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ABSTRACT

Proteins are essential macromolecules defined by their amino acid sequences,
which determine their three-dimensional structures and, consequently, their func-
tions in all living organisms. Therefore, generative protein modeling necessitates
a multimodal approach to simultaneously model, understand, and generate both
sequences and structures. However, existing methods typically use separate models
for each modality, limiting their ability to capture the intricate relationships be-
tween sequence and structure. This results in suboptimal performance in tasks that
requires joint understanding and generation of both modalities. In this paper, we
introduce DPLM-2, a multimodal protein foundation model that extends discrete
diffusion protein language model (DPLM) to accommodate both sequences and
structures. To enable structural learning with the language model, 3D coordinates
are converted to discrete tokens using a lookup-free quantization-based tokenizer.
By training on both experimental and high-quality synthetic structures, DPLM-2
learns the joint distribution of sequence and structure, as well as their marginals
and conditionals. We also implement an efficient warm-up strategy to exploit the
connection between large-scale evolutionary data and structural inductive biases
from pre-trained sequence-based protein language models. Empirical evaluation
shows that DPLM-2 can simultaneously generate highly compatible amino acid se-
quences and their corresponding 3D structures eliminating the need for a two-stage
generation approach. Moreover, DPLM-2 demonstrates competitive performance
in various conditional generation tasks, including folding, inverse folding, and
scaffolding with multimodal motif inputs.

1 INTRODUCTION

Proteins are macromolecules that execute crucial roles in every living organism. They are character-
ized by their amino acid sequences and three-dimensional structure, where the sequence determines
the structure, which in turn governs the protein’s function. Generative modeling for proteins has
made significant strides in recent years. Among them, diffusion models (Ho et al., 2020; Song et al.,
2020) exhibit great success in protein structure-based generative modeling (Watson et al., 2023;
Yim et al., 2023). Meanwhile, large-scale protein language models (Rives et al., 2019; Lin et al.,
2022), trained on evolutionary-scale sequence database, have become one of the most important
cornerstones in sequence-based foundation models for protein sequence representation learning and
generation. Remarkably, DPLM (Wang et al., 2024), a discrete diffusion (Austin et al., 2021) based
protein language models, has exhibited the state-of-the-art performance in both sequence generation
and understanding, addressing a wide range of sequence-oriented applications.
Many protein engineering applications, e.g., motif-scaffolding (Watson et al., 2023; Yim et al., 2024)
and antibody design (Jin et al., 2021; Kong et al., 2022; Zhou et al., 2024), require jointly determine
both structure and sequence. However, the aforementioned approaches mostly employ generative
models for one modality (either sequence or structure) and resort to separate models (Jumper et al.,
2021; Dauparas et al., 2022) for the other. This highlights the pressing need for multimodal protein
generative models that can integrate both sequence and structure, enabling a more comprehensive
understanding of protein behaviors and functions. This, therefore, raises the following question:

Can we build a multimodal protein foundation model to simultaneously
model, understand, and generate both sequences and structures?

To pursue this goal, Multiflow (Campbell et al., 2024) is a recent effort for structure-sequence
co-generation that incorporates sequences into structure-based generative models using multimodal
flow matching. Despite its impressive structure generation capability, Multiflow exhibits suboptimal
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Figure 1: Overall illustration of DPLM-2. (A) structure tokenization consists of a GVP-based
encoder to yield invariant backbone geometric features, a lookup-free quantizer (LFQ) to discretize
encoded structural features into structure tokens within a codebook, and an IPA-based decoder
as de-tokenizer to convert structure tokens back to backbone atomic coordinates. (B) multimodal
learning and generation of protein structure and sequence with DPLM-2. (C) various applications of
DPLM-2 as a protein foundation model: (1) unconditional protein sequence-structure mixed-modal
co-generation; (2) protein sequence-structure joint representation for predictive tasks; (3) structure
prediction; (4) fixed-backbone sequence generation; (5) conditional protein generation with structure-
sequence mixed-modal input and output.

performance in co-generating structurally-compatible sequences and consequently resorts to instance-
level knowledge distillation from ProteinMPNN (Dauparas et al., 2022). Furthermore, it completely
falls short in protein folding for given sequences, showing Mulitflow’s inadequacy in sequence
understanding. We argue that this bottleneck arises from the absence (co-)evolutionary inductive
bias derived from massive pre-training from sequence database, as prior studies have demonstrated
that the evolutionarily-informed representations learned by pre-trained protein language models
implicitly capture structural information enables direct structure prediction (Lin et al., 2022). As a
consequence, the limitation in sequence understanding and generation renders Multiflow inadequate
as a multimodal protein generative foundation.
Inspired by the connection between evolutionary knowledge and spatial interactions, we suggest that
sequence-based generative language models like DPLM, with their strong sequence generation and
predictive abilities, hold great promise as a foundation for multimodal learning for proteins. Despite
its exciting potential, this approach presents two key challenges: (1) language models cannot directly
handle continuous data like structure; and (2) language models heavily necessitate sufficient scale of
data and compute resources while structure data is much smaller compared to sequence databases.
In this paper, we address the aforementioned questions by introducing DPLM-2, a multimodal protein
foundation model that advances the state-of-the-art discrete diffusion-based protein language model
(i.e., DPLM) to accommodate both sequences and structures. By training on both experimental and
high-quality synthetic structures, DPLM-2 learns the joint distribution of sequence and structure, as
well as their marginals and conditionals. We present several key receipts to facilitate multimodal
learning in DPLM-2: (1) the core difficulty lies in enabling the language model to learn structural
information, which is challenging and remains elusive, for which we develop a lookup-free quanti-
zation (LFQ, Yu et al., 2023) structure tokenizer to convert 3D coordinates to discrete tokens and
vice versa (Fig. 1A, §3.3); (2) we implement an efficient warm-up strategy to exploit the connection
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between large-scale evolutionary data and structural inductive biases from pre-trained sequence-based
DPLM (Fig. 1B, §3.2); and (3) we also address the exposure bias problem in discrete diffusion for
sequence learning (Ranzato et al., 2016; Bengio et al., 2015) by a self-mixup training strategy that
leads to enhanced generation quality and diversity.
We highlight our main contributions and findings as follows:

(i) We present DPLM-2, a multimodal protein generative language model that aims to simulta-
neously model, understand and generate protein structure and sequence. We show that it can
be fairly efficient and effective to obtain a mulitmodal protein model with moderate amount
of high-quality data, a decent structure tokenizer and publicly-accessible sequence-only
pre-trained language models.

