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ABSTRACT

The vision transformer-based foundation models, such as ViT or Dino-V2, are
aimed at solving problems with little or no finetuning of features. Using a setting
of prototypical networks, we analyse to what extent such foundation models can
solve unsupervised domain adaptation without finetuning over the source or target
domain. Through quantitative analysis, as well as qualitative interpretations of
decision making, we demonstrate that the suggested method can improve upon
existing baselines, as well as showcase the limitations of such approach yet to be
solved. The code is available at: https://github.com/lira-centre/
vit_uda/

1 INTRODUCTION

With the advancement of foundation models, improvements in semi- and unsupervised learning
methods can shift from end-to-end training towards decision making over the foundation models’
latent spaces (Oquab et al. (2023); Angelov et al. (2023)).

Below we describe the problem of unsupervised domain adaptation (UDA) (Saenko et al. (2010)).
Consider a source image dataset S = {IS1 , . . . ISn } and a target dataset T = {IT1 , . . . ITm}. These
datasets share the same set of classes {C1 . . . Ck}, however the training labels are only known for
the source dataset. The problem is, given a classifier trained on a source dataset, to adapt it, without
any target data labels, to classify data on a target dataset.

Figure 1: The methodology scheme: (1) the images from multiple domains (e.g., sketches and
real images) are embedded into the feature space and, for each domain, separately clustered using k-
means. The cluster centroids for one of the domains (’source domain’), shown in bright colour in the
figure and referred to as ’prototypes’, are provided with labels. (2) Domain adaptation is performed
through inter-domain cluster matches with ℓ2 or Wasserstein distance. (3) Decision making through
nearest-neighbour prototype classifier performs the prediction.
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Many of the existing works targeting UDA focus on representation learning approach towards as-
similating, in the feature space, the source and target data (Saenko et al. (2010)). For many contem-
porary works, this is performed using adversarial training or minimising distribution divergence to
match the distributions between the source and the target domain (Peng et al. (2019)).

However, such training may not be an option if one wants to avoid finetuning of the latent fea-
ture spaces. We address it by using prototypical networks (Snell et al. (2017); Chen et al. (2019);
Angelov & Soares (2020)), which recast decision making process into a function of prototypes (An-
gelov et al. (2023)), derived from the training data. For this purpose, we combine the prototypical
network within the latent feature space with distribution matching between source and target do-
mains. In Figure 1, we summarise how one can address UDA problem using a simple combination
of clustering and distribution matching within the latent feature spaces using L2 or Wasserstein
distances. We show that such approach can lead to promising results on a number of problems
and outcompete purpose-finetuned models for UDA; furthermore, it allows to interpret the reasons
behind misclassification using geometric proximity analysis through latent feature spaces.

2 RELATED WORK

Unsupervised domain adaptation Saenko et al. (2010) described a problem of adaptation to vi-
sual domain shifts, where the model is trained on the source domain and tested on the target one,
with changes in lighting, background, viewpoint, amongst others. The current methods to solve this
problem use a variety of approaches including adversarial assimilation of source and target distribu-
tion Tzeng et al. (2017); Zhao et al. (2018); Liu et al. (2021a); Saito et al. (2018), moment matching
Zellinger et al. (2017); Peng et al. (2019). Peng et al. (2019) proposes a dataset for UDA and the
problem statement for multi-source domain adaptation, where they evaluate the transfer learning
when there are multiple source domains.

Visual Transformers Building upon the applications of the attention models to the natural lan-
guage processing (Vaswani et al. (2017)), vision transformers (Dosovitskiy et al. (2021)) allowed not
only to improve the performance but also provide generalisation capabilities (Zhang et al. (2022),
Oquab et al. (2023)). A substantial amount of literature is devoted to the aspects of pretraining
(Singh et al. (2022)), architecture design (Liu et al. (2021b)), unsupervised representation learning
(Oquab et al. (2023)), and task-specific finetuning of vision transformers (Dai et al. (2021)).

