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ABSTRACT

Proteins are essential macromolecules defined by their amino acid sequences,
which determine their three-dimensional structures and, consequently, their func-
tions in all living organisms. Therefore, generative protein modeling necessitates
a multimodal approach to simultaneously model, understand, and generate both
sequences and structures. However, existing methods typically use separate models
for each modality, limiting their ability to capture the intricate relationships be-
tween sequence and structure. This results in suboptimal performance in tasks that
requires joint understanding and generation of both modalities. In this paper, we
introduce DPLM-2, a multimodal protein foundation model that extends discrete
diffusion protein language model (DPLM) to accommodate both sequences and
structures. To enable structural learning with the language model, 3D coordinates
are converted to discrete tokens using a lookup-free quantization-based tokenizer.
By training on both experimental and high-quality synthetic structures, DPLM-2
learns the joint distribution of sequence and structure, as well as their marginals
and conditionals. We also implement an efficient warm-up strategy to exploit the
connection between large-scale evolutionary data and structural inductive biases
from pre-trained sequence-based protein language models. Empirical evaluation
shows that DPLM-2 can simultaneously generate highly compatible amino acid se-
quences and their corresponding 3D structures eliminating the need for a two-stage
generation approach. Moreover, DPLM-2 demonstrates competitive performance
in various conditional generation tasks, including folding, inverse folding, and
scaffolding with multimodal motif inputs, as well as providing structure-aware
representations for predictive tasks.

1 INTRODUCTION

Proteins are macromolecules that execute crucial roles in every living organism. They are character-
ized by their amino acid sequences and three-dimensional structure, where the sequence determines
the structure, which in turn governs the protein’s function. Generative modeling for proteins has
made significant strides in recent years. Among them, diffusion models (Ho et al., 2020; Song et al.,
2020) exhibit great success in protein structure-based generative modeling (Watson et al., 2023;
Yim et al., 2023). Meanwhile, large-scale protein language models (Rives et al., 2019; Lin et al.,
2022), trained on evolutionary-scale sequence database, have become one of the most important
cornerstones in sequence-based foundation models for protein sequence representation learning and
generation. Remarkably, DPLM (Wang et al., 2024), a discrete diffusion (Austin et al., 2021) based
protein language models, has exhibited the state-of-the-art performance in both sequence generation
and understanding, addressing a wide range of sequence-oriented applications.
Many protein engineering applications, e.g., motif-scaffolding (Watson et al., 2023; Yim et al., 2024)
and antibody design (Jin et al., 2021; Kong et al., 2022; Zhou et al., 2024), require jointly determine
both structure and sequence. However, the aforementioned approaches mostly employ generative
models for one modality (either sequence or structure) and resort to separate models (Jumper et al.,
2021; Dauparas et al., 2022) for the other. This highlights the pressing need for multimodal protein
generative models that can integrate both sequence and structure, enabling a more comprehensive
understanding of protein behaviors and functions. This, therefore, raises the following question:
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Figure 1: Overall illustration of DPLM-2. (A) Structure tokenization consists of a GVP-based
encoder to yield invariant backbone geometric features, a lookup-free quantizer (LFQ) to discretize
encoded structural features into structure tokens within a codebook, and an IPA-based decoder as
de-tokenizer to convert structure tokens back to backbone atomic coordinates. (B) Multimodal
learning and generation of protein structure and sequence with DPLM-2. (C) Various applications of
DPLM-2 as a protein foundation model: (1) unconditional protein sequence-structure mixed-modal
co-generation; (2) protein sequence-structure joint representation for predictive tasks; (3) structure
prediction; (4) fixed-backbone sequence generation; (5) conditional protein generation with structure-
sequence mixed-modal input and output.

Can we build a multimodal protein foundation model to simultaneously
model, understand, and generate both sequences and structures?

To pursue this goal, Multiflow (Campbell et al., 2024) is a recent effort for structure-sequence
co-generation that incorporates sequences into structure-based generative models using multimodal
flow matching. Despite its impressive structure generation capability, Multiflow exhibits suboptimal
performance in co-generating structurally-compatible sequences and consequently resorts to instance-
level knowledge distillation from ProteinMPNN (Dauparas et al., 2022). Furthermore, it completely
falls short in protein folding for given sequences, showing Mulitflow’s inadequacy in sequence
understanding. We argue that this bottleneck arises from the absence (co-)evolutionary inductive
bias derived from massive pre-training from sequence database, as prior studies have demonstrated
that the evolutionarily-informed representations learned by pre-trained protein language models
implicitly capture structural information enables direct structure prediction (Lin et al., 2022). As a
consequence, the limitation in sequence understanding and generation renders Multiflow inadequate
as a multimodal protein generative foundation.
Inspired by the connection between evolutionary knowledge and spatial interactions, we deem that
sequence-based generative language models like DPLM, with their strong sequence generation and
predictive abilities, hold great promise as a foundation for multimodal learning for proteins. Despite
its exciting potential, this approach presents two key challenges: (1) language models cannot directly
handle continuous data like structure; and (2) language models heavily necessitate sufficient scale of
data and compute resources while structure data is much smaller compared to sequence databases.
In this paper, we address the aforementioned questions by introducing DPLM-2, a multimodal protein
foundation model that advances the state-of-the-art discrete diffusion-based protein language model
(i.e., DPLM) to accommodate both sequences and structures. By training on both experimental and
high-quality synthetic structures, DPLM-2 learns the joint distribution of sequence and structure,
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as well as their marginals and conditionals. We present several key recipes to facilitate multimodal
learning in DPLM-2: (1) the core difficulty lies in enabling the language model to learn structural
information, which is challenging and remains elusive, for which we develop a lookup-free quanti-
zation (LFQ, Yu et al., 2023) structure tokenizer to convert 3D coordinates to discrete tokens and
vice versa (Fig. 1A, §3.3); (2) we implement an efficient warm-up strategy to exploit the connection
between large-scale evolutionary data and structural inductive biases from pre-trained sequence-based
DPLM (Fig. 1B, §3.2); and (3) we also address the exposure bias problem in discrete diffusion for
sequence learning (Ranzato et al., 2016; Bengio et al., 2015) by a self-mixup training strategy that
leads to enhanced generation quality and diversity.
We highlight our main contributions and findings as follows:

(i) We present DPLM-2, a multimodal protein generative language model that aims to simulta-
neously model, understand and generate protein structure and sequence. We show that it can
be fairly efficient and effective to obtain a mulitmodal protein model with moderate amount
of high-quality data, a decent structure tokenizer and publicly-accessible sequence-only
pre-trained language models.

(ii) As a mulitmodal generative model, DPLM-2 enables unconditional protein co-generation
of both structure and sequence, which demonstrates good structure-sequence consis-
tency (Fig. 1C(1)). Our empirical evaluation shows that DPLM-2 attains competitive
co-generation performance compared to structure-based generative approaches, while the
proteins generated by DPLM-2 have a better alignment with the characteristics of natural
proteins in secondary structure statistics (§4.1).

(iii) In addition, DPLM-2 supports various conditional generation tasks by its multimodal nature,
ranging from (sequence-conditioned) folding (Fig. 1C(3), §4.2), (structure-conditioned)
inverse-folding (Fig. 1C(4), §4.3), to more successful motif-scaffolding given multimodal
motif conditioning (Fig. 1C(5), §4.4).

(iv) Last but not least, we demonstrate that the structure-aware protein representation learned by
DPLM-2 brings additional benefit for a range of protein predictive tasks (Fig. 1C(2), §4.5).

Concurrent work. During the development of DPLM-2, we became aware of the recently pro-
posed multimodal generative protein language model, ESM3 (Hayes et al., 2024), which also jointly
models tokenized structure and sequence using a generative masked language model. While both
models aim for similar goals, DPLM-2 differs from ESM3 in several key aspects: (1) Multimodal
protein generation: DPLM-2 treats structure and sequence modalities equally by design and em-
phasizes the simultaneous co-generation of compatible protein sequence and structure, whereas
ESM3 is a sequence-first model (other modalities are subject to dropout during training) and gener-
ates in cascaded modality-by-modality manner. (2) Data and compute efficiency: ESM3 seeks to
perform mulimodal pre-training from scratch using a huge amount of synthetic data, with modal
size ranging from 1.4B to 98B. With strict license and absence of training infrastructure, this pro-
hibits community from replicating for customized purposes. In contrast, DPLM-2 leverages much
smaller datasets (PDB + SwissProt) and builds on open-source, pre-trained sequence-based DPLM
(150M/650M/3B), which leverages DPLM’s learned evolutionary knowledge and inherits strong
sequence understanding and generation capabilities. We are also committed to open-source our
models, training and inference code to democratize multimodal generative protein LMs to benefit the
community. Overall, we believe DPLM-2 provides unique contributions to the community.

2 PRELIMINARIES

2.1 GENERATIVE MODELING FOR PROTEIN
Table 1: Generative tasks
w.r.t. structure & sequence.

task objective

folding pθ(x|s)
inv-folding pθ(s|x)
seq. gen. pθ(s)
struct. gen. pθ(x)

seq-struct co-gen. pθ(s,x)

The aim of generative protein modeling is to estimate the underly-
ing distribution prot ∼ q(prot) of the protein data of our interest by
learning a probabilistic model pθ(prot). Here prot = (r1, r2, . . . , rL)
denotes a protein with L residues, where each residue ri = (si, xi)
is represented by two major modalities, i.e., si ∈ {0, 1}|S| is a cat-
egorical variable for its amino acid type in S = {1, ..., 20}, and
xi ∈ RNatoms×3 is the real-value Cartesian coordinates of its residue
atoms (we only consider backbone atoms herein, i.e., [N,Cα,C,O] with Natoms = 4). Namely,

pθ(prot) = pθ(s1, s2, . . . , sL, x1, x2, . . . , xL) = pθ(s,x)

As a result, most of protein tasks can be viewed as specifying their input conditioning and output
between these two modalities (Tab. 1), including (1) sequence-conditioned structure prediction (fold-
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ing, Jumper et al., 2021; Lin et al., 2022; Huguet et al., 2024), (2) structure-conditioned sequence
generation (inverse folding or fixed-backbone design, Dauparas et al., 2022; Hsu et al., 2022; Zheng
et al., 2023b), (3) sequence learning or generation (Rives et al., 2019; Nijkamp et al., 2022; Alamdari
et al., 2023; Wang et al., 2024), (4) structure generation (Yim et al., 2023; Watson et al., 2023;
Ingraham et al., 2023), and (5) sequence-structure co-generation (Jin et al., 2021; Shi et al., 2022;
Campbell et al., 2024). These further enable various conditional applications by allowing single or
mixed-modal conditioning for partial generation, e.g., motif-scaffolding and antibody design.