(ii) As a mulitmodal generative model, DPLM-2 enables unconditional co-generation of
designable and diverse proteins that guarantees consistency between structure and se-
quence (Fig. 1C(1)). Our empirical evaluation show that DPLM-2 attains competitive co-
generation performance compared to structure-based generative approaches, while DPLM-
2’s generated proteins better align with the characteristics of natural proteins regarding
secondary structure statistics (§4.1).

(iii) In addition, DPLM-2 allows various conditional generation tasks by its multimodal nature,
ranging from (sequence-conditioned) folding (Fig. 1C(3), §4.2), (structure-conditioned)
inverse-folding (Fig. 1C(4), §4.3), to more successful motif-scaffolding given multimodal
motif conditioning (Fig. 1C(5), §4.4).

(iv) Last but not least, we demonstrate that the structure-aware protein representation learned by
DPLM-2 brings additional benefit for a range of protein predictive tasks (Fig. 1C(2), §4.5).

Concurrent work. During the development of DPLM-2, we became aware of the recently proposed
multimodal generative protein language model, ESM3 (Hayes et al., 2024), which also jointly models
tokenized structure and sequence using a generative masked language model. While both models
aim for similar goals, DPLM-2 differs from ESM3 in several key aspects: (1) Multimodal protein
generation: DPLM-2 treats structure and sequence modalities equally by design and emphasizes
the simultaneous co-generation of compatible protein sequence and structure, whereas ESM3 is
a sequence-first model (other modalities are subject to dropout during training) and generates in
cascaded modality-by-modality manner. (2) Data and compute efficiency: ESM3 seeks to perform
mulimodal pre-training from scratch using a huge amount of synthetic data, with modal size ranging
from 1.4B to 98B. With strict license and absence of training infrastructure, this prohibits community
from replicating for customized purposes. In contrast, DPLM-2 leverages much smaller datasets
(PDB + SwissProt) and builds on open-source, pre-trained sequence-based DPLM (150M/650M/3B),
which leverages DPLM’s learned evolutionary knowledge and inherits strong sequence understanding
and generation capabilities. We are also committed to open-source our models, training and inference
code to democratize multimodal generative protein LM to benefit the community. Overall, we believe
DPLM-2 provides unique contributions to the community.

2 PRELIMINARIES

2.1 GENERATIVE MODELING FOR PROTEIN
Table 1: Generative tasks
w.r.t. structure & sequence.

task objective

folding pθ(x|s)
inv-folding pθ(s|x)
seq. gen. pθ(s)
struct. gen. pθ(x)

seq-struct co-gen. pθ(s,x)

The aim of generative protein modeling is to estimate the underly-
ing distribution prot ∼ q(prot) of the protein data of our interest by
learning a probabilistic model pθ(prot). Here prot = (r1, r2, . . . , rL)
denotes a protein with L residues, where each residue ri = (si, xi)
is represented by two major modalities, i.e., si ∈ {0, 1}|S| is a cat-
egorical variable for its amino acid type in S = {1, ..., 20}, and
xi ∈ RNatoms×3 is the real-value Cartesian coordinates of its residue
atoms (we only consider backbone atoms herein, i.e., [N,Cα,C,O] with Natoms = 4). Namely,

pθ(prot) = pθ(s1, s2, . . . , sL, x1, x2, . . . , xL) = pθ(s,x)

As a result, most of protein tasks can be viewed as specifying their input conditioning and output
between these two modalities (Tab. 1), including (1) sequence-conditioned structure prediction (fold-
ing, Jumper et al., 2021; Lin et al., 2022; Huguet et al., 2024), (2) structure-conditioned sequence
generation (inverse folding or fixed-backbone design, Dauparas et al., 2022; Hsu et al., 2022; Zheng
et al., 2023b), (3) sequence learning or generation (Rives et al., 2019; Nijkamp et al., 2022; Alamdari
et al., 2023; Wang et al., 2024), (4) structure generation (Yim et al., 2023; Watson et al., 2023;
Ingraham et al., 2023), and (5) sequence-structure co-generation (Jin et al., 2021; Shi et al., 2022;
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Campbell et al., 2024). These further enable various conditional applications by allowing single or
mixed-modal conditioning for partial generation, e.g., motif-scaffolding and antibody design.

2.2 DIFFUSION PROTEIN LANGUAGE MODEL (DPLM)
Language models (LMs), typically parameterized by Transformers (Vaswani et al., 2017) have
become the de facto choice dominating different domains with scalable and performing expressive-
ness (OpenAI, 2023). Among them, protein LMs have been serving as one of the AI foundation for
protein sequence learning (Rives et al., 2019; Lin et al., 2022) and generation (Nijkamp et al., 2022;
Alamdari et al., 2023).
Diffusion protein language model (DPLM, Wang et al., 2024), in particular, shows excelling per-
formance in both generation and representation learning of protein sequences. DPLM is grounded
in absorbing discrete diffusion framework (Austin et al., 2021; Zheng et al., 2023a), which is char-
acterized by a forward and backward Markov process. Let Cat(x;p) be a categorical distribution
on protein sequence y parameterized by a vector p on (|V| − 1)-dimensional probability simplex.
The forward process of discrete diffusion defines a Markov process governed by the transition kernel
q(x(t)|x(t−1)) = Cat