Domain-specific task solving with foundation models is a growing field. Domain-specific trans-
fer learning using foundation models is shown to address the challenges such as generalisation to
unknown data and confoundedness of input features (Angelov et al. (2023)). Substantial attention in
research is given to the problem of visual question answering using foundation models (Siebert et al.
(2022); Luo et al. (2024); Seenivasan et al. (2022); Parelli et al. (2023); Song et al. (2022)). Another
important direction of work is modality transfer, which aims to transfer the knowledge from the
model in one modality, e.g. visible light imaging to another one, e.g. infrared imaging (Zhang et al.
(2024); Liang et al. (2023); Hu et al. (2024); Auty & Mikolajczyk (2023)). Sorscher et al. (2022) use
prototypicality scores for data transfer and curation,Udandarao et al. (2022) propose a learning-free
domain adaptation using CLIP models (Radford et al. (2021)), and Tobaben et al. (2023) consider
the efficacy of large pre-trained models for differentially private few-shot image classification.

Transparency of decision making The pursuit of analysis of existing deep learning models has
led to a number of methods targeting aspects of transparency such as ante hoc, by-design, inter-
pretability and post hoc explainability. The former has been manifested by the interpretable-through-
prototype methods such as ProtoPNet (Chen et al. (2019); Donnelly et al. (2022)), xDNN (Angelov
& Soares (2020)) and IDEAL (Angelov et al. (2023)), as well as explainable architectures such
as B-cos (Böhle et al. (2022)). The latter group are widely used methods based on the sensitivity
analysis for the input data, such as GradCAM (Selvaraju et al. (2017)), Simonyan et al. (2014), as
well as other works such as Bach et al. (2015), Sundararajan et al. (2017). In this work, we focus on
prototype-based methods, which allow to interpret the decision-making part through similarity of the
query sample to the prototype, and therefore, our work is closely related to prototypical networks.
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3 METHODOLOGY

Data: Source and target datasets S, T , Source query qs, target query qt
Result: Source dataset class predictions ŷS(qs), target dataset class predictions ŷT (qt)
S ← ϕ(S), T ← ϕ(T ) ; // ϕ denotes feature extractor
P c
S , CS ← k-means (S, |CS |) ; // Clustering of source data, P c

S are
cluster centroids, CS are cluster subsets of S
PS ← {argmins∈S ℓ2(s, p)∀p ∈ P c

S}; // Selecting closest prototypes from
S
P c
T , CT ← k-means (T , |CT |) ; // Clustering of target data, P c

T are
cluster centroids, Cc

T are cluster subsets of T
PT ← {argmint∈T ℓ2(t, p)∀p ∈ P c

T }; // Selecting closest prototypes from
T
LS ← RetrieveLabels(PS) ; // Retrieve labels for every source
prototype from PS (and its corresponding cluster)
DST = DistanceMatrix(CS , PS , CT , PT ) ; // Wasserstein or l2 centroid
distance matrix between clusters
LT ← ClosestMapping(DST , LS) ; // Target clusters receive labels of
the closest source cluster according to the distance matrix
DST
ŷ(qs;PS)← LS [argminp∈PS ℓ2(p, qs)] ; // Source query class prediction
ŷ(qt;PT )← LT [argminp∈PT ℓ2(p, qt)] ; // Target query class prediction

Algorithm 1: Proposed algorithm for UDA

In Algorithm 1, we present the methodology for the proposed analysis. The methodology is split
into (1) feature extraction, (2) selection of prototypes through clustering, (3) matching the prototypes
between the source and the target domain (4) source and target class prediction.

We use two distinct methods for measuring distance between the clusters: l2 distance between
cluster prototypes, and the Sinkhorn approximation of the 2-Wasserstein distance (see details of
the implementation in the Appendix A).