2.2 DIFFUSION PROTEIN LANGUAGE MODEL (DPLM)
Language models (LMs), typically parameterized by Transformers (Vaswani et al., 2017) have
become the de facto choice dominating different domains with scalable and performing expressive-
ness (OpenAI, 2023). Among them, protein LMs have been serving as one of the AI foundation for
protein sequence learning (Rives et al., 2019; Lin et al., 2022) and generation (Nijkamp et al., 2022;
Alamdari et al., 2023).
Diffusion protein language model (DPLM, Wang et al., 2024), in particular, shows excelling per-
formance in both generation and representation learning of protein sequences. DPLM is grounded
in absorbing discrete diffusion framework (Austin et al., 2021; Zheng et al., 2023a), which is char-
acterized by a forward and backward Markov process. Let Cat(x;p) be a categorical distribution
on protein sequence y parameterized by a vector p on (|V| − 1)-dimensional probability simplex.
The forward process of discrete diffusion defines a Markov process governed by the transition kernel
q(x(t)|x(t−1)) = Cat

(
x(t);βtx

(t−1)+(1−βt)qnoise
)

that gradually perturb the data x(0) ∼ q(x(0))

into a stationary distribution x(T ) ∼ qnoise. For absorbing diffusion, qnoise is the point mass with
all of the probability on the absorbing (mask) state. The learned backward process pθ(x(t−1)|x(t))
reversely denoises the x(T ) towards the data distribution x(0), which is typically optimized by the
variational bound of the log-likelihood (Ho et al., 2020):

Eq(x(0))

[
log pθ(x

(0))
]
≥ Eq(x(0:T ))

[
log

pθ(x
(0:T ))

q(x(1:T )|x(0))

]

= Eq(x(0))

[
log pθ(x

(0)|x(1)) +
∑T

t=2−KL
[
q(x(t−1)|x(t),x(0))∥pθ(x(t−1)|x(t))

]]

︸ ︷︷ ︸
Jt

+const.,

whereJt is the learning objective. The learning objective of discrete diffusion can be further simplified
into reweighted cross-entropies (Zheng et al., 2023a), resembling masked language modeling at
arbitrary noise levels:

Jt = Eq(x(0)) − KL
[
q(x(t−1)|x(t),x(0))∥pθ(x(t−1)|x(t))

]

= Eq(x(0))

[
λ(t)∑

1≤i≤Lbi(t) · log pθ(x
(0)
i |x(t))

]
, (1)

where λ(t) is a weighting coefficient induced from the specific noising schedule and bi(t) =
1
x
(t)
i ̸=x

(0)
i

. For inference, DPLM is able to generate amino acid sequences by the reverse iterative
denoising process of discrete diffusion (Hoogeboom et al., 2021; Austin et al., 2021) from the
following distribution,

pθ(x
(t−1)|x(t)) =

∑
x̃(0) q(x(t−1)|x(t), x̃(0))pθ(x̃

(0)|x(t)).

Specifically, at time t, it first generates x̃(0) from pθ(·|x(t)), then a less noisy x(t−1) is sampled
by q(·|x(t),x(0) = x̃(0)). Within absorbing diffusion, the generation process can be viewed as an
iterative mask-predict approach. For sequence representation for predictive tasks, it can be obtained
by simply letting DPLM take the sequence as input.

3 DPLM-2: A MULTIMODAL DIFFUSION PROTEIN LANGUAGE MODEL

3.1 OVERVIEW

Fig. 1 illustrates DPLM-2’s overall architecture. DPLM-2 is built on the state-of-the-art sequence-
based generative protein LM, i.e., DPLM (Wang et al., 2024), using a discrete diffusion probabilistic
framework to concurrently model both protein sequences and their corresponding structures. To
facilitate structure learning in language models, we introduce a token-based representation for protein
structure via a tokenizer that converts x ∈ RL×Nbackb×3, the 3D coordinates of the protein backbone
into a discrete structure token sequence, denoted as z = (z1, z2, . . . , zL) ∈ {0, 1}L×|Z|, where
each token zi represents a local structural element of the i-th residue. Given tokenized structure,
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DPLM-2 processes mulitmodal input by concatenating the structure token sequence z with the
corresponding amino acid sequence s for the same protein. Notably, there exists a position-by-
position correspondence between z and s, where zi and si refer to the two modalities of the i-th
residue, respectively. To reinforce this correspondence, we assign identical position encodings to both
zi and si, thereby ensuring that structural and sequence information is aligned at the residue level.
To train DPLM-2, we leverage a high-quality dataset comprising 20K clustered experimental
structures from the Protein Data Bank (PDB) (Berman et al., 2000) and 200K predicted structures
from the AFDB SwissProt split (Varadi et al., 2022), with length < 512. During training, DPLM-2
is tasked with denoising the input sequence across a spectrum of noise levels, ranging from fully
noisy to completely clean. The multimodal training objective of DPLM-2 is derived from Eq. (1) as,

Jt = Eq(x(0),s(0)),z(0)←tokenize(x(0))

[
λ(t)∑

1≤i≤Lbi(t) · log pθ(z
(0)
i , s

(0)
i |z(t), s(t))

]
, (2)

where log pθ(zi, si|·) = log pθ(zi|·) + log pθ(si|·) by assuming conditional independence (see
discussion in §G). By learning pθ(z

(t−1), s(t−1)|z(t), s(t)), the model enables the simultaneous
generation of highly correlated protein structures and sequences. This eliminates the need for a
cascaded generation, allowing us to derive both the protein’s structure and sequence in a single step.
To further enhance DPLM-2’s ability to differentiate between structure and sequence, noising
level for each modality is subjected to distinct scheduler, denoted as tz and ts, respectively. This
facilitates a more comprehensive understanding of the relationships between protein sequences and
their corresponding structures. This design also allows us to explore arbitrary combinations of (tz, ts),
thus providing flexible sampling options, including sampling from the marginals of each modality
and conditionals between them for various applications (Fig. 1C). For conditional sampling (e.g.,
folding and inverse-folding), we set the noise scheduler of the conditioned modality to 0, which
means no noise in the conditioned modality. Please refer to §A.2 for more details.
Furthermore, we also identify the exposure bias issue in discrete diffusion for sequence learning (Ran-
zato et al., 2016; Bengio et al., 2015), and mitigate this by proposing a self-mixup strategy inspired
by scheduled sampling, which improves both generation quality and diversity (see §A.5).
3.2 EFFICIENT WARM-UP FROM PRE-TRAINED SEQUENCE-BASED DPLM
Protein sequences encode critical evolutionary information, reflecting co-evolutionary processes
where residue pairs mutate together and often interact in 3D space, offering insights for predicting
protein folding (Melnyk et al., 2022b). Lin et al. (2022) further showed that protein language
models trained on large-scale evolutionary data implicitly capture this information, which can
facilitate structure prediction. Motivated by the link between evolutionary knowledge and structural
interactions, we propose to built DPLM-2 with an efficient warmup from pre-trained sequence-based
DPLM, to make the most of established evolutionary information for protein structure modeling,
Since our structure dataset is significantly smaller than UniRef50 sequence database (200K vs. 45M),
enabling efficient fine-tuning of the pre-trained model. we want to keep the sequence knowledge
intact and reduce the risk of catastrophic forgetting, we apply LoRA (Hu et al., 2021) to limit too
much deviation to the original parameters. This approach not only lowers training costs compared to
starting from scratch but also effectively transfers valuable evolutionary information.
3.3 LEARNING STRUCTURE TOKENIZATION

The core difficulty of achieving a mulimodal protein LM lies in enabling the language model
to learn structural information, which is challenging and remains elusive, Tokenizing continuous
data modalities into discrete representations (Van Den Oord et al., 2017) has gained attraction
across domains like image synthesis due to its ability to capture compact, meaningful information,
enabling effective compression and efficient generation, especially with sequence-based models like
Transformers. Recent efforts have applied this approach to protein structure coordinates (Van Kempen
et al., 2024; Liu et al., 2023; Gao et al., 2024; Lu et al., 2024). This allows language models to
better learn the composition of local structural elements. However, how to learn an effective structure
tokenizer remains an active research question.
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denoising the input sequence across a spectrum of noise levels, ranging from fully noisy to completely
clean. The multimodal training objective of DPLM-2 is derived from Eq. (1) as,

Jt = Eq(s(0),x(0))

h
�(t)P

1iLbi(t) · log p✓(s
(0)
i , x

(0)
aa,i|s(t),x

(t)
aa )

i
,

where log p✓(si, x
aa
i |·) = log p✓(si|·) + log p✓(x

aa
i |·) by assuming conditional independence. By

learning p✓(s(t� 1),xaa(t�1) | s(t),xaa(t)), the model enables the simultaneous generation of
highly correlated protein structures and sequences. This eliminates the need for a cascaded generation
paradigm, allowing us to derive both the protein’s structure and sequence in a single step.
To further enhance DPLM-2’s ability to differentiate between structure and sequence, noising
level for each modality is subjected to distinct scheduler, denoted as taa and tss, respectively. This
facilitates a more comprehensive understanding of the relationships between protein sequences and
their corresponding structures. This design also allows us to explore arbitrary combinations of
(taa, tss), thus providing flexible sampling options, including sampling from the marginals of each
modality and conditionals between them for various applications (Fig. 1C).

3.2 EFFICIENT WARM-UP FROM PRE-TRAINED SEQUENCE-BASED DPLM

Protein sequences encode critical evolutionary information, reflecting co-evolutionary processes
where residue pairs mutate together and often interact in 3D space, offering insights for predicting
protein folding (Melnyk et al., 2022). Lin et al. (2022) further showed that protein language
models trained on large-scale evolutionary data implicitly capture this information, which can
facilitate structure prediction. Motivated by the link between evolutionary knowledge and structural
interactions, we propose to built DPLM-2 with an efficient warmup from pre-trained sequence-based
DPLM, to make the most of established evolutionary information for protein structure modeling,
Since our structure dataset is significantly smaller than UniRef50 sequence database (200K vs. 45M),
enabling efficient fine-tuning of the pre-trained model. we want to keep the sequence knowledge
intact and reduce the risk of catastrophic forgetting, we apply LoRA (Hu et al., 2021) to limit too
much deviation to the original parameters. This approach not only lowers training costs compared to
starting from scratch but also effectively transfers valuable evolutionary information.

3.3 LEARNING STRUCTURE TOKENIZATION

The core difficulty of achieving a mulimodal protein LM lies in enabling the language model
to learn structural information, which is challenging and remains elusive, Tokenizing continuous
data modalities into discrete representations (Van Den Oord et al., 2017) has gained attraction
across domains like image synthesis due to its ability to capture compact, meaningful information,
enabling effective compression and efficient generation, especially with sequence-based models like
Transformers. Recent efforts have applied this approach to protein structure coordinates (Van Kempen
et al., 2024; Liu et al., 2023; Gao et al., 2024; Lu et al., 2024). This allows language models to
better learn the composition of local structural elements. However, how to learn an effective structure
tokenizer remains an active research question.

tokenizer size train cameo 2022
lddt ca lddt ca tm-score rmsd

VQ-VAE-1k 1024 0.76 0.71 0.80 6.14
LFQ-1k 1024 0.82 0.77 0.86 4.35
LFQ-2k 2048 0.84 0.79 0.88 3.62
LFQ-4k 4096 0.86 0.82 0.91 3.31
LFQ-8k 8192 0.92 0.86 0.93 2.58
LFQ-16k 16384 0.92 0.87 0.94 2.32

Structure tokenization under a typical VQ-VAE (Van
Den Oord et al., 2017) framework can be summarized
as follows:

x
encoder����! z

quantizer�����! s
decoder����! x̃,

where (1) a structure encoder encodes backbone 3D
coordinates x 2 RL⇥Nbackb⇥3 into invariant features
z 2 RL⇥dquant , (2) a quantizer converts z into s of L
discrete tokens si 2 {0, 1, . . . , |S|} given a codebook S; and (3) a structure decoder reconstructs
3D coordinates from the discrete tokens. We implement a GVP-based (Jing et al., 2020; Hsu
et al., 2022) structure encoder and a IPA-based (Jumper et al., 2021) structure decoder. In terms of
quantizer, we use the Lookup-Free Quantizer (LFQ) (Yu et al., 2023), which we empirically found to
perform significantly better than the conventional VQ-VAE. Specifically, the latent space of LFQ
is decomposed as the Cartesian product of single-dimensional binary variables, as C = ⇥log2 |S|

k=1 Ck,
where Ck = {�1, 1}. Given the encoded feature z = encoder(x) 2 RL⇥log2 |S|, each dimension
(indexed by k) of the quantized representation quant(zi) is obtained from:

quant(zi[k]) = Ci = sign(zi[k]) = �1{zi[k]  0} + 1{zi[k] > 0}.
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bone 3D coordinates x ∈ RL×Nbackb×3 into in-

5



Published as a conference paper at ICLR 2025

variant features e ∈ RL×dquant , (2) a quantizer converts e into z of L discrete tokens where
zi ∈ {0, 1, . . . , |Z|} given a finite-size codebook Z; and (3) a structure decoder reconstructs 3D
coordinates x̃ from the discrete tokens.
We utilize a GVP-based (Jing et al., 2020) structure encoder from pre-trained GVP-Transformer (Hsu
et al., 2022) and a IPA-based (Jumper et al., 2021) structure decoder. In terms of quantizer, our
preliminary experiment showed that conventional VQ-VAE pretty much struggles in training. To
mitigate this, we instead adopts Lookup-Free Quantizer (LFQ) from the currently best visual tok-
enizer (Yu et al., 2023) to protein structure tokenization. Specifically, the latent space of LFQ is
decomposed as the Cartesian product of single-dimensional binary variables, as C = ×log2 |Z|

k=1 Ck,
where Ck = {−1, 1}. Given the encoded feature e = encoder(x) ∈ RL×log2 |Z|, each dimension
(indexed by k) of the quantized representation quant(ei) is obtained from:

quant(ei)[k] = Ci,k = sign(ei[k]) = −1{zi[k] ≤ 0}+ 1{ei[k] > 0}.
As such, with LFQ, the token indices for z = {z1, z2, ..., zi, ..., zL} is given by:

zi = index(quant(ei)) =
∑log2 |Z|

k=1 2k−11{ei[k] > 0}, ∀zi ∈ z.

