
SKILLWRAPPER: Skill Abstraction in the Era of Foundation Models

Shreyas Sundara Raman1∗, Ziyi Yang1∗, Benned Hedegaard1, Stefanie Tellex1, David Paulius1†, Naman Shah1†

Abstract—We envision a future where robots will be equipped
“out of the box” with composable and portable skills. However,
the conditions in which these skills will successfully execute
are not formalized in a way that lets robots autonomously
compose skills, posing difficulties for robot programmers who
operate such robots. Abstractions are a key requirement to enable
robots to perform complex tasks. Often, domain experts hand-
craft these abstractions, introducing bias from human intuition.
Alternatively, computational approaches can be used to invent
abstractions autonomously, but human programmers or end
users may not be able to interpret the resulting abstractions.
We present an approach for autonomously learning natural-
language-interpretable abstractions. Our novel method learns
symbolic representations for black-box robot skills, such as GoTo
and PickUp, from a high-dimensional and unstructured input
in the form of 2D images. Specifically, we use foundation models
to propose exploratory sequences of skill executions, to invent
symbolic predicates that disambiguate low-level state transitions,
and to classify when said predicates hold in a given state. We
present preliminary results in a simulated setting, demonstrating
the feasibility of our method.

I. INTRODUCTION

As robotics researchers, we envision a future where robots
are deployed to the world to carry out complex, goal-directed
tasks, such as arranging a room or delivering items to dif-
ferent locations. Many of such robots will be equipped with
numerous pre-designed skills that can be used out of the
box. These skills typically involve high-level behaviors such
as GoTo(location), Pickup(item), and Open(door).
Robots may need to chain or sequence its skills to solve
complex tasks, which can be achieved via automated plan-
ning [47, 14]. However, planning requires expert-crafted char-
acterizations of robot skills, which can be used to identify
under which conditions skills would be successful. In prac-
tice, this would require robot manufacturers to provide such
information for every deployment of such robots.

Motivated by this, we aim to learn skill abstractions that can
enable robot programmers to effectively use out-of-the-box
skills. Prior work has shown promising results in learning sym-
bolic representations for high-level skills [28, 29, 51, 48, 18].
However, they assume access to privileged information such
as object poses [48] or extensive human feedback [18] while
also lacking support for unstructured input and interpretable
representations [29]. To facilitate skill abstraction learning
across modalities, we look to foundation models. Foundation
models, such as large language models (LLMs) and vision-
language models (VLMs), have been shown to excel at tasks
such as natural language generation, understanding, and image

Project website: https://yzylmc.github.io/skill-wrapper/
1Brown University, Providence, RI, USA.
∗Equal contribution, listed in alphabetical order. Corresponding Author

(Email: ziyi yang1@cs.brown.edu)
†Equal advising, listed in alphabetical order.

Predicate Set

State Description

Skill Metadata

Skill Sequences

Step 2:
Collect Skill

Execution Traces

Step 1:
Prompting for 

Skill Sequences

Step 3:
Create Predicate
Set for Symbolic
State Generation

Skill Operators

Planner

Step 4:
Create Skill

Operators using
Successful

Experiences

Step 5:
Plan with Learned

Operators

Task Plan!

Fig. 1: Brief overview of the SKILLWRAPPER system.

generation. More recently, these models have been applied to
robotic settings as a high-level planner with characterized af-
fordance of primitive skills [1, 9, 33], while they are incapable
of planning with uncharacterized black-box skills. Instead, we
believe foundational models can be helpful in systematically
discovering symbolic representations for this purpose.

We present SKILLWRAPPER, the first known approach for
autonomously characterizing robot skills using foundation
models that provide human interpretability of the learned
representations. We develop a novel method that takes pre-
defined robot skills as input and learns a symbolic robot skill
model represented as PDDL [37]. Unlike existing approaches
that learn symbolic representations from well-structured state
representations, our method is designed to work with high-
dimensional and unstructured inputs and generate human-
interpretable symbolic representations. In contrast to existing
approaches that directly use foundation models for task plan-
ning [1, 9, 33, 61, 18], our aim is to develop a system that
automatically characterizes black-box skills from unstructured
input representation and enables us to leverage off-the-shelf
automated planners [19].

Our system exploits foundation models in three key ways.
First, we leverage them as zero-shot classifiers for truth values
of predicates given image inputs. Second, we develop a novel
active data collection algorithm that uses a foundation model
to propose skill sequences for the robot, enabling our method
to generate contrastive examples of executing skills. Lastly,
we develop a novel algorithm to discover human-interpretable
symbolic predicates and their semantics with foundation mod-
els. We perform preliminary experiments that evaluate our
system in simulated settings that require complex long-horizon
reasoning and composition of skills to complete the tasks.
Empirical results show that our method efficiently uses the
foundation model in each of the aforementioned modules and
learns usable and interpretable symbolic representations for
black-box skills.
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Fig. 2: Overview of SKILLWRAPPER, which is comprised of four main phases for learning operators: 1) we use a foundation
model (FM) to propose sequences of skill executions useful to operator learning given a description of the agent’s environment
and metadata about its skills; 2) the robot attempts to execute each proposed sequence, while capturing the initial and final
state after each action is performed and storing these execution traces in a dataset; 3) we review the dataset of experiences
collected by the robot and present them to the FM as contrastive pairs (i.e., success and failure images as positive and negative
examples), from which a FM will propose a set of predicates suitable to describe a symbolic state across all skills; and 4)
using the predicate set and a pair of images corresponding to a positive example are given to a FM to infer the symbolic state
before and after successful execution, which are then used to define skill operators.

II. RELATED WORK

The core focus of our work is to use pre-trained foun-
dation models to learn human-interpretable symbolic repre-
sentations of black-box robot skills useful to downstream
decision-making. This work draws ideas from different fields
of research such as model learning, abstraction learning,
and task and motion planning (TAMP). Foundation models
have attracted a lot of attention in recent years for robotics.
Several methods have used foundation models (mostly LLMs)
as high-level planners [1, 44, 9]. Several approaches have
used foundation models as robot action models [4, 50] or to
generate reward functions for robot tasks [59]. While these
approaches show promising results for short-horizon single-
skill problems, they fail to scale to complex long-horizon
problems. Lastly, multiple approaches have used foundation
models to learn symbolic representations for robot skills, but
they require extensive human expert feedback [18]. To the best
of our knowledge, our work is the first to use a foundation
model in different modules to automatically learn the human-
interpretable symbolic characterization of robot skills.