(
x(t);βtx

(t−1)+(1−βt)qnoise
)

that gradually perturb the data x(0) ∼ q(x(0))

into a stationary distribution x(T ) ∼ qnoise. For absorbing diffusion, qnoise is the point mass with
all of the probability on the absorbing (mask) state. The learned backward process pθ(x(t−1)|x(t))
reversely denoises the x(T ) towards the data distribution x(0), which is typically optimized by the
variational bound of the log-likelihood (Ho et al., 2020):

Eq(x(0))

[
log pθ(x

(0))
]
≥ Eq(x(0:T ))

[
log

pθ(x
(0:T ))

q(x(1:T )|x(0))

]

= Eq(x(0))

[
log pθ(x

(0)|x(1)) +
∑T

t=2 −KL
[
q(x(t−1)|x(t),x(0))∥pθ(x(t−1)|x(t))

]]

︸ ︷︷ ︸
Jt

+const.,

where Jt is the learning objective. The learning objective of discrete diffusion can be further simplified
into reweighted cross-entropies (Zheng et al., 2023a), resembling masked language modeling at
arbitrary noise levels:

Jt = Eq(x(0)) − KL
[
q(x(t−1)|x(t),x(0))∥pθ(x(t−1)|x(t))

]

= Eq(x(0))

[
λ(t)∑

1≤i≤Lbi(t) · log pθ(x
(0)
i |x(t))

]
, (1)

where λ(t) is a weighting coefficient induced from the specific noising schedule and bi(t) = 1
x
(t)
i ̸=x

(0)
i

. For inference, DPLM is able to generate amino acid sequences by the reverse iterative denoising
process of discrete diffusion (Hoogeboom et al., 2021; Austin et al., 2021) from the following
distribution,

pθ(x
(t−1)|x(t)) =

∑
x̃(0) q(x(t−1)|x(t), x̃(0))pθ(x̃

(0)|x(t)).

Specifically, at time t, it first generates x̃(0) from pθ(·|x(t)), then a less noisy x(t−1) is sampled
by q(·|x(t),x(0) = x̃(0)). Within absorbing diffusion, the generation process can be viewed as an
iterative mask-predict approach. For sequence representation for predictive tasks, it can be obtained
by simply letting DPLM take the sequence as input.

3 DPLM-2: A MULTIMODAL DIFFUSION PROTEIN LANGUAGE MODEL

3.1 OVERVIEW

Fig. 1 illustrates DPLM-2’s overall architecture. DPLM-2 is built on the state-of-the-art sequence-
based generative protein LM, i.e., DPLM (Wang et al., 2024), using a discrete diffusion probabilistic
framework to concurrently model both protein sequences and their corresponding structures. To
facilitate structure learning in language models, we introduce a token-based representation for protein
structure via a tokenizer that converts x ∈ RL×Nbackb×3, the 3D coordinates of the protein backbone
into a discrete structure token sequence, denoted as z = (z1, z2, . . . , zL) ∈ {0, 1}L×|Z|, where
each token zi represents a local structural element of the i-th residue. Given tokenized structure,
DPLM-2 processes mulitmodal input by concatenating the structure token sequence z with the
corresponding amino acid sequence s for the same protein. Notably, there exists a position-by-
position correspondence between z and s, where zi and si refer to the two modalities of the i-th
residue, respectively. To reinforce this correspondence, we assign identical position encodings to both
zi and si, thereby ensuring that structural and sequence information is aligned at the residue level.
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To train DPLM-2, we leverage a high-quality dataset comprising 20K clustered experimental
structures from the Protein Data Bank (PDB) (Berman et al., 2000) and 200K predicted structures
from the AFDB SwissProt split (Varadi et al., 2022), with length < 512. During training, DPLM-2
is tasked with denoising the input sequence across a spectrum of noise levels, ranging from fully
noisy to completely clean. The multimodal training objective of DPLM-2 is derived from Eq. (1) as,

Jt = Eq(x(0),s(0)),z(0)←tokenize(x(0))

[
λ(t)∑

1≤i≤Lbi(t) · log pθ(z
(0)
i , s

(0)
i |z(t), s(t))

]
,

where log pθ(zi, si|·) = log pθ(zi|·) + log pθ(si|·) by assuming conditional independence. By learn-
ing pθ(z

(t−1), s(t−1)|z(t), s(t)), the model enables the simultaneous generation of highly correlated
protein structures and sequences. This eliminates the need for a cascaded generation paradigm,
allowing us to derive both the protein’s structure and sequence in a single step.
To further enhance DPLM-2’s ability to differentiate between structure and sequence, noising
level for each modality is subjected to distinct scheduler, denoted as tz and ts, respectively. This
facilitates a more comprehensive understanding of the relationships between protein sequences and
their corresponding structures. This design also allows us to explore arbitrary combinations of (tz, ts),
thus providing flexible sampling options, including sampling from the marginals of each modality
and conditionals between them for various applications (Fig. 1C). For conditional sampling (e.g.,
folding and inverse-folding), we set the noise scheduler of the conditioned modality to 0, which
means no noise in the conditioned modality. For example, in the folding task, the ts is always set to
0, while in the inverse-folding task the tz is always set to 0. When sampling from the marginals of
each modality, we set the noise scheduler of another modality to T , which is the maximum timestep
and means 100% noise in another modality. For structure-sequence co-generation, we keep the tz
and ts for the same to enhance the consistency between structure and sequence. Please refer to §A.4
for more details.
Furthermore, we also identify the exposure bias issue in discrete diffusion for sequence learning (Ran-
zato et al., 2016; Bengio et al., 2015), and mitigate this by proposing a self-mixup strategy inspired
by scheduled sampling, which improves both generation quality and diversity (see §A.2).

