Average Average Rank

SimGCD ResNet18 - 58.1 97.8 96.7 67.6 80.5 2.0
SimGCD ViT-B/16 MAE [31] (ImageNet-1k) 54.1 99.7 99.9 53.0 76.7 2.0
SimGCD ViT-B/14 DINOv2 [60] (LVD-142M) 76.5 99.9 87.4 51.3 78.8 2.0

We find that most models perform well on the shape taxonomy, with DINOv2 almost perfectly
solving the task with 98% accuracy. However, none of the models perform well across the board. For
instance, on some splits (e.g., color), strong models like DINOv2 perform comparably to random
chance. This underscores the utility of Clevr-4 for delineating category discovery from standard
representation learning. Logically, it is impossible for unsupervised clustering on any representation
to perform well on all tasks. After all, only a single clustering of the data is produced, which cannot
align with more than one taxonomy. We highlight that such limitations are not revealed by existing
GCD benchmarks; on the CUB benchmark (see table 5), unsupervised clustering with DINOv2
achieves 68% ACC (≈ 140× random).

Pre-trained representations for category discovery (table 3). Many category discovery methods
use self-supervised representation learning for initialization in order to leverage large-scale pre-
training, in the hope of improving downstream performance. However, as shown above, these
representations are biased. Here, we investigate the impact of these biases on a state-of-the-art method
in generalized category discovery, SimGCD [19]. SimGCD contains two main loss components:
(1) a contrastive loss on backbone features, using self-supervised InfoNCE [23] on all data, and
supervised contrastive learning [61] on images with labels available; and (2) a contrastive loss to train
a classification head, where different views of the same image provide pseudo-labels for each other.
For comparison, we initialize SimGCD with a lightweight ResNet18 trained scratch; a ViT-B/16
pre-trained with masked auto-encoding [31]; and a ViT-B/14 with DINOv2 [60] initialization. For
each initialization, we sweep learning rates and data augmentations.

Surprisingly, and in stark contrast to most of the computer vision literature, we find inconsistent gains
from leveraging large-scale pre-training on Clevr-4. For instance, on the count taxonomy, pre-training
gives substantially worse performance that training a lightweight ResNet18 from scratch. On average
across all splits, SimGCD with a randomly initialized ResNet18 actually performs best. Generally,
we find that the final category discovery model inherits biases built into the pre-training, and can
struggle to overcome them even after finetuning. Our results highlight the importance of carefully
selecting the initialization for a given GCD task, and point to the utility of Clevr-4 for doing so.

4.2 Limitations of existing category discovery methods

Next, we analyze SimGCD [19], the current state-of-the-art for the GCD task. We show that on
Clevr-4 it is not always better than the GCD baseline [7] which it extends, and identify the source
of this issue in the generation of the pseudo-labels for the discovered categories. In more detail, the
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Table 4: Category discovery accuracy (ACC) on Clevr-4. Compared to our reimplementation of
the GCD baseline [7] and SimGCD state-of-the-art [19], our method provides substantial boosts on
average across Clevr-4. Results are averages across five random seeds. Also shown is the classification
accuracy of a fully-supervised upper-bound on a disjoint test-set.

Model Backbone Texture Shape Color Count Average

All Old New All Old New All Old New All Old New All

Fully supervised ResNet18 99.1 - - 100.0 - - 100.0 - - 96.8 - - 99.0
GCD ResNet18 62.4 97.5 45.3 93.9 99.7 90.5 90.7 95.0 88.5 71.9 96.4 60.1 79.7
SimGCD ResNet18 58.1 95.0 40.2 97.8 98.9 97.2 96.7 99.9 95.1 67.6 95.7 53.9 80.1

µGCD (Ours) ResNet18 69.8 99.0 55.5 94.9 99.7 92.1 99.5 100.0 99.2 75.5 96.6 65.2 84.9

GCD baseline uses only one of the two losses used by SimGCD, performing contrastive learning on
features, followed by simple clustering in the models’ embedding space. To compare SimGCD and
GCD, we start from a ResNet18 feature extractor, training it from scratch to avoid the potential biases
identified in section 4.1. We show results in table 4, reporting results for ‘All’, ‘Old’ and ‘New’ class
subsets. We follow standard practise when reporting on synthetic data and train all methods with
five random seeds [34, 35] (error bars in the appendix B.1), and sweep hyper-parameters and data
augmentations for both methods. We also train a model with full supervision and obtain 99% average
performance on Clevr-4 (on independent test data), showing that the model has sufficient capacity.

Overall, we make the three following observations regarding the performance of GCD and SimGCD
on Clevr-4: (i) Both methods’ performance on texture and count is substantially worse than on shape
and color. (ii) On the harder texture and count splits, the GCD baseline actually outperforms the
SimGCD state-of-the-art. Given that SimGCD differs from GCD by adding a classification head
and corresponding loss, this indicates that jointly training classifier and feature-space losses can hurt
performance. (iii) Upon closer inspection, we find that the main performance gap on texture and
count comes from accuracy on the ‘New’ categories; both methods cluster the ‘Old’ categories almost
perfectly. This suggests that the ‘New’ class pseudo-labels from SimGCD are not strong enough;
GCD, with no (pseudo-)supervision for novel classes, achieves higher clustering performance.

4.3 Addressing limitations in current approaches

Given these findings, we seek to improve the quality of the pseudo-labels for ‘New’ categories.
Specifically, we draw inspiration from the mean-teacher setup for semi-supervised learning [17],
which has been adapted with minor changes in many self-supervised frameworks [14, 18, 24]. Here,
a ‘student’ network is supervised by class pseudo-labels generated by a ‘teacher’. The teacher is an
identical architecture with parameters updated with the Exponential Moving Average (EMA) of the
student. The intuition is that the slowly updated teacher is more robust to the noisy supervision from
pseudo-labels, which in turn improves the quality of the pseudo-labels themselves. Also, rather than
jointly optimizing both SimGCD losses, we first train the backbone only with the GCD baseline loss,
before finetuning with the classification head and loss.

These changes, together with careful consideration of the data augmentations, give rise to our
proposed µGCD (mean-GCD) algorithm, which we fully describe next in section 5. Here, we note
the improvements that this algorithm brings in Clevr-4 on the bottom line of table 4. Overall, µGCD
outperforms SimGCD on three of the four Clevr-4 taxonomies, and further outperforms SimGCD by
nearly 5% on average across all splits. µGCD underperforms SimGCD on the shape split of Clevr-4
and we analyse this failure case in the appendix B.2.

