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Abstract

Linear mixed-effect models provide a natural baseline for estimating disease pro-
gression using longitudinal data. They provide interpretable models at the cost
of modeling assumptions on the progression profiles and their variability across
subjects. A significant improvement is to embed the data in a Riemannian manifold
and learn patient-specific trajectories distributed around a central geodesic. A
few interpretable parameters characterize subject trajectories at the cost of a prior
choice of the metric, which determines the shape of the trajectories. We extend
this approach by learning the metric from the data allowing more flexibility while
keeping the interpretability. Specifically, we learn the metric as the push-forward
of the Euclidean metric by a diffeomorphism. This diffeomorphism is estimated
iteratively as the composition of radial basis functions belonging to a reproducible
kernel Hilbert space. The metric update allows us to improve the forecasting of
imaging and clinical biomarkers in the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) cohort. Our results compare favorably to the 56 methods benchmarked
in the TADPOLE challenge.
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1 Introduction

Understanding the progression of diseases is essential to accurately monitor, diagnose and predict
patients’ state of health. Disease progression modeling analyses longitudinal data to capture common
and subject-specific progression patterns. Longitudinal data analysis has usually been addressed
in the framework of parametric mixed-effects models [1]. The population parameters express the
characteristics of the disease, and the individual parameters encode the specificities of each patient. It
represents the diversity of pathology. The challenge is to construct models flexible enough to learn
the disease heterogeneity across the population and sufficiently interpretable to derive a practical
conclusion.

To understand the trade-off between flexibility and interpretability, we review these models
through the prism of time and space variability of patients’ trajectories. We refer to time variability
when all the patients follow the same trajectory but not at the same speed and not with the same onset
and to space variability when each patient follows a different trajectory but with the same speed and
the same onset. For instance, to observe the different stages of a disease, event-based models have
been introduced [2], the timeline of disease progression is seen as a succession of stages followed by
each patient but not in same order. Time variability is encoded into this subject-specific ordering.
Extension to mixture model includes space variability as a set of possible trajectories[3]. Increasing
the number of stages and mixture components improves both the space and time granularity but it
will result in a lack of interpretability of each stage.

To express more finely the space granularity, we can assume the patients’ observations follow
a continuous parametric curve, the dataset providing discrete, noisy observations along this curve.
[4, 5, 6]. These curves can be defined with mechanistic approaches using Ordinary Differential
Equations (ODE), the sources of variability (time and space) across patient being in the Cauchy
conditions (t0 andX(t0)) and the common pattern of progression in the vector field as derivative [4, 5].
This family of models is interesting to study the correlation between time and space variability [4],
but it is a double-edge sword since these two factors cannot be analysed independently. Probabilistic
approaches to represent parametric curves can solve this point. Gaussian Processes (GP) have been
applied for disease progression successfully [7] to study correlation in the pathological progression
while keeping time and space variability separated. Their semi-parametric paradigm allows for a
significant flexibility by encoding the space-variability in the Gaussian kernel, but this last part is
not easy to interpret. More generally in Bayesian models, it is difficult to disentangle the different
random effects to obtain meaningful parameters. To address this point, geometric approaches have
proved to be efficient for scalar biomarkers [6] and brain shapes [8].

One instance of this family of geometric models [6] assumes that each subject follows a
curve on a Riemannian manifold which is a translation from a common geodesic (Disease Course
Mapping, DCM). The space variability is encoded in the translation and the time variability by a
time reparametrization. Though the Riemannian formalism provides interesting tools for modeling
trajectories, it is usually constrained to well-studied manifolds with simple geodesics such as sigmoid
curves for biomarkers or straight lines for cortical atrophy. In order to increase the model flexibility,
some contributors propose to learn the metric by playing on the representation of trajectories [9].
They rely on a push-forward method to learn a metric with pseudo-diffeomorphic transformations
[10]. Observations’ trajectories are seen as transformations of straight lines evolving in a latent space
learned by an auto-encoder. Though this semi-parametric representation enables multiple progression
profiles, it is inappropriate for disentangling space and time variability.

Another method for trajectory learning is to use the theory of shape analysis and more
especially the deformation of shapes in time. Authors commonly learn the deformation as a diffeo-
morphism with a Reproducing Kernel Hilbert Space (RKHS), the kernel regularity encoding the
smoothness of the deformation through time [8, 11]. We believe that this deformation method is an
interesting alternative to the the auto-encoders to increase model flexibility while keeping control on
space and time variability.

In this work, following [9] but taking a step back, we propose a semi-parametric method
using a RKHS to learn the Riemannian metric of DCM models. We thereby retain the possibility to
learn the inter-variability of patient trajectories thanks to the mixed-effect framework, keeping the
advantages of the geometric and Bayesian approach presented in [12]. First, we recall the structure
of the mixed-effect model in section 2.1, then we present the method to learn the metrics step by
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step in section 2.2. We validate the presented method on synthetic data in 3.1 and on a real dataset
(ADNI,Tadpole) in 3.2 by comparing it with previous models on the task of predicting patient’s
biomarker progression. Finally, we discuss limitations and possible future works in the discussion
section 4.

1.1 Related works

Recurrent neural networks have been proposed to predict a sequence of biomarker values. Such
methods, however, need to cope with missing values, a limited and variable number of observations
per patient, a variable time interval between observations, and a very variable pattern of change
depending on disease stage and subject.

Mixed-effect models make several assumptions about the pattern of progression. In particular,
they assume that the progression falls within a parametric family of curves of small dimension, e.g. a
linear curve or a logistic curve with unknown parameters. This is the case for instance of the DCM
approach where the linear or logistic curve are seen as the solution of an Hamiltonian flow (a geodesic
is a particular case of an Hamiltonian flow) with a given Hamiltonian function. Our main contribution
is to learn the metric of the Riemannian manifold, and therefore the Hamiltonian, to better learn the
dynamics of progression of the biomarker. In this respect, our contribution relates to the techniques
of Hamiltonian and normalizing flows that are becoming popular in the machine learning community,
see e.g. [13] or [14].

2 Methodology

All proofs are given in the Supplementary material A. Notations in all the following are: |.| for the
usual Euclidean norm, 〈., .〉 the Euclidean scalar product, |||L||| = supx∈(Rd)∗

|L(x)|
|x| for all linear

function L and |||d f |||∞ = supx |||d f(x)||| for all differentiable function f .

2.1 Riemannian geometric setting of the mixed-effect model.

In this part, we present the geometrical construction of the mixed-effect models [6] with further
explanations in Supp. material A. Let M be an open subset of Rd (d is the dimension of the
observations) equipped with the Riemannian metric g. We make now explicit the dependency on the
metric g that will be optimized.

The mixed-effect model. Based on [12], observations are seen as a point in a Riemannian manifold
M, denoted yi,j , corresponding to the data of the i-th subject at its j-th visit at time ti,j . The points
are seen as noisy samples along an individual trajectory γgi , namely a curve on the manifold, which
result of a random spatiotemporal transformation of a reference geodesic γg0 on the manifold. The
general formula states:

yi,j = ηgwi(γ
g
0 )(ψi(ti,j))︸ ︷︷ ︸

=γgi (ti,j)

+εi,j , εi,j ∼ N (0, σ2Id) i. i.d, σ > 0 (1)

• ψi : t→ αi(t− t0 − τi) + t0 is a time-reparametrizing function, with t0 being a reference
time for the population. The individual variability in time is captured by the two subject-
specific parameters in the time-shift τi and the acceleration factor αi. The time-shift τi
represents the delay at onset relative to t0 for the individual i, accounting for early or late
onset. The αi models the speed at which the trajectory of individual i is traveled, thus
accounting for fast or slow progressors of the disease.

• γg0 : t→ Expgp0,t0,t(v0), the population average trajectory, is the geodesic passing at point
p0 with velocity v0 at time t0. It represents the fixed effects of the mixed-effects model.
This supposedly summarizes the characteristic progression of the disease at hand.

• ηgwi(γ0) : s→ Expgγ0(s),s,1(P g(γ0,t0,s)(wi)) is the exp-parallelisation of the geodesic γ0 in
the subject-specific direction wi called space-shift. We denote P g(γ0,t0,s)(wi) the parallel
transport of the vector wi along the curve γ0 from γ0(t0) to γ0(s). The notion of exp-
parallelisation generates the spatial inter-variability among the population (disentangled
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Figure 1: a) sketch of exp-paralellisation in an abstract manifold. b) exp-parallelisation for the
unit square as a manifold with the metric g(p1,p2)((x1, x2), (y1, y2)) := x1y1

p21(1−p1)2
+ x2y2

p22(1−p2)2
. The

average trajectory in red and an individual trajectory in blue or purple.

from the time-variability encoded in ψi), it is depicted in (1) and further developed in the
Supp. material A. The space-shift wi encodes the specificity of the individual biomarkers’
evolution, to help distinguish between different patterns of disease progression.

In the mixed-effects model framework, we identify the random effects as the individual parameters
zi = (wi, τi, αi) for the patient i. They induce a spatiotemporal transformation of the average
trajectory parametrized by the fixed effects θ0 = (p0, v0, t0). To ensure a unique decomposition of
the temporal and spatial effects, the wi are chosen orthogonal to v0 in the tangent space at p0. Normal
distributions are chosen as priors for τi,wi and ξi with αi = exp(ξi). All the model effects can be
estimated by maximizing the likelihood with the algorithm MCMC-SAEM [15, 16] providing the
convergence guarantees (see [12] for the associated statistical specification).

The metric. Traditionally, the metric g is selected using empirical arguments. In contrast, we
propose to estimate g from data, thus relieving from a potentially tricky modeling task. This last
parameter is the most important since the whole model depends on it: it encodes the shape of
geodesics with Expg and the variability due to exp-parallelisation with ηg. In [12], [6], the authors
choose (M, g) as a manifold product of dimension-1 manifold to have a closed form for Expg and
ηg. For example, we can choose M = Rd and g = 〈., .〉 to recover straight lines as geodesics or
M = (0, 1)d and gp = 〈fp(.), fp(.)〉 with fp(v) = ( vi

pi(1−pi) )i to recover logistic curves as geodesics.
Product metrics assume that the geodesics coordinates are independent which is not necessarily
true when they describe neurodegenerative bio-markers progression [17]. Moreover, due to the
product-metric, the coordinates follow geodesics which enforces bijectivity and thus monotonicity of
the trajectories. Thus, we assume that the noise effect εi,j in (1) is in reality different from the real
data noise εnoise

i,j because of the miss-specification of the metric g, in such a way that εi,j = εgi,j + εnoise
i,j

with εgi,j the error due to the modelling. The goal is to minimize εgi,j .

To state the problem, we suppose that the population and individual parameters θ = (θ0, (zi)i)
are estimated and we want to minimize the squared reconstruction error L(g) according to g:

L(g) :=
∑
i,j

|εi,j |2 =
∑
i,j

|εgi,j + εnoise
i,j | =

∑
i,j

|yi,j − γgi (ti,j)|2 (2)

To prevent the risk of overfitting since εnoise
i,j is present in L, we can add a regularizing term or constrain

the set of admissible metrics g. Next, we describe a method to solve this optimization problem.

2.2 Learning the metric.

The task of learning a Riemannian metric has already been addressed in the literature [10],[9], [18]
and most of the time, it is reduced to the task of learning a diffeomorphism using the following
proposition (method coming from [10]):
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Proposition 1 (Pushforward metrics). Provided (M, g) a Riemannian space, N a manifold and
φ : M→ N a C1 diffeomorphism, we can equip N with the Riemannian metric gφ defined as:

∀ p ∈ N, ∀w, v ∈ TNp, gφp (w, v) = gφ−1(p)(dφ
−1(p).w,dφ−1(p).v)

Moreover, φ is an isometry, which implies that for all (m, v) in TM and γ : (−1, 1) → M a
differentiable curve:

Expg
φ

φ(m)(dφ(m).v) = φ ◦ Expgm(v), P g
φ

φ◦γ,t0,s(dφ(γ(t0)).v) = dφ(γ(s)).P gγ,t0,s(v)

Thanks to this property, we can start from an initial metric g in M and reach a wide variety of
Riemannian metrics by considering (φ(M), gφ0 ) with φ in F a set of C1-diffeomorphism. Moreover,
the exp-parallelisation ηg

φ

can be expressed in closed form as soon as φ and ηg are expressed in
closed form as well. Nevertheless, it restricts the possibilities because the curvature is preserved.
For example if g is the Euclidean metric and M = Rd, the space (φ(M), gφ) will be always flat
(curvature equals zero) since (M, g) is flat.

Learning a diffeomorphism is a more common task than learning a metric especially in the field
of shape analysis with the LDDMM algorithm [11],[8] and even in deep learning with the invertible
networks [19] for different applications [9],[20],[21]. Inspired from the LDDMM framework, we
chose to use the following method to construct the set of C1-diffeomorphism F :
Proposition 2. If φ = id +f , with f a bounded function in C1(Rd,Rd) such that |||d f |||∞ < 1
(H1), then φ is a C1 diffeomorphism.

In all the following we choose M = Rd which is the most flexible choice. For example if
we want to subsequently work on ]0, 1[, consider φ′ = φ ◦ σ with σ = 1

1+exp(−t) . To respect the
condition of the previous proposition, we choose to take f in an RKHS denoted H to encode its
regularity in its norm. Moreover, the RKHS functions are handy in non-parametric optimization
thank to the representer theorem (for a comprehensive review of kernel methods [22]). We derived
the following lemma to fit the constraints:
Lemma 1. If k is a kernel such that k(x, y) = g(x−y) Id with g ∈ C2(Rd,R) and h(x, y) = g(x−y)
is a bounded kernel, then ∀f ∈ H s.t ||f ||H < 1√

|∇g(0)|
, |||d f |||∞ < 1 and f is bounded (H1).

Examples:

• The Gaussien kernel; g(x) := exp(− |x|
2

2σ2 ), σ > 0 1
|∇g(0)| = σ√

d
.

• The Sobolev kernel or generalized T-student kernel, g(x) = 1

(1+
|x|
2σ2

)a
, σ > 0, a > d,

1
|∇g(0)| = σ

a
√
d

In all the following we choose a kernel k respecting the previous conditions such that for
all f in the closed ball B̄H(0, c) (c a positive constant), (H1) is verified. Note that we can prevent
overfitting thanks to this constraint. Now, we are equipped to address the optimization problem (2).
Lemma 2. If the population and random effects θ = (θ0, (zi)) are estimated, the minimization of
the error of reconstruction (2) can be performed by solving the following problem:

f∗ ∈ argminf∈B̄H(0,c) L(f), L(f) =
∑
i,j

|yi,j − γi(ti,j)− f(γi(ti,j))|2 (3)

Thanks to the representer theorem, we have:

∀x ∈M, f∗(x) :=
∑
i,j

k(xi,j , x)wi,j , xi,j = γi(ti,j)

With this parametric form for f∗, the previous problem (3) is equivalent to:
minimize

W
||U −KXW ||2 (4a)

subject to WTKXW ≤ c0, (4b)

where the previous variables are vectorized:
W := (wi,j)i,j , U := (yi,j − γi(ti,j))i,j , KX := (k(xi,j , xk,l))((i,j),(k,l))
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Algorithm 1 Geodesics Bending (Alternating maximization algorithm)
Require: ginit, θinit, Ncomp, k, Nc, nMCMC
g ← ginit; φ← id; θ ← θinit
for l = 1 to Ncomp do

Run the MCMC-SAEM for nMCMC iterations with metric g to estimate θl
θ ← θl.
Solve the optimization problem (4a) with parameters θ to estimate f∗l
φ← (id +f∗l ) ◦ φ
g ← gφ

end for
return θ, g

The minimization of a quadratic function under constraints (4a) can be solved numerically
within a reasonable time as soon as the matrix KX is not in high dimensions. The total number of
visits in a medical cohort can reach up to dozens of thousands and the points xi,j are close to each
other, which results in the matrix being ill-conditioned. To overcome these obstacles, we assume
that yi,j ∈ [0.1]d and we create a grid of control points in [0, 1]d with step-size σ if σ is the kernel
variance (there exists other methods [23], but this one is more close to the LDDMM framework [11]
and gives satisfying results [24]). We only keep the grid points which are σ-close to the observations,
thus removing the useless ones. We note Nc the number of control points, which can increase
exponentially with the dimension according to the previous construction: Nc(σ) ≈ 1

σd
. If d is too

large, we can choose another method to obtain a reasonable number of control points, a simple way
to do so is to subsample the points (xi,j) [23]. In all the following, the grid method is used because
of its practical upsides (no randomness, no risk of ill-conditioning of the matrix KX ).

Now, we have a method to improve the choice of the metric when keeping the mixed-
effect parameters θ fixed. Then we need to both optimize the metric g and the model parameters
θ = (θ0, (zi)). We choose to maximize the likelihood with algorithm 1. As we know how to optimize
g when θ is fixed and reciprocally, we implement an alternating scheme of optimization. We start with
a simple metric ginit (usually the Euclidean metric or the metric resulting from the push-forward of
the logit), and we estimate the mixed-effect parameters θ with the MCMC-SAEM algorithm [15, 16].
Then, with θ fixed, we estimate the metric by numerically solving the optimization problem (4a) with
the chosen kernel k and a chosen number of control points Nc. Each iteration is a repetition of these
two steps. Each step with a metric optimization amounts to a composition of the previously estimated
diffeomorphism φ with the newly estimated diffeomorphism. The number of iterations thus amounts
to the number of compositions Ncomp. The hyperparameters k, Ncomp and Nc are tuned to make a
compromise between loss minimization, computation time and number of parameters.

For Ncomp compositions, we have g = gΦNcomp with ΦNcomp = φNcomp ◦ . . . ◦ φ1 where φi =

id +
∑Nc
j=1 k(xij , .)w

i
j , (xij)j the Nc control points and (wij)j their associated weights. This structure

resembles the deep neural networks considering Nc as the width and Ncomp as the depth. The total
time complexity is O(nMCMCdNcN

3
comp) which reduces in practice the choice of Ncomp (see Supp.

material B to more details on these considerations). We called this method Geodesics Bending (GB).

3 Experiments

All the methods are developed in Python by extending the open-source Leaspy library
(https://leaspy.readthedocs.io) created for DCM models and run on a 2.80GHz CPU with 16 GB
RAM. All code will be available on Github in the near future.

3.1 Synthetic data

In this part, we study the learning capacity of the method and its stability on synthetic data depending
on the values of the depth Ncomp, the width Nc(σ) and the initial metric ginit. We study the algorithm
in the context of neurodegenerative diseases. The parameters are selected to be realistic.

In all the following, to perform the metric estimation, we choose k to be the Gaussian kernel
(experiments with the Sobolev kernel gives similar results), nMCMC = 200 (nMCMC = 10000 at the
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Figure 2: (a) The average trajectory on the second coordinate is displayed for each value of Ncomp in
the Convergence experiment. (b) The average trajectory on the second coordinate is displayed for
each value of Ncomp in the Stability experiment.

very first step since the mixed-effects are not necessarily well initialized whereas for subsequent
iterations the MCMC-SAEM starts closer to the optimum), θinit is computed empirically from patients
features [25]. It leaves Ncomp, Nc(σ) and ginit to select according to the situation.

Data generation Once we have selected the number of patients Npat and the observations’
dimension d, we generate data according to the DCM model (1) selecting the fixed ef-
fects t0, v0, p0, ggen, σ

2
τ , σ

2
ξ , σ

2
noise, and sampling the random effects parameters such that τi ∼

N (0, σ2
τ ), ξi ∼ N (0, σ2

ξ ), εi,j ∼ N (0, σ2
noise), principal directions of variation for space-shifts (Am),

smi ∼ N (0, 1), wi =
∑
m s

m
i Am and time parameters σt, ntmin, n

t
δ to generate the patient time-points

(ti,j)1≤j≤Ti randomly: Ti = ntmin + δi, δi ∼ B(nδ,
1
2 ), ti,j ∼ N (t0, σt), yi,j = γg

φ

i (ti,j) + εi,j . For
both experiments, we set Npat = 500, d = 2, ntmin = 2, ntδ = 6, σt = 4.

Convergence First, we experiment whether learning the metrics with kernels enables the regression
of exotic trajectories. We choose σnoise = 0.01, ggen = gφ with φ(x) := exp(0.07(x+ sin(x))− 1)
and g = 〈., .〉 for the data generation and Nc(σ = 0.08) ≈ 90 for the metric estimation (more details
in Supp. material C).

Increasing the number of compositions improves the capacity to recover the true average
trajectory as we can see in figure 2. The estimated noise variance σ̃2

noise decreases linearly and plateau
around the true value of noise σ2

noise = 0.013 which shows that the model is a little under-fitting.
The kernel regularization impacts the smoothness of the function, making it harder to fit the fast
oscillations. By testing different values of the width Nc(σ), we observed that the lower the kernel
variance σ, the higher the risk to overfit. Conversely, the higher σ, the higher the risk to underfit. As
for deep neural networks, there is an optimum to find regarding the hyper-parameters. In practise
with datasets on neurodegenerative disease, normalized data are very noisy σ2

noise ≈ 0.05. To avoid
over-fitting, we select the kernel variance σ in [0.1,0.5]. The choice of ginit influences the number of
compositions required to reach a good approximation of the "true" metric.

Stability Secondly, we experiment whether the method is stable: beginning from the metric which
has generated the data with ginit, we observe the effect of supernumerary compositions. We choose
ggen = gsig with sig(x) := 1

1+exp(−x) and σnoise = 0.05 for the data generation, ginit = gsig and
Nc(σ = 0.2) ≈ 31 for the metric estimation.

The compositions on φ produce local fluctuation on the sigmoid trend as pictured in figure 2.
There are less observations near the inflexion point which causes over-fitting. This phenomenon is
also present in datasets on neurodegenerative disease: areas of the trajectory where data are scarce
can be over-fitted by GB. Nevertheless, the value of the effects θ are nearly constant after its first
estimation in the algorithm 1 (see Supp. material C), which strengthens the model interpretability
and encourages the reduction of nMCMC.
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Table 1: Experiment performances recorded with the MAE. The proposed method is compared
with the alternative using a paired, two-sided Wilcoxon signed rank test. *: p<0.05, **: p<0.01,***:
p<0.001.

MMSE HIPP VENTS ABETA

Experiment GB DCM GB DCM GB DCM GB DCM

Pred(nf = 1): 0.140 0.146 0.046∗∗∗ 0.056 0.042∗∗∗ 0.056 0.124 0.114
Pred(nf = 2): 0.132∗∗ 0.146 0.037∗∗∗ 0.046 0.038∗∗∗ 0.049 0.123 0.109∗
Imp(nr = 1): 0.080∗∗ 0.088 0.029∗∗∗ 0.31 0.017∗∗∗ 0.020 0.128 0.123
Imp(nr = 2): 0.081∗∗∗ 0.089 0.028∗∗∗ 0.030 0.023∗∗∗ 0.027 0.120 0.111∗∗

The problem of generalization The method reveals to be flexible and quite stable provided the
hyper-parameters are wisely selected. To assess whether the learning complexity of the method makes
sense in practice, we propose to measure its capacity of generalization by recording its performance
on prediction tasks within a 5-folds cross validation framework: running the algorithm 1 on 4-folds,
predicting on the last fold the last patient visit from its first visits, or predicting the previous visits
from the last visits (as for data imputation). In the next part, these experiences are carried out
on a reference dataset of neurodegenerative diseases with different types of data (cognitive scores,
sub-cortical volumes from MRI, cerebro-spinal fluid biomarkers) to show the potential of a flexible
method such as the one we introduce in this paper.

3.2 Real data

Introduction ADNI The data used in this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

First, the algorithm was tested on the subset of AD patients. For each visit, we jointly model
their Mini-Mental State Examination (MMSE, a cognitive score), the volume of their hippocampi
and lateral ventricles normalized by their intracranial volume (HIPP and VENTS respectively)
and the concentration of amyloïd β1−42 in their cerebro-spinal fluid (ABETA). The goal was to
understand the impact of the metric estimation on these typical AD biomarkers. Then, the model was
compared to the state-of-the-art with The Alzheimer’s Disease Prediction Of Longitudinal Evolution
(TADPOLE) challenge [26]. These methods include penalized regression, linear mixed-effect models,
recurrent neural networks, and multi-task learning. Since the challenge was closed, more algorithms
have been presented for the same prediction task, using the same dataset, including [27] and [28]
using deep RNNs, and [29] using random forests. The forecast of ventricle volumes (VENTS) and
cognitive decline (ADAS-cog) presented in this paper have smaller mean absolute errors than all
these competing methods.

An Alzheimer’s disease cohort The cohort is composed of patients from all ADNI phases (ADNI1,
ADNI GO, ADNI2, ADNI3), having been diagnosed with AD, with a minimum of 2 visits (4.15
visits on average and 1.5 visits for standard deviation) and ABETA < 977 pg/mL cutoff (so to
get amyloid-positive patients only [30, 31]). Sub-cortical volumetric segmentations of MRI were
performed with the Freesurfer image analysis suite v6.0.0, which is documented [32] and freely
available for download online (http://surfer.nmr.mgh.harvard.edu/). All scores were normalized in
[0,1] (to motivate the logistic prior for trajectories), using preprocessing tools from the scikit-learn
library [33]: MMSE was affinely-mapped using the score bounds, other biomarkers were Box-Cox
transformed [34] to un-skew their distribution, clipped between their 0.1 and 99.9 percentiles and
finally affinely-mapped into [0,1]. When needed, scores were reversed such that they all increase
during disease progression. The models being generative, we did not drop out missing values.
We compare the DCM models using the Riemannian metric gsig (baseline) and GB (ginit = gsig,
Ncomp = 6 and Nc(σ = 0.24)), both using 2 principal directions of variation for space-shifts. Note
that the baseline (DCM in yellow in figure 3) is the very first iteration of GB optimization.
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Figure 3: (a, b) The estimated tubular coordinate system is shown for the HIPP and MMSE scores,
showing the distribution of the spatial variability around the average geodesics in red by changing the
space-shifts on a principal direction (wi = sA2, s ∈ [−1, 1]). (c) The effects of each learning step on
the average trajectory γ0 is shown. 60 and 87 years are the 0.05 and 0.95 quantile for the ages (ti,j).

Experiments: (1) Future visits prediction and (2) data imputation. For both experiments, mod-
els are trained with a 5-folds cross-validation. In the prediction experiment, we estimate, in the
out-of-train fold, the individual parameters zi on the first nf visits of patients and predict on their
very last visit. In the imputation experiment, in the out-of-train fold, we estimate the individual
parameters zi on all the patients visits except nr visits drawn uniformly in its set of observations
and predict on these nr removed visits. We evaluate the performance of estimations with the Mean
Absolute Errors (MAE) on the 5 test-sets, depending on the value of nr and nf varying from 1 to 2.

Results. The table 1 demonstrates that GB outperforms DCM except on ABETA 3.2, no matter
the value of nf and nr. Looking at the figure 3 c, the MMSE trajectory learnt by GB has a more
exponential shape compared to the DCM and the HIPP trajectory has been transformed from a nearly
linear curve into a piece-wise linear curve (see Supp. material C for all figures), the inter-patient
variability is changed correspondingly (see sub-figure a and b). It shows that there are different
trajectories behaviors that DCM cannot take into account. With GB, at the beginning of the disease
we observe that HIPP volume decreases while MMSE stays constant, which is clinically coherent.
However, GB fails to generalize on ABETA because of the small number of data (576 missing
values out of 909 visits). When few information is available logistic prior for trajectories’ shape is
already almost optimal. It has been remarked that GB makes better predictions than DCM especially
on patients with high scores, this fact is worth mentioning if we want to later improve predictions
with ensemble methods [35]. We observe that the algorithm begins to stabilize after 4 steps which
motivates that Ncomp = 6 is a good trade-off between under-fitting and over-fitting. Now, we should
assess the proposed method on a more general cohort including MCI and cognitively normal patients.

TADPOLE Challenge. [26] The TADPOLE training set is composed of data from the first three
ADNI phases (ADNI 1, ADNI GO and ADNI 2). It includes approximately 1500 features acquired
from 1737 subjects (957 males and 780 females) during 12.741 visits for at most 22 distinct time
points, between 2003 and 2017. Challengers were evaluated on their prospective predictions on
enrolled individuals rolling-over for ADNI next phase, regarding the Alzheimer’s Disease Assessment
Scale Cognitive Score (ADAS-Cog13) and the volume of lateral ventricles normalized by the
intracranial volume (VENTS), with the MAE metric. The final test set, disclosed in 2019 (time to
prediction is about 2 years), is composed of 223 follow-up visits. This challenge allows for a fair
comparison of the prediction performances presented here against 56 alternative methods. These
methods include penalized regression, linear mixed-effect models, recurrent neural networks, and
multi-task learning [26]. Since the challenge was closed, more algorithms have been presented for
the same prediction task, using the same dataset, including [36] and [37] using deep RNNs, and [38]
using random forests. The forecast of ventricle volumes (VENTS) and cognitive decline (ADAS-cog)
presented in this paper have smaller mean absolute errors than all these competing methods.

We compared GB and DCM to the best Challenger. For the training, we select all patients
having at least 2 visits and being amyloid-positive (ABETA < 977 pg/mL [31]), it left us 765 patients
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Figure 4: Boxplots after bootstrapping the prediction errors on the different scores. (For the boxplot :
Whiskers=[2.5,97.5] %, Box=[25,50,75]%)

with 5.5 visits on average. We use the observations of ADAS-Cog13, MMSE, HIPP, VENTS and CSF
P-TAU to calibrate the models with a 5-folds cross-validation. We apply the same transformation as
previously to pre-process HIPP, VENTS and to CSF P-TAU (Box-Cox transform, quantile clipping
and min-max rescaling) as well as MMSE and ADAS-Cog13 (only affine-rescaling since scores are
already bounded). For GB, we take N(σ = 0.24) , Ncomp = 4 and ginit = gsig with 2 principals
directions for space-shifts, but 3 for DCM.

Results To know whether our results are statistically significant in the absence of other challengers’
errors sample, we derive confidence intervals of DCM and GB’s MAE by bootstrapping our error
sample (10000 discounted draws). On figure 4, we observe that DCM and GB outperform the best
challenger on ADAS-Cog13 and stay competitive on VENTS. This fact shows the potential of the
geometric approach to offer interpretable and flexible models. Regarding the effect of learning
the metric, GB seems to be better than DCM on ADAS-Cog13 and MMSE but not on VENTS.
Comparing with the previous experience, it is likely that GB focuses more on the AD patients profile
compared to MCI and controls. Indeed AD patients are representative of the disease progression
whereas MCI and control subjects are seen by the model as slower disease progressors (delayed in
time with a large time-shift τi and slow-paced with a low acceleration factor αi).

4 Conclusion

Riemannian metric learning applied to mixed-effect models enables to reach a sensible trade-off
between flexibility and interpretability in disease progression modeling. The proposed approach
allows us to disentangle time and space variability while learning the inter-patient variability and the
average trajectory from the data. Without data scarcity, it proves to be efficient on homogeneous cohort
for improving predictions on imaging and clinical biomarkers and suggests promising perspectives to
handle heterogeneous cohorts with ensemble methods and mixture models. This work can be pursued
by searching theoretical guarantees for the optimization process and practical guidelines for selecting
hyper-parameters with empirical estimators. This model has the potential to better monitor patients
and select them in clinical trials, although we need to pay particular attention to the representativity
of minority groups in the training data set.
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