4 EXPERIMENTS

Experimental conditions We reproduce the experimental setting from Peng et al. (2019), with
the further experimental details described in Appendix A. While in Peng et al. (2019) the model is
proposed for the multi-source UDA, we present the results only for a single source domain. The
dataset contains six domains: sketch (ske), real (rel), quickdraw (qdr), painting (pnt), infograph
(inf), and clipart(clp), each split into the same 345 categories of common objects.

Table 2a shows the performance of the proposed methodology for ResNet-152-based model, as well
as for the oracle (purpose-fit model), based on ResNet-152, and for the MCD (Saito et al. (2018))
baseline, based on ResNet-101 (He et al. (2016)), which has shown the best performance in the anal-
ysis of Peng et al. (2019). It can be seen that in such scenario the model performs substantially worse
than the state-of-the-art UDA method MCD (Saito et al. (2018)). In Tables 2b-2d, we demonstrate
that the performance improves for various ViT backbones and ultimately overtakes MCD baseline
(Saito et al. (2018)). It happens, however, that superior performance in transfer learning for Dino-V2
(Oquab et al. (2023)) does not translate into a better performance on this UDA task. Furthermore,
the version, pretrained on ImageNet-1K (Table 2c) surprisingly shows better performance on practi-
cally every single task compared to the counterpart without pretraining (Table 2b). Comparison with
the Wasserstein distance version of the method demonstrates that while the choice of distance shows
some potential to improve the performance, it still lags behind ViT H/14, finetuned on ImageNet-1K.

In Section B, we demonstrate the analysis of the errors in the latent space by visualising the nearest
prototypes for SWAG ViT-H/14, finetuned on ImageNet-1K. Such analysis demonstrates remarkable
cross-domain generalisation, with a number of justified semantically meaningful errors (for example,
mistaking diamonds for similarly-looking blueberries), as well as highlights that some of the errors
are caused by preferring texture to the semantics (e.g., mistaking octagon for hexagon).
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(a) ResNet-152, finetuned on ImageNet, MCD (Saito et al. (2018)) and oracle results are taken from Peng et al.
(2019)

(b) SWAG ViT-H/14 without finetuning (l2 cluster prototypes distance)

(c) SWAG ViT-H/14, ImageNet1K finetuning (l2 cluster prototypes distance)

(d) DinoV2 ViT-G/14, no finetuning (l2 cluster prototypes distance)

(e) DinoV2 ViT-G/14 (Sinkhorn approximation of the Wasserstein distance)

Figure 2: UDA results for different backbone architectures (columns denote source domains, and
rows denote target domains), k-means clustering (5× 345 = 1725 clusters, 345 classes)

4



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

5 CONCLUSION

We show that, with just fixed ViT feature representation and domain distribution matching, one
can solve a number of unsupervised domain adaptation problems within the foundational feature
space, exceeding the performance of purpose-built representation learning frameworks for UDA,
such as MCD (Saito et al. (2018)) and thus becoming a plausible alternative to finetuning-based
domain adaptation. In many cases, however, even though the results are wrong from the benchmark’s
point of view, they still can constitute a plausible answer even for the humans (see Figure 3 in the
Appendix). The described methodology can serve as a benchmark for evaluating such representation
learning. While foundation models provide competitive performance against purpose-built models
in this challenge, some of the best-performing models, such as DinoV2 G/14, do not improve upon
the performance of older models with lower general-purpose performance, such as SWAG-ViT,
finetuned on ImageNet-1K.

ACKNOWLEDGEMENT

This work is supported by ELSA – European Lighthouse on Secure and Safe AI funded by the
European Union under grant agreement No. 101070617. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or European
Commission.Neither the European Union nor the European Commission can be held responsible.

The computational experiments have been powered by a High-End Computing (HEC) facility of
Lancaster University, delivering high-performance and high-throughput computing for research
within and across departments.

REFERENCES

Plamen Angelov and Eduardo Soares. Towards explainable deep neural networks (xdnn). Neural
Networks, 130:185–194, 2020.