5 The µGCD algorithm

In this section, we detail a simple but strong method for GCD, µGCD, already motivated in section 4
and illustrated in fig. 2. In a first phase, the algorithm proceeds in the same way as the GCD
baseline [7], learning the representation. Next, we append a classification head and fine-tune the
model with a ‘mean teacher’ setup [17], similarly to SimGCD but yielding more robust pseudo-labels.

Concretely, we construct models, fθ, as the composition of a feature extractor, Φ, and a classification
head, g. Φ is first trained with the representation learning framework from [7] as described above,
and the composed model gives f = g ◦Φ with values in Rk, where k is the total number of categories
in the dataset. Next, we sample a batch of images, B, and generate two random augmentations of
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Figure 2: Our ‘µGCD’ method. We begin with representation learning from the GCD baseline,
followed by finetuning in a mean-teacher style setup. Here, a ‘teacher’ provides supervision for a
‘student’ network, and maintains parameters as the exponential moving average (EMA) of the student.

every instance. We pass one view through the student network fθS , and the other through the teacher
network fθT , where θS and θT are the network parameters of the student and teacher, respectively.
We compute the cross-entropy loss between the (soft) teacher pseudo-labels and student predictions:

Lu(θS ;B) = − 1

|B|
∑
x∈B

⟨pT (x), log(pS(x))⟩, p∗(x) = softmax(fθ∗(x); τ∗), (1)

where p∗(x) ∈ [0, 1]k are the softmax outputs of the student and teacher networks, scaled with
temperature τ∗. We further use labelled instances in the batch with a supervised cross-entropy
component as:

Ls(θS ;BL) = − 1

|BL|
∑
i∈BL

⟨y(x), log(pS(x))⟩, (2)

where BL ∈ B is the labelled subset of the batch and y(x) ∈ {0, 1}k is the one-hot class label of
the example x. Finally, we add a mean-entropy maximization regularizer from [26] to encourage
pseudo-labels for all categories:

Lr(θS) = −⟨p̄S , log(p̄S)⟩, p̄S =
1

|B|
∑
x∈B

pS(x). (3)

The student is trained with respect to the following total loss, given hyper-parameters λ1 and λ2:
L(θS ;B) = (1− λ1)Lu(θS ;B) + λ1Ls(θS ;BL) + λ2Lr(θS). The teacher parameters are updated
as the moving average θT = ω(t)θT + (1− ω(t))θS , where ω(t) is a time-varying momentum.

Augmentations. While often regarded as an ‘implementation detail’, an important component of our
method is the careful consideration of augmentations used in the computation of Lu. Specifically,
on the SSB, we pass different views of the same instance to the student and teacher networks. We
generate a strong augmentation which is passed to the student network, and a weak augmentation
which is passed to the teacher, similarly to [49]. The intuition is that, while contrastive learning
benefits from strong data augmentations [9, 14], we wish the teacher network’s predictions to be
as stable as possible. Meanwhile, on Clevr-4, misaligned data augmentations — e.g., aggressive
cropping for count, or color jitter for color — substantially degrade performance (see appendix B.5).

Architecture. We adopt a ‘cosine classifier’ as g, which was introduced in [62] and leverages
L2-normalized weight vectors and feature representations. While it has been broadly adopted for
many tasks [8, 9, 19, 25, 43], we demonstrate why this component helps in section 7.1. We find that
normalized vectors are important to avoid collapse of the predictions to the labelled categories.

6 Results on real data

Datasets. We compare µGCD against prior work on the standard Semantic Shift Benchmark (SSB)
suite [20]. The SSB comprises three fine-grained evaluations: CUB [64], Stanford Cars [65] and
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Table 5: Category discovery accuracy (ACC) on the Semantic Shift Benchmark [20]. We report
results from prior work using DINO intialization [14], and reimplement GCD baselines and SimGCD
with DINOv2 pre-training [60] (noted with *).

Pre-training CUB Stanford Cars Aircraft Average

All Old New All Old New All Old New All

k-means [57] DINO 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8 21.1
RankStats+ [47] DINO 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 29.5
UNO+ [43] DINO 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 37.0
ORCA [8] DINO 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 26.9
GCD [7] DINO 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 45.1
XCon [63] DINO 52.1 54.3 51.0 40.5 58.8 31.7 47.7 44.4 49.4 46.8
OpenCon [52] DINO 54.7 63.8 54.7 49.1 78.6 32.7 - - - -
MIB [51] DINO 62.7 75.7 56.2 43.1 66.9 31.6 - - - -
PromptCAL [50] DINO 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 55.1
SimGCD [19] DINO 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 56.1

µGCD (Ours) DINO 65.7 68.0 64.6 56.5 68.1 50.9 53.8 55.4 53.0 58.7

k-means* DINOv2 67.6 60.6 71.1 29.4 24.5 31.8 18.9 16.9 19.9 38.6
GCD* DINOv2 71.9 71.2 72.3 65.7 67.8 64.7 55.4 47.9 59.2 64.3
SimGCD* DINOv2 71.5 78.1 68.3 71.5 81.9 66.6 63.9 69.9 60.9 69.0

µGCD (Ours) DINOv2 74.0 75.9 73.1 76.1 91.0 68.9 66.3 68.7 65.1 72.1

FGVC-Aircraft [55]. Though the SSB datasets do not contain independent clusterings of the same
images (as in Clevr-4) the evaluations do have well-defined taxonomies — i.e. birds, cars and aircrafts.
Furthermore, the SSB contains curated novel class splits which control for semantic distance with
the labelled set. We find that coarse-grained GCD benchmarks do not specify clear taxonomies
in the labelled set, and we include a long-tailed evaluation on Herbarium19 [66] in appendix C.3.

Table 6: Ablations. We find that a proper intial-
ization, momentum decay schedule, and augmen-
tation strategy are critical to strong performance.

CUB

All Old New

µGCD (Ours) 65.7 68.0 64.6
(1) W/o GCD init. 61.7 66.2 59.6
(2) W/o stronger student augmentation 58.1 72.5 50.9

(3) With ωt := 1 1.6 1.1 1.8
(4) With ωt := 0.0 62.7 66.4 60.9
(5) With ωt := 0.7 64.1 65.1 63.6

(6) W/o cosine classifier 54.9 64.2 50.3
(7) W/o ME-Max regularizer 42.0 41.8 42.1

Model initialization and compared methods.
The SSB contains fine-grained, object-centric
datasets, which have been shown to benefit
from greater shape bias [67]. Prior GCD meth-
ods [7, 52, 63] initialize with DINO [14] pre-
training, which we show in table 2 had the
strongest shape bias among self-supervised mod-
els. However, the recent DINOv2 [60] demon-
strates a substantially greater shape bias. As
such, we train our model both with DINO and
DINOv2 initialization, further re-implementing
GCD baselines [7, 68] and SimGCD [19] with
DINOv2 for comparison.

Implementation details. We implement all models in PyTorch [69] on a single NVIDIA P40 or M40.
Most models are trained with an initial learning rate of 0.1 which is decayed with a cosine annealed
schedule [70]. For our EMA schedule, we ramp it up throughout training with a cosine function [18]:
ω(t) = ωT − (1− ωbase)(cos(

πt
T ) + 1)/2. Here t is the current epoch and T is the total number of

epochs. Differently, however, to most self-supervised learning literature [18], we found a much lower
initial decay to be beneficial; we ramp up the decay from ωbase = 0.7 to ωT = 0.999 during training.
Further implementation details can be found in appendix E.

6.1 Discussion.

In table 5, we find that µGCD outperforms the existing state-of-the-art, SimGCD [19], by over 2%
on average across all SSB evaluations when using DINO initialization. When using the stronger
DINOv2 backbone, we find that the performance of the simple k-means baseline nearly doubles in
accuracy, substantiating our choice of shape-biased initialization on this object-centric evaluation.
The gap between the GCD baseline [7] and the SimGCD state-of-the-art [19] is also reduced from
over 10% to under 5% on average. Nonetheless, our method outperforms SimGCD by over 3% on
average, as well as on each dataset individually, setting a new state-of-the-art.
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Figure 3: Left: Norms of weight vectors in GCD classifiers, with and without regularizations. Right:
Prediction histogram of a classifier without weight norm and max-entropy regularization.

Ablations. We ablate our main design choices in table 6. L(1) shows the importance of pre-training
with the GCD baseline loss [7] (though we find in section 4 that jointly training this loss with the
classifier, as in SimGCD [19], is difficult). L(2) further demonstrates that stronger augmentation for
the student network is critical, with a 7% drop in CUB performance without it. L(3)-(5) highlight
the importance of a carefully designed EMA schedule, our use of a time-varying decay outperforms
constant decay values. This is intuitive as early on in training, with a randomly initialized classification
head, we wish for the teacher to be updated quickly. Later on in training, slow teacher updates mitigate
the effect of noisy pseudo-labels within any given batch. Furthermore, in L(6)-(7), we validate the
importance of entropy regularization and cosine classifiers in category discovery. In section 7.1, we
provide evidence as to why these commonly used components [8, 19, 43] are necessary, and also
discuss the design of the student augmentation.

7 Further Analysis

In this section we further examine the effects of architectural choices in µGCD and other category
discovery methods. Section 7.1 seeks to understand the performance gains yielded by cosine
classifiers, and section 7.2 visualizes the feature spaces learned by different GCD methods.

7.1 Understanding cosine classifiers in category discovery

Cosine classifiers with entropy regularization have been widely adopted in recognition settings
with limited supervision [14, 25], including in category discovery [19, 43]. In fig. 3, we provide
justifications for this by inspecting the norms of the learned vectors in the final classification layer.

Specifically, consider a classifier (without a bias term) as g = W ∈ Rd×k, containing k vectors of d
dimension, one for each output category. In fig. 3, we plot the magnitude of each of these vectors
trained with different constraints on CUB [64] (one of the datasets in the SSB [20]). Note that the
classifier is constructed such that the first 100 vectors correspond to the ‘Old’ classes, and are trained
with ground truth labels. In our full method, with normalized classifiers, the norm of all vectors is
enforced to be the unit norm (blue dashed line). If we remove this constraint (solid orange line), we
can see that the norms of vectors which are not supervised by ground truth labels (indices 101-200)
fall substantially. Then, if we further remove the entropy regularization term (solid green line), the
magnitudes of the ‘Old’ class vectors (indices 1-200) increases dramatically.

This becomes an issue at inference time, with per-class logits computed as:

lm = ⟨wm,Φ⟩ = |wm||Φ| cos(α) ∀m ∈ {1...k}

with the class prediction returned as argmax lm. In other words, we show that without appro-
priate regularisation, our GCD models trivially reduce the weight norm of ‘New’ class vectors
(|wm| ∀m > 100), leaving all images to be assigned to one of the ‘Old’ classes. The effects of
this are visualized in the right panel of fig. 3, which plots the histogram of class predictions for an
unregularized GCD classifier. We can see that exactly zero examples are predicted to ‘New’ classes.
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‘Old’

‘New’

GCD

ACC: 70.1 / 95.8 / 65.5
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ACC: 65.2 / 93.5 / 51.6

μGCD (Ours)

ACC: 76.0 / 96.4 / 66.1

Figure 4: PCA [71] of features from the GCD baseline [7], SimGCD [19] and µGCD on the count
split of Clevr-4. While the baseline learns eliptical clusters for each category, SimGCD and µGCD
project images onto a one-dimensional object in feature space, which be considered as a ‘semantic
axis’ along which the category changes. Clustering accuracy is reported for ‘All’/‘Old’/‘New’ classes.

We further highlight that this effect is obfuscated by the evaluation process, which reports non-zero
accuracies for ‘New’ classes through the Hungarian assignment operation.

7.2 PCA Visualization.

Finally, we perform analysis on the count split of Clevr-4. Uniquely amongst the four taxonomies,
the count categories have a clear order. In fig. 4, we plot the first two principal components [71] of
the normalized features of the GCD baseline [7], SimGCD [19] and µGCD. It is clear that all feature
spaces learn a clear ‘number sense’ [72] with image features placed in order of increasing object
count. Strikingly, this sense of numerosity is present even beyond the supervised categories (count
greater than 5) as a byproduct of a simple recognition task. Furthermore, while the baseline learns
elliptical clusters for each category, SimGCD and µGCD project all images onto a one-dimensional
object in feature space. This object can could be considered as a ‘semantic axis’: a low-dimensional
manifold in feature space, R ∈ Rd, along which the category label changes.

8 Conclusion and final remarks

Limitations and broader impacts. In this paper we presented a synthetic dataset for category
discovery. While synthetic data allows precise manipulation of the images, and hence more controlled
study of the GCD problem, findings on synthetic data do not always transfer directly to real-world
images. For instance, the failure case of µGCD on the shape split of Clevr-4 (see section 4.3)
occurs due to some classification vectors being unused (see section 7.1). This ceases to be an issue
on real-world data with hundreds of categories (see table 5). In appendix F, we fully discuss the
difficulties in developing a dataset like Clevr-4 with real-world data. Furthermore, while GCD has
many real-world applications, like any form of unsupervised or partially-supervised machine learning,
it can be unreliable and must be applied with caution in practise.

Remarks on Clevr-4. We note that Clevr-4 can find broader applicability in related machine learning
fields. As examples, the dataset can be used for disentanglement research (see appendix F) and as a
simple probing set for biases in representation learning. For instance, we find in section 4.1 that most
of the ImageNet trained models are biased towards shape rather than texture, which is in contrast to
popular findings from Geirhos et al. [13]. Furthermore, larger models are often explicitly proposed as
‘all-purpose’ features for ‘any task’ [60]; here we find simple tasks (e.g., color or count recognition)
where initialization with such moodels hurts performance compared to training from scratch. Note
that practical problems — e.g., vehicle re-identification [73] or crowd counting [74] — may require
understanding of such aspects of the image.

Conclusion. In this paper we have proposed a new dataset, Clevr-4, and used it to investigate
the problem of Generalized Category Discovery (GCD). This included probing the limitations of
unsupervised representations for the task, as well as for identifying weaknesses in existing GCD
methods. We further leveraged our findings, together with consistent trends in related literature, to
propose a simple but performant algorithm, µGCD. We find that µGCD not only provides gains on
Clevr-4, but further sets a new state-of-the-art o n the standard Semantic Shift Benchmark.
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Appendices

The appendices are summarized in the contents table below. We highlight: appendices A.1 and A.2
for details on Clevr-4; appendix B.4 for further analysis of pre-trained representations on Clevr-4;
and appendix C.3 for a long-tail evaluation of µGCD on the Herbarium19 dataset [66].
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A Clevr-4

A.1 Clevr-4 generation

We build Clevr-4 using Blender [54], a free 3D rendering software with a Python API. Following the
CLEVR dataset [12], our images are constituted of multiple rendered objects in a static scene. Each
object is defined by three ‘semantic’ attributes (texture, shape and color), and is further defined by
its size, pose and position in the scene. We consider the first three attributes as ‘semantic’ as they
are categorical variables which can neatly define image ‘classes’. Meanwhile, we designate the size,
pose and position attributes as ‘nuisance’ factors which are not related to the image category.

CLEVR Limitations. CLEVR is first limited – for the purposes of category discovery – as it has
only two textures (‘rubber’ and ‘metal’) and three shapes (‘cube’, ‘sphere’ and ‘cylinder’). For
category discovery, we wish to have more categories, both to increase the difficulty of the task, and to
ensure a sufficient number of classes in the ‘Old’ and ‘New’ subsets. Furthermore, we wish to have
the same number of categories in each split; otherwise, in principal, an unsupervised algorithm may
be able to distinguish the taxonomy simply from the number of categories present.
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Figure 5: Normalized mutual information be-
tween the four taxonomies in Clevr-4. All tax-
onomies have roughly no mutual information be-
tween them (they are statistically independent).

Expanding the taxonomies. To increase the number of categories in each taxonomy, we introduce
new textures, colours and shapes to the dataset, resulting in 10 categories for each taxonomy. We
create most of the 8 new textures by wrapping a black-and-white JPEG around the surface of the
object, each of which have their own design (e.g., ‘chessboard’ or ‘circles’). Given an ‘alpha’ for the
opaqueness of this wrapping, these textures can be distinguished independently of the underlying
color. We further leverage pre-fabricated meshes packaged with Blender to introduce 7 new shapes to
the dataset, along with 2 new colors for the objects. The new shapes and colors were selected to be
clearly distinguishable from each other. Full definitions of the taxonomies are given in appendix A.2.

Image sampling process. For a given image, we first independently sample object texture, shape
and color. We then randomly sample how many objects should be in the image (i.e., object count)
and place this many objects in the scene. Each object has its own randomly sampled size (which is
taken to be one of three discrete values), position and relative pose. Thus, differently to CLEVR,
all objects in the image have the same texture, shape and color. This allows these three attributes,
together with count, to define independent taxonomies within the data.

A.2 Clevr-4 details

We describe the categories in each of the four taxonomies in Clevr-4 below. All taxonomies have
10 categories, five of which are used in the labeled set and shown in bold. Image exemplars of all
categories are given in figs. 7 and 8.

• Texture: rubber, metal, checkered, emojis, wave, brick, star, circles,
zigzag, chessboard

• Shape: cube, sphere, monkey, cone, torus, star, teapot, diamond, gear,
cylinder

• Color: gray, red, blue, green, brown, purple, cyan, yellow, pink, orange

• Count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

fig. 6 plots the frequency of all categories in the taxonomies, while fig. 5 shows the mutual information
between the four taxonomies. We find that all taxonomies, except for shape, are roughly balanced,
and the four taxonomies have approximately no mutual information between them – realizing our
desire of them being statistically independent.

A.3 Clevr-4 examples

We give examples of each of the four taxonomies in Clevr-4 in figs. 7 and 8.
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Texture Shape

Figure 7: Examples of each category from the texture and shape taxonomies of Clevr-4.

B Analysis of results

B.1 Clevr-4 error bars

We show results for the GCD baseline [7], the current state-of-the-art SimGCD [19] and our method,
µGCD, in fig. 9. The results are shown for five random seeds for each method, and plotted with the
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Color Count

Figure 8: Examples of each category from the color and count taxonomies of Clevr-4.

standard matplotlib boxplot function, which identifies outliers in colored circles. We also plot
the median performance of our method on each taxonomy in dashed lines.

Broadly speaking, the takeaways are the same as the results from Table 4 of the main paper. However,
while the mean performance of our method is worse than SimGCD on the shape split, we can see here
that the median performance of µGCD is within bounds, or significantly better, than the compared
methods on all taxonomies.

B.2 shape failure case

Overall, we find our proposed µGCD outperforms prior state-of-the-art methods on three of the four
Clevr-4 splits (as well as on the Semantic Shift Benchmark [20]). We further show in appendix B.1
that, when accounting for outliers in the five random seeds, our method is also roughly equivalent to
the SimGCD [19] state-of-the-art on the shape split of Clevr-4.

Nonetheless, we generally find that our method is less stable on the shape split of Clevr-4 than on
other taxonomies and datasets. We provide some intuitions for this by visualizing the representations
and predictions of our method in fig. 10.
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Figure 9: Box plots of results on Clevr-4. We show results for the GCD baseline [7], the current
state-of-the-art SimGCD [19] and our method, µGCD. We plot results for five random seeds for
the four taxonomies, with outliers shown as colored circles. We also plot the median performance
of our method on each taxonomy in dashed lines. On all taxonomies, µGCD is within bounds, or
significantly better, than the compared methods.

Preliminaries: In fig. 10, we plot TSNE projections [75] of the feature spaces of two versions of
our model, as well as the histograms of the models’ predictions on the shape split. Along with the
models’ image representations (colored scatter points), we also plot the class vectors of the cosine
classifiers (colored stars). On the left, we show our trained model when we randomly initilize the
cosine classifier, while on the right we initialize the class vectors in the classifier with k-means
centroids. We derive these centroids by running standard k-means on the image embeddings of the
backbone, which is pre-trained with the GCD-style representation learning step (see appendix D).

Observations: In the plot on the left, we find that though the feature space is very well separated
(there is little overlap between clusters of different categories), the performance of the classifier is
still only around 90%. The histogram of model predictions demonstrates that this is due to no images
being assigned to the ‘star’ category – this vector in the classifier is completely unused. Instead, too
many instances are assigned to ‘gear’. In the TSNE plot, we can see that the ‘gear’ class vector is
between clusters for both ‘gear’ and ‘star’ images, while the ‘star’ vector is pushed far away from
both. We suggest that this is due to the optimization falling into a local optimum early on in training,
as a result of the feature-space initialization already being so strong.

On the right, we find we can largely alleviate this problem by initializing the classification head
carefully – with k-means centroids from the pre-trained backbone. We see that the problem is nearly
perfectly solved, and the histogram of predictions reflects the true class distribution of the labels.

Takeaway: We find that when the initialization of the model’s backbone – from the GCD-style
representation learning step, see appendix D – is already very strong, random initialization of the
classification head in µGCD can result in local optima in the model’s optimization process. This can
be alleviated by initializing the classification head carefully with k-means centroids – resulting in
almost perfect performance – but the issue can persist with some random seeds (see appendix B.1).

B.3 Semi-supervised k-means with pre-trained backbones

In fig. 11, we probe the effect of running semi-supervised k-means [7] on top of different pre-trained
backbones. This is a simple mechanism by which models can leverage the information from the
‘Old’ class labels. We find that while this improves clustering performance on some taxonomies, it is
insufficient to overcome the biases learned during the models’ pretraining, corroborating our findings
from table 2 of the main paper.

B.4 Clustering with sub-spaces of pre-trained features

In table 2 and fig. 11, we demonstrate that all pre-trained models have a clear bias towards one of the
Clevr-4 taxonomies. Specifically, we find that clustering in pre-trained feature spaces preferentially
aligns with a single attribute (e.g shape or color).
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w/o classifier init. w/ classifier init. 
ACC: 91.4 / 100.0 / 86.3 ACC: 99.8 / 99.9 /99.7

Figure 10: Analysis of the shape failure mode, showing TSNE plots [75] and prediction histograms
for two models, trained without (left) and with (right) initialization of the classification head with
k-means centroids. Left: When the backbone initialization (from the GCD representation learning
step [7]) is already very strong, the classification head gets stuck in a local optimum, with one class
vector unused. Right: We find we can alleviate this by initializing the class vectors with k-means
centroids, almost perfectly solving the problem, but the issue can persist with some random seeds.

Figure 11: Effect of semi-supervised k-means on representative pre-trained backbones. We find
semi-supervised k-means is insufficient to overcome the bias learned during pre-training.

Here, we investigate whether these clusters have any sub-structures. To do this, we perform PCA
analysis on features extracted with two backbones: DINOv2 [60] and MAE [31]. Intuitively, we
wish to probe whether the omission of dominant features from the backbones (e.g the shape direction
with DINOv2 features) allows k-means clustering to identify other taxonomies. Specifically, we:
(i) extract features for all images using a given backbone, X ∈ RN×D; (ii) identify the principal
components of the features, sorted by their component scores, W ∈ RD×D; (iii) re-project the
features onto the components, omitting those with the p highest scores, X̂ = (X−µ) ·W[:, p :] ; (iv)
cluster the resulting features, X̂ ∈ RN×D−p, with k-means. Here, µ is the average of the features X,
and the results are shown in figs. 12 and 13.

Overall, we find that by removing the dominant features from the backbones, performance on other
taxonomies can be improved (at the expense of performance on the ‘dominant’ taxonomy). The effect
is particularly striking with MAE, where we see an almost seven-fold increase in shape performance
after the the three most dominant principal components are removed.

This aligns with the reported performance characteristics of DINOv2 and MAE. The object-centric
recognition datasets on which these models are evaluated benefit from shape-biased representations
(see section 6). We find here that both MAE and DINOv2 encode shape information, but that more
work is required to extract this from MAE features. This is reflected by the strong linear probe and
kNN performance of DINOv2, while MAE requires full fine-tuning to achieve optimal performance.
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Figure 12: Re-clustering DINOv2 [60] features after removing dominant principal components.
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Figure 13: Re-clustering MAE [31] features after removing dominant principal components.

Finally, we note that decoding the desired information from pre-trained features is not always trivial,
and we demonstrate in section 4 that even in the (partially) supervised, fine-tuning setting in GCD,
both of these backbones underperform a randomly initialized ResNet18 on the count taxonomy.

B.5 Design of data augmentation and mis-aligned augmentations

In our SSB experiments, the teacher is passed a weaker augmentation, comprising only RandomCrop
and RandomHorizontalFlip. We find this stabilizes the pseudo-labels produced by the teacher.
However, the self-supervised literature consistently finds that strong augmentations are beneficial for
representation learning [9, 14, 21]. As such, we experiment with gradually increasing the strength of
the augmentation passed to the student model in table 7.

Specifically, we experiment along two axes: the strength of the base augmentation (‘Strong Base
Aug’ column); and how aggressive the cropping augmentation is (‘Aggressive Crop’ column). To
make the base augmentation stronger, we add Solarization and Gaussian blurring [21]. For cropping,
we experiment with a light RandomResizeCrop (cropping within a range of 0.9 and 1.0) and a
more aggressive variant (within a range of 0.3 and 1.0). Overall, we find that an aggressive cropping
strategy, as well as a strong base augmentation, is critical for strong performance. We generally found
weaker variants to overfit. Though they also have lower peak clustering accuracy, the accuracy falls
sharply later in training without the regularization from strong augmentation.

Table 7: Design of student augmentation.

Aggressive Crop Strong Base Aug CUB

All Old New

✗ ✗ 38.6 54.6 30.6
✗ ✓ 41.6 58.8 33.0
✓ ✗ 52.7 69.4 44.7
✓ ✓ 65.7 68.0 64.6
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Table 8: Effect of mis-aligned augmentations on the GCD Baseline.
Color Count

Aligned Augmentation 84.5 65.2
Misaligned Augmentation 26.1 46.6
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Figure 14: Effect of hyper-parameter, λ1. We investigate the effect of λ1 (which balances the
supervised and un-supervised losses), training µGCD models on the texture split.

Mis-aligned augmentations on Clevr-4 A benefit of Clevr-4 is that each taxonomy has a simple
semantic axes. As such, we are able to conduct controlled experiments on the effect of targeting these
axes with different data augmentations. Specifically, in table 8, we demonstrate the effect of having
‘misaligned’ augmentations on two splits of Clevr-4. We train the GCD baseline with ColorJitter
on the color split and CutOut for the count split. The augmentations destroy semantic information
for the respective taxonomies, resulting in substantial degradation of performance. The ‘aligned’
augmentations are light cropping and flipping for color, and light rotation for count. The results
highlight the importance of data augmentation in injecting inductive biases into deep representations.

B.6 Effect of λ1

In fig. 14, we investigate the effect of the hyper-parameter λ1, which controls the tradeoff between
the supervised and unsupervised losses in µGCD. We find that with 0.1 <= λ1 <= 0.4, the ‘All’
clustering accuracy is robust, while at λ1 = 0 (only unsupervised loss) and λ1 = 1 (only supervised
loss), performance degrades. We note that the Hungarian assignment in evaluation results in imperfect
‘Old’ performance even at λ1 close to 1 (more weight on the supervised loss). As such, we also show
an ‘Upper Bound’ (‘cheating’) clustering performance in gray, which allows re-use of clusters in the
‘Old’ and ‘New’ accuracy computation.

C Additional Experiments

C.1 Results with estimated number of classes

In the main paper, we followed standard practise in category discovery [7, 19, 43, 46, 50, 52] and
assumed knowledge of the number of categories in the dataset, k. Here, we provide experiments
when this assumption is removed. Specifically, we train our model using an estimated number of
categories in the dataset, where the number of categories is predicted using an off-the-shelf method
from [7]. We use estimates of k = 231 for CUB and k = 230 for Stanford Cars, while these datasets
have a ground truth number of k = 200 and k = 196 classes respectively.

We compare against figures from SimGCD [19] as well as the GCD baseline [7]. As expected, we
find our method performs worse on these datasets when an estimated number of categories is used,
though we note that the performance of SimGCD [19] improves somewhat on CUB, and the gap
between our methods is reduced on this dataset. Nonetheless, the proposed µGCD still performs
marginally better on CUB, and further outperforms the SoTA by nearly 7% on Stanford Cars in this
setting.
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Table 9: Results on the SSB with estimated number of categories. We use the method from [7] to
estimate the number of categories as k = 231 for CUB, and k = 230 for Stanford Cars. We run our
method with this many vectors in the classification head, comparing against baselines evaluated with
the same estimates of k. Results from baselines are reported from [19].

Pre-training CUB Stanford Cars Average

All Old New All Old New All

GCD [7] DINO [14] 47.1 55.1 44.8 35.0 56.0 24.8 41.1
SimGCD [19] DINO [14] 61.5 66.4 59.1 49.1 65.1 41.3 55.3

µGCD (Ours) DINO [14] 62.0 60.3 62.8 56.3 66.8 51.1 59.2
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Figure 15: Results when varying the proportion of ‘Old’ category images reserved reserved for
DL. We find our µGCD method substantially outperforms the GCD baseline [7] across all settings.

C.2 Results with varying proportion of labelled examples

In the main paper, we follow standard practise in the GCD setting [7, 19, 50, 52] and sample a fixed
proportion of images, p = 0.5, from the labelled categories and use them in the labeled set, DL. Here,
we experiment with our method if this proportion changes, showing results in fig. 15. We find our
proposed µGCD substantially outperforms the GCD baseline [7] across all tested values of p.

C.3 Results on Herbarium19

We evaluate our method on the Herbarium19 dataset [66]. We use the ‘Old’/‘New’ class splits from
[7] which are randomly sampled rather than being curated as they are in the SSB. Nonetheless, the
dataset is highly challenging, being long-tailed and containing 683 classes in total. 341 of these
classes are reserved as ‘Old’, and the dataset contains a total of 34K images. It further contains a
clear taxonomy (herbarium species), making it a suitable evaluation for GCD. We compare µGCD
against prior work in table 10, again finding that we set a new state-of-the-art.

D Description of baselines and µGCD algorithms

In this section we provide step-by-step outlines of: the GCD baseline [7]; the SimGCD [19] baseline;
and our method, µGCD. Full motivation of the design decisions in µGCD can be found in section 4.

Task definition and notation: Given a dataset with labelled (DL) and unlabelled (DU ) subsets, a
model must classify all images in DU into one of k possible categories. DL contains only a subset of
the categories in DU , and prior knowledge of k is assumed. During training, batches (B), are sampled
with both labelled images (BL ∈ DL) and unlabelled images (BU ∈ DU ). The performance metric is
the clustering (classification) accuracy on DU .

GCD [7]. Train a backbone, Φ, and perform classification by clustering in its feature space.

(1) Train Φ using an unsupervised InfoNCE loss [23] on all the data, as well as a supervised contrastive
loss [61] on the labeled data. Letting xi and x′

i represent two augmentations of the same image in a
batch B, the unsupervised and supervised losses are defined as:
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Table 10: Results on Herbarium19 [66], which is a long-tailed recognition dataset.

Pre-training Herbarium19

All Old New

k-means [57] DINO [14] 13.0 12.2 13.4
RankStats+ [46] DINO [14] 27.9 55.8 12.8
UNO+ [43] DINO [14] 28.3 53.7 12.8
GCD [7] DINO [14] 35.4 51.0 27.0
ORCA [8] DINO [14] 20.9 30.9 15.5
OpenCon [52] DINO [14] 39.3 58.9 28.6

PromptCAL [50] DINO [14] 37.0 52.0 28.9
MIB [51] DINO [14] 42.3 56.1 34.8
SimGCD [19] DINO [14] 43.3 57.9 35.3

µGCD (Ours) DINO [14] 45.8 61.9 37.2
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where: zi = h◦Φ(xi); h is a projection head, which is used during training and discarded afterwards;
and τ is a temperature value. N (i) represents the indices of images in the labeled subset of the
batch, BL ∈ B, which belong to the same category as xi. Given a weighting coefficient, λ1, the total
contrastive loss on the model’s features is given as:

Lfeat = (1− λ1)
∑
i∈B

Lu
feat,i + λ1

∑
i∈BL

Ls
feat,i (4)

(2) Perform classification by embedding all images with the trained backbone, Φ, and apply semi-
supervised k-means (SS-k-means) clustering on the entire dataset, DU

⋃
DL. SS-k-means is identical

to unsupervised k-means [57] but, at each iteration, instances from DL are always assigned to the
‘correct’ cluster using their labels, before being used in the centroid update. In this way, the cluster
centroid updates for labelled classes are guided by the labels in DL.

SimGCD [19]. Train a backbone representation, Φ, and a linear head, g, to classify images amongst
the k classes in the dataset, yielding a model fθ = g ◦ Φ. Train the backbone jointly with the feature
space loss from eq. (4), and with linear classification losses based on the output of g.

(1) Generate pseudo-labels for an image, xi, as pT (xi) ∈ [0, 1]k, in order to train the classifier, fθ.
Infer pseudo-labels on all images in a batch, B, and compute an additional supervised cross-entropy
loss on the labelled subset, BL.

• Pass two views of an image to the same model. Each view generates a soft pseudo-label for
the other, for instance as:

pT (xi) = sg[softmax(fθ(x
′
i); τT )] (5)

Here sg is the stop-grad operator and τT is the pseudo-label temperature.
• Compute model predictions as pS(x) = softmax(fθ(x); τS) and a standard pseudo-

labelling loss [14, 18, 26] (i.e. soft cross-entropy loss) as:

Lu
cls(θ;B) = − 1

|B|
∑
xi∈B

⟨pT (xi), log(pS(xi))⟩+ ⟨pT (x
′
i), log(pS(x

′
i))⟩ (6)

Temperatures are chosen such that τT < τS to encourage confident pseudo-labels [14].
• Optimize the model, fθ, jointly with: the pseudo-label loss (eq. (6)) and Lfeat (see eq. (4)).

The model is further trained with: the standard supervised cross-entropy loss on the labelled
subset of the batch, Ls

cls(θ;BL); and an entropy regularization term, Lr
cls(θ):
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Ls
cls(θ;BL) = − 1

|BL|
∑
i∈BL

⟨y(x), log(pS(x))⟩, Lr
cls(θ) = −⟨p̄S , log(p̄S)⟩, p̄S =

1

|B|
∑
x∈B

pS(x)

Here, y(x) is a ground-truth label and, given hyper-parameters λ1 and λ2, the total loss is defined as:
L(θ;B) = (1− λ1)(Lu

cls(θ;B) + (Lu
feat(θ;B)) + λ1(Ls

cls(θ;BL) + Ls
feat(θ;BL)) + λ2Lr

cls(θ).

µGCD (Ours). Train a backbone representation, Φ, and a linear head, g, to classify images amongst
the k classes in the dataset, yielding a model fθT = g ◦ Φ. Train the backbone first with the feature
space loss from eq. (4), and then with linear classification losses based on the output of g.

(1) Train a backbone Φ using Step (1) from the GCD baseline algorithm.

(2) Append a classifier, g, to the backbone and duplicate it to yield two models. One model (a teacher
network, fθT ) is used to generate pseudo-labels for a student network, fθS , as pT (xi) ∈ [0, 1]k. Infer
pseudo-labels on all images in a batch, B, and compute an additional supervised cross-entropy loss
on the labelled subset, BL. The student and teacher networks are trained as follows:

• Generate a strong augmentation of an image, xi, and a weak augmentation, x′
i [49]. Pass

the weak augmentation to the teacher to generate a pseudo-label and construct a loss:

pT (xi) = sg[softmax(fθT (x
′
i); τT )] Lu

cls(θS ;B) = − 1

|B|
∑
xi∈B

⟨pT (xi), log(pS(xi))⟩ (7)

• Optimize the student’s parameters, θS , with respect to: the pseudo-label loss from eq. (7);
the supervised loss, Ls

cls; and the entropy regularization loss, Lr
cls. Formally, the ‘student’,

fθS , is optimized for: L(θS ;B) = (1− λ1)Lu
cls(θS ;B) + λ1Ls

cls(θS ;BL) + λ2Lr
cls(θS).

• Update the teacher network’s parameters with the Exponential Moving Average (EMA) of
the student network [17]. Specifically, update the ‘teacher’ parameters, θT , as:

θT = ω(t)θT + (1− ω(t))θS

where t is the current epoch and ω(t) is a time-varying decay schedule.

At the end of training, the ‘teacher’, fθT , is used for evaluation.

Remarks: We first highlight the different ways in which the labels from DL are used between the
three methods. Specifically, the GCD baseline [7] only uses the labels in a feature-space supervised
contrastive loss. However, in addition to this, SimGCD [19] and µGCD also use the labels in a
standard cross-entropy loss in order to train part of a linear classifier, g.

We further note the high level similarity between SimGCD and µGCD, in that both train parametric
classifiers with a pseudo-label loss. While SimGCD uses different views passed to the same model
to generate pseudo-labels for each other (similarly to SWaV [9]), µGCD uses pseudo-labels from a
‘teacher’ network to train a ‘student’ (similarly to mean-teachers [17]).

This is in keeping with trends in related fields, which find that there exists a small kernel of method-
ologies — e.g., mean-teachers [17], cosine classifiers [62], entropy regularization [26] — which are
robust across many tasks [14, 22, 25], but that finding a strong recipe for a specific problem is critical.
We find this to be true in supervised classification [58, 76, 77], self-supervised learning [14, 21], and
semi-supervised learning [17, 26, 49]. Our use of mean-teachers to provide classifier pseudo-labels,
as well as careful choice of model initialization and data augmentation, yields a performant µGCD
algorithm for category discovery.

E Further Implementation Details

When re-implementing prior work, we aim to follow the hyper-parameters of the GCD baseline [7]
and SimGCD [19], and use the same settings for our method. We occasionally find that tuned
hyper-parameters are beneficial in some settings, which we detail below.
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Learning rates. We swept learning rates at factors of 10 for all methods and architectures. When
training models from scratch (ResNet18 on Clevr-4) or when finetuning a DINO/DINOv2 model [14,
60] on the SSB, we found a learning rate of 0.1 to be optimal. When finetuning an MAE [31] or
DINOv2 model on Clevr-4, we found it better to lower the learning rate to 0.01. All learning rates are
decayed from their initial value by a factor of 10−3 throughout training with a cosine schedule.

Loss hyper-parameters. For the tradeoff between the unsupervised and supervised components of
the losses, λ1 is set to 0.35 for all methods. For the entropy regularization, we follow SimGCD and
use λ2 = 1.0 for FGVC-Aircraft and Stanford Cars, and λ2 = 2.0 for all other datasets. We swept
to find better settings for this term on Clevr-4, but did not find any setting to consistently improve
results. We also train with L2 weight decay, set to 10e−4 for all models.

Student and teacher temperatures. Following [14], we set the temperature of the student and
teacher to τS = 0.1 and τT = 0.04 respectively, for both our method and SimGCD. This gives
the teacher ‘sharper’ (more confident) predictions than the student. We further follow the teacher-
temperature warmup schedule from [14], also used in SimGCD, where the teacher temperature is
decreased from 0.07 to 0.04 in the first 30 epochs of training. On Herbarium19 [66] (which has
many more categories than the other evaluations, see appendix C.3), we use a teacher temperature of
2× 10−3 (warmed up from 3.5× 10−3 over 10 epochs).

Teacher Momentum Schedule. In µGCD, at each iteration, the teacher’s parameters are linearly
interpolated between the teacher’s current parameters and the student’s, with the interpolation (‘decay’
or ‘momentum’) changing over time following [18], as: ω(t) = ωT − (1− ωbase)(cos(

πt
T ) + 1)/2.

Here T is the total number of epochs and t is the current epoch. We use ωT = 0.999 ≈ 1 and
ωbase = 0.7. We note for clarity that, though the momentum parameter is dictated by the epoch
number, the teacher update happens at each gradient step.

Augmentations. On Clevr-4 we use an augmentation comprising of RandomHorizontalFlip
and RandomRotation. On the SSB [20], we use RandomHorizontalFlip and
RandomCrop. We use these augmentations for all methods, and for µGCD use these augmentations
to pass views to the ‘teacher’. An important part of our method on the SSB is to design strong aug-
mentations to pass to the student. Our ‘strong augmentation’ adds aggressive RandomResizeCrop,
as well as solarization and Gaussian blurring [21] (see appendix B.5 for details). On Clevr-4, due
to the relatively simple nature of the images, strong augmentations can destroy the semantic image
content; for instance color jitter and aggressive cropping degrade performance on color and count
respectively. We find it helpful to pass Cutout [78] to the teacher on the color taxonomy, and texture
benefits from the strong augmentation defined above.

Training time. Following the original implementations, we train all SimGCD [19] and GCD base-
line [7] models for 200 epochs, which we find sufficient for the losses (and validation performance)
to plateau. For our method, we randomly initialize a classifier on a model which has been trained
with the GCD baseline loss, and further finetune for another 100 epochs. On our hardware (either an
NVIDIA P40 or M40) we found training to take roughly 15 hours for SSB datasets, and around 4
hours for a Clevr-4 experiment.

Early stopping. We note that GCD is a transductive setting, or a clustering problem, where models
are trained (in an unsupervised fashion) on the data used for evaluation, DU . As such, an important
criterion is which metric to use to select the best model. SimGCD [19] and the GCD baseline [7] use
the performance on a validation set of images from the labeled categories. While this is a reasonable
choice for the baseline, we found it can lead to underestimated performance for SimGCD on some
datasets. For SimGCD, we instead found it better to simply take the model at the end of training.
For µGCD, we instead propose to choose the model with the minimum unsupervised loss on the
unlabeled set.

Other details: When finetuning pre-trained transformer models – DINO [14], DINOv2 [60] or
MAE [31] – we finetune the last transformer block of the model. For Clevr-4, when training a
ResNet18, we finetune the whole model. Finally, for the µGCD failure case of shape, we suggest
in appendix B.2 that µGCD can get stuck in local optima if its initialization is already very strong.
As such, in this case, we initialize the linear head with k-means centroids, reduce the learning rate
and teacher temperature to 0.01, and set ωbase to 0.9.
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F Connections to related work

F.1 Clevr-4: connections to real-world and disentanglement datasets

Datasets with different granularities. When multiple taxonomies are defined in exisiting datasets,
they are most often specified only at different granularites, for instance in CIFAR100 [53], FGVC-
Aircraft [55] and iNaturalist [79]. While recognition at different granularites is related to our task –
and was explored in [80] – the constituent taxonomies are not statistically independent, as the Clevr-4
splits are. We note that, given the number of categories in each taxonomy, an unsupervised model
could in principal solve the clustering problem at the different granularities.

CUB-200-2011 [64]. Fei et al. [63] discuss the existence of alternate, but valid, clusterings of images
from fine-grained datasets like CUB [64] – e.g., based on pose or background. We note that the CUB
‘Birds’ dataset presents an opportunity for constructing an interesting dataset for category discovery.
Each image in CUB is labelled for presence (or absence) of each of 312 attributes, where these
attributes come from different attribute types. Each attribute type (e.g., ‘bill shape’, ‘breast color’)
provides a different taxonomy with respect to which to cluster the data. However, we found these
attribute annotations are too noisy to yield meaningful conclusions.

Disentanglement datasets. We suggest that Clevr-4 is also a useful benchmark for disentanglement
research [34, 35]. This research field aims to learn models such that the ground-truth data generating
factors (i.e., attributes of an object) are encoded in different subspaces of the image representation.
The current CLEVR dataset [12] cannot be used easily for this, as its images contain multiple objects,
each with different attributes. Instead, in Clevr-4, all objects share the same attributes, allowing each
image to be fully parameterized by the object shape, texture, color and count. Furthermore, compared
to synthetic datasets for disentanglement [38], Clevr-4 contains more categorical taxonomies, as well
as more classes within those taxonomies.

Finally, we note that there exist other extensions of the CLEVR dataset [12], such as ClevrTex [81],
Super-CLEVR [82] and CLEVR-X [83], which also add new textures and/or categories to the original
datasets. However these datasets cannot be used for category discovery (or disentanglement) research
as, unlike in Clevr-4, they contain scenes with objects of differing attributes. As such, each image
cannot be parameterized with respect to the object attributes in a way which gives rise to clear
taxonomies.

Other related fields The GCD task and the Clevr-4 dataset are related to a number of other machine
learning sub-fields. Conditional Similarity research [84–86] aims to learn different embedding
functions given different conditions. For instance, the GeneCIS benchmark [84] evaluates the
ability of models to retrieve different images given a query and different conditioning text prompt.
Meanwhile, the multiple clustering [87, 88] and self-supervised learning [89, 90] fields investigate
the how different choices of data augmentation result in different clusterings of the data. The
self-supervised field particularly aims to understand why these inductive biases result in different
generalization properties [91–93].

We hope that Clevr-4 can be complementary to these works, and provide a test-bed for controlled
experimentation of these research questions.

F.2 µGCD method.

We note here that the idea of momentum encoders has been widely used in representation learning [18,
24, 50], semi-supervised learning [17, 25], or to update class prototypes in category discovery [52, 94].
We use a mean-teacher model end-to-end, for the backbone representation and the classification head.
We highlight that, similar to a rich vein of literature in related fields [14, 21, 26, 58, 76, 77], our goal
is to find a specific recipe for the GCD task.

28