The LFQ-based structure tokenizer is trained on the same structure dataset as mentioned before, using
a combination of reconstruction, commitment, and entropy regularization losses, similar to standard
VQ-VAE. Here FAPE loss (Jumper et al., 2021) is used as the primary reconstruction loss. (see §B.1
for more details.)
Evaluation. As shown in Fig. 2A, LFQ significantly outperforms VQ-VAE regarding reconstruction
accuracy while training of LFQ is much faster than VQ-VAE (2 vs. 15 days on 8 A100s). Increasing
codebook size leads to improved reconstruction while a codebook size of 8192 achieves the best
compression-reconstruction trade-off. Meanwhile in Fig. 2B, we observe a strong correlation between
structure tokens and secondary structures. For instance, a lot of structure tokens concentrated at
the alpha helix and beta sheet vertices, while some tokens lie between regions. This suggests that
structure tokens the fine-grained structural elements in backbone local environment.

4 EXPERIMENTS

In this section, we evaluate DPLM-2 on various generative and understanding scenarios, including
unconditional protein generation (structure, sequence, and structure-sequence co-generation, §4.1),
and a variety of conditional tasks, such as folding (§4.2), inverse folding (§4.3) and motif-scaffolding
(§4.4), and a series of protein predictive tasks (§4.5).

4.1 UNCONDITIONAL PROTEIN GENERATION

The goal of unconditional protein generation is to produce both the 3D structure and amino acid
sequence. Typically, this is done using a cascaded approach: either generating the structure first
and then use another model to predict the sequence, or vice versa. Here, we focus on generating
structure and sequence simultaneously. We evaluate DPLM-2 on both cascaded and simultaneous
generation across three tasks: unconditional structure generation, unconditional sequence generation,
and structure-sequence co-generation.
Following Multiflow (Campbell et al., 2024), we evaluate the generated proteins in terms of quality,
novelty and diversity. Designability is measured through self-consistency evaluation and foldabil-
ity (Yim et al., 2023; Watson et al., 2023; Wu et al., 2022a). Self-consistency evaluation is assessed
by folding the generated sequence with ESMFold (Lin et al., 2022), then using sc-TMscore
and sc-RMSD with the co-generated structure to evaluate similarity. Foldability is evaluated via
ESMFold, with pLDDT > 70 considered plausible. Novelty is assessed by comparing generated
structures to known ones in PDB using TMScore (pdb-TM), with lower values indicating greater
novelty. Diversity is measured by calculating pairwise TMscore (inner-TM), where lower scores
indicate more dissimilarity. The number of clusters identified by FoldSeek (van Kempen et al., 2023)
also quantifies diversity, normalized by the total number of structures.

4.1.1 DPLM-2 ENABLES HIGH-QUALITY, DIVERSE AND NOVEL PROTEIN SEQUENCE AND
STRUCTURE GENERATION

Tab. 2 and Fig. 3 present the results of DPLM-2 for unconditional protein generation. We highlight
our key findings in the following aspects:
(1) DPLM-2 can generate diverse and highly-plausible protein with simultaneous structure-
sequence co-generation. We sampled 100 proteins for each length in 100, 200, 300, 400, and
500. The co-generation can be performed in simultaneous generation (co-generation) and cascaded
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Figure 3: Evaluation of DPLM-2 on unconditional structure-sequence co-generation. Here for
designability of co-generated proteins, we use ESMFold to obtain refolded structure of DPLM-2-
generated sequence and measure the structural similarity between DPLM-2-generated structure and
the refolded structure, which aims to measure the compatibility of the co-generated structure and
sequence pairs.

workflow: first generating the structure then the sequence conditioned on generated structure (struct
→ seq), and the reverse way (seq→ struct), without the need of other folding or inverse folding
models. Fig. 3A/B demonstrates that DPLM-2 can sample sequence and structures with high
designability across various lengths, with most sc-TM values exceeding 0.9, with diverse structure
clusters. Fig. 3D shows that the novelty of sampled proteins, measured by pdb-TM, generally
increases with longer protein lengths. In addition, DPLM-2 can generate with both modalities
simultaneously or a modality-by-modality. As shown in Tab. 2, the co-generation performance exhibit
highest scTM, suggesting that co-modeling indeed benefits protein generation.
(2) DPLM-2 can attains competitive performance with strong baselines on co-generation, as
well as backbone-only and sequence-only generation, respectively. As shown in Tab. 2, DPLM-2
achieves the strong sc-TM compared to strong baselines, approaching the quality of native structures
from PDB. We notice that ESM3-Open (Hayes et al., 2024), which runs in a sequence-then-structure
order, fails short of unconditional generation. Compared to MultiFlow (Campbell et al., 2024),
DPLM-2 achieves comparable co-generation quality. Notably, as also reported in Campbell et al.
(2024), Multiflow falls short of sequence generation when directly trained from structures with
native sequences, resulting in greatly degraded co-generation performance without data distillation
from external inverse folding models (ProteinMPNN). For reference, we also provide the result of
Multiflow retrained using our training data, where its co-generation performance remains unsatisfying
and lags behind DPLM-2, which suggests that DPLM-2 has advantages of directly and effectively
learning from complex structure-sequence joint distribution. Moreover, DPLM-2 can also only
produce single modality if needed, where it matches the best competitive models in these settings
respectively. These results demonstrate DPLM-2’s effectiveness as a mulitmodal generative model.
(3) DPLM-2 generates longer proteins beyond training data. As DPLM-2 is trained with a 512
length cutoff, we are curious about its length extrapolation, and evaluate sampled proteins at lengths
of [600, 700, 800, 900, 1000]. As shown in Fig. 3F, notably, for proteins exceeding the maximum
training length of 512, the pLDDT scores of sequences sampled by DPLM-2 are close to those
of DPLM. This suggests that DPLM-2 largely retains its original sequence generation capability
inherited from sequence pre-training in DPLM, leading to its capability of length extrapolation.
(4) Case study. Fig. 3H shows some generated samples of DPLM-2 up to 700 residues, while in
Fig. 3I we showcase that we can manipulate DPLM-2 to design symmetric oligomers by forcing to
duplicate the predicted tokens with repetitive structure and sequence patterns.
(5) Abaltion study on the training strategy. We investigate the effects of warmup from the sequence-
based pre-trained DPLM and data augmentation with high-quality AlphaFold-predicted structures on
DPLM-2. The sequence pre-training significantly improve both designability and diversity, while
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Table 2: Benchmarking comparison of unconditional protein generation, in terms of structure-
sequence co-generation, backbone-only generation, and sequence-only generation. For each method,
we generate 100 samples for lengths in [100, 200, 300, 400, 500]. * denotes Multiflow variants
retrained by us using different dataset – native PDB data without ProteinMPNN distillation and the
same training data as DPLM-2 (i.e., PDB+SwissProt), respectively.

Structure-sequence Consistency Novelty Diversity
scTM (↑) scRMSD (↓) pLDDT (↑) avg. pdb-TM (↓) avg. inner-TM (↓) MaxCluster (↑)

Structure-sequence co-generation.
Native PDB protein 0.904 ± 0.129 4.623 ± 5.688 – – 0.262 ± 0.025 0.776
ESM3-Open (1.4B, seq→ struct) 0.624 ± 0.232 24.180 ± 24.109 – 0.660 ± 0.000 0.220 ± 0.046 0.540
MultiFlow w/ distillation (official ckpt) 0.930 ± 0.098 3.208 ± 4.741 79.447 0.704 ± 0.000 0.356 ± 0.032 0.500
*MultiFlow w/o distillation 0.750 ± 0.163 9.306 ± 8.499 61.519 – 0.350 ± 0.038 0.490
*MultiFlow (retrained on our training data) 0.871 ± 0.934 6.580 ± 6.258 62.624 – 0.331 ± 0.052 0.440
DPLM-2 (650M, seq→ struct) 0.907 ± 0.117 6.337 ± 9.403 82.246 0.653 ± 0.195 0.280 ± 0.038 0.651
DPLM-2 (650M, struct→ seq) 0.921 ± 0.098 4.969 ± 6.735 81.910 0.637 ± 0.195 0.308 ± 0.089 0.575
DPLM-2 (650M, co-generation) 0.925 ± 0.085 3.899 ± 3.723 82.686 0.640 ± 0.204 0.287 ± 0.030 0.545

Unconditional backbone generation. (sequence predicted by ProteinMPNN)
Native PDB struct. (seq. from PMPNN) 0.969 ± 0.000 0.864 ± 0.000 – – 0.262 ± 0.025 0.782
FrameDiff 0.818 ± 0.000 3.919 ± 0.000 – 0.668 ± 0.000 0.444 ± 0.064 0.252
FoldFlow 0.540 ± 0.000 7.965 ± 0.000 – 0.566 ± 0.000 0.286 ± 0.023 0.762
RFDiffusion 0.914 ± 0.000 1.969 ± 0.000 – 0.657 ± 0.000 0.352 ± 0.038 0.598
DPLM-2 (650M) 0.945 ± 0.082 4.451 ± 5.261 – 0.637 ± 0.195 0.297 ± 0.049 0.575

Unconditional sequence generation. (structures predicted by ESMFold)
EvoDiff – – 35.846 0.432 ± 0.106 0.265 ± 0.025 0.990
DPLM (650M) – – 83.252 0.541 ± 0.187 0.242 ± 0.041 0.735
DPLM-2 (650M) – – 82.246 0.662 ± 0.199 0.280 ± 0.042 0.700

Length: 200

C

Length: 100 Length: 300 Length: 400 Length: 500

DPLM2

MultiFlow

PDB

A - stats of secondary structure B

Length: 70

- unconditionally-generated proteins from different models 

- impact of secondary structure on designability

Figure 4: Analysis regarding secondary structure of generated proteins. (A) Statistics of averaged
proportions of secondary structures for proteins from different methods and PDB; (B) Secondary
structure vs. designability; (C) Samples of Multiflow, PDB and DPLM-2, as well as their secondary
structure distributions.

data augmentation can further enhance the designability, especially for long proteins. For more details
of ablation study, please refer to §A.6.