Plamen Angelov, Dmitry Kangin, and Ziyang Zhang. Towards interpretable-by-design deep learning
algorithms. arXiv preprint arXiv:2311.11396, 2023.

Dylan Auty and Krystian Mikolajczyk. Learning to prompt clip for monocular depth estimation: Ex-
ploring the limits of human language. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2039–2047, 2023.
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A EXPERIMENTAL SETUP

We use the pretrained SWAG-ViT (Singh et al. (2022)) models from publicly available repository1.
SWAG ViT H/14 model corresponds to the pretrained model with no finetuning. For the experiments
we use NVIDIA RTX A2000 12GB powered workstation. sklearn implementation of k-means clus-
tering is used.

1https://github.com/facebookresearch/SWAG
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All the experiments are repeated with three different random seeds to calculate the confidence inter-
val, except from the Wasserstein distance experiment in Figure 2e which do not include confidence
interval computation due to the computational costs.

For calculating the Sinkhorn approximation of 2-Wasserstein distance, we use the follow-
ing geomloss library function: geomloss.SamplesLoss(loss=’sinkhorn’, p=2,
blur=1e-5).

B INTERPRETABILITY ANALYSIS

To better understand the performance scores, we provide visualisation for nearest prototypes for the
ViT-SWAG, finetuned on ImageNet-1K ((see Figure 3). For the same latent space, this numerical
estimate can be compared like-for-like between different examples and datasets.

One can see from Figure 3, that in many cases, even for the incorrect classification, the closest
examples make semantic sense. In Figure 3f, the model successfully relates aircraft carriers in
different poses, sketched or photographed. The alarm clock (Figure 3g) recognises the quickdraw
prototypes, but struggles to generalise to the sketch prototypes. Angel quickdraw prototypes (see
Figure 3a ) show confusion (in the quickdraw domain) between similarly-looking angels, spiders
and bats. The results are worse for cross-domain examples. The quickdraw sample in Figure 3b,
supposed to be a bat, looks indeed much like an apple. This is duly reflected by the model outputs.
Coffee cup example (see Figure 3c), demonstrates competition between the coffee cup and the knife
prototypes as the image contains both. Seeing the nearest blueberry example to the real diamond
query image (see Figure 3d) helps make sense out of the incorrect recognition. In the hot tub
example (Figure 3h), one can see that the varieties of appearances of the same objects are shown
to have a low distance. The feature space also places closer different types of light fixtures, as one
can see in Figure 3i, in sketch and real domains alike.The limitations of differentiating between
geometric figures such as hexagons and octagons (see Figure 3e suggest that despite generality,
textural information often trumps the semantic one. For the dogs scenario on training data (see
Figure 3j, one can see that while the model has sometimes advantage to find the exact match with
the prototypes, it also shows remarkable cross-domain generalisation.
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(a) Angel, recognised incorrectly (testing, sketch → quickdraw), left: sketch, right: quickdraw

(b) Bat, recognised incorrectly (testing, sketch → quickdraw), left: sketch, right: quickdraw

(c) Coffee cup (testing, sketch → real), left: sketch, right: real

(d) Diamond, recognised incorrectly (testing, sketch → real), left: sketch, right: real

(e) Octagon, recognised incorrectly (testing, sketch → quickdraw), left: sketch, right: quickdraw

(f) Aircraft carrier (testing, sketch → real), left: sketch, right: real prototypes

(g) Alarm clock (testing, sketch → quickdraw), left: sketch prototypes, right: quickdraw prototypes

(h) Hot tub (testing, sketch → real), left: sketch prototypes, right: real prototypes

(i) Chandelier (training, sketch → real), left: sketch prototypes, right: real prototypes

(j) Dog (training, sketch → real), left: sketch prototypes, right: real prototypes

Figure 3: Interpretations of decision making through closest prototypes (the leftmost images are
queries, and the further ones are prototypes)

9


	Introduction
	Related work
	Methodology
	Experiments
	Conclusion
	Experimental setup
	Interpretability analysis