3.2 EFFICIENT WARM-UP FROM PRE-TRAINED SEQUENCE-BASED DPLM
Protein sequences encode critical evolutionary information, reflecting co-evolutionary processes
where residue pairs mutate together and often interact in 3D space, offering insights for predicting
protein folding (Melnyk et al., 2022b). Lin et al. (2022) further showed that protein language
models trained on large-scale evolutionary data implicitly capture this information, which can
facilitate structure prediction. Motivated by the link between evolutionary knowledge and structural
interactions, we propose to built DPLM-2 with an efficient warmup from pre-trained sequence-based
DPLM, to make the most of established evolutionary information for protein structure modeling,
Since our structure dataset is significantly smaller than UniRef50 sequence database (200K vs. 45M),
enabling efficient fine-tuning of the pre-trained model. we want to keep the sequence knowledge
intact and reduce the risk of catastrophic forgetting, we apply LoRA (Hu et al., 2021) to limit too
much deviation to the original parameters. This approach not only lowers training costs compared to
starting from scratch but also effectively transfers valuable evolutionary information.

3.3 LEARNING STRUCTURE TOKENIZATION

The core difficulty of achieving a mulimodal protein LM lies in enabling the language model
to learn structural information, which is challenging and remains elusive, Tokenizing continuous
data modalities into discrete representations (Van Den Oord et al., 2017) has gained attraction
across domains like image synthesis due to its ability to capture compact, meaningful information,
enabling effective compression and efficient generation, especially with sequence-based models like
Transformers. Recent efforts have applied this approach to protein structure coordinates (Van Kempen
et al., 2024; Liu et al., 2023; Gao et al., 2024; Lu et al., 2024). This allows language models to
better learn the composition of local structural elements. However, how to learn an effective structure
tokenizer remains an active research question.
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denoising the input sequence across a spectrum of noise levels, ranging from fully noisy to completely
clean. The multimodal training objective of DPLM-2 is derived from Eq. (1) as,

Jt = Eq(s(0),x(0))

h
�(t)P

1iLbi(t) · log p✓(s
(0)
i , x

(0)
aa,i|s(t),x

(t)
aa )

i
,

where log p✓(si, x
aa
i |·) = log p✓(si|·) + log p✓(x

aa
i |·) by assuming conditional independence. By

learning p✓(s(t � 1),xaa(t�1) | s(t),xaa(t)), the model enables the simultaneous generation of
highly correlated protein structures and sequences. This eliminates the need for a cascaded generation
paradigm, allowing us to derive both the protein’s structure and sequence in a single step.
To further enhance DPLM-2’s ability to differentiate between structure and sequence, noising
level for each modality is subjected to distinct scheduler, denoted as taa and tss, respectively. This
facilitates a more comprehensive understanding of the relationships between protein sequences and
their corresponding structures. This design also allows us to explore arbitrary combinations of
(taa, tss), thus providing flexible sampling options, including sampling from the marginals of each
modality and conditionals between them for various applications (Fig. 1C).

3.2 EFFICIENT WARM-UP FROM PRE-TRAINED SEQUENCE-BASED DPLM

Protein sequences encode critical evolutionary information, reflecting co-evolutionary processes
where residue pairs mutate together and often interact in 3D space, offering insights for predicting
protein folding (Melnyk et al., 2022). Lin et al. (2022) further showed that protein language
models trained on large-scale evolutionary data implicitly capture this information, which can
facilitate structure prediction. Motivated by the link between evolutionary knowledge and structural
interactions, we propose to built DPLM-2 with an efficient warmup from pre-trained sequence-based
DPLM, to make the most of established evolutionary information for protein structure modeling,
Since our structure dataset is significantly smaller than UniRef50 sequence database (200K vs. 45M),
enabling efficient fine-tuning of the pre-trained model. we want to keep the sequence knowledge
intact and reduce the risk of catastrophic forgetting, we apply LoRA (Hu et al., 2021) to limit too
much deviation to the original parameters. This approach not only lowers training costs compared to
starting from scratch but also effectively transfers valuable evolutionary information.

3.3 LEARNING STRUCTURE TOKENIZATION

The core difficulty of achieving a mulimodal protein LM lies in enabling the language model
to learn structural information, which is challenging and remains elusive, Tokenizing continuous
data modalities into discrete representations (Van Den Oord et al., 2017) has gained attraction
across domains like image synthesis due to its ability to capture compact, meaningful information,
enabling effective compression and efficient generation, especially with sequence-based models like
Transformers. Recent efforts have applied this approach to protein structure coordinates (Van Kempen
et al., 2024; Liu et al., 2023; Gao et al., 2024; Lu et al., 2024). This allows language models to
better learn the composition of local structural elements. However, how to learn an effective structure
tokenizer remains an active research question.

tokenizer size train cameo 2022
lddt ca lddt ca tm-score rmsd

VQ-VAE-1k 1024 0.76 0.71 0.80 6.14
LFQ-1k 1024 0.82 0.77 0.86 4.35
LFQ-2k 2048 0.84 0.79 0.88 3.62
LFQ-4k 4096 0.86 0.82 0.91 3.31
LFQ-8k 8192 0.92 0.86 0.93 2.58
LFQ-16k 16384 0.92 0.87 0.94 2.32

Structure tokenization under a typical VQ-VAE (Van
Den Oord et al., 2017) framework can be summarized
as follows:

x
encoder����! z

quantizer�����! s
decoder����! x̃,

where (1) a structure encoder encodes backbone 3D
coordinates x 2 RL⇥Nbackb⇥3 into invariant features
z 2 RL⇥dquant , (2) a quantizer converts z into s of L
discrete tokens si 2 {0, 1, . . . , |S|} given a codebook S; and (3) a structure decoder reconstructs
3D coordinates from the discrete tokens. We implement a GVP-based (Jing et al., 2020; Hsu
et al., 2022) structure encoder and a IPA-based (Jumper et al., 2021) structure decoder. In terms of
quantizer, we use the Lookup-Free Quantizer (LFQ) (Yu et al., 2023), which we empirically found to
perform significantly better than the conventional VQ-VAE. Specifically, the latent space of LFQ
is decomposed as the Cartesian product of single-dimensional binary variables, as C = ⇥log2 |S|

k=1 Ck,
where Ck = {�1, 1}. Given the encoded feature z = encoder(x) 2 RL⇥log2 |S|, each dimension
(indexed by k) of the quantized representation quant(zi) is obtained from:

quant(zi[k]) = Ci = sign(zi[k]) = �1{zi[k]  0} + 1{zi[k] > 0}.