4.1.2 DPLM-2 GENERATES PROTEINS THAT RESEMBLES NATURAL PROTEINS

To further analyze the properties of different model, we examine their secondary structure distribution
against natural proteins from PDB.
Proteins sampled by DPLM-2 have secondary structures most similar to natural proteins. As
seen in Fig. 4A, structure-based models like RFDiffusion and MultiFlow generate proteins with
more helices and fewer sheets and loops than natural proteins in PDB. Protein language models like
ESM3 and DPLM-2 show no strong bias towards alpha helices, but ESM3 tends to generate more
loops. Among the methods, DPLM-2 produces the most natural-like secondary structure proportions,
closely matching PDB proteins. In Fig. 4C, proteins generated by MultiFlow contain many helices
and become more globular as length increases, exhibiting idealized secondary structures. In contrast,
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proteins generated from DPLM-2 resembles natural ones have more balanced structures, with fewer
helices and more beta sheets and loops. On the other hands, simplex plots in Fig. 4C shows that
while MultiFlow’s proteins are clustered in helix-rich regions, DPLM-2’s proteins span a wider area
similar to natural proteins, while it rarely samples proteins composed mostly of sheets and loops,
which do occur in nature. Additionally, Fig. 4B shows that the loop ratio has a significant impact
on designability, where a higher proportion of loops will increase scRMSD, as loops are highly
flexible. Thus, proteins with long loops, which DPLM-2 often generates, tend to have relatively high
scRMSD, aligning with the results in Tab. 2.
4.2 FORWARD FOLDING (SEQUENCE-CONDITIONED STRUCTURE PREDICTION)
The goal of folding is to predict the 3D structure for the given amino acid sequence (Jumper
et al., 2021). As a mulitmodal generative model, DPLM-2 spontaneously enables protein structure
prediction task (see Fig. 1C-3) given sequence as conditioning. We assess DPLM-2 on CAMEO
2022 and a PDB data split used by Multiflow (Campbell et al., 2024). We utilize RMSD and
TMscore between predicted and ground truth structure for evaluation, while DPLM-2 adopts
argmax decoding for 100 sampling iterations. Table 3: Structure prediction performance com-

parison between DPLM-2 and different baseline
approaches on CAMEO 2022 datasets. †: PVQD
results are quoted from Liu et al. (2023).

Models CAMEO 2022 PDB date split

RMSD TMscore RMSD TMscore

ESMFold 3.99/2.03 0.85/0.93 2.84/1.19 0.93/0.97
†PVQD 4.08/1.95 0.81/0.88 – –
MultiFlow 17.84/17.96 0.50/0.46 15.64/16.08 0.53/0.49
ESM3 6.33/2.98 0.85/0.92 4.94/2.28 0.87/0.93

DPLM-2 (150M) 9.22/7.64 0.75/0.81 8.35/5.60 0.76/0.82
w/ folding SFT 7.66/4.37 0.80/0.86 6.00/3.41 0.83/0.88

DPLM-2 (650M) 7.37/4.89 0.79/0.86 5.67/3.33 0.83/0.88
w/ folding SFT 6.21/3.78 0.84/0.89 3.40/1.78 0.89/0.94

DPLM-2 (3B) 6.34/3.65 0.83/0.89 4.54/2.54 0.86/0.92
w/ folding SFT 5.71/3.23 0.85/0.90 3.15/1.69 0.90/0.95

Tab. 3 indicates that DPLM-2 can perform
sufficiently good folding in a zero-shot man-
ner. Performance can be improved after further
supervised fine-tuning (SFT) using folding ob-
jective (maxθ log pθ(z|s)). Overall, DPLM-2
can outperform or on par with the strong base-
lines, while achieving close performance with
ESMFold. Plus, we observe that DPLM-2 with
larger model scales can attain better results than
smaller ones. We suggest that DPLM-2 bene-
fits from the evolutionary information inherited
from DPLM pre-trained on the vast number of
protein sequences, which can be transferred and
leveraged into structure modeling.
4.3 INVERSE FOLDING (STRUCTURE-CONDITIONED SEQUENCE GENERATION)
The goal of inverse folding is to find an amino acid sequence that can fold to a given backbone
structure. For evaluation, we employ amino acid recovery (AAR) for sequence evaluation, and we
also assess the structure by self-consistency TM-score (scTM) between the native structure and the
ESMFold-predicted structure of the generated sequence.

Table 4: Comparison on inverse folding task.

Models CAMEO 2022 PDB date split

AAR scTM AAR scTM

MultiFlow 32.28/33.58 0.87/0.94 37.74/37.59 0.94/0.96
ESM3 47.06/46.24 0.90/0.95 49.50/49.42 0.94/0.97

DPLM-2 (150M) 45.22/46.12 0.87/0.93 48.83/47.96 0.89/0.95
DPLM-2 (650M) 49.01/50.10 0.88/0.93 54.80/53/07 0.91/0.96
DPLM-2 (3B) 52.36/53.72 0.89/0.95 61.67/57.91 0.92/0.96

DPLM-2 can generate reasonable sequences
that fold into the given structures. Tab. 4
presents that DPLM-2 can outperform or be on
par with other co-generation models (MultiFlow,
ESM3). As the model size increases, the perfor-
mance in terms of sequence recovery (AAR) and
structural consistency (scTM) improves, reveal-
ing the same scaling law observed in the folding
task. We suggest that multimodal training effectively aligns the structure and sequence into the same
space, such that DPLM-2 can yield the corresponding sequence without additional training.
4.4 SCAFFOLDING WITH MIXED-MODAL MOTIF CONDITIONING

The objective of motif-scaffolding is to generate a suitable scaffold to preserve the structure of the
given motif and maintain its original function. We follow the experimental setting of Yim et al.
(2024), with 24 motif-scaffolding problems and we sample 100 scaffolds for each motif, where
we (1) first determine the length of scaffold, and then (2) keep the motif segment unchanged and
sample the scaffold part conditioned on the motif. The scaffold length is sampled from a range
provided by Yim et al. (2024), and when there are multiple motifs, the order of motif segments is
consistent with Yim et al. (2024). We provide the 3D structure and sequence of motif as input of
DPLM-2. As a multimodal model, we evaluate DPLM-2 using sequence-based, structure-based, and
co-generation approaches. A scaffold is considered successful if it satisfies both criteria (1) overall
designablity, which is successful when pLDDT > 70 (for sequence-based models) or scTM > 0.8,
and (2) motif-preseving, which is deemed successful when the predicted motif structure matches the
native one with motif-RMSD <1Å.

9



Published as a conference paper at ICLR 2025

*RFDiff ESM3*DPLM2DPLMEvoDiff

seqpred: ✓ structpred: !
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

pLDDT(ESMFold(seqpred))>70

seqpred: ! structpred: ✓
motif-preserving

designability
RMSD(ESMFold(PMPNN(structpred))[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(PMPNN(structpred)), structpred)>0.8

seqpred: ✓ structpred: ✓
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(seqpred), structpred)>0.8

DPLM2ESM3 DPLM2 *DPLM2
sequence-based structure-based co-generation

* means best of 8 samples

Figure 5: Evaluation of motif-
scaffolding w.r.t. success rate and
num. of solved problems.

Fig. 5 reveals that DPLM-2 is capable of generate reason-
able scaffolds for the given functional motifs. In sequence-
based, structure-based and co-generation evaluation, DPLM-2
can outperform or be on par with the corresponding approaches
in most cases, solving more motif problem and achieving higher
average success rate. We compared to sequence-based method,
DPLM-2 shows better performance since it allows structural in-
put of motif, which is important for preserving motif’s structure
hence the functions. Remarkably, DPLM-2 attains comparable
performance with RFDiffusion when only generating scaffold
structure, while achieve better performance when simultane-
ously designing scaffold sequence and structure, outperforming
ESM3. Despite not experimentally verified, these results sug-
gest that with DPLM-2, mulitmodal conditioning and gener-
ation could lead to more successful conditional protein design.

4.5 EVALUATION OF PROTEIN REPRESENTATION LEARNING

Directly access to structure information is supposed to benefit downstream protein predictive tasks.
To inspect this, we evaluate DPLM-2 on a variety of protein predictive tasks utilizing the dataset
provided by SaProt (Su et al., 2023), where we provide tokenized protein structure tokens along with
the protein sequences to DPLM-2.
DPLM-2 can perform multimodal representation learning by leveraging both structure and
sequence information. Tab. 5 presents that DPLM-2 shows further improvement compared to
sequence-only methods (ESM2, DPLM) on some tasks, indicating that DPLM-2 can leverage protein
structures to generate better representations containing multimodal information for downstream
tasks. However, we find that DPLM-2 falls behind the state-of-the-art structure-aware protein LM,
i.e., SaProt, in most tasks and even lags behind DPLM in certain tasks. We hypothesize this is
because the training data of DPLM-2, consisting of PDB and SwissProt, is smaller and differs from
UniRef50, which DPLM is pretrained on, potentially causing catastrophic forgetting and suboptimal
representation. To test this, we conducted an ablation study on specific tasks where DPLM-2
underperforms compared to DPLM. We observe that without large-scale sequence pretraining,
DPLM-2 outperforms DPLM significantly, suggesting that: (1) Incorporating structure information
enhances performance over sequence-only models. (2) Smaller datasets can lead to catastrophic
forgetting, diminishing the benefits of large-scale pretraining. Please refer to §E for more details.
Table 5: Performance on various protein predictive downstream tasks. †: benchmarked results are
quoted from Su et al. (2023).

Models Thermostability HumanPPI Metal Ion Binding EC GO DeepLoc

MF BP CC Subcellular Binary

Spearman’s ρ Acc (%) Acc (%) Fmax Fmax Fmax Fmax Acc (%) Acc (%)
†SaProt (650M) 0.724 86.41 75.75 0.884 0.678 0.356 0.414 85.57 93.55
†MIF-ST (Yang et al., 2022b) 0.694 75.54 75.08 0.803 0.627 0.239 0.248 78.96 91.76
†GearNet (Zhang et al., 2023) 0.571 73.86 71.26 0.871 0.650 0.354 0.404 69.45 89.18

ESM2 (650M) 0.691 84.78 71.88 0.866 0.676 0.344 0.402 83.68 92.28
DPLM (650M) 0.695 86.41 75.15 0.875 0.680 0.357 0.409 84.56 93.09

DPLM-2 (650M) 0.714 84.44 74.28 0.878 0.680 0.359 0.411 82.98 93.64

5 DISCUSSIONS

In this paper, we introduce DPLM-2, a multimodal diffusion protein language model that understands,
generates and reasons over protein structure and sequence, aiming to severe as a mulimodal foundation
for protein. Despite promising performance spanning protein co-generation, folding, inverse folding
and conditional motif-scaffolding with mulimodal input and output, there remains several limitations
deserving to be addressed. (1) Structure data: Our findings indicate that while structure awareness
may help with predictive tasks, the limited structure data constrains DPLM-2’s ability to learn robust
representations. It is also important to account for longer protein chains and multimers in future
studies. (2) Trade-off of discrete latent representation: Tokenizing structure into discrete symbols
facilitates multimodal protein language models and co-generation but may come at the cost of losing
fine-grained structural details and control, such as precise atomic positions and inter-atomic distances.
Future work should aim to also integrate the strengths of data-space structure-based generative models
into sequence-based multimodal language models to maximize the best of both worlds.
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motif-scaffolding with se (3) flow matching. arXiv preprint arXiv:2401.04082, 2024.

Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen,
Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats
diffusion-tokenizer is key to visual generation. In The Twelfth International Conference on
Learning Representations, 2023.

15

https://openreview.net/forum?id=u4YXKKG5dX


Published as a conference paper at ICLR 2025

Cheng Zhang, Stefan Bauer, Paul Bennett, Jiangfeng Gao, Wenbo Gong, Agrin Hilmkil, Joel Jennings,
Chao Ma, Tom Minka, Nick Pawlowski, et al. Understanding causality with large language models:
Feasibility and opportunities. arXiv preprint arXiv:2304.05524, 2023.

Zikun Zhang, Zixiang Chen, and Quanquan Gu. Convergence of score-based discrete diffusion
models: A discrete-time analysis. arXiv preprint arXiv:2410.02321, 2024.

Jiangbin Zheng and Stan Z Li. Progressive multi-modality learning for inverse protein folding. In
2024 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE, 2024.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. arXiv preprint arXiv:2302.05737, 2023a.

Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei YE, and Quanquan Gu. Structure-informed
language models are protein designers. In International Conference on Machine Learning, 2023b.

Xiangxin Zhou, Dongyu Xue, Ruizhe Chen, Zaixiang Zheng, Liang Wang, and Quanquan Gu.
Antigen-specific antibody design via direct energy-based preference optimization. Advances in
neural information processing systems, 2024.

Yiheng Zhu, Jialu Wu, Qiuyi Li, Jiahuan Yan, Mingze Yin, Wei Wu, Mingyang Li, Jieping Ye, Zheng
Wang, and Jian Wu. Bridge-if: Learning inverse protein folding with markov bridges. arXiv
preprint arXiv:2411.02120, 2024.

16



Published as a conference paper at ICLR 2025

A DPLM-2 TRAINING

A.1 IMPLEMENTATION DETAILS

DPLM-2 takes the discrete structure token sequence and amino acid token sequence as input. As
demonstrated in Fig. 1, we concatenate the two sequences into one sequence of double length.
DPLM-2 employs an efficient warm-up strategy by initializing with pre-trained sequence-based
DPLM (§3.2) to leverage the evolutionary information learned by DPLM for protein structure
modeling. Considering that the vocabulary of DPLM only consists of amino acids, we expand
the vocabulary of DPLM-2 with discrete structure tokens. The embeddings for these new tokens
are initialized using the mean and standard deviation of the learned amino acid embeddings. This
embedding initialization keeps the distributional statistics of the embedding space consistent with the
pre-trained DPLM, ensuring stable early-stage training (for learning structure-sequence alignment)
and reducing the risk of extreme gradients that could cause training instability.
A.2 DISTINCT NOISE SCHEDULER OF TRAINING

We introduce a distinct scheduler to control the noise level of structure and sequence flexibly
during training (§3.1). Different combinations of structures and sequence schedulers (denoted as
tz and ts, respectively) imply training for different applications. Specifically, we mainly focus on
(1) sequence-conditioned structure generation (e.g., folding), (2) structure-conditioned sequence
generation (e.g., inverse-folding), (3) sequence generation, (4) structure generation, (5) structure-
sequence co-generation, as shown in Tab. 1. For conditional generation tasks (e.g., folding and
inverse-folding), we set the noise scheduler of the conditioned modality to 0, e.g., no noise in the
conditioned modality. Specifically, in the folding task, the ts is always set to 0, while in the inverse-
folding tasks the tz is always set to 0. In the structure-sequence co-generation task, we keep the tz
and ts for the same, enhancing the structure-sequence consistency in co-generation. The structure
or sequence generation tasks do not depend on another modality, so we set the noise scheduler of
another modality to T , e.g., 100% noise in another modality. For example, in structure generation
task, the ts is always set to T .
During training, we train the above 5 tasks simultaneously. We divide the training data in a batch
into 5 parts according to a preset proportion, and each part is used for a specific task training. In our
experiment, the proportion for each task is the same, which is 20%. After training, we can further
enhance a specific generation task by supervised finetuning (SFT). This involves continuing training
for the specific task with a proportion of 100%, while the proportion for other tasks is set to 0%. For
example, in Tab. 3, the folding supervised finetuning is performed by continue training with folding
task based on a pre-trained DPLM-2 with 100% proportion of training data.
A.3 HYPERPARAMETER

We train all models using AdamW optimizer (Kingma & Ba, 2015) with β1 = 0.9 and β2 = 0.95. We
use a weight decay of 0.01 and gradient clipping of 0.5. We employ 2K warmup steps until reaching
the maximum learning rate, and utilize a linear decay scheduler to decay LR to 10% of the maximum
learning rate by the end of training. The maximum learning rate is 1e-4, and the overall training step
is 100,000. We utilize the pretrained DPLM as the parameter initialization, and the diffusion timestep
is set to 500. We train 150M DPLM-2 with 8 A100 GPUs for 3 days, while 650M with 16 A100
GPUs for 3 days and 3B with 16 A100 GPUs for a week.
A.4 DATASET

The training set of DPLM-2 is composed by experimental data, i.e., PDB (Berman et al., 2000),
and high quality synthetic data, i.e., SwissProt (Varadi et al., 2022). We filter the SwissProt data by
pLDDT > 85. After filtering, the overall training set contains approximately 200,000 proteins. We
limit the maximum length of the training set to 512. For proteins longer than 512, we randomly crop
it to 512. We crop the low pLDDT (pLDDT < 50) segments located at the both ends of proteins in
the SwissProt dataset. These segments are typically non-structural and may negatively impact the
training results. Moreover, we find that the length distribution of the training set is not balanced,
where the number of proteins with length less than 100 is relatively small, leading to a suboptimal
diversity among the short proteins. Therefore, during training, we randomly crop long proteins to
short proteins with a probability of 50% for each batch to improve the diversity.
A.5 TACKLING EXPOSURE BIAS IN DISCRETE DIFFUSION WITH SELF-MIXUP TRAINING

STRATEGY

The exposure bias problem, which is described as the input mismatch between training and sampling,
has already garnered attention in the research of continuous diffusion (Ning et al., 2023a;b; Li et al.,
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2023) and NLP (Ranzato et al., 2016; Bengio et al., 2015). We find that the discrete diffusion model
also encounters this issue. According to the Eq.1, the model is trained to be tasked with pθ(x

(0)
i |x(t)),

essentially doing masked-prediction. During training, the model makes prediction conditioned on the
x(t), which is a mixture of ground-truth and mask tokens as noise: x(t) = αtx

(0) + (1− αt)qnoise.
However, during inference, the model predicts pθ(x

(0)
i |x̂(t)) conditioned on the previously generated

sample x̂(t), which is a mixture of model prediction and masks, essentially requiring denoising and
masked-prediction. The difference between x(t) and x̂(t) causes a discrepancy between pθ(x

(0)
i |x(t))

and pθ(x
(0)
i |x̂(t)), potentially leading to error accumulation since the model trend to be over-confident

on its predictions (as in training the model is always exposed to ground-truth, hence the name exposure
bias), and negatively impacting the generation performance.
To mitigate this, we propose to bridge this gap by training model to make predictions conditioned on
its own predicted results: (1) predict x̂(0) conditioned on the ground truth sample x(t), (2) construct
the generated sample: x̂(t) ← x̂(0) + (1− αt)qnoise, (3) compute self-mixup loss according to Eq. 1:

Ĵt = Eq(x(0))


λ(t)

∑

1≤i≤L
bi(t) · log pθ(x(0)

i |x̂(t))




We can illustrate this more clearly with a break-down example. Let the ground-truth x(0) be ABCDE,
and the x(t) be [m][m][m]DE as in masked discrete diffusion, where [m] represents the mask
token. The training process is as below:

(i) Call a model forward to obtain model prediction x̂(0), which is abcDE (with the ground
truth token DE preserved for masked positions), where abc represent model prediction by
argmax decoding.

(ii) Construct self-mixup x̂(t). In our experiments, we always replace the ground-truth token in
x̂(0) (DE in this case) with the mask token [m]. Therefore x̂(t) becomes abc[m][m].

(iii) Compute self-mixup loss, which is essentially cross entropy loss between pθ(x
(0)
i |x̂(t)) and

x(0) at all positions.
More specifically, this can be seen as mask positions are applied masked language modeling loss
while non-masked positions are applied denoising autoencoder loss. Moreover, this also improves
sample-efficiency compared to typical masked discrete diffusion where training loss is only applied
to mask positions.
In our experiments, we first train DPLM-2 with the original loss in Eq. 1 for 50,000 steps to ensure
the prediction quality. This step is crucial; otherwise, the model’s predictions might be poor, leading
to an excessively large self-mixup loss and causing training instability. After this initial phase, we
continue training with self-mixup loss to mitigate the exposure bias issue. Tab. 6 shows that the
self-mixup training strategy effectively enhances the diversity of samples. We conduct experiments
with the DPLM-2 650M model on the unconditional generation task. We sample 100 proteins within
each length interval and calculate scTM for structure-sequence compatibility and the number of
clusters for diversity. We attribute this to the model producing more accurate logits during inference,
leading to more diverse reasonable sampling paths instead of converging on the sampling paths with
the highest probability, which results in more diverse proteins.

Table 6: Ablation study on the self-mixup training strategy.
Mixup
strategy

length 100 length 200 length 300 length 400 length 500

scTM clusters scTM clusters scTM clusters scTM clusters scTM clusters

✗ 0.9237 44 0.9180 53 0.9147 48 0.9059 42 0.8896 33
✓ 0.8812 62 0.8820 62 0.9172 59 0.9099 54 0.8845 38

A.6 ABLATION STUDY ON THE SEQUENCE PRE-TRAINING AND SYNTHETIC STRUCTURES

In DPLM-2 training, we start with a warmup from the sequence-based pre-trained DPLM to exploit
established evolutionary information and augment the data with high-quality AlphaFold-predicted
structures from SwissProt (around 200K) and clustered PDB structures. This section evaluates the
effects of sequence pre-training and data augmentation on unconditional protein generation.
We investigate the effect of sequence pre-training by randomly initializing DPLM-2 instead of
using DPLM parameters, while for effect of synthetis structures we leverage PDB structures only
for training. We conduct experiments on 150M DPLM-2, for each DPLM-2 variant we sample
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Table 7: Ablation study on the sequence pre-training and training data augmentation.
sequence

pre-training
synthetic
structures

length 100 length 200 length 300 length 400 length 500

scTM clusters scTM clusters scTM clusters scTM clusters scTM clusters

✗ ✗ 0.9241 20 0.8674 34 0.7667 33 0.5016 25 0.4511 25
✓ ✗ 0.9610 26 0.9349 47 0.9169 38 0.8643 35 0.7673 52
✗ ✓ 0.8988 27 0.9182 15 0.9343 13 0.8518 21 0.8288 31
✓ ✓ 0.9348 35 0.9428 40 0.9232 48 0.9260 40 0.9012 32

Table 8: Results of codebook size, codebook utilization and lddt ca on the training set and valid
set of different structure tokenizers.

tokenizer codebook size codebook utilization training set valid set (CAMEO 2022)

lddt ca lddt ca TM-score RMSD

VQ-VAE-1K 1024 63.50% 0.76 0.71 0.80 6.14
LFQ-1K 1024 100.00% 0.82 0.77 0.86 4.35
LFQ-2K 1024 100.00% 0.84 0.79 0.88 3.62
LFQ-4K 4096 100.00% 0.86 0.82 0.91 3.31
LFQ-8K 8192 99.50% 0.92 0.86 0.93 2.58

LFQ-16K 16384 98.60% 0.92 0.87 0.94 2.32

100 examples for each length in 100, 200, 300, 400 and 500. We compute scTM and the number
of difference clusters in each length. Tab. 7 demonstrates that sequence pre-training and data
augmentation can significantly improve the designability and diversity, especially in generating long
proteins (length > 300). We hypothesize that the limited number of long proteins in PDB leads to
insufficient training. In contrast, sequence pretraining, which includes evolutionary data, is essential
and can be transferred to improve protein structure modeling and generation quality. Additionally,
this evolutionary information boosts sampling diversity. While increasing the amount of training data
improves designability, it is less effective in enhancing diversity compared to sequence pretraining.
By combining both strategies, we achieve the best overall performance, which forms the core of our
training strategy.