TAMP has been long used for solving complex robot
tasks [8, 47, 14]. However, these approaches require symbolic
models for the robot skills that they can use to plan robots’
actions. Various approaches [29, 51, 48] have been devel-
oped to learn such symbolic models compatible with TAMP
solvers, but these approaches cannot handle high-dimensional
or unstructured input, such as image observations or natural
language. Additionally, abstractions learned through these
methods are not human interpretable. On the other hand, we
explicitly design our approach to work with high-dimensional
inputs and generate human-interpretable abstractions using
pre-trained foundation models. The proposed system also
connected to other domains in robotics, and the full related
work can be found in Appendix VIII-G.

III. FORMAL FRAMEWORK

We consider an active learning setting where an agent
is provided a collection of pre-defined, “black-box” skills.

However, because the agent is not provided a transition model
describing the skills’ dynamics, it cannot easily sequence the
skills to achieve its goals. We propose a method that learns
one such transition model in the form of symbolic PDDL-
style [37] predicates and operators. To learn this model, the
method commands the agent to execute sequences of skills,
creating a dataset of observed environment transitions. This
method must then iteratively update its learned model based
on the available data, propose additional skill sequences to
generate further data, and accordingly improve the learned
model. Once the method has learned an appropriate abstract
transition model, an agent can use off-the-shelf classical AI
planners to sequence its skills to solve unseen, long-horizon
problems.

A. Environment Model
We model the agent’s environment as a semi-Markov deci-

sion process (SMDP) [3] defined by the tuple (S,Ω, R, T, γ),
extended by the tuple (T ,O). The state space S is assumed
to be high-dimensional, continuous, and fully observable. The
agent encounters a fixed set of known, typed objects o ∈ O in
the environment. Each object’s type, denoted type(o), is drawn
from the known set of types T . The agent is provided a set of
“black-box” skills Ω, modeled as options [53] taking discrete,
typed parameters (see Sec. III-B).

The reward function R(s′ | s, ω) and transition function
T (s′ | s, ω) respectively describe the reward for, and proba-
bility of, arriving in the state s′ ∈ S after executing the skill
ω ∈ Ω from the state s ∈ S. This paper does not consider
explicit time steps when modeling R or T . The discount factor
γ ∈ (0, 1] describes the agent’s preference for short-term or
long-term reward. The reward model R and transition model
T for a particular skill ω ∈ Ω are called the skill’s model.
Because we do not assume access to skill models, our method
must learn some alternative model of the skills’ dynamics.

B. Black-Box Skills
We model the agent’s skills Ω as options [53] taking discrete

parameters with types drawn from the set T . When the agent



executes one of its skills ω ∈ Ω, it enters a temporally
extended course of action, traversing multiple states s ∈ S
as the agent takes many atomic actions a ∈ A. Formally, each
skill ω ∈ Ω is defined by the tuple (Iω, πω, βω,θω), where
an initiation set Iω ⊆ S , which we defines the states where
the skill can be executed, a deterministic policy πω : S → A
selects atomic actions during the skill, a termination condition
βω : S → [0, 1] terminates the skill with probability βω(s),
and a tuple of discrete, typed parameters θω = (θ1ω, . . . , θ

n
ω)

stand in for objects of specific types, such that type(θiω) ∈ T .
We assume the agent knows the skills’ typed parameters θω .
However, the agent can only evaluate skill applicability (i.e.,
whether s ∈ Iω) for the state it is currently in.

C. Skill Abstraction

Without full knowledge of the skill models and initiation
sets, the agent needs some method to learn a suitable transition
model for its pre-defined skills. This method must command
the agent to execute sequences of skills, creating a dataset of
observed environment transitions that can be used to learn a
model of the skills’ dynamics. We assume that the learned
transition model consists of PDDL-style [37] predicates and
operators. If learned successfully, such abstractions would
enable the agent to use an off-the-shelf classical planner to
compose its skills to accomplish unseen, long-horizon goals.

This learning process invents predicate symbols P to ex-
press abstract relations between objects O in the environment.
Formally, a predicate P ∈ P of arity n ∈ N1 is defined by the
tuple (θP , cP ), where θP = (θ1P , . . . , θ

n
P ) is a tuple of typed

parameters such that type(θiP ) ∈ T and cP : On → S →
{0, 1} is a lifted Boolean state classifier.

Using the predicates P , the learning method must invent
a set of operators (i.e., relational abstract actions) defining
abstract transition models for the skills ω ∈ Ω. Each operator
α ∈ A is defined by the tuple (ωα, PREα, EFF+α , EFF−α ,θα),
where ωα ∈ Ω is the skill corresponding to the operator;
preconditions PREα ⊆ P define the abstract conditions neces-
sary to apply the operator; add effects EFF+α ⊆ P and delete
effects EFF−α ⊆ P describe the abstract conditions that become
true and false, respectively, after the operator is applied; and
θα = (θ1α, . . . , θ

n
α), with type(θiα) ∈ T , is a tuple of discrete,

typed parameters defining placeholders for objects o ∈ O.

D. Grounded Abstractions

Before the learning method can evaluate whether a predicate
P ∈ P of arity n ∈ N1 holds in a given state, the predicate
must first be grounded by binding its parameters θP to particu-
lar objects o1:n in the world. The abstract relation described by
cP can then be evaluated for those objects in a particular state.
Formally, a grounded predicate P = P (o1, . . . , on) is defined
if and only if ∀i ∈ {1, . . . , n}, type(θiP ) = type(oi). If P is
defined, the grounding process also induces the Boolean state
classifier cP : S → {0, 1}, where cP = cP (o1, . . . , on) repre-
sents a truth-valued relation between the objects o1:n ∈ On.

Together, objects O and predicates P induce a grounded
predicate set P containing all expressible relations between

objects. We define P as the set of all valid groundings of the
predicates P ∈ P , each of arity n ∈ N1, using objects oi ∈ O:

P =
{
P (o1:n) | ∀i ∈ {1, . . . , n}, type(θiP ) = type(oi)

}
. (1)

We define the abstract state space S = 2P as the power
set of P so that each abstract state corresponds to a specific
combination of the possible grounded relations. An abstraction
function FP : S → S maps each low-level state s ∈ S to an
abstract state s ∈ S corresponding to the subset of grounded
predicates P ∈ P that are true in state s.

s = FP(s) ≜ {P | P ∈ P ∧ cP (s) = 1}. (2)

The abstract action space A is defined similarly by ground-
ing the operators α ∈ A. Each grounded operator α ∈ A is
defined by a tuple (α, o1:n), where α ∈ A is an operator with
n ∈ N1 typed parameters θα = (θ1α, . . . , θ

n
α) and o1:n ∈ On

is a tuple of objects such that ∀i ∈ {1, . . . , n}, type(θi
α) =

type(oi). When these types match, each object argument oi
can be bound to the corresponding parameter θiα, thereby
grounding the predicates of the operator α and inducing
the ground preconditions PREα ⊆ P , ground add effects
EFF+α ⊆ P , and ground delete effects EFF−α ⊆ P .