5

density
A - reconstruction acc. of tokenizers B - struct tokens vs secondary struct

Figure 2: Reconstruction and secondary structure
correspondence of structure tokenizers.

Structure tokenization under a typical VQ-
VAE (Van Den Oord et al., 2017) framework
can be summarized as follows:

x
encoder−−−−→ e

quantizer−−−−−→ z
decoder−−−−→ x̃,

where (1) a structure encoder encodes back-
bone 3D coordinates x ∈ RL×Nbackb×3 into in-
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variant features e ∈ RL×dquant , (2) a quantizer converts e into z of L discrete tokens where
zi ∈ {0, 1, . . . , |Z|} given a finite-size codebook Z; and (3) a structure decoder reconstructs 3D
coordinates from the discrete tokens.
We utilize a GVP-based (Jing et al., 2020) structure encoder from pre-trained GVP-Transformer (Hsu
et al., 2022) with its parameters frozen during training. The structure encoder transforms backbone
structures into geometric features, which are projected onto a latent embedding using an MLP layer.
The structure decoder follows the IPA-based modules from AlphaFold2 (Jumper et al., 2021), using 4
EvoFormer layers without MSA row attention, following ESMFold (Lin et al., 2022), to generate
atomic positions from the structure tokens. We train structure tokenizer using the same structure data
as our mulitmodal language model, containing both experimental and high-quality structures. The
training objective of structure tokenizer includes reconstruction loss, codebook commitment loss,
and entropy regularization loss to ensure effective codebook utilization. For the reconstruction loss,
we adopt the FAPE loss, violation loss, and distogram loss from AlphaFold2 (Jumper et al., 2021),
measuring the difference between predicted and native structures. To further enhance the training,
we introduce a sequence prediction head on top of the structure decoder’s final representation and
minimize the cross-entropy against the native sequence.
In terms of quantizer, our preliminary experiment showed that conventional VQ-VAE pretty much
struggles in training. To mitigate this, we instead adopts Lookup-Free Quantizer (LFQ) from the
currently best visual tokenizer (Yu et al., 2023) to protein structure tokenization. Specifically, the
latent space of LFQ is decomposed as the Cartesian product of single-dimensional binary variables,
as C = ×log2 |Z|

k=1 Ck, where Ck = {−1, 1}. Given the encoded feature e = encoder(x) ∈ RL×log2 |Z|,
each dimension (indexed by k) of the quantized representation quant(ei) is obtained from:

quant(ei[k]) = Ci = sign(ei[k]) = −1{zi[k] ≤ 0}+ 1{ei[k] > 0}.
As such, with LFQ, the token indices for z = {z1, z2, ..., zi, ..., zL} is given by:

zi = index(ei) =
∑log2 |S|

k=1 2k−11{ei[k] > 0}, ∀zi ∈ z.

The LFQ-based structure tokenizer is trained on the same structure dataset as mentioned before, using
a combination of reconstruction, commitment, and entropy regularization losses, similar to standard
VQ-VAE.
Evaluation. As shown in Fig. 2A, LFQ significantly outperforms VQ-VAE regarding reconstruction
accuracy while training of LFQ is much faster than VQ-VAE (2 vs. 15 days on 8 A100s). Increasing
codebook size leads to improved reconstruction while a codebook size of 8192 achieves the best
compression-reconstruction trade-off. Meanwhile in Fig. 2B, we observe a strong correlation between
structure tokens and secondary structures. For instance, a lot of structure tokens concentrated at
the alpha helix and beta sheet vertices, while some tokens lie between regions. This suggests that
structure tokens the fine-grained structural elements in backbone local environment.

4 EXPERIMENTS

In this section, we evaluate DPLM-2 on various generative and understanding scenarios, including
unconditional protein generation (structure, sequence, and structure-sequence co-generation, §4.1),
and a variety of conditional tasks, such as folding (§4.2), inverse folding (§4.3) and motif-scaffolding
(§4.4), and a series of protein predictive tasks (§4.5).

4.1 UNCONDITIONAL PROTEIN GENERATION

The goal of unconditional protein generation is to produce both the 3D structure and amino acid
sequence. Typically, this is done using a cascaded approach: either generating the structure first
and then use another model to predict the sequence, or vice versa. Here, we focus on generating
structure and sequence simultaneously. We evaluate DPLM-2 on both cascaded and simultaneous
generation across three tasks: unconditional structure generation, unconditional sequence generation,
and structure-sequence co-generation.
Following Multiflow (Campbell et al., 2024), we evaluate the generated proteins in terms of quality,
novelty and diversity. Designability is measured through self-consistency evaluation and foldabil-
ity (Yim et al., 2023; Watson et al., 2023; Wu et al., 2022a). Self-consistency evaluation is assessed
by folding the generated sequence with ESMFold (Lin et al., 2022), then using sc-TMscore
and sc-RMSD with the co-generated structure to evaluate similarity. Foldability is evaluated via
ESMFold, with pLDDT > 70 considered plausible. Novelty is assessed by comparing generated
structures to known ones in PDB using TMScore (pdb-TM), with lower values indicating greater
novelty. Diversity is measured by calculating pairwise TMscore (inner-TM), where lower scores
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Figure 3: Evaluation of unconditional structure-sequence co-generation.
Table 2: Benchmarking comparison of unconditional protein generation.