B DISCUSSIONS ON THE STRUCTURE TOKENIZATION

B.1 IMPLEMENTATION DETAILS

We utilize a GVP-based (Jing et al., 2020) structure encoder from pre-trained GVP-Transformer (Hsu
et al., 2022) with its parameters frozen during training. The structure encoder transforms backbone
structures into geometric features, which are projected onto a latent embedding using an MLP layer.
The structure decoder follows the IPA-based modules from AlphaFold2 (Jumper et al., 2021), using 4
EvoFormer layers without MSA row attention, following ESMFold (Lin et al., 2022), to generate
atomic positions from the structure tokens. We train structure tokenizer using the same structure data
as our mulitmodal language model, containing both experimental and high-quality structures. The
training objective of structure tokenizer includes reconstruction loss, codebook commitment loss,
and entropy regularization loss to ensure effective codebook utilization. For the reconstruction loss,
we adopt the FAPE loss, violation loss, and distogram loss from AlphaFold2 (Jumper et al., 2021),
measuring the difference between predicted and native structures. To further enhance the training,
we introduce a sequence prediction head on top of the structure decoder’s final representation and
minimize the cross-entropy against the native sequence.

B.2 THE UTILIZATION AND INTERPRETABILITY OF STRUCTURE TOKENS

In the Fig. 2A we have shown the reconstruction accuracy and an interpretation analysis on the
correspondence of structure tokens and local structural elements in terms of secondary structures. We
also calculate the codebook utilization in Tab. 8. We find that LFQ-based tokenizers always achieve
nearly 100% codebook utilization with more evenly distributed code usage, while vanilla VQ-VAE
struggles with codebook collapse. The Fig. 2B demonstrates the interpretability of structure tokens
with a informative simplex plot of structure tokens vs second structure. We can observe a strong
correlation between a vast majority of the structure tokens and structured local environments, where
a lot of structured tokens concentrate on the alpha helix and beta sheet vertices, while some tokens lie
between regions or the loop vertice. There are also a subset of structure tokens having less clear clues
to specific secondary structures. This suggests that structure tokens mostly capture clear secondary
elements, some may correspond to structured local environments (in bewteen helic and sheet), while
others could be high-level abstract entities.
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Figure 6: The histogram of num structural motifs v.s. motif clusters for each struc-
ture token. We randomly sampling 500 out of 8,192 structure tokens for readability.

Figure 7: Visualization of mapping structure tokens to structural motifs.
struct_token: 0397

struct_token: 3916

B.3 VISUALIZATION OF MAPPING STRUCTURE TOKENS TO STRUCTURAL MOTIFS

We provide more fine-grained insights into what structure tokens learn by mapping structure tokens
to structural motifs. Specifically, as structure tokens are residue-wise representations, we aim to map
each structure token to structural motifs defined as the nearest-neighbor local structural environment
of a residue in the training dataset. For efficiency, we used only the PDB dataset. The process is as
follow:
(1) For each structure in the PDB dataset (approximately 20K in total), we first tokenize the structure
into structure tokens and save the pair of structure tokens and 30-nearest-neighbors structural motifs
for each residue. We use 30 nearest neighbors because the pre-trained GVPTransformerEncoder,
which we used as the structure encoder, employs 30 nearest neighbors as the hyperparameter for
geometric features.
(2) After processing all structures, we obtain a table where each row corresponds to a structure token
and its associated structural motifs (i.e., num structural motifs)
(3) To analyze whether a structure token tends to occur in a similar local structural environment,
we use Foldseek (TM-threshold = 0.5) to cluster the structural motifs for each structure token (i.e.,
motif clusters). Although Foldseek may not be entirely accurate in clustering such short and
discontinuous structural regions, it provides a reasonable comparative sense of the similarity or
difference among all structural motifs associated with each structure token.
In Fig. 6, we plot the histogram of num structural motifs v.s. motif clusters for each
structure token (randomly sampling 500 out of 8,192 structure tokens to ensure readability). From the
visualization, we observe that many structure tokens correspond to highly similar structural motifs
(evidenced by a small ratio of the number of motif clusters to the number of total structural motifs),
while others exhibit a high degree of ambiguity.
Additionally, we visualize the mapping between structure tokens and structural motifs in specific
cases. In Fig. 7, we showcase two structure tokens and their corresponding similar structural motifs
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across four different PDB structures, illustrating the diversity or consistency in the mapped local
structural environments.

B.4 LIMITATION ON THE STRUCTURE TOKENIZATION

Our approach can be seen as decoupling the learning of the structurally invariant topology to the
tokenizer and the language model, and the geometric reasoning on 3D coordinates to the structure
decoder parameterized by triangular modules and IPAs from AlphaFold2 with FAPE loss. This
shares the similarity to AF2 and ESMfold, where the sequence encoding modules like Evoformer
(co-evolution encoding) and ESM (amino-acid encoding) provide invariant features (in the form
of single and pair embeddings) to the structure decoder that learns to convert invariant features
into 3D coordinates. The AF2-style structure decoder does not enforce strict equivariance to rigid
transformations. Instead, it relies on the FAPE loss to ensure structural consistency, which minimizes
coordinate errors in a manner that is invariant to global rotations and translations.
As such, we suggest that the primary trade-off when using invariant structure tokens instead of 3D
coordinates mainly lies in the potential loss of fine-grained structural details. Albeit being the key
enabler to multimodal PLMs, structure tokenization is essentially clustering similar local structured
environments, which results in lossy compression and the absence of fine-grained structural variation.
The primary principle of the solution is that we need to ”recover” and preserve the high-frequency
variation that gets lost during quantization. We propose some potential directions for mitigation:
Separate structure encodings for DPLM-2. We can introduce different structure encoders for
encoding and generation purposes, respectively. For parts of a protein where atomic coordinates
are already provided, lossy tokenization may not be necessary. Instead, we can use robust features
from powerful structure encoders like GVP-Transformer while continuing to use structure tokens for
generating the remaining parts. To achieve this, the model can be trained to alternate between these
two types of encodings. A similar approach has been applied successfully in recent vision-language
MLLMs (Wu et al., 2024), as the vision-language community has also recognized that understanding
and generation often require different types of representations.
Modeling continuous structure features with hybrid tokenization. In the structure tokenizer,
the vector quantizer module converts encoder features into discrete structure token features, but
the residuals—differences between the original and quantized features—are lost, removing fine-
grained structural details. To address this, we can using continuous generative modeling, such as
diffusion/flow-based models, to learn to recover these residuals. This would work by conditioning on
the structure tokens and possibly the final hidden states of DPLM-2. The protein structure generation
process would involve first generating discrete structure tokens that capture the overall topology,
then using those tokens to generate the missing residuals. These residuals would be added up to
the structure token embeddings to recover a more complete and accurate structure representation,
closer to the features produced by the structure encoder. This approach could significantly improve
structure generation. By combining this idea with hybrid structure encodings, DPLM-2 could not
only interpret given structures at atomic accuracy but also generate structures that include the missing
fine-grained variations. Similar strategies have shown significant success in visual autoregressive
generation with visual tokenizers (Tang et al., 2024).

C ANALYSIS ON THE SAMPLING STRATEGY

We utilize argmax decoding for conditional generation tasks (e.g., folding and inverse folding) to
maximize generation accuracy and ensure a fair comparison with DPLM. On the other hand, stochas-
tic sampling was employed for unconditional generation or motif-scaffolding tasks to encourage
generation diversity while maintaining good generation quality.
Specifically, we utilize a temperature-based stochastic approach. We mainly focus on the temperature-
annealed version based on the sampling procedure of DPLM (Wang et al., 2024) for better sampling
diversity. The overall sampling approach is shown in algorithm 1. The temperature annealing
sampling approach introduces more randomness during the initial stage of sampling by using a large
temperature, and more fidelity during the final stage of sampling by using a small temperature. This
method improves generation diversity while maintaining generation quality.
Moreover, we observe that stochastic sampling could also improve the generation diversity in
conditional tasks (e.g., inverse folding) while keeping the quality. As shown in Tab. 9, the argmax
decoding strategy picks the token with highest probability at each timestep, yielding sequence with
high probability and resulting in high amino acid recovery (AAR). On the other hand, we employ a
sampling strategy with annealing temperature from 2.2 to 0.1 to improve diversity, and the generated
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Table 9: Ablation study on the sampling strategy in inverse folding task.

Model CAMEO 2022

AAR scTM

MultiFlow 32.28/33.58 0.87/0.94
ESM3-Open 47.06/46.24 0.90/0.95
DPLM2 650M (argmax decoding) 49.01/50.10 0.88/0.93
DPLM2 650M (temperature-annealed sampling) 43.15/42.24 0.88/0.93

sequence has a lower AAR while maintaining the same scTM as argmax decoding. This demonstrates
that temperature annealing sampling strategy is capable of generating more diverse sequences that,
while not similar to the ground truth, still meet the given structural conditions.
Algorithm 1 Temperature-annealed stochastic sampling

Input: trained network fθ (·), the total sampling steps T , the minimum temperature τmin and the
maximum temperature τmax.
Output: generated sample x(0).
for n = 1, 2, . . . , N do

Initialize xT,n ∼ qnoise;
Initialize bT,n = 0;

end for
for t = T, . . . , 1 do

# Determine the temperature τ of the current timestep t.
τ = τmin +

t−1
T−1 (τmax − τmin)

for n = 1, 2, . . . , N do
Draw x̃0,n ∼ Categorical (fθ (xt,n)/τ);
Generate vt−1,n according to log p(x̃0,n)
if bt,n = 1 then

Draw u
(1)
t,n ∼ qnoise;

xt−1,n = v
(1)
t−1,nxt,n +

(
1− v

(1)
t−1,n

)
u
(1)
t,n;

else
Draw u

(2)
t,n ∼ qnoise(xt,n);

xt−1,n = v
(2)
t−1,nx̃0,n +

(
1− v

(2)
t−1,n

)
x
(2)
t,n;

end if
Let bt−1,n = bt,n ∧ v

(1)
t−1,n ∨ v

(2)
t−1,n;

end for
end for
Return x0,1:N .

D ANALYSIS ON THE EVALUATION METRICS IN THE UNCONDITIONAL
GENERATION

In Tab. 2, we observe that DPLM-2 achieves a high scTM score while the scRMSD score is a bit
higher than other baselines, e.g., MultiFlow. We will make a detailed discussion of this.
We first highlight that the generated samples from DPLM-2 share similar scTM (0.925) and scRMSD
(3.9) as native PDB samples, which also exhibit good scTM (0.904) with a little bit higher scRMSD
(4.623). Moreover, Additionally, DPLM-2 maintains a balanced structural composition (helix: 0.4,
strand: 0.2, coil: 0.45), closely resembling natural distributions. In contrast, for MultiFlow, the
officially released model with distillation attains much lower scRMSD (3.2), while the performance of
our retrained version (on the same DPLM-2 training set) degrades in both scTM (0.871) and scRMSD
(6.58). Lower scRMSD in MultiFlow with distillation, appears to be driven by overrepresentation of
structured elements (Fig. 4A), i.e., significantly biasing towards proteins with more helices, with less
strands and loops (Fig. 4C). This overrepresentation drives the observed scRMSD improvement but
deviates from natural protein diversity.
Then we delve into the insight and purpose of the TM-score and RMSD metrics. TM-score emphasizes
global topology, while RMSD is sensitive to local structural errors. As such, although scTM and
scRMSD are generally correlated, discrepancies can arise. The purpose of TM-score is to solve this
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Table 10: Analysis on the performance degradation in the representation learning task, including
HumanPPI, MetalIonBinding and DeepLoc Subcellular.

Exp id Model Training set HumanPPI MetalIonBinding DeepLoc Subcellular

Acc(%) Acc(%) Acc(%)

0 SaProt AFDB data (40M) 86.41 75.75 85.57
1 DPLM PDB + swissprot (200K) 73.33 62.25 63.49
2 DPLM-2 PDB + swissprot (200K) 77.22 69.47 66.77
3 DPLM w/ fully pretraining on UniRef50 UniRef50 (45M) 86.41 75.15 84.56
4 DPLM-2 w/ finetuning from DPLM PDB + swissprot (200K) 84.44 74.28 82.98
5 DPLM-2 w/ finetuning from DPLM AFDB reps + PDB + swissprot (1.5M) 87.78 - 83.42

sensitivity of RMSD, because RMSD is an average distance of all residue pairs in two structures, a
local error (e.g. a misorientation of the tail) will raise a big RMSD value although the global topology
is correct. In TM-score, however, the small distance is weighted stronger than the big distance,
which makes the score insensitive to the local modeling error. As shown in Fig. 4B, some samples
from DPLM-2 with higher loop proportion are more conformationally flexible, hence may show
high scTM (>0.9) but worse scRMSD (>2.0), similar to natural protein. However, this does not
necessarily indicate a limitation in generation quality but reflects differences in metric sensitivity.
As a result, the in-silico designability of protein generation should be evaluated comprehensively using
both scTM and scRMSD, as each metric offers distinct insights and serves different purposes. For
users aiming to generate samples with accurate global topology, scTM serves as a reliable indicator,
whereas scRMSD may occasionally exclude reasonable structures. Conversely, for applications
requiring structurally rigid and stable proteins, such as functional designs (e.g., binder design),
scRMSD has been shown to correlate more strongly with in vitro success rates, as suggested by
RFDiffusion.

E ANALYSIS ON THE PERFORMANCE DEGRADATION IN REPRESENTATION
LEARNING

In Tab. 5, we find DPLM-2 demonstrates a performance degradation compared with the DPLM,
which is used for parameter initialization for DPLM-2, in some tasks (e.g., DeepLoc Subcellular). We
hypothesize two potential causes for the observed degradation: (1) DPLM-2 needs to accommodate
additional structural representations given the same model capacity (parameters), which could
negatively impact the representation learning performance. (2) As continuous training on smaller
magnitude of structure data, DPLM-2 may experience catastrophic forgetting of the representation
power gained during DPLM’s large-scale sequence pretraining.
To explore (1), we eliminated pretraining factors by retraining both DPLM and DPLM-2 with random
initialization on the SwissProt and PDB datasets for 100K training steps. Additionally, we evaluated
performance across all three tasks (HumanPPI, MetalIonBinding and DeepLoc Subcellular) where
DPLM-2 underperformed compared to DPLM. As shown in the Tab. 10, when large-scale sequence
pretraining is removed, DPLM-2 significantly outperforms DPLM (exp 2 vs exp 1). This indicates
that incorporating structural information enhances performance rather than harming it, which rejects
the hypothesis (1).
However, when DPLM undergoes large-scale pretraining and DPLM-2 is subsequently trained from
the pretrained DPLM, the performance of DPLM-2 on certain tasks diminishes (exp 4 vs exp 3).
Given the relatively smaller structure data for DPLM-2 training, this suggests that catastrophic
forgetting occurs during DPLM-2’s multimodal training, reducing the advantages of large-scale
pretraining. To verify and mitigate this, we curate additional 1.3M predicted structures from AFDB
representative (Barrio-Hernandez et al., 2023), and trained DPLM-2 on this larger data. The
experimental results show that the amount of structure data is indeed a key factor for better multimodal
protein representations, leading to significantly improved performance over the original data (exp 5
vs exp 4). In particular, on HumanPPI, enlarging data from 200K to 1.5M helps DPLM-2 attain 2.3%
improvement, and also outperforms SaProt, a strong multimodal PLM trained with 40M Foldseek
tokenized AFDB data.

F MORE EMPIRICAL RESULTS

F.1 COMPREHENSIVE EVALUATION ON THE UNCONDITIONAL SEQUENCE GENERATION

In addition to the Tab. 2, we have conducted more comprehensive evaluations on the unconditional
generation in terms of protein sequence, including: (1) sequence and structural diversity: we
conduct MMseqs2 clustering and Foldseek structural clustering at different thresholds. For MMseqs2
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Table 11: Comprehensive analysis on the protein sequence generation. We evaluate the performance
in terms of pLDDT, sequence and structural diversity, sequence naturalness and sequence novelty.

Evaluation Metric MultiFlow MultiFlow DPLM DPLM-2(official w/ distillation) (retrained on DPLM-2 data)

structural plausibility (↑)
pLDDT 79.4 62.6 84.0 83.7

sequence diversity (↑)
MMseqs2 cluster at seq-id=0.3 & plddt > 70 0.804 0.204 0.740 0.745
MMseqs2 cluster at seq-id=0.5 & plddt > 70 0.860 0.294 0.745 0.755
MMseqs2 cluster at seq-id=0.7 & plddt > 70 0.862 0.294 0.815 0.795
MMseqs2 cluster at seq-id=0.9 & plddt > 70 0.862 0.294 0.885 0.895

structural diversity (↑)
Foldseek at TMscore=0.3 & scTM > 0.5 0.030 0.080 – 0.198
Foldseek at TMscore=0.5 & scTM > 0.5 0.500 0.440 – 0.545
Foldseek at TMscore=0.7 & scTM > 0.5 0.962 0.830 – 0.646
Foldseek at TMscore=0.9 & scTM > 0.5 0.990 0.910 – 0.746

sequence naturalness (↓)
ProGen2 ppl 8.11 ± 2.08 9.15 ± 2.77 4.33 ± 2.51 4.08 ± 2.00

sequence novelty (↓)
MMseq2 search against PDB+swissprot 0.306 0.312 0.304 0.475

Table 12: Unconditional generation from the empirical length distribution.
Length scTM scRMSD pLDDT

Length interval: [100, 200, ..., 500] 0.925 ± 0.085 3.899 ± 3.723 82.686
Training set (PDB+Swissprot) length dist. 0.929 ± 0.086 3.967 ± 3.257 83.698

clustering, we cluster samples with pLDDT > 70, while for foldseek clustering we cluster samples
with scTM > 0.5. This quality threshold for diversity is inspired by MultiFlow, which is more
informative by avoiding diverse but messy sequences. Then, we divide the number of clusters by the
total number of samples to measure the diversity. (2) sequence naturalness: we calculate perplexity
as a measure of naturalness with ProGen2-large (Nijkamp et al., 2022). (3) sequence novelty: we
calculate novelty through sequence identity to the nearest neighbor in the training set.
All models generate 100 samples per length in the range of 100, 200, 300, 400 and 500 for evaluation,
with the results demonstrated in the Tab. 11. One particularly insightful observation is the distinct
behavior of MultiFlow (w/ distillation) and DPLM-2 regarding structural diversity. Specifically,
DPLM-2 exhibits greater diversity under strict TM-score thresholds (≤ 0.5), while MultiFlow
achieves better diversity at higher TM-score thresholds (≥ 0.7). Combined with the average inner-TM
scores (DPLM-2: 0.275, MultiFlow: 0.356) , this suggests that DPLM-2 excels at generating
diverse structures in terms of global topologies but exhibits limited structural variation within each
cluster. This finding highlights a key limitation of the current structural tokenization approach: the
loss of fine-grained structural variations, emphasizing the need for future improvements in this area.
Additionally, DPLM-2 achieves the lowest ProGen2 perplexity, while its sequence identity to training
data (0.475) is higher than that of DPLM and MultiFlow. This indicates that the sequences generated
by DPLM-2 align more closely with the natural distribution.

F.2 UNCONDITIONAL GENERATION FROM THE EMPIRICAL LENGTH DISTRIBUTION

In our paper, we follow the setting in the MultiFlow and sample within length intervals in the
unconditional generation, ensuring fair comparisons with previous models under the similar settings
to better assess the strengths and limitations of our models.
Meanwhile, DPLM-2 is capable of generating proteins from the empirical length distribution.
Specifically, we sample 2048 sequences with length sampled from the length distribution of PDB and
SwissProt datasets. Tab. 12 demonstrates that DPLM-2 can generate highly plausible proteins from
the empirical length distribution, which is consistent with sampling with length intervals.

F.3 REPRESENTATION LEARNING EVALUATION WITH MORE BASELINES

We have added more recent strong baselines, such as GNN-based methods (e.g., GearNet), in addition
to Tab. 5 to make a more comprehensive comparison on the representation learning tasks, as shown in
Tab. 13. This demonstrates that DPLM-2 is capable of utilizing both protein structure and sequence
to generate more informative representations for series of downstream tasks.
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Table 13: Representation learning performance on various protein predictive tasks, comparing
between DPLM-2 and more recent strong baselines. † means results are quoted from SaProt paper,
while ∗ means results are quoted from their respective paper.

Models Thermostability HumanPPI Metal Ion Binding EC GO DeepLoc

MF BP CC Subcellular Binary

Spearman’s ρ Acc (%) Acc (%) Fmax Fmax Fmax Fmax Acc (%) Acc (%)
†SaProt (650M) 0.724 86.41 75.75 0.882 0.682 0.486 0.479 85.57 93.55
†SaProt-GearNet (650M) 0.660 85.80 74.44 0.889 0.678 0.522 0.508 84.16 93.63
†MIF-ST (Yang et al., 2022b) 0.694 75.54 75.08 0.807 0.633 0.375 0.322 78.96 91.76
†GearNet (Zhang et al., 2023) 0.571 73.86 71.26 0.874 0.644 0.481 0.476 69.45 89.18
∗GearNet updated (Zhang et al., 2023) – – – 0.890 0.681 0.488 0.464 – –
∗CoupleNet [1] – – – 0.866 0.669 0.467 0.494 – –
∗CDConv [2] – – – 0.820 0.654 0.453 0.479 – –
∗ESM2-650M-S [3] – – – 0.823 0.649 0.463 0.519 – –
∗VABS-NET [4] – – – 0.900 0.695 0.531 0.579 – –
∗ESM-GearNet-INR-MC [5] – – – 0.896 0.683 0.518 0.504 – –
ESM2 (650M) 0.691 84.78 71.88 0.868 0.670 0.473 0.470 83.68 92.28
DPLM (650M) 0.695 86.41 75.15 0.875 0.680 0.480 0.478 84.56 93.09

DPLM-2 (650M) 0.714 84.44 74.28 0.881 0.682 0.493 0.481 82.98 93.64

F.4 INVERSE FOLDING EVALUATION WITH MORE BASELINES

For inverse folding task, we mainly focus on the comparison with other multimodal generative models
(MultiFlow, ESM3) in the Tab. 4. We have also added more recognized baseline methods in inverse
folding evaluation, as shown in Tab. 14.

Table 14: Inverse folding performance
comparison between DPLM-2 and other
baselines on the CATH 4.2 testset. †
means results are quoted from their re-
spective paper.

Model AAR scTM

†Knowledge-Design (Gao et al., 2023) 60.77 –
†GraDe-IF (Yi et al., 2023) 52.21 –
†MMDesign (Zheng & Li, 2024) 54.88 –
†VFN-IFE (Mao et al., 2023) 62.67 –
PiFold (Gao et al., 2022) 51.66 –
†Bridge-IF (Zhu et al., 2024) 58.59 –
ProteinMPNN (Dauparas et al., 2022) 45.96 0.87
LM-Design (Zheng et al., 2023b) 54.41 0.88
DPLM-2 w/ argmax decoding 42.70 0.84
DPLM-2 w/ temperature-annealed sampling 36.30 0.84

We conduct experiments on CATH 4.2 testset. We ob-
serve that DPLM-2 is able to achieve close results with
the strong baselines despite slightly lower scTM. To fur-
ther improve scTM to bridge the last gap, there are sev-
eral potential directions: (1) inverse folding SFT training:
DPLM-2 conducts this task in a zero-shot manner while
other systems are purpose-built models, thus task-oriented
SFT training could help as we have observed in folding;
(2) better structure modeling includes introducing separate
structure encoders for structure encoding and generation
purposes, or hybrid tokenization for recovering the lost
fine-grain structural variations, as discussed in the §B.4.

F.5 MOTIF SCAFFOLDING

Evaluation Pipeline. We evaluate DPLM-2 in sequence-based, structure-based and co-generation
ways. The overall illustration is shown in Fig. 8. We focus on the two aspects: overall quality
and motif part consistency. The assessment of overall quality varies across different approaches.
Specifically, (1) For sequence-based method, we only take the generated sequence and utilize
ESMFold to obtain the predicted structure, and the pLDDT score provided by ESMFold is used to
assess overall quality. (2) For structure-based method, we only take the generated structure, and
then leverage ProteinMPNN to predict the sequence, followed by ESMFold to predict the structure,
where overall quality is assessed by scTM. (3) For co-generation method, we take both the generated
structure and sequence, and predict structure given generated sequence with ESMFold, where scTM
is calculated between generated structure and ESMFold predicted structure to evaluate overall quality.
Considering that the ground truth motif structure is given, we only utilize the ESMFold predicted
structure to calculate motif-RMSD.
Result of Each Problem. Tab. 15 presents the result of each motif-scaffolding problem. DPLM-
2 achieves the best average success rate in each evaluation. Compared with ESM3, DPLM-2
shows better results in 12 problems in co-generation evaluation and 10 problems in sequence-
based evaluation. Meanwhile, DPLM-2 outperforms RFDiffusion in 14 problems in structure-based
evaluation. This demonstrates that DPLM-2 can achieve strong performance under various evaluation
methods. We also find that taking the best result from 8 samples can bring significant improvement
compared to 1 sample, especially in terms of success rate. In the co-generation evaluation, DPLM2
with sampling 8 times improves the success rate of most of the problems by a large margin. We
hypothesize that sampling eight times largely alleviates errors caused by randomness in the sampling
process, thereby producing a more suitable scaffold for the given motif.
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Figure 8: Sequence-based, structure-based and co-generation evaluation pipeline of motif-
scaffolding.

*RFDiff ESM3*DPLM2DPLMEvoDiff

seqpred: ✓ structpred: !
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

pLDDT(ESMFold(seqpred))>70

seqpred: ! structpred: ✓
motif-preserving

designability
RMSD(ESMFold(PMPNN(structpred))[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(PMPNN(structpred)), structpred)>0.8

seqpred: ✓ structpred: ✓
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(seqpred), structpred)>0.8

DPLM2ESM3 DPLM2 *DPLM2
sequence-based structure-based co-generation

* means best of 8 samples

sequence-based

structure-based

co-generation

Table 15: Motif-scaffolding results of each problem. * means best result from 8 samples.
sequence-based structure-based co-generation

EvoDiff DPLM ESM3 DPLM2 *RFDiffusion *DPLM2 ESM3 DPLM2 *DPLM2

1BCF 0.00 0.00 0.89 0.01 1.00 0.07 0.23 0.01 0.05
1PRW 0.61 0.83 0.96 0.86 0.08 0.96 0.54 0.84 0.95
1QJG 0.00 0.00 0.02 0.03 0.00 0.00 0.03 0.02 0.05
1YCR 0.02 0.38 0.41 0.77 0.74 0.93 0.18 0.53 0.98
2KL8 0.04 0.08 0.11 0.47 0.88 0.94 0.11 0.57 1.00
3IXT 0.06 0.17 0.18 0.67 0.25 0.77 0.02 0.41 0.73
4JHW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4ZYP 0.00 0.00 0.03 0.16 0.40 0.51 0.08 0.10 0.64
5IUS 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
5TPN 0.00 0.00 0.03 0.00 0.61 0.06 0.01 0.00 0.00

5TRV long 0.00 0.00 0.19 0.00 0.37 0.08 0.19 0.00 0.07
5TRV med 0.00 0.00 0.16 0.03 0.24 0.07 0.16 0.02 0.19
5TRV short 0.00 0.00 0.01 0.07 0.04 0.10 0.01 0.03 0.11

5WN9 0.00 0.00 0.02 0.00 0.00 0.20 0.00 0.00 0.00
5YUI 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

6E6R long 0.01 0.65 0.07 0.91 0.86 0.92 0.04 0.78 1.00
6E6R med 0.03 0.94 0.24 0.93 0.89 0.88 0.14 0.77 0.97
6E6R short 0.07 0.87 0.09 0.86 0.39 0.78 0.06 0.64 0.99
6EXZ long 0.00 0.01 0.32 0.61 0.76 0.63 0.13 0.44 0.95
6EXZ med 0.00 0.00 0.31 0.66 0.49 0.63 0.31 0.55 0.96
6EXZ short 0.00 0.00 0.31 0.66 0.39 0.41 0.28 0.58 0.87
7MRX long 0.00 0.02 0.36 0.23 0.09 0.32 0.37 0.20 0.73
7MRX med 0.00 0.31 0.65 0.28 0.11 0.31 0.59 0.22 0.70
7MRX short 0.00 0.34 0.68 0.26 0.02 0.41 0.74 0.24 0.88

pass rate 7/24 11/24 21/24 18/24 20/24 20/24 20/24 18/24 19/24
avg. success rate 0.04 0.19 0.25 0.35 0.40 0.42 0.18 0.29 0.53

G DISCUSSION ON THE CONDITIONAL INDEPENDENCE ASSUMPTION

In the Eq. 2, we make a conditional independence assumption between the protein structure and
sequence. However, conditional independence is not a special assumption made by DPLM-2, it is
a fundamental assumption made by diffusion models in general and their multimodal extensions,
derived from the nature of their forward and backward processes. Previous theoretical studies on
diffusion models have shown the convergence between generated samples distribution and data
distribution is guaranteed under such conditional independence. In this paper, we have empirical
evidence showing the consistency/compatibility between co-generated structures and sequences (e.g.,
scTM for co-generation), and we believe a mathematical proof of this is beyond the scope of this
paper and can refer to the established theoretical results on diffusion. Nevertheless, we do love to
elaborate on our thoughts and understanding of this as follows.
Conditional independence in diffusion models in general. Conditional independence over the ele-
ments of high-dimensional data, i.e., pθ(xt−1|xt) =

∏d
i=1 pθ(xt−1,[i]|xt), is a prevailing assumption

in diffusion probablistic models, both continuous and discrete variants, thanks to their iterative nature
of probabilistic modeling. For example, in continuous diffusion models for vision generation, the
denoising networks learn to reconstruct a denoised image at each timestep t− 1 by simultaneously
and independently operating over all pixels conditioned on the previous noisier pixels of the image
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and the current timestep (or equivalently noise level) t. So as for discrete diffusion, where discrete
diffusion for text or protein sequence treats tokens of a sequence of xt−1 independently given xt.
Several recent works have established the theoretical foundations on the convergence analysis of
both continuous diffusion (Chen et al., 2023) and discrete diffusion (Chen & Ying, 2024; Zhang
et al., 2024), showing that there are theoretical guarantees of the convergence of the generated
sample distribution of the diffusion models and the data distribution, which means that a well-learned
diffusion models can preserve the statistical structure of the data (in other words, the consistency
between the elements x = {x1, ..., xd} of the generated samples).
Conditional independence in multimodal diffusion models. Multimodal diffusion mod-
els aim to accommodate two or more modalities using a unified models. In this case,
conditional independence between modalities is generally made pθ(xt−1,yt−1|xt,yt) =∏

i pθ(xt−1,[i]|xt,yt−1)
∏

j pθ(yt−1,[j]|xt,yt). For instance, UniDiffuser (Bao et al., 2023) is a
multimodal continuous diffusion model that handles text and image modalities independently at each
timestep, conditioned on the predictions from the previous timestep. Multiflow (Campbell et al.,
2024), on the other hand, factorizes protein data into three modalities—translation, orientation, and
amino acid type—assuming conditional independence. It establishes a multimodal diffusion/flow-
based model by combining three types of stochastic processes over Euclidean, SO(3), and categorical
spaces for these modalities. In DPLM-2, we adopt a unified discrete diffusion approach where
structure tokens and amino acid tokens are treated as conditionally independent. While theoretical
guarantees for the convergence of mixture diffusion processes are still under-explored, existing
discrete diffusion theory (Chen & Ying, 2024) ensures that a well-trained DPLM-2 can converge
to the tokenized structure-sequence data distribution, supporting consistency between structure and
sequence tokens.
Additionally, theoretical studies on non-autoregressive Transformers for text generation, which
are akin to masked discrete diffusion, indicate that the learning difficulty of such models can
be evaluated through conditional total correlation. This dataset-dependent measure captures the
discrepancy between a joint data distribution and a fully factorized distribution under conditional
independence (Huang et al., 2022). These studies suggest that simplifying the target data, for instance,
by using tokenized structure instead of 3D coordinates, reduces conditional total correlation, thereby
enhancing both learning and generation quality.
Given the consistency of structure tokens and amino acid can be ensured to learn in DPLM-2 by
previous theoretical results, the overall structure and sequence consistency can be achieved with a
decent structure tokenizer, such as the one proposed in this paper, which accurately maps structure
tokens to their atomic coordinates.

H RELATED WORK

H.1 PROTEIN LANGUAGE MODELS

There is growing interest in developing protein LMs at the scale of evolution, such as the series
of ESM (Rives et al., 2019; Lin et al., 2022), TAPE (Rao et al., 2019), ProtTrans (Elnaggar et al.,
2021), PRoBERTa (Nambiar et al., 2020), PMLM (He et al., 2021), ProteinLM (Xiao et al., 2021),
PLUS (Min et al., 2021), Adversarial Masked LMs (McDermott et al., 2021), ProteinBERT (Brandes
et al., 2022), CARP (Yang et al., 2022a) in masked language modeling (MLM) paradigm, Prot-
GPT2 (Ferruz et al., 2022) in causal language modeling paradigm, and several others (Melnyk et al.,
2022a; Madani et al., 2021; Unsal et al., 2022; Nourani et al., 2021; Lu et al., 2020; Sturmfels et al.,
2020; Strodthoff et al., 2020). These protein language models exhibit remarkable generalization
ability on various downstream tasks and be able to capture evolutionary information about secondary
and tertiary structures from sequences alone. Meanwhile, recent study shows these models’ po-
tency in revealing protein structures (Lin et al., 2022), predicting the effect of sequence variation
on function (Meier et al., 2021), antibody infilling (Melnyk et al., 2022a) and many other general
purposes (Rives et al., 2019). Simultaneously, Verkuil et al. (2022) demonstrate that the large scale
protein LMs can generate de novo proteins by generalizing beyond natural proteins, both theoretically
and experimentally validating their hypothesis in exhaustive detail, in which protein LMs demonstrate
competency in designing protein structure despite being exclusively trained on sequences.

H.2 PROTEIN STRUCTURE GENERATIVE MODELS

Diffusion models have become popular tools in structural biology for protein generation, and their
utility has been demonstrated across a range of generative tasks in recent years. Trippe et al.
(2022), along with others, have introduced several diffusion model variants, each with its unique
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approach. For instance, while some models focus on generating the protein backbone by diffusing
over protein coordinates, others, such as those proposed by Wu et al. (2022b), target inter-residue
angles. Lin & AlQuraishi (2023) and Yim et al. (2023) have developed models that handle both
the position and orientation of residue frames. RFDiffusion (Watson et al., 2023) is a model that
assists in designing protein structures for specific functions, such as enzymes. It is versatile in protein
design and has been used to create therapeutic proteins, with some designs being confirmed in the
laboratory. ProteinSGM (Lee et al., 2022) is a model that uses 2D matrices, which represent the
distances and angles between protein parts, to create 3D protein structures for novel protein designs.
FoldingDiff (Wu et al., 2022a) is a model that generates protein sequences expected to fold into a
specific structure. These sequences are verified with prediction tools, although they have not been
experimentally confirmed yet. Chroma (Ingraham et al., 2023) is a model designed for creating
large proteins and protein complexes, considering various constraints like distances and symmetry. It
transforms a collapsed polymer into protein backbone and sequence more quickly than older methods,
thereby allowing for the efficient generation of large structures. Multiflow (Campbell et al., 2024)
develop mulitmodal flow matching for protein structure-sequence co-generation (Jin et al., 2021; Shi
et al., 2022). ProtPardelle (Chu et al., 2024) propose an all-atom generative approach for co-design.
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