E. Learning Abstractions from Experience

To learn appropriate predicates and operators, the method
commands the agent to execute its skills in the world and
gather transition data. Each command is a sequence of skills
σ = [ω1(o1), . . . , ωm(om)], where ωj ∈ Ω, |θωj | = |oj |,
oj = (o1j , . . . , o

n
j ) ∈ On, and ∀i ∈ {1, . . . , n}, type(θiωj

) =

type(oij). By executing σ, the agent collects a dataset D of
transitions of the form τ = (s, ω(o), s′), where s, s′ ∈ S,
ω ∈ Ω, and o ∈ On. These transitions provide two possible
pieces of information:

1) Whether the skill ω can be initiated from the state s,
given the object arguments o.

2) If s ̸= s′, the difference in the abstract states s = FP(s)
and s′ = FP(s

′) should correspond to the effects of
some grounded operator α ∈ A modeling the skill ω.

F. Problem Definition

Definition 1. Given a set of skills Ω, an SMDP (S,Ω, R, T, γ),
and a set of objects O of types T , we define an Active Rela-
tional Abstraction Learning Problem as learning an abstract
transition model M = (P,A) for the skills Ω.

IV. METHOD

Briefly, SKILLWRAPPER characterizes skills from a library
of black-box robot skills by iteratively proposing and execut-
ing exploratory skill sequences to collect experiences in an
active way (as described in Section III-E). Using a foundation
model, our system progressively invents new predicates to
construct a predicate set P , which are then used to construct
symbolic operators for each skill. To construct a sufficient
descriptor set for a symbolic state, which are discussed in
predicate invention, skill sequence proposal, and operator



learning; the overall process is illustrated in Algorithm 1.
The resulting wrapped skills, or the operators learned by
our system, can be chained together to solve task planning
problems specified with natural language or images.

Algorithm 1 SKILLWRAPPER

1: Input: Set of skills Ω, number of iterations m ∈ N1

2: Output: Abstract transition model M = (P,A)
3: D,P,A ← ∅
4: for i ∈ {1, . . . ,m} do
5: σ ← PROPOSESKILLSEQUENCES(Ω,P,D)
6: D ← D ∪ EXECUTESKILLS(σ)
7: P ← INVENTPREDICATES(Ω,D,P)
8: A = LEARNOPERATORS(T , F )
9: end for

10: return M

A. Predicate Invention

Predicates are the basic units of our skill representation.
To generate interpretable predicates that facilitate task speci-
fication, our system leverages foundation models to propose
predicates together with their semantic meanings in English
sentences. Specifically, our system uses a foundation model to
propose skill sequences that help the agent gather experiences
of skill execution, from which our system then progressively
invents predicates that disambiguate successful and failed
executions. Foundation models also enable state abstraction
from visual observations in our system: since the predicates are
interpretable, foundation models essentially function as zero-
shot classifiers to determine the truth value of each predicate.

The objective of predicate invention is to construct a set
of predicates via prompting to describe important factors
relevant to skill executions in abstract states, and the ability
to describe such abstract states can be validated via the ability
to distinguish underlying world states. For example, suppose
two executions of the same skill from the same abstract
state lead to different execution successes (where one failed
and the other succeeded). In that case, it implies that the
symbolic representation captured by the existing predicate set
is insufficient to describe the difference in skill execution
success, and additional predicates need to be invented in order
to disambiguate the abstract representations of both starting
states. To trigger new predicate invention, the algorithm explic-
itly looks for such mismatched pairs from the collected dataset
of skill execution traces: for preconditions, comparisons are
conducted between the states before skill executions, and for
effects, comparisons are conducted between the truth value
changes of predicates before and after skill execution.

When inventing a new predicate, our system prompts a
foundation model with the mismatched pair, metadata of the
skill including its high-level function and argument types, and
the existing predicate set and its associated semantics in En-
glish sentences. The new predicate will be proposed together
with its semantics, and they are expected to distinguish the
mismatched pair and be semantically different from existing

predicates. The invented predicate is then evaluated over the
collected skill execution traces using two metrics regarding
precondition and effect, respectively (the scoring function can
be found in Appendix VIII-A.) The predicate invention process
is demonstrated in Algorithm 2.

Algorithm 2 Invent Predicates
1: Input: Predicate set P , Skill set Ω, skill executability Iω(s),

predicate classifier FP(s), and skill executions traces D(ω) =
{(s, s′)}ω .

2: Output: Predicate set P
3: for ω in Ω do
4: while ∃(si, s′i), (sj , s′j) ∈ D(ω) such that FP(si) =

FP(sj) and Iω(si) ̸= Iω(sj) do
5: P ← new predicate
6: P ← P ∪ P if VALIDATEPRECOND(P, ω,D) = True
7: end while
8: while ∃(si, s′i), (sj , s′j) ∈ D(ω) such that FP(s

′
i) −

FP(si) = FP(s
′
j)− FP(sj) and Iω(si) ̸= Iω(sj) do

9: P ← new predicate
10: P ← P ∪ P if VALIDATEEFF(P, ω,D) = True
11: end while
12: end for
13: return P

B. Skill Sequence Proposal

Our system queries foundation models to generate skill
sequences in natural language that support predicate invention
for black-box skills by exploring the symbolic state space
in a directed manner. LLMs are useful for skill sequence
proposal due to their flexible interface that can infer skills and
predicates defined in natural language within the prompts, and
their ability to propose sequences that abide multiple complex
constraints.

Rather than naively sampling skill sequences from the
LLM’s token distribution, the predicate invention algorithm
benefits more from proposed skill sequences that balance
three important constraints, shown algorithmically in Section
VIII-B:

a) Coverage (C):

C =
Q′

ΣQ′ × log(
Q′

ΣQ′ )−
Q
ΣQ
× log(

Q
ΣQ

) (3)

Coverage score evaluates the information gain on all possible
skill pairs (two skills executed consecutively) over existing
skill execution traces by executing a new skill sequence.
Specifically, the information gain is measured by the increase
in Shannon entropy [49] over the distribution of all skill pairs
resulting from executing the proposed skill sequence as shown
in Equation 3, where Q is a table counting the number of
executed skill pair before executing the proposed sequence and
Q′ is a table for after executing the sequence. Maximizing
coverage encourages the proposed skill sequence to contain
least explored skill pairs and uncovers a larger set of inter-
dependencies across the preconditions and effects of all skills.



b) Chainability (Ch): Chainability measures the ratio
of successful to failed skill executions added to the dataset
of skill execution traces due to executing a proposed skill
sequence. By computing chainability, we estimate the degree
to which the preconditions and effects of learned operators at
each iteration are satisfied, and executability can be inferred
from the estimated symbolic states and the operators. With
an appropriate chainability score, the collected dataset of
skill execution traces maintains a balance between number of
successful executions and failure executions, which is ideal
for identifying possible mismatched pairs and thus inventing
predicates.

c) Consistency (Co):

Co =
∑

s∈stateseq

−log(KDE(s,D)) (4)

Consistency estimates the probability density that the lifted
symbolic states resulting from executing skills in the proposed
sequence, equals certain lifted symbolic states in the dataset
of skill execution traces D, i.e., the probability that FP(si) =
FP(sj), where si ∈ σ and sj ∈ D. A kernel density estimator
(KDE) [28][43] with the Hamming distance kernel [17] is used
to estimate this probability density. Maximizing this metric
prioritizes skill sequences that with the highest likelihood that
the resulting lifted symbolic states match the symbolic states
in the dataset of execution traces, thus increasing the chance of
encountering a mismatched pair with identical symbolic states
required for predicate invention.

When proposing skill sequences, the foundation model
is provided the skill set Ω and proposed predicate set P ,
whilst being prompted to deliberately explore the boundary
of the predicates’ truth values. The skill sequence propos-
ing algorithm assigns a score tuple (C, Ch, Co) for every
proposed sequence and maintains a subset of pareto-front
sequences that cannot “strictly dominate” another sequence,
i.e., Ci < Cj ∨Chi < Chj ∨Coi < Coj ∨ (Ci ≤ Cj ∧Chi ≤
Chj ∧ Coi ≤ Coj) where i ̸= j; the output skill sequence is
chosen from this pareto-front subset.

Algorithm 3 Propose Skill Sequences

1: Input: Operator set A, Dataset of skill execution traces D, batch
size of candidate sequences n

2: Output: Proposed skill sequence σ
3: seq batch = GENERATEGROUNDEDSEQUENCES(A, n)
4: Score← {}
5: for σ in seq batch do
6: cov ← COVERAGE(D, σ)
7: chain, stateseq ← CHAINABILITY(A,P, σ)
8: suff ← CONSISTENCY(D, stateseq)
9: Score[σ] = (cov, chain, suff, stateseq)

10: end for
11: σ∗ = PARETOOPTIMALITY(Score,D,A,P)
12: return σ∗

C. Operator Learning by Clustering

The operator learning algorithm primarily focuses on deter-
mining unique effects and preconditions of individual subgoal

options from the original skill. Unlike prior work [29], which
accesses low-level state variables and constructs symbols with
factors bottom-up, SKILLWRAPPER builds symbols directly
using language-specified predicates. From the dataset of skill
execution traces, the system evaluates the truth value of predi-
cates at every state and thus the effect (truth value change) ac-
cordingly and cluster the executions with the same lifted effect
change into one operator. After the clustering, the precondition
of each operator can be derived by taking the intersection of
the predicates’ truth values at all states before skill executions
associated with the operator. Only successful skill executions
from the dataset are used for the operator learning process,
since failure cases are not informative regarding precondition
or effect of skills.

Algorithm 4 Learn Operators

1: Input: Skill execution traces D(ω) = {(s, s′)}ω , predicate
classifier FP(s)

2: Output: Operators set A
3: eff dict ← defaultdict() ▷ Store clustered effects
4: for (s, s′) in D do
5: eff = FP(s

′)− FP(s)
6: eff dict[eff ].add((s, s′))
7: end for
8: A ← []
9: for eff in eff dict do

10: execution list ← eff dict[eff ]
11: precond ← Π(s,s′)∈execution listFP(s)
12: A.add([precond, eff ])
13: end for
14: return A

D. Planning with Wrapped Skills
After learning operators from the execution traces, SKILL-

WRAPPER essentially wraps the original skills by the opera-
tors, and it is then capable of solving task planning problems
with these wrapped skills. Since the learned predicates are
interpretable, human users can conveniently specify tasks in
natural language instructions, and the specifications can be
converted into PDDL statements in a similar way as existing
work [34]. In our work, the burden of the foundation model
is reduced to only translating the problem statement, because
actions and predicates required for the domain definition can
be directly ported from the learned operators. Moreover, in
the same way as evaluating truth values of predicates given
image inputs, the foundation model also enables specifying
initial states and goal states using truth values of predicates
from images. After the PDDL solver returns a task plan, our
system retrieves the arguments from each operator to make
the plan compatible with the original skills for execution.

V. EXPERIMENTS

We demonstrate the capabilities of the SKILLWRAPPER sys-
tem in a preliminary set of simulated experiments. In our
experiments, we prompt GPT-4o [41] with egocentric obser-
vations to evaluate the truth values of predicates; for predicate
invention and skill sequence proposal, we utilize text-only
prompts with o1-preview [42].



A. Experimental Setup

We implemented SKILLWRAPPER in ManipulaThor [27,
10], a simulated indoor environment containing a mobile
manipulator, three objects, and three receptacles. The robot’s
visual observation is egocentric. We designed three high-
level actions: PickUp(obj, loc), DropAt(obj, loc), and
GoTo(loc1, loc2), each parameterized by objects of par-
ticular types in the environment. These high-level actions
were provided to the simulated robot as black-box skills
that execute a deterministic sequence of the low-level motion
actions available to the robot. Each of the skills was designed
to have implicit preconditions and effects. For example, the
robot cannot execute PickUp on a far-away object, and cannot
execute DropAt when the targeted receptacle is out of reach.
When the robot attempted to execute an inapplicable skill, the
“failed” execution would result in the same state as before,
leaving no effect on the environment state.

B. Task Proposal and Predicate Invention

As outlined in Algorithm 1, SKILLWRAPPER iteratively
proposes skill sequences and collects skill execution traces
to learn an abstract transition model for the given skills.
In our experimental implementation, each loop began with
the skill sequence proposal component proposing a sequence
of eight skills applied to concrete objects. The simulated
robot then executed the skill sequence, obtaining a trace of
environment transitions. During execution, the robot captured
visual observations before and after executing each skill,
forming a dataset of transitions D = {(s, ω(o), s′)} as
described in Section III-E. In total, we gathered data from
five skill sequences consisting of 40 environment transitions
and 80 images as state representations, out of which 24 skill
executions were successful and 16 were not. The proposed
skill sequences are provided in Appendix VIII-F.

(a) (b)

Fig. 3: Example mismatched pair from the collected dataset of
skill execution traces. Both images represent the states before
executing PickUp(Vase, CoffeeTable), and they have
the same symbolic states {IsClose(CoffeeTable)=True},
while (a) succeeded but (b) failed since the gripper is already
holding the Bowl. The predicate invention algorithm proposes
a new predicate HasEmptyHand() to distinguish the two
states.

The foundation model was then used to classify the truth
value of each grounded predicate in every observed state.
Given these truth values, the SKILLWRAPPER system iterated

over the transitions {(s, ω(o), s′)}, looking for “mismatched”
pairs of transition-initial states si, sj ∈ S such that FP(si) =
FP(sj) (i.e., identical abstract states) yet Iω(si) ̸= Iω(sj) (i.e.,
the skill was only executable in one of the states). These cases
triggered predicate invention, as described in section IV-A.

After five loops of this process (i.e., m = 5), the system had
generated six unique predicates: P = {HasEmptyHand(),
IsAt(obj, loc), IsClose(loc), IsGrasped(obj),
IsLoose(obj), IsUnoccupied(loc)}.

C. Learning Operators

Given the dataset of environment transitions D and the
abstract state space S induced by the invented predicates P ,
Algorithm 4 learned ten operators from the original three high-
level skills: two operators for DropAt, two for GoTo, and six
for PickUp. This result may reflect noise introduced by the
unrealistic images from the chosen simulator, which does not
produce a visible change when the robot grasps an object.
Here we show one representative learned operator for each
high-level skill used in our experiments:

(:action PickUp1
(:parameters ?l - location ?o - object)
(:precondition (and

(hasemptyhand)
(isat ?o ?l)
(isclose ?l)
(not (isgrasped ?o))
(isloose ?o)
(not (isunoccupied ?l)))

)
(:effect (and

(not (hasemptyhand ))
(not (isat ?o ?l))
(isgrasped ?o)))

)

(:action DropAt2
(:parameters ?l - location ?o - object)
(:precondition (and

(hasemptyhand)
(not (isat ?o ?l))
(isclose ?l)
(isgrasped ?o)
(isloose ?o)
(not (isunoccupied ?l)))

)
(:effect (and

(isat ?o ?l)
(not (isgrasped ?o)))

)
)

(:action GoTo1
(:parameters ?l2 - location ?l1 - location)
(:precondition (and

(hasemptyhand)
(isclose ?l1)
(not (isclose ?l2)))

)
(:effect (and

(not (isclose ?l1))
(isclose ?l2))

)
)

D. Planning with Wrapped Skills

As detailed in Section IV-D, the interpretable predicates
produced by our system conveniently enable task specification
using natural language or images. A foundation model was
used to convert these human-interpretable task specification
formats into a task planning problem of the form (s0,Sg),



consisting of an initial abstract state s0 ∈ S and a set of goal
conditions Sg ⊆ P . Our experiments used the Fast Down-
ward [19] planner for task-level planning. In the presented
experiments, images were only used to specify tasks’ initial
states, representing a situation where the robot does not have
access to visual observations of goal states before execution.

Here we present an example of multi-modal task specifica-
tion using natural language, specifically English, and images.
The natural language instruction describes the name of each
object, the location of the robot, and the goal conditions. The
linguistic description of the robot’s location implicitly conveys
the truth value of the grounded predicate IsClose(Sofa).
The truth values of all other grounded predicates in the initial
abstract state are inferred from the images.

“There are three items Vase, TissueBox, and Bowl, and
three locations Sofa, CoffeeTable, and DiningTable.
Their initial positions are shown as follows. The robot
is near the Sofa initially, and everything is placed
stable, and all items can fit in every location. The goal
is to have all items on the Sofa.”

Fig. 4: Example of multi-modal task specification using natural
language and egocentric visual observations.

Provided the learned abstract transition modelM = (P,A),
and the task planning problem (s0,Sg) inferred from the above
task specification, the task planner returned the plan:

[
GoTo3(Sofa,CoffeeTable),
PickUp5(Vase,CoffeeTable),
GoTo2(CoffeeTable, DiningTable),
DropAt2(Vase,Sofa),
GoTo4(Sofa,DiningTable),
PickUp1(Bowl,DiningTable),
GoTo2(DiningTable,Sofa),
DropAt2(Bowl,Sofa)

]

After these operators were converted to the corresponding
skills, the resulting skill sequence was executed by the simu-
lated robot. The final state satisfied the given task specification
as shown in Figure 5. The inferred task planning problem and
the learned abstract transition model, both specified as PDDL,
can be found in Appendix VIII-E and VIII-D.

VI. DISCUSSION

As the embodied reasoning capabilities of foundation mod-
els improve over time, our system may benefit by replacing
its backend with newer, more powerful models. We observed
this improvement qualitatively when switching from gpt-4-
0613 to GPT-4o. A major limitation of our current approach

Fig. 5: Egocentric view of the environment state after execut-
ing the sequence of skills corresponding to the generated plan.
The final state satisfies the language-specified goal conditions.

is a constraint between the arguments of the given skills
and learned predicates. Because we constrain the arguments
of invented predicates to a subset of the arguments of the
relevant skill, our system can fail to represent certain types
of “argument-implicit” conditional effects. For example, given
the skill GoTo(loc), our system would not be able to invent a
predicate such as Nearby(obj) to model effects such as when
GoTo brings the robot near an unmentioned object. Another
limitation of our approach concerns the inherent uncertainty
caused by the robot’s egocentric view. Without additional
information, as formulated in this paper, the agent may not
be able to determine truth values for all grounded predicates
due to partial observability.

VII. CONCLUSION

In this paper, we formulate the problem of actively learning
interpretable abstract representations of black-box skills. We
propose the SKILLWRAPPER system as a solution building
upon the multi-modal reasoning capabilities of foundation
models. We demonstrate our approach using a proof-of-
concept example in a simulated mobile manipulation setting.
In ongoing and future work, we plan to evaluate our approach
in comparison with alternative methods for active relational
abstraction learning, formulate theoretical guarantees charac-
terizing the abstractions learned by our system, and address
the limitations mentioned in the discussion section.
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VIII. APPENDIX

A. Auxiliary Function for Predicate Invention

Algorithm 5 Scoring Functions for Invented Predicates

Input: Predicate P , skill ω, dataset of skill execution traces D
1: Parameters: Threshold h.
2: function VALIDATEPRECOND(p, ω,D)
3: t ← number of success executions where p is True
4: t total ← number of success executions
5: f ← number of failure executions where p is False
6: f total ← number of cases where P is False in all executions
7: if t/t total > h and f/f total > h then
8: return True
9: else

10: return False
11: end if
12: end function

13: function VALIDATEEFF(p, ω,D)
14: t ← sum of Fp(s

′)− Fp(s) in all success executions
15: t total ← number of success executions
16: eff ← True if t > 0 else False ▷ hypothetical effect
17: f ← number of cases where Fp(s

′)− Fp(s) ̸= eff in all failure executions
18: f total ← number cases where Fp(s

′)− Fp(s) ̸= eff in all executions
19: if abs(t/t total) > h and f/f total > h then
20: return True
21: else
22: return False
23: end if
24: end function

B. Auxilliary Functions for Task Proposing
Our Task Proposing algorithm scores every task proposed by the foundation model on its coverage (C), chainability (Ch) and consistency probability

(Co). Below we outline the algorithmic approach used to assign these scores to proposed tasks



Algorithm 6 Auxilliary Functions to Generate and Ground Skill Sequences

1: function GENERATEGROUNDEDSEQUENCES(A, n)
2: X ← “” ▷ prompt X to foundation model
3: for (ω, precondω, eff

−
ω , eff+

ω ) in A do
4: X+ = ω, precondω, eff

−
ω , eff+

ω

5: end for
6: X+ = y ▷ y additional information guiding FM to generate skill sequences
7: t batch← []
8: for i in range(0, n) do
9: σ = argmax(Σk

i=0log(P (ui|X,u0, .., ui−1))) ▷ Auto-regressive FM generation: k is max tokens for a given task
10: t batch.add(σ)
11: end for
12: t batch grounded← {}
13: for σ in t batch do
14: t batch grounded[σ] = []
15: for ω in t do
16: ωgrounded = MAXCOSINESIM(ω,Ω) ▷ ground proposed ω to executable skill ωgrounded

17: t batch grounded[σ].add(ωgrounded)
18: end for
19: end for
20: return t batch grounded
21: end function

Algorithm 7 Auxilliary Functions for Determining Pareto-Front of Tasks

1: function PARETOOPTIMALITY(Score,D,A,P)
▷ define the set of pareto-optimal tasks among proposed tasks

2: Par ← ∅
3: for (t, cov, chain, cons, newcov) in Score.items do dominate = False
4: for (tp, covp, chainp, consp, newcovp) in Par do

▷ if some task in new task dominates task in pareto-set, swap out task in pareto-set
5: if cov ≤ covp ∧ chain ≥ chainp ∧ cons ≥ consp ∧ (cov < covp ∨ chain > chainp ∨ suff > suffp) then
6: Par.add(t, cov, chain, cons, newcov)
7: Par.remove(tp, covp, chainp, consp, newcovp)
8: dominate = True
9: end if

▷ if some task in pareto-set already dominates new task, skip t
10: if cov ≥ covp ∧ chain ≤ chainp ∧ cons ≤ consp ∧ (cov > covp ∨ chain < chainp ∨ suff < suffp) then
11: dominate = True
12: end if
13: end for
14: if !dominate then
15: Par.add(t, cov, chain, cons, newcov)
16: end if
17: end for
18: idmax = argmax([αCsp[0] + αChsp[1] + αSsp[2]] for sp in Par])
19: taskmax = Par.keys[idmax]
20: skillseqmax = Par[Par.keys[idmax]][4]
21: Q← Par[Par.keys[idmax]][3]

return taskmax, skillseqmax

22: end function



Algorithm 8 Auxilliary Functions for Scoring

function COVERAGE(D, σ)
compute the shannon entropy gain from executing the proposed skill sequence σ
Input: dataset of transitions D, proposed skill sequence σ
Q ← 0 ▷ construct a matrix Q ∈M|Ω|×|Ω| of skill-pair counts
for τi, τi+1 in D do ▷ iterate all pairs of transitions in dataset D

τi = (si, ω(o)i, s
′

i)
τi+1 = (si+1, ω(o)i+1, s

′

i+1)
Q[ω(o)i][ω(o)i+1]+ = 1

end for
Q′ ← Q ▷ new skill-pair count initialized
entcurr = −1× (Q/

∑
Q)× log(Q/

∑
Q)

▷ iterate all adjacent skill pairs in σ
for (ω(o)i, ω(o)i+1) in σ do
Q′

[ω(o)i, ω(o)i+1]+ = 1
end for
entnew = −1× (Q′

/
∑
Q′

)× log(Q′
/
∑
Q′

)
return entnew − entcurr, Q

′

end function
function CHAINABILITY(A,P, t)

Input: operator set A = {skill : (precond, eff+, eff−)}, predicate set P , skill sequence σ
compute symbolic states and identify the percentage of skills where the skill sequence σ successfully executes
lentot ← len(t) ▷ store total number of skills
lenexec ← 0 ▷ store total number of executable skills
scurr = { p : Fp(s) for p in P} ▷ track the current state
seq = [scurr] ▷ store sequence of abstract states

▷ iterate skills in t
for ω in t do

if ∀p in A[ω].precond ∧ Fp(scurr) = 1 then
lenexec+ = 1
for eff+ in A[ω].eff+ do scurr[eff

+] = 1
end for
for eff− in A[ω].eff− do scurr[eff

−] = 0
end for

end if
▷ add current state to sequence

seq.append(scurr)
end for

return | lenexec

lentot
− 0.5|, seq

end function
function CONSISTENCY(T , stateseqt)

Input: dataset of skill execution traces D, grounded state sequence from executing skill sequence stateseqt
logprob← 0
h← 0.5
for s in stateseqt do

logprob+ = −1× log(KDE(s, T , h))
end for
function KDE(s, T , h)

▷ collect previous states in execution experience
buff = T .states

▷ compute hamming distance between s and all states
disthamm = HAMMDIST(lift(buff), lift(s))
kde = exp−1× disthamm/h

kde =
∑

kde
len(kde)

return kde
end function

return logprob
end function



C. Prompts used for SKILLWRAPPER
Below we detail the prompts we use for predicate evaluation, skill sequence proposing, and predicate invention. The arguments

within square brackets [###] are modified for dynamic-prompt construction.

A robot is executing a skill ‘[SKILL]‘. Given the following egocentric observation from the
robot, what is the truth value of the predicate ‘[PRED]‘? Answer with reasoning and True or
False in a separate line. Note that the blue sphere on the gripper is a part of the gripper
and is not an object, and it’s in a simulated environment so you can only tell that the
object is grasped if it’s lifted from the original surface by the gripper. Also, do not
assume the object is in the scene.
‘[PRED]‘: [SEMANTIC]

Fig. 6: Prompt used when leveraging foundation model as a predicate evaluator

Propose a set of tasks for a robot to execute along with a sequence of skills to achieve these
tasks. The robot is attempting to learn the preconditions and effects for a finite set of
skills. The robot can navigate the environment freely but only has one gripper. The robot has
access to the following skills with their associated arguments, precondition estimate and
effect estimate:

[SKILL NAME PRECOND EFFECTS DICTIONARY]

The list of objects the robot has previously encountered in the environment are:
[OBJECTS IN SCENE]
Book, Vase, and Bowl are on the DiningTable, and RemoteControl is on the sofa. Robot is at the
DiningTable initially.

The pairs of consecutive skills (skill1, skill2) that have been least explored are:
[LEAST EXPLORED SKILL PAIRS].

You should keep in mind the type of arguments that each skill can take. Using the list of
objects and the skill preconditions / effects learned, generate 5 tasks and their sequence of
skills such that: (1) the tasks purposefully violate skill preconditions often (2) the
ordering of skills in each task is unique (3) at least 1 unexplored skill pair is used in each
task (4) all tasks have at least 8 skills in sequence.

Output only the task name and the sequence of skills to execute. Output 1 skill every new
line, following the format below:

Task 1: Pick up the apple:
walk to(CounterTop)
pick up(Apple)

Task 1:

Fig. 7: Prompt used for the skill sequence proposal



A robot has been programmed with the skill ‘[SKILL]‘, and it attempted to execute the skill
twice. The symbolic representations of both executions are the same while the results are
different (one succeeds and the other fails), which indicates the existing predicate set is
not sufficient to describe the precondition of the skill.

Your task is to propose a high-level and generalized predicate and the semantic meaning of the
predicate in one sentence. The predicates should be parameterized (’robot’ is not a parameter,
and empty parenthesis is allowed), and it should describe important aspects of the skill, such
as the spatial relationship between different arguments of the skill, and physical constraints
(whether the robot has empty hands, whether it’s close enough to or far away from the target),
but not any low-level predicates that involve path clearance, obstruction detection, nor
obstacle checking to check accessibility or reachability, since we don’t have measure of
those, nor any self-referring definition. For example, ‘isOpenable(obj)‘ for ‘Open(obj)‘,
‘canToggleOn(obj)‘ for ‘ToggleOn(obj)‘ are considered self-referring.

Example format:‘example˙predicate‘: example˙semantic˙meaning.

Current predicate set: ‘[PRED DICT]‘

(it means no predicate has been proposed if the symbolic states are empty)

You should only use the parameters of the skills if the new predicate is parametrized. Also,
you should avoid the predicates that have been tried before if this list is not empty:
‘[TRIED PRED]‘, and you shouldn’t talk about skill executions when defining the semantic of
predicates since predicate is a description of the world state.

New predicate regarding the precondition of the skill ‘[SKILL]‘:

Fig. 8: Prompt used for predicate invention for precondition mismatch

A robot has been programmed with the skill ‘[SKILL]‘, and it attempted to execute the skill
twice. The symbolic representations of both executions are the same while the results are
different (one succeeds and the other fails), which indicates the existing predicate set is
not sufficient to describe the effect of the skill.
Your task is to propose a high-level and generalized predicate and the semantic meaning of the
predicate in one sentence. The predicates should be parameterized (’robot’ is not a parameter,
and empty parenthesis is allowed), and it should describe important aspects of the skill, such
as the change of the skill induced to the environment after execution, but not any low-level
predicates that involve path clearance, obstruction detection, nor obstacle checking to check
accessibility and reachability, since we don’t have measure of those, nor any self-referring
definition. For example, ‘isOpenable(obj)‘ for ‘Open(obj)‘, ‘canToggleOn(obj)‘ for
‘ToggleOn(obj)‘ are considered self-referring.
Example format:
‘example˙predicate‘: example˙semantic˙meaning.
Current predicate set:
‘[PRED˙DICT]‘
(it means no predicate has been proposed if the symbolic states are empty)
You should only use the parameters of the skills if the new predicate is parametrized. Also,
you should avoid similar predicates that are already in the current predicate set or have been
tried before if this list is not empty: ‘[TRIED˙PRED]‘, and you shouldn’t talk about skill
executions when defining the semantic of predicates since predicate is a description of the
world state.

New predicate regarding the effect of the skill ‘[SKILL]‘:

Fig. 9: Prompt used for predicate invention for effect mismatch



D. PDDL Domain from Learned Operators

(define (domain exp˙49)
(:requirements :strips :typing)
(:types location object)
(:predicates

(hasemptyhand) (isgrasped ?o - object) (isunoccupied ?l - location)
(isat ?o - object ?l - location)
(isclose ?l - location)
(isloose ?o - object)

)
(:action DropAt˙1

:parameters (?l - location ?o - object)
:precondition (and (not (hasemptyhand )) (not (isat ?o ?l))

(isclose ?l) (isgrasped ?o) (isloose ?o) (not (isunoccupied ?l)))
:effect (and (hasemptyhand ) (isat ?o ?l) (not (isgrasped ?o)))

)
(:action DropAt˙2

:parameters (?l - location ?o - object)
:precondition (and (hasemptyhand ) (not (isat ?o ?l))

(isclose ?l) (isgrasped ?o) (isloose ?o) (not (isunoccupied ?l)))
:effect (and (isat ?o ?l) (not (isgrasped ?o)))

)
(:action GoTo˙1

:parameters (?l2 - location ?l1 - location)
:precondition (and (hasemptyhand ) (isclose ?l1) (not (isclose ?l2)))
:effect (and (not (isclose ?l1)) (isclose ?l2))

)
(:action GoTo˙2

:parameters (?l2 - location ?l1 - location)
:precondition (and (not (hasemptyhand )) (isclose ?l1) (not (isclose ?l2)))
:effect (and (hasemptyhand ) (not (isclose ?l1)) (isclose ?l2))

)
(:action GoTo˙3

:parameters (?l2 - location ?l1 - location)
:precondition (and (hasemptyhand ) (isclose ?l1) (not (isclose ?l2)))
:effect (and (not (hasemptyhand )) (not (isclose ?l1)) (isclose ?l2))

)
(:action PickUp˙1

:parameters (?l - location ?o - object)
:precondition (and (hasemptyhand ) (isat ?o ?l) (isclose ?l)

(not (isgrasped ?o)) (isloose ?o) (not (isunoccupied ?l)))
:effect (and (not (hasemptyhand )) (not (isat ?o ?l)) (isgrasped ?o))

)
(:action PickUp˙2

:parameters (?l - location ?o - object)
:precondition (and (hasemptyhand ) (not (isat ?o ?l)) (isclose ?l)

(not (isgrasped ?o)) (not (isloose ?o)) (not (isunoccupied ?l)))
:effect (and (not (hasemptyhand )) (isgrasped ?o) (isloose ?o))

)
(:action PickUp˙3

:parameters (?l - location ?o - object)
:precondition (and (hasemptyhand ) (isat ?o ?l) (isclose ?l)

(not (isgrasped ?o)) (isloose ?o) (not (isunoccupied ?l)))
:effect (and (not (isat ?o ?l)) (not (isloose ?o)) (isunoccupied ?l))

)
(:action PickUp˙4

:parameters (?l - location ?o - object)
:precondition (and (hasemptyhand ) (isat ?o ?l) (isclose ?l)

(not (isgrasped ?o)) (isloose ?o) (not (isunoccupied ?l)))
:effect (and (not (hasemptyhand )) (not (isat ?o ?l)) (isgrasped ?o) (isunoccupied ?l))

)
(:action PickUp˙5

:parameters (?l - location ?o - object)
:precondition (and (not (hasemptyhand )) (isat ?o ?l) (isclose ?l)

(not (isgrasped ?o)) (isloose ?o) (not (isunoccupied ?l)))
:effect (and (not (isat ?o ?l)) (isgrasped ?o) (isunoccupied ?l))

)
)



E. PDDL Problem from Human Specification
(define (problem move-items)

(:domain exp˙49)

;; Define the objects in the problem
(:objects

Vase TissueBox Bowl - object
Sofa CoffeeTable DiningTable - location

)

;; Define the initial state
(:init

;; Locations of items
(isat Vase CoffeeTable)
(isat TissueBox Sofa)
(isat Bowl DiningTable)

;; Robot’s state
(hasemptyhand)
(isclose Sofa)

;; Items are initially unoccupied and loose
(isloose Vase)
(isloose TissueBox)
(isloose Bowl)
(isunoccupied CoffeeTable)
(isunoccupied DiningTable)

)

;; Define the goal state
(:goal

(and
(isat Vase Sofa)
(isat TissueBox Sofa)
(isat Bowl Sofa)

)
)

)



F. Proposed Skill Sequences

Skill Sequence #1:
[

”GoTo(Sofa,DiningTable)”,
”PickUp(Bowl,DiningTable)”,
”DropAt(Bowl,CoffeeTable)”,
”PickUp(TissueBox,Sofa)”,
”GoTo(CoffeeTable,DiningTable)”,
”DropAt(TissueBox,DiningTable)”,
”PickUp(Vase,CoffeeTable)”,
”DropAt(Vase,Sofa)”

]

Skill Sequence #2:
[

”GoTo(Sofa,CoffeeTable)”,
”PickUp(TissueBox,Sofa)”,
GoTo(CoffeeTable,DiningTable)”,
”DropAt(TissueBox,DiningTable)”,
”PickUp(Bowl,DiningTable)”,
”GoTo(DiningTable,CoffeeTable)”,
”DropAt(Bowl,CoffeeTable)”,
”PickUp(Vase,CoffeeTable)”

]

Skill Sequence #3:
[

”GoTo(Sofa,DiningTable)”,
”PickUp(Bowl,DiningTable)”,
”DropAt(Bowl,DiningTable)”,
”DropAt(Bowl,CoffeeTable)”,
”GoTo(DiningTable,CoffeeTable)”,
”PickUp(Vase,CoffeeTable)”,
”GoTo(CoffeeTable,Sofa)”,
”DropAt(Vase,Sofa)”

]

Skill Sequence #4:
[

”GoTo(Sofa,DiningTable)”,
”GoTo(DiningTable,Sofa)”,
”PickUp(TissueBox,Sofa)”,
”DropAt(TissueBox,DiningTable)”,
”PickUp(Vase,CoffeeTable)”,
”DropAt(Vase,Sofa)”

]

Skill Sequence #5:
[

”GoTo(Sofa,DiningTable)”,
”PickUp(TissueBox,Sofa)”,
”GoTo(DiningTable,CoffeeTable)”,
”DropAt(TissueBox,CoffeeTable)”,
”PickUp(Vase,CoffeeTable)”,
”GoTo(CoffeeTable,Sofa)”,
”DropAt(Vase,DiningTable)”

]



G. Full Related Work
a) Skill Abstraction: There has been a long track of works focusing on building hierarchies that abstract away high-

dimensional details with low-dimensional abstractions for planning [28, 29, 48], and those applied to robotics are usually
connected to task and motion planning (TAMP) [47, 14]. These approaches however are incapable of handling high-dimensional
sensory-motor signals (such as images) as input. Research on action model learning [62, 26] learn symbolic action models for
input skills. However, unlike our method, these approaches require symbols to be provided as input. Similar to our system’s
integration of self-play and focus on uncovering skill conditions, Verma et al. [56] focus on assessing capabilities of black-box
agents for grid world-like tasks while assuming that the agent is an oracle. A tangential research effort on chaining various
skills in novel environments involves training extra model [64] and STRIPS task planner with action primitives [15, 54].

b) Predicates Learning for Robotic Tasks: Predicates provide a convenient way to abstract away low level details of the
environment and build efficient and compact representations. Prior to foundation models, the attempts to build classifiers for
predicates from raw image inputs originated from neuro-symbolic domain [25, 36], and their initial application for robotics
took a similar supervised learning approach with labeled demonstrations [38] or generated tasks [30]. After the emergence of
foundation models, recent works proceed to guide skill learning with predicates generated by LLM or together with human
interaction. Li et al. [32] invents symbolic skills for reward functions used for RL training but cannot generalize to skills
learned through latent objectives, which is more commonly seen in imitation learning. Li and Silver [31] and Han et al. [18]
leverage human experts to provide feedback to the LLM to help it improve the learned predicates and skills.

c) Task Generation for Robotics: Automatic task proposing has been studied for active learning and curriculum learning
in grid worlds and games [58, 24] to robotic domains [11, 12]. [30] generates tasks in PDDL as training sets to learn
classifiers for object properties in predicates format, while they assume the action operators are given. With the commonsense
reasoning ability of the foundation models, recent works have applied the idea of automatic task proposing and self-playing
for exploration [40, 45], data collection [60, 63, 2], boosting skills learning [16, 57], and scene understanding [23]. These
works indicate a promising direction for generating robotic data and scaling up. Following the idea, we equipped our system
with a task-proposing module for generating skill sequences specific to skills and predicates, which serve the idea of both data
collection and exploration.

d) Embodied Reasoning with Foundation Models: There have been a track of work on leveraging large language models
(LLMs) for embodied decision-making [21] and reasoning [22], while vision-language models (VLMs) are often considered
to have limited embodied reasoning ability due to their pre-training corpora that focus primarily on language generation [55].
Common ways of addressing this issue include fine-tuning on datasets from a specific domains [20, 39, 5] or knowledge
distillation [52, 63]. Meanwhile, many works manage to leverage pre-existing models without further training from direct
visual observation [13, 40] to complete robotics tasks [23]. In all these works, the embodied reasoning ability of the foundation
models serves as the central part of the systems. However, most bench-marking works evaluate the embodied reasoning ability
of the models in a question-answering fashion [46, 35, 7, 6], where it remains unclear if they are capable for robotic tasks.
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