Designability Novelty Diversity
scTM (↑) scRMSD (↓) pLDDT (↑) avg. pdb-TM (↓) avg. inner-TM (↓) MaxCluster (↑)

Structure-sequence co-generation.
Native PDB protein 0.904 ± 0.129 4.623 ± 5.688 – – 0.262 ± 0.025 0.776
ESM3 (seq → struct) 0.624 ± 0.232 24.180 ± 24.109 – 0.660 ± 0.000 0.220 ± 0.046 0.540
MultiFlow w/ distillation (official ckpt) 0.930 ± 0.098 3.208 ± 4.741 79.447 0.704 ± 0.000 0.356 ± 0.032 0.500
*MultiFlow w/o distillation (official ckpt) 0.750 ± 0.163 9.306 ± 8.499 61.519 – 0.350 ± 0.038 0.490
*MultiFlow (retrained on our training data) 0.871 ± 0.934 6.580 ± 6.258 62.624 – 0.331 ± 0.052 0.440
DPLM-2 (struct → seq) 0.921 ± 0.098 4.969 ± 6.735 81.910 0.637 ± 0.195 0.308 ± 0.089 0.575
DPLM-2 (seq → struct) 0.907 ± 0.117 6.337 ± 9.403 82.246 0.653 ± 0.195 0.280 ± 0.038 0.651
DPLM-2 (co-generation) 0.925 ± 0.085 3.899 ± 3.723 82.686 0.640 ± 0.204 0.287 ± 0.030 0.545

Unconditional backbone generation. (sequence predicted by ProteinMPNN)
Native PDB struct. (seq. from PMPNN) 0.969 ± 0.000 0.864 ± 0.000 – – 0.262 ± 0.025 0.782
FrameDiff 0.818 ± 0.000 3.919 ± 0.000 – 0.668 ± 0.000 0.444 ± 0.064 0.252
FoldFlow 0.540 ± 0.000 7.965 ± 0.000 – 0.566 ± 0.000 0.286 ± 0.023 0.762
RFDiffusion 0.914 ± 0.000 1.969 ± 0.000 – 0.657 ± 0.000 0.352 ± 0.038 0.598
DPLM-2 0.945 ± 0.082 4.451 ± 5.261 – 0.637 ± 0.195 0.297 ± 0.049 0.575

Unconditional sequence generation. (structures predicted by ESMFold)
EvoDiff – – 35.846 0.432 ± 0.106 0.265 ± 0.025 0.990
DPLM – – 83.252 0.541 ± 0.187 0.242 ± 0.041 0.735
DPLM-2 – – 82.246 0.662 ± 0.199 0.280 ± 0.042 0.700

indicate more dissimilarity. The number of clusters identified by FoldSeek (van Kempen et al., 2023)
also quantifies diversity, normalized by the total number of structures.

4.1.1 DPLM-2 ENABLES HIGH-QUALITY, DIVERSE AND NOVEL PROTEIN SEQUENCE AND
STRUCTURE GENERATION

Tab. 2 and Fig. 3 present the results of DPLM-2 for unconditional protein generation. We highlight
our key findings in the following aspects:
(1) DPLM-2 can generate diverse and highly-plausible protein with simultaneous structure-
sequence co-generation. We sampled 100 proteins for each length in 100, 200, 300, 400, and
500. The co-generation can be performed in simultaneous generation (co-generation) and cascaded
workflow: first generating the structure then the sequence conditioned on generated structure (struct
→ seq), and the reverse way (seq → struct), without the need of other folding or inverse folding
models. Fig. 3A/B demonstrates that DPLM-2 can sample sequence and structures with high
designability across various lengths, with most sc-TM values exceeding 0.9, with diverse structure
clusters. Fig. 3D shows that the novelty of sampled proteins, measured by pdb-TM, generally
increases with longer protein lengths. In addition, DPLM-2 can generate with both modalities
simultaneously or a modality-by-modality. As shown in Tab. 2, the co-generation performance exhibit
highest scTM, suggesting that co-modeling indeed benefits protein generation.
(2) DPLM-2 can attains competitive performance with strong baselines on co-generation, as
well as backbone-only and sequence-only generation, respectively. As shown in Tab. 2, DPLM-2
achieves the strong sc-TM compared to strong baselines, approaching the quality of native structures
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Figure 4: Evaluation of secondary structure of generated proteins.

from PDB. Compared to MultiFlow (Campbell et al., 2024), DPLM-2 achieves comparable co-
generation quality. Notably, Multiflow’s performance degrades greatly without data distillation
from external inverse folding models, while we also provide the result of Multiflow retrained using
our training data for reference. We also notice that ESM3 (Hayes et al., 2024), which runs in a
sequence-then-structure order, fails short of unconditional generation. Moreover, DPLM-2 can also
only produce single modality if needed, where it matches the best competitive models in these settings
respectively. These results demonstrate DPLM-2’s effectiveness as a mulitmodal generative model.
(3) DPLM-2 generates longer proteins beyond training data. We sample proteins at lengths
of [600, 700, 800, 900, 1000]. As shown in Fig. 3F, notably, for proteins exceeding the maximum
training length of 512, the pLDDT scores of sequences sampled by DPLM-2 are close to those
of DPLM. This suggests that DPLM-2 largely retains its original sequence generation capability
without suffering from catastrophic forgetting, demonstrating its capability of length extrapolation.
(4) Case study. Fig. 3H shows some generated samples of DPLM-2 up to 700 residues, while in
Fig. 3I we showcase that we can manipulate DPLM-2 to design symmetric oligomers by forcing to
duplicate the predicted tokens with repetitive structure and sequence patterns.
(5) Abaltion study on the training strategy. We investigate the effects of warmup from the sequence-
based pre-trained DPLM and data augmentation with high-quality AlphaFold-predicted structures on
DPLM-2. The sequence pre-training significantly improve both designability and diversity, while
data augmentation can further enhance the designability, especially for long proteins. For more details
of ablation study, please refer to §A.1.

4.1.2 DPLM-2 GENERATES PROTEINS THAT RESEMBLES NATURAL PROTEINS

To further analyze the properties of different model, we examine their secondary structure distribution
against natural proteins from PDB.
Proteins sampled by DPLM-2 have secondary structures most similar to natural proteins. As
seen in Fig. 4A, structure-based models like RFDiffusion and MultiFlow generate proteins with
more helices and fewer sheets and loops than natural proteins in PDB. Protein language models like
ESM3 and DPLM-2 show no strong bias towards alpha helices, but ESM3 tends to generate more
loops. Among the methods, DPLM-2 produces the most natural-like secondary structure proportions,
closely matching PDB proteins. In Fig. 4C, proteins generated by MultiFlow contain many helices
and become more globular as length increases, exhibiting idealized secondary structures. In contrast,
proteins generated from DPLM-2 resembles natural ones have more balanced structures, with fewer
helices and more beta sheets and loops. On the other hands, simplex plots in Fig. 4C shows that
while MultiFlow’s proteins are clustered in helix-rich regions, DPLM-2’s proteins span a wider area
similar to natural proteins, while it rarely samples proteins composed mostly of sheets and loops,
which do occur in nature. Additionally, Fig. 4B shows that the loop ratio has a significant impact
on designability, where a higher proportion of loops will increase scRMSD, as loops are highly
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flexible. Thus, proteins with long loops, which DPLM-2 often generates, tend to have relatively high
scRMSD, aligning with the results in Tab. 2.
4.2 FOLDING (SEQUENCE-CONDITIONED STRUCTURE PREDICTION)
The goal of folding is to predict the 3D structure for the given amino acid sequence (Jumper
et al., 2021). As a mulitmodal generative model, DPLM-2 spontaneously enables protein structure
prediction task (see Fig. 1C-3) given sequence as conditioning. We assess DPLM-2 on CAMEO
2022 and a PDB data split used by Multiflow (Campbell et al., 2024). We utilize RMSD and
TMscore between predicted and ground truth structure for evaluation, while DPLM-2 adopts
argmax decoding for 100 sampling iterations.

Table 3: Structure prediction performance com-
parison between DPLM-2 and different baseline
approaches on CAMEO 2022 datasets. †: PVQD
results are quoted from Liu et al. (2023).

Models CAMEO 2022 PDB date split

RMSD TMscore RMSD TMscore

ESMFold 3.99/2.03 0.85/0.93 2.84/1.19 0.93/0.97
†PVQD 4.08/1.95 0.81/0.88 – –
MultiFlow 17.84/17.96 0.50/0.46 15.64/16.08 0.53/0.49
ESM3 6.33/2.98 0.85/0.92 4.94/2.28 0.87/0.93

DPLM-2 (150M) 9.22/7.64 0.75/0.81 8.35/5.60 0.76/0.82
w/ folding SFT 7.66/4.37 0.80/0.86 6.00/3.41 0.83/0.88

DPLM-2 (650M) 7.37/4.89 0.79/0.86 5.67/3.33 0.83/0.88
w/ folding SFT 6.21/3.78 0.84/0.89 3.40/1.78 0.89/0.94

DPLM-2 (3B) 6.34/3.65 0.83/0.89 4.54/2.54 0.86/0.92
w/ folding SFT 5.71/3.23 0.85/0.90 3.15/1.69 0.90/0.95

Tab. 3 indicates that DPLM-2 can perform
sufficiently good folding in a zero-shot man-
ner. Performance can be improved after further
supervised fine-tuning (SFT) using folding ob-
jective (maxθ log pθ(z|s)). Overall, DPLM-2
can outperform or on par with the strong base-
lines, while achieving close performance with
ESMFold. Plus, we observe that DPLM-2 with
larger model scales can attain better results than
smaller ones. We suggest that DPLM-2 bene-
fits from the evolutionary information inherited
from DPLM pre-trained on the vast number of
protein sequences, which can be transferred and
leveraged into structure modeling.
4.3 INVERSE FOLDING
(STRUCTURE-CONDITIONED SEQUENCE GENERATION)
The goal of inverse folding is to find an amino acid sequence that can fold to a given backbone
structure. For evaluation, we employ amino acid recovery (AAR) for sequence evaluation, and we
also assess the structure by self-consistency TM-score (scTM) between the native structure and the
ESMFold-predicted structure of the generated sequence.

Table 4: Comparison on inverse folding task.

Models CAMEO 2022 PDB date split

AAR scTM AAR scTM

MultiFlow 32.28/33.58 0.87/0.94 37.74/37.59 0.94/0.96
ESM3 47.06/46.24 0.90/0.95 49.50/49.42 0.94/0.97

DPLM-2 (150M) 45.22/46.12 0.87/0.93 48.83/47.96 0.89/0.95
DPLM-2 (650M) 49.01/50.10 0.88/0.93 54.80/53/07 0.91/0.96
DPLM-2 (3B) 52.36/53.72 0.89/0.95 61.67/57.91 0.92/0.96

DPLM-2 can generate reasonable sequences
that fold into the given structures. Tab. 4
presents that DPLM-2 can outperform or be on
par with other co-generation models (MultiFlow,
ESM3). As the model size increases, the perfor-
mance in terms of sequence recovery (AAR) and
structural consistency (scTM) improves, reveal-
ing the same scaling law observed in the folding
task. We suggest that multimodal training effectively aligns the structure and sequence into the same
space, such that DPLM-2 can yield the corresponding sequence without additional training.
4.4 SCAFFOLDING WITH MIXED-MODAL MOTIF CONDITIONING

*RFDiff ESM3*DPLM2DPLMEvoDiff

seqpred: ✓ structpred: !
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

pLDDT(ESMFold(seqpred))>70

seqpred: ! structpred: ✓
motif-preserving

designability
RMSD(ESMFold(PMPNN(structpred))[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(PMPNN(structpred)), structpred)>0.8

seqpred: ✓ structpred: ✓
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(seqpred), structpred)>0.8

DPLM2ESM3 DPLM2 *DPLM2
sequence-based structure-based co-generation

* means best of 8 samples

Figure 5: Evaluation of motif-
scaffolding w.r.t. success rate and
num. of solved problems.

The objective of motif-scaffolding is to generate a suitable scaf-
fold to preserve the structure of the given motif and maintain its
original function. We follow the experimental setting of Yim
et al. (2024), with 24 motif-scaffolding problems and we sam-
ple 100 scaffolds for each motif, where we (1) first determine
the length of scaffold, and then (2) keep the motif segment
unchanged and sample the scaffold part conditioned on the
motif. The scaffold length is sampled from a range provided
by Yim et al. (2024), and when there are multiple motifs, the
order of motif segments is consistent with Yim et al. (2024).
We provide the 3D structure and sequence of motif as input of
DPLM-2. As a multimodal model, we evaluate DPLM-2 using
sequence-based, structure-based, and co-generation approaches.
A scaffold is considered successful if it satisfies both criteria
(1) overall designablity, which is successful when pLDDT> 70
(for sequence-based models) or scTM > 0.8, and (2) motif-preseving, which is deemed successful
when the predicted motif structure matches the native one with motif-RMSD <1Å.
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Fig. 5 reveals that DPLM-2 is capable of generate reasonable scaffolds for the given functional
motifs. In sequence-based, structure-based and co-generation evaluation, DPLM-2 can outperform
or be on par with the corresponding approaches in most cases, solving more motif problem and
achieving higher average success rate. We compared to sequence-based method, DPLM-2 shows
better performance since it allows structural input of motif, which is important for preserving motif’s
structure hence the functions. Remarkably, DPLM-2 attains comparable performance with RFDiffu-
sion when only generating scaffold structure, while achieve better performance when simultaneously
designing scaffold sequence and structure, outperforming ESM3. Despite not experimentally verified,
these results suggest that with DPLM-2, mulitmodal conditioning and generation could lead to more
successful conditional protein design.
4.5 EVALUATION OF PROTEIN REPRESENTATION LEARNING

Directly access to structure information is supposed to benefit downstream protein predictive tasks.
To inspect this, we evaluate DPLM-2 on a variety of protein predictive tasks utilizing the dataset
provided by SaProt (Su et al., 2023), where we provide tokenized protein structure tokens along with
the protein sequences to DPLM-2.

Table 5: Performance on various protein predictive downstream tasks. †: benchmarked results are
quoted from Su et al. (2023).

Models Thermostability HumanPPI Metal Ion Binding EC GO DeepLoc

MF BP CC Subcellular Binary

Spearman’s ρ Acc (%) Acc (%) Fmax Fmax Fmax Fmax Acc (%) Acc (%)
†SaProt (650M) 0.724 86.41 75.75 0.884 0.678 0.356 0.414 85.57 93.55
†MIF-ST (Yang et al., 2022b) 0.694 75.54 75.08 0.803 0.627 0.239 0.248 78.96 91.76
†GearNet (Zhang et al., 2023) 0.571 73.86 71.26 0.871 0.650 0.354 0.404 69.45 89.18

ESM2 (650M) 0.691 84.78 71.88 0.866 0.676 0.344 0.402 83.68 92.28
DPLM (650M) 0.695 86.41 75.15 0.875 0.680 0.357 0.409 84.56 93.09

DPLM-2 (650M) 0.714 84.44 74.28 0.878 0.680 0.359 0.411 82.98 93.64

Table 6: Performance
without large-scale se-
quence pre-training.

Models
DeepLoc

Subcellular

Acc (%)

DPLM (650M) 63.49

DPLM-2 (650M) 66.77

DPLM-2 can perform multimodal representation learning by lever-
aging both structure and sequence information. Tab. 5 presents that
DPLM-2 shows further improvement compared to sequence-only meth-
ods (ESM2, DPLM) on some tasks, indicating that DPLM-2 can leverage
protein structures to generate better representations containing multi-
modal information for downstream tasks. However, we find that DPLM-
2 falls behind the state-of-the-art structure-aware protein LM, i.e., SaProt,
in most tasks and even lags behind DPLM in certain tasks. We hypoth-
esize this is because the strutcure training data of DPLM-2, consisting of
PDB and SwissProt, is smaller and differs from UniRef50, which DPLM is pretrained on, potentially
causing catastrophic forgetting and suboptimal representation. To test this, we conducted an exper-
iment on the DeepLoc subcellular task, where DPLM-2 underperforms compared to DPLM. As
shown in Tab. 6, without large-scale sequence pretraining, DPLM-2 outperforms DPLM significantly,
suggesting that: (1) Incorporating structure information enhances performance over sequence-only
models. (2) Smaller datasets can lead to catastrophic forgetting, diminishing the benefits of large-scale
pretraining. As result, to further improve the predictive performance, one deserving direction is to
exploit larger-scale predicted structures in our future work.

5 DISCUSSION

In this paper, we introduce DPLM-2, a diffusion protein language model that understands, gen-
erates and reasons over structure and sequence, aiming to severe as a mulimodal foundation for
protein. Despite promising performance spanning protein co-generation, folding, inverse folding
and conditional motif-scaffolding with mulimodal input and output, there remains several limitations
deserving to be addressed. (1) Structure data: Our findings indicate that while structure awareness
may help with predictive tasks, the limited structure data constrains DPLM-2’s ability to learn robust
representations. It is also important to account for longer protein chains and multimers in future
studies. (2) Trade-off of discrete latent representation: Tokenizing structure into discrete symbols
facilitates multimodal protein language models and co-generation but comes at the cost of losing
fine-grained structural details and control, such as precise atomic positions and inter-atomic distances.
Future work should aim to integrate the strengths of data-space structure-based generative models
with sequence-based language models to maximize the best of both worlds.
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Kevin K Yang, Niccolò Zanichelli, and Hugh Yeh. Masked inverse folding with sequence transfer for
protein representation learning. bioRxiv, pp. 2022–05, 2022b.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jason Yim, Andrew Campbell, Emile Mathieu, Andrew YK Foong, Michael Gastegger, José Jiménez-
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A DPLM-2 TRAINING

A.1 ABLATION STUDY

In DPLM-2 training, we start with a warmup from the sequence-based pre-trained DPLM to exploit
established evolutionary information and augment the data with high-quality AlphaFold-predicted
structures from SwissProt (around 200K) and clustered PDB structures. This section evaluates the
effects of sequence pre-training and data augmentation on unconditional protein generation.

Table 7: Ablation study on the sequence pre-training and training data augmentation.
sequence

pre-training
synthetic
structures

length 100 length 200 length 300 length 400 length 500

scTM clusters scTM clusters scTM clusters scTM clusters scTM clusters

✗ ