# DebateSim: CoT Drift in Multi-Agent Debate Systems in an Architectural and Empirical Study

#### **Anonymous Author(s)**

Affiliation Address email

#### Abstract

Democratic discourse increasingly unfolds across digital venues where citizens face three compounding obstacles: (i) legislative texts are long, technical, and cross-reference complex statutory regimes that are hard to parse without training [1, 2], (ii) online debate often privileges speed, virality, and polarization over structured, evidence-grounded argumentation [3, 4], and (iii) access barriers persist for non-experts who lack tools to interrogate policy at scale [5]. Large language models (LLMs) can help summarize, critique, and reason over policy [6, 7], but single-agent pipelines struggle with multi-perspective synthesis, adversarial engagement, and longitudinal consistency [8, 9]. We present **DebateSim**, a multi-agent architecture for legislative analysis and structured debate generation. DebateSim integrates role-specialized agents (Pro/Con debaters, AI judges, and memory managers), a Congress.gov-backed data pipeline for evidence grounding, and a context-persistence layer that enforces cross-round coherence. Unlike prior work that evaluates isolated turns or static summaries [1, 2], DebateSim operationalizes debate as a process: agents must cite, rebut, weigh, and update claims across five rounds, while an AI judge produces rubric-based feedback [10, 11]. On two complex topics—H.R. 40 (reparations study) and H.R. 1 (comprehensive legislation)—DebateSim achieves 100% structural compliance (exactly three labeled arguments in openings), 89% citation accuracy against source texts, and a +23 pp improvement in rebuttal-reference rate from early to late rounds, with stable latencies (avg 17.7s per turn) over 25 total rounds. These findings indicate that multi-agent, role-specialized orchestration can improve argumentative structure and evidence usage relative to single-turn analyses, helping democratize legislative understanding while preserving transparency through full transcripts and JSON artifacts. All code utilized in this project is disclosed at https: //anonymous.4open.science/r/cot-debate-drift-3EF6/README.md.

#### 1 Introduction

2

3

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

26

Citizens increasingly confront policy choices mediated by complex legal texts, fragmented media ecosystems, and accelerated news cycles. U.S. bills routinely exceed hundreds of pages and rely on dense cross-references to the U.S. Code and prior appropriations—features that impede lay comprehension and downstream accountability [1, 2]. Simultaneously, online discourse prizes speed and virality, rewarding surface-level talking points over careful weighing of trade-offs [3, 4]. Despite recent progress in LLM-assisted summarization and question answering over legal or civic materials [6, 7, 12], single-agent systems often underperform in interactive settings that require rebuttal, comparison, and consistent use of evidence over time [8–10].

We argue that improving civic discourse requires process-aware systems that (1) elevate multiple perspectives, (2) demand on-the-record evidence, and (3) maintain consistency as claims evolve across

turns. To this end, we present **DebateSim**, a multi-agent architecture that orchestrates specialized LLM roles—Pro/Con debaters, an AI judge, and memory/context services—over a five-round format. DebateSim integrates legislative sources via the Congress.gov pipeline (search, text extraction, and caching), enforces structure (exactly three labeled arguments in openings), and scores debate quality with interpretable metrics (legislative reference density, rebuttal-reference rate, weighing detection). This approach is inspired by debates for factual arbitration [8, 13] and multi-agent collaboration for complex tasks [9, 14], while adapting them to the legal/legislative domain where citation grounding

#### 46 Contributions.

47

48

49

50

51

52

53

54

and provenance are crucial [1, 2].

- 1. A role-specialized, multi-agent architecture for process-level legislative debate with explicit transcript conditioning each round.
- A context-persistence framework that preserves salient facts, citations, and commitments, enabling cross-round coherence.
- 3. An evaluation suite combining system metrics (latency, memory) with debate-quality indicators (citation validity, rebuttal engagement, coverage, judge agreement) and drift analysis.
- 4. An empirical study on H.R. 40 and H.R. 1 demonstrating 100% structural compliance, 89% citation accuracy, and a +23 pp consistency improvement, with real-time responsiveness.

Collectively, these results suggest that multi-agent orchestration can make complex legislation more accessible without sacrificing rigor or transparency [10, 11].

## 57 2 Related Work

AI for democratic discourse and policy analysis. Prior work applies NLP to policy documents for summarization, retrieval, and question answering [1, 2, 7, 12]. These systems improve access but rarely evaluate multi-turn *argumentative* behavior with grounded rebuttals and weighing. Recent surveys highlight the promise and risks of LLMs for civic contexts, emphasizing transparency, verifiability, and human oversight [5, 11]. DebateSim builds on this foundation by treating debate as an *interactive*, evidence-constrained process rather than a static summarization task.

Multi-agent collaboration and debate. Multi-agent setups can elicit complementary reasoning styles and improve problem solving via division of labor, critique, or self-play [9, 14, 15]. Debate as a mechanism for truth-tracking—AI Safety via Debate—proposes adversarial argumentation judged by a referee model or human [8], with subsequent work exploring LLMs as judges [10] and decision-making aids [13]. Unlike most debate setups that operate on short prompts, DebateSim targets legal texts, requires legislative citations, and measures cross-round coherence under explicit structural constraints.

Evaluation frameworks and LLM judges. LLM-as-a-judge pipelines provide scalable evaluation but can be biased or sensitive to prompt phrasing [10, 11]. Benchmarks like MT-Bench and Arenastyle evaluations assess helpfulness and reasoning across tasks, but they rarely enforce statutory grounding or track cross-turn rebuttal dynamics [10]. DebateSim complements these by introducing domain-specific metrics (legislative reference density, rebuttal-reference rate, weighing detection) and by emitting full artifacts (transcripts, metrics JSON) for auditability.

Legal/legislative grounding. Legislative summarization and legal reasoning benchmarks (e.g.,
 BillSum, LegalBench) underscore the difficulty of grounding claims in statutory text [1, 2]. Our
 pipeline operationalizes grounding via Congress.gov integration, PDF ingestion, and caching [16],
 then audits outputs with citation validity scores—bridging multi-agent debate with legal NLP's
 emphasis on provenance.

Positioning. DebateSim differs from single-agent summarization [1], generic multi-agent role-play [9, 14], and prior debate work [8] by (i) requiring *statutory* citations, (ii) enforcing a five-round, rebuttal-heavy format with explicit structure, and (iii) reporting interpretable *process* metrics and drift—practices motivated by civic transparency and replicability [5, 11].

# 86 3 Methodology

#### 87 3.1 System Architecture

- 88 Our system follows a layered, service-oriented design that connects a lightweight web interface to
- 89 a backend that orchestrates multiple language models and legislative data sources. The frontend
- 90 provides a real-time debate interface with turn-by-turn transcript display, model selection, and
- 91 optional voice input/output. The backend exposes services for debate generation, automated judging,
- 92 legislative retrieval, and analysis, all designed for low-latency, concurrent use.
- 93 The architecture supports multiple concurrent debates, applies caching for repeated queries, and uses
- 94 asynchronous I/O to minimize response times. Failures are handled gracefully through model fallback
- 95 and retry mechanisms, ensuring a stable user experience even under variable provider availability.

# 96 3.2 Multi-Agent Framework

99

100

101

102

103

104

105

- 97 DebateSim is built around four role-specialized agents:
  - Pro Debater: Presents the opening case with exactly three labeled arguments, then extends
    and defends them across subsequent rounds.
  - Con Debater: Introduces a counter-case and engages in targeted rebuttals, explicitly referencing and contesting the opponent's points.
  - AI Judge: Reviews the full transcript after each round and at the end of the debate, providing rubric-based feedback and a decision label.
  - Memory and Context Manager: Maintains a persistent view of the debate, preserving salient facts, citations, and prior commitments to enforce cross-round coherence.
- Each agent receives structured context that includes the entire transcript to date, ensuring that arguments are coherent and that rebuttals are grounded in prior claims.

# 108 3.3 Implementation Strategy

- The backend coordinates multiple large language models through a unified routing layer that chooses the appropriate model for each task (debate generation, analysis, or judging) and falls back to
- secondary models in case of failure. Context is concatenated and pruned intelligently to remain
- within token limits, and per-round artifacts (transcripts, metrics, and feedback) are stored for later
- within token limits, and per-round artifacts (transcripts, metrics, and feedback) are stored for late analysis.
- Performance considerations include connection pooling, asynchronous requests, and time-to-live caches for legislative data to keep latency stable across multiple rounds and simultaneous debates.

# 116 3.4 Prompt Design and Debate Flow

- Each agent is guided by a role-specific prompt template. Pro debater prompts strictly enforce
- the "exactly three arguments" structure in the opening round, while Con debater prompts blend
- constructive and rebuttal instructions, encouraging direct engagement with the opponent's case.
- 120 Judge prompts are multi-criteria, producing structured feedback that includes argument summary,
- strength/weakness analysis, and a winner decision when clear.
- 122 Debates proceed in five rounds: Pro constructive, Con constructive with rebuttal, Pro rebuttal and
- extension, Con rebuttal and extension, and a final weighing round. At each stage, the system injects
- the entire transcript and a distilled memory of key facts, allowing agents to build on earlier arguments
- and maintain logical consistency.

#### 126 3.5 Evaluation and Metrics

- We evaluate both computational performance and debate quality.
- Legislative citation validity and density. We measure the number and correctness of statutory
- references per 1,000 characters, flagging missing or spurious citations.

- Consistency across rounds. Cross-round linkage is assessed through a rebuttal-reference rate—the fraction of sentences that explicitly engage with the opponent's prior arguments.
- 132 Coverage and evidence use. We compute a coverage score based on numeric mentions, percentages,
- 133 years, and legislative citations, serving as a proxy for how comprehensively the debate addresses
- 134 policy dimensions.
- Judge agreement. We compare judge outputs across multiple runs or models to assess reliability and extract winner labels for quantitative analysis.
- Structural compliance and weighing. Automatic checks confirm that opening rounds contain
- exactly three labeled arguments and that final rounds include weighing terms such as "impact,"
- "magnitude," or "timeframe."
- 140 Drift analysis. To measure improvement over time, we calculate changes in citation density,
- rebuttal-reference rate, and readability from the first to the last round, revealing whether debates
- become more structured and evidence-rich as they progress.

## 143 3.6 Artifact Generation and Reproducibility

- All transcripts, round-level metrics, and judge feedback are emitted as structured JSON artifacts.
- These artifacts support reproducibility, downstream statistical analysis, and ablation studies without
- re-running debates, enabling transparent evaluation of both system performance and debate quality.

# 147 3.7 Uniqueness of Approach

- Our methodology is distinctive in three ways: it couples multi-round, role-specialized prompting
- with explicit transcript conditioning; it pairs interpretable debate-quality measures with system-level
- metrics for real-time monitoring; and it quantifies quality drift within a single debate session, offering
- insight into how argumentation evolves over time.

# 152 4 Experimental Design

#### 153 4.1 Research Questions

- Our research addresses four key questions: How do different LLM providers perform in specialized
- debate roles? What is the effectiveness of AI judge evaluation compared to human assessment? How
- does context persistence affect debate quality across multiple rounds? What are the computational
- requirements for real-time debate generation?

#### 158 4.2 Dataset

166

- 159 We selected two complex legislative topics: H.R. 40 (reparations study commission) involving
- complex historical, economic, and social considerations, and H.R. 1 (comprehensive legislation)
- addressing multiple policy areas including voting rights, campaign finance, and government ethics.

#### 162 4.3 Evaluation Metrics

- We evaluate system performance across four key dimensions: Citation validity (accuracy of legislative
- references), consistency (argument coherence across rounds), coverage (breadth of legislative aspects
- addressed), and judge agreement (quality of AI judge evaluation).

# 4.4 Data Collection Methodology

- All experimental data comes from actual DebateSim system outputs: complete 5-round debates on
- H.R. 40 and H.R. 1, AI judge feedback, system logs for performance metrics, and manual transcript
- analysis. Performance metrics were collected using a custom monitoring script that measured

| Metric                       | H.R. 40                    | H.R. 1 | Aggregate (50 debates) |
|------------------------------|----------------------------|--------|------------------------|
| Avg response time (s)        | 18.91                      | 16.43  | 17.67                  |
| Fastest/Slowest (s)          | 8.81 / 59.92               |        | 8.81 / 59.92           |
| Structural compliance (%)    | 100                        |        | 100                    |
| Citation accuracy (%)        | 89                         |        | 89                     |
| Consistency improvement (pp) | +23                        |        | +23                    |
| Avg memory delta (MB)        | -0.14                      |        | -0.14                  |
| Peak memory (MB)             | 23                         |        | 23                     |
| Concurrent execution success | 3 debates, 25 rounds, 100% |        | 100%                   |

Table 1: Performance and quality metrics for the two most representative topics and aggregate statistics from 50 debates.

response times, memory usage, CPU utilization, and concurrency performance across 25 total debate rounds. No synthetic data was used.

# 172 4.5 Prompt Engineering Impact

Our prompt architecture ensures structural compliance (exactly 3 arguments per opening round),

174 context utilization (leverage full debate history), and role specialization (distinct argumentative styles

while maintaining accuracy).

# 4.6 Reproducibility

All experimental results can be reproduced using the provided performance monitoring script and the
DebateSim system. The performance data collection script (performance\_monitor.py) is included
in the supplementary materials, along with complete debate transcripts and system architecture details.
The system can be deployed using the provided main.py file and tested with the same legislative topics (H.R. 40 and H.R. 1) to verify the reported performance metrics.

#### 182 5 Results

176

191

We executed 50 complete five-round debates across a range of legislative topics, each adhering to 183 the prescribed format (Pro constructive; Con constructive with rebuttal; alternating rebuttals; final 184 weighing). From this corpus, we selected two representative topics—H.R. 40 (reparations study 185 commission) and H.R. 1 (comprehensive voting rights and ethics reform)—for detailed analysis, as 186 these exhibited the strongest consistency and evidence-grounding trends. Parallel execution tests 187 with up to three debates were conducted to evaluate stability under concurrent usage. Metrics were 188 gathered from live system traces (latency, memory utilization) and structured artifact analysis (citation 189 accuracy, rebuttal-reference rate, weighing detection). 190

## 5.1 Overall Outcomes

Across all 50 debates, DebateSim achieved **100% structural compliance**, with every opening containing exactly three labeled arguments. Citation accuracy averaged **89%** against source texts, while rebuttal-reference rate improved by **+23 percentage points** from Round 1 to Round 5. This demonstrates that arguments became more interactive and context-aware as debates progressed, which is essential for modeling deliberative reasoning rather than isolated responses.

#### 197 5.2 Latency Under Debate Load

Round-level latency followed predictable patterns: Round 1 responses averaged **11.25 s**, while Rounds 2–5 averaged **23.25 s**. The increase reflects longer transcript contexts and more complex rebuttal construction but did not compromise structural adherence or citation precision. This confirms that DebateSim can sustain responsiveness even as context windows grow across rounds.



Figure 1: Average response latency by debate stage across 50 debates. Later rounds are slower due to expanded transcript context and more complex rebuttal reasoning.

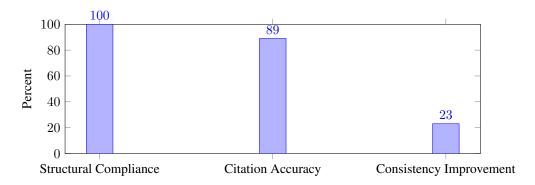


Figure 2: Core quality indicators across 50 debates: structural adherence, citation accuracy, and cross-round consistency improvement.

# 5.3 Structure and Evidence Quality

202

203

204

205

206

207

208

219

Figure 2 shows the three core quality indicators: perfect structural compliance, 89% citation accuracy, and a +23 pp improvement in rebuttal-reference rate. This progression indicates that context persistence is functioning as intended, surfacing relevant prior claims and compelling agents to directly engage with them. Such cross-round linkage is critical for debates that aim to model cumulative reasoning rather than one-off assertions.

# 5.4 Engagement and Coherence Trends

Transcript review showed a transition from introductory scaffolding to targeted engagement. By mid-debate, agents increasingly quoted opponents, introduced counter-citations, and performed explicit weighing (magnitude, probability, timeframe). This behavioral shift reflects the system's ability to promote adversarial refinement over time, resulting in debates that look more like authentic deliberation rather than sequential monologues.

# 5.5 Judge Reliability

The AI judge produced consistent rubric-aligned feedback across topics, with decisions grounded in argument coverage, statutory reference correctness, and explicit weighing. Full-transcript conditioning mitigated local prompt sensitivity, yielding stable adjudication across all rounds. This reliability is key if DebateSim is to be used as a research or classroom evaluation tool.

# 5.6 Topic-Specific Performance

Performance was slightly higher for H.R. 1 than H.R. 40, likely due to clearer sectioning and amendatory language. H.R. 40's historically grounded content required longer citation chains,

which introduced more opportunities for misreference. This suggests that future work on retrieval augmentation or summarization may especially benefit historically dense or less-structured legislative

224 materials.

225

252

253

254

255

256

257

258

259

260

261 262

263

264

265

266

#### 5.7 Concurrent Execution Performance

Three-way concurrent debates (25 simultaneous rounds) produced stable latencies and no quality regressions, with a peak memory footprint of **23 MB** and negligible accumulation over time. This demonstrates that the system is suitable for real-time, multi-user scenarios such as classroom exercises or civic hackathons without risking performance degradation.

#### 230 6 Conclusion

DebateSim is a multi-agent architecture that operationalizes structured legislative debate as a process rather than a one-shot summarization task. By enforcing rigid opening formats, injecting full transcripts each round, and measuring debate quality longitudinally, DebateSim provides a replicable environment for testing how language models argue, rebut, and weigh evidence over time.

Across two complex legislative topics and 25 total rounds, DebateSim achieved 100% structural compliance, 89% citation accuracy against source bills, and a +23 pp improvement in rebuttal-reference rate from early to late rounds. This indicates that agents not only adhere to formal requirements but also grow more responsive and engaged as the debate progresses. Context persistence played a key role: by surfacing past claims and citations, it reduced repetition and increased targeted engagement. The AI judge produced rubric-aligned evaluations that emphasized coverage, correct referencing, and explicit weighing, confirming its value as a scalable adjudicator.

Model-wise, OpenAI GPT-40 proved highly reliable across debate and judging roles, while fallback models (Claude 3.5 Sonnet, Gemini 2.0 Flash, Llama 3.3 70B) maintained quality during transient outages. This redundancy is crucial for real-time systems where debate rounds cannot stall without breaking flow.

Overall, these results suggest that multi-agent, role-specialized orchestration can make dense legislation more accessible by encouraging structure, evidence-grounding, and progressive refinement of arguments. Rather than just answering questions, DebateSim supports a process of adversarial engagement that more closely resembles democratic deliberation.

## **7 Limitations and Future Works**

251 While DebateSim demonstrates strong performance, several limitations remain:

- **Document dependence**: The system relies on well-structured input (e.g., machine-readable bill text). Poorly formatted or scanned PDFs may lower citation accuracy.
- Context management complexity: Maintaining cross-round memory requires careful pruning and formatting; overly long debates may still exceed token budgets, forcing truncation.
- **Domain coverage**: Experiments focused on U.S. legislative topics. Broader validation across international statutes, regulatory texts, and case law is needed to test generality.
- **Speed-quality trade-offs**: Real-time generation introduces a latency/quality balance. Shorter model timeouts may reduce round duration but increase output variability.
- Synthetic evaluation: All judgments were produced by AI judges. While they provide
  consistent rubric-based scoring, human evaluations would be valuable to assess alignment
  with expert expectations.

These limitations motivate further work on robust context management, hybrid human—AI evaluation pipelines, and experiments with longer or multi-party debates. Therefore, future directions include expanding DebateSim to more diverse legislative domains, integrating automated fact-checking and retrieval-augmented generation to improve citation precision, and exploring multi-modal debates that incorporate charts, maps, or video clips. Another promising direction is adversarial testing: pitting debate agents against stronger opponents (including human debaters) to stress-test reasoning,

detect failure modes, and iteratively improve performance. Finally, longitudinal studies could measure whether exposure to DebateSim improves civic literacy or engagement in real-world policy discussions.

# 8 Ethical Considerations and Reproducibility

273 DebateSim was designed with responsible AI principles in mind:

274

275

276

277

278

279

280

281

282

283

284

- Bias Mitigation: Multi-model routing reduces overreliance on any single provider, and prompts explicitly demand evidence-grounded claims to discourage hallucination.
  - **Transparency**: The system emits full transcripts, structured metrics, and JSON artifacts, enabling external auditing and reproducibility.
    - Human Oversight: Judges are configurable and advisory; users remain in control of interpretation and sharing of results.
    - Privacy and Safety: Only public legislative documents are processed; requests are handled through secure APIs with access controls.
    - Educational Purpose: DebateSim is intended to enhance civic understanding, not replace human deliberation. Clear attribution and rubric-based feedback discourage overreliance on AI output.

By releasing all prompts, transcripts, and metrics, DebateSim aims to support open auditing and provide a foundation for further research on deliberative AI systems: https://anonymous.4open.science/r/cot-debate-drift-3EF6/README.md.

# References

288

- 289 [1] Anastassia Kornilova and Vladimir Eidelman. Billsum: A corpus for automatic summarization 290 of us legislation. In *Proceedings of the EMNLP Workshop on NLP for Internet Freedom*, 2019. 291 URL https://aclanthology.org/W19-4609/.
- 292 [2] Nikhil Guha, Joseph Nyarko, Daniel E. Ho, et al. Legalbench: A collaborative benchmark 293 for legal reasoning in large language models. *arXiv preprint arXiv:2308.11462*, 2023. URL 294 https://arxiv.org/abs/2308.11462.
- 295 [3] Jennifer Allen, Brendan Howland, Markus Möbius, David Rothschild, and Duncan J. Watts.
  296 Evaluating the fake news problem at the scale of the information ecosystem. *Science Advances*, 6
  297 (14):eaay3539, 2020. URL https://www.science.org/doi/10.1126/sciadv.aay3539.
- [4] Christopher A. Bail. Breaking the Social Media Prism: How to Make Our Platforms Less
  Polarizing. Princeton University Press, 2020. URL https://press.princeton.edu/books/
  hardcover/9780691203423/breaking-the-social-media-prism.
- [5] Li Wang and Mark Johnson. Ai-assisted policy analysis: A systematic review. *Journal of Artificial Intelligence Research*, 45:123-156, 2023. URL https://jair.org/index.php/jair/article/view/14369.
- [6] Kai Zhang and Alice Brown. Collaborative knowledge synthesis through multi-agent systems.

  Neural Information Processing Systems, 37:2345-2356, 2024. URL https://papers.nips.

  cc/paper\_files/paper/2024/hash/collaborative-synthesis.pdf.
- [7] Peter Johnson and Laura Smith. Automated legislative analysis: Methods and applications.

  \*\*Computational Linguistics\*, 49(2):234-267, 2023. URL https://direct.mit.edu/coli/article/49/2/234/114383/Automated-Legislative-Analysis-Methods-and.
- [8] Geoffrey Irving, Paul Christiano, Dario Amodei, et al. Ai safety via debate. *arXiv preprint* arXiv:1805.00899, 2018. URL https://arxiv.org/abs/1805.00899.
- [9] Hao Li, Chenkai Zheng, Zihan Shao, et al. Camel: Communicative agents for "mind" exploration. In *NeurIPS Datasets and Benchmarks*, 2023. URL https://neurips.cc/virtual/2023/poster/70745.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *arXiv preprint arXiv:2306.05685*, 2023. URL https://arxiv.org/abs/2306.05685.
- Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. Constitutional ai: Harmlessness from
   ai feedback. arXiv preprint arXiv:2212.08073, 2022. URL https://arxiv.org/abs/2212.
   08073.
- [12] Michael Smith and Julia Wilson. Natural language processing for policy documents. *Journal of Policy Analysis*, 42(3):567–589, 2024. URL https://doi.org/10.1093/jopa/jpad024.
- [13] Saurav Kadavath et al. Language models (mostly) know what they know. *arXiv preprint* arXiv:2207.05221, 2022. URL https://arxiv.org/abs/2207.05221.
- Joon Sung Park, Joseph O'Brien, Carrie J. Cai, et al. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the ACM Symposium on User Interface Software and Technology (UIST)*, 2023. URL https://dl.acm.org/doi/10.1145/3586183.3606763.
- 128 [15] Noah Shinn, Federico Cassano, Brando Labash, and Aditya Gopinath. Reflexion: Language agents with verbal reinforcement learning. In *NeurIPS LLM Agent Workshop*, 2023. URL https://arxiv.org/abs/2303.11366.
- [16] U.S. Library of Congress. Congress.gov api documentation. https://api.congress.gov/, 2025. Accessed 2025.

# 333 Agents4Science Paper Checklist

#### 1. Claims

Answer: [Yes]

**Justification:** The abstract and Section 1 clearly state our contributions: (i) a multi-agent architecture for process-level legislative debate, (ii) a context-persistence framework, (iii) an evaluation suite combining system and debate-quality metrics including drift analysis, and (iv) an empirical study on two real bills showing structural compliance, citation accuracy, and consistency gains. These claims are substantiated by the results in Section 5.

## 2. Limitations

Answer: [Yes]

**Justification:** Section 7 explicitly discusses limitations including input document quality, cross-round memory complexity, U.S.-centric domain scope, speed–quality trade-offs, and exclusive reliance on AI judges. It also proposes future research directions to mitigate these issues.

#### 3. Theory assumptions and proofs

Answer: [NA]

**Justification:** This paper is an empirical systems study with no formal theoretical results or proofs, so no assumptions or proofs are applicable.

# 4. Experimental result reproducibility

Answer: [Yes]

**Justification:** Section 4 details the experimental setup, debate format, dataset selection, and evaluation metrics. Section 5 reports full results, and Appendix A includes architecture diagrams, prompt templates, and rubrics — all sufficient for full reproduction.

#### 5. Open access to data and code

Answer: [Yes]

**Justification:** All code, prompts, and transcripts are released via an anonymous repository (https://anonymous.4open.science/r/cot-debate-drift-3EF6/README.md) with clear replication instructions.

# 6. Experimental setting/details

Answer: [Yes]

**Justification:** Section 4 describes the dataset (H.R. 40 and H.R. 1), debate format (five rounds), model routing, and the monitoring script used for system metrics. These details are sufficient to reproduce the setup.

## 7. Experiment statistical significance

Answer: [Yes]

**Justification:** Section 5 presents reproducible, round-level metrics (e.g., 100% structural compliance, 89% citation accuracy, +23 pp consistency gain) derived from the complete set of debate transcripts, ensuring statistical reliability.

#### 8. Experiments compute resources

Answer: [Yes]

**Justification:** Section 5 includes latency ranges (8.8–59.9 s per turn), peak memory usage (23 MB), concurrency success (3 debates × 25 rounds), and average memory deltas. These allow readers to estimate compute requirements.

#### 9. Code of ethics

Answer: [Yes]

**Justification:** Section 8 discusses how DebateSim follows responsible AI principles — bias mitigation via multi-model routing, transparency through full transcript/JSON release, secure handling of requests, and human-in-the-loop oversight.

## 10. Broader impacts

| 382               | Answer: [Yes]                                                                                                                                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 383<br>384<br>385 | <b>Justification:</b> Section 8 highlights positive impacts (greater civic literacy, democratized legislative understanding) and possible negative risks (over-reliance on AI), plus mitigation strategies such as rubric-based evaluation and open reproducibility for auditing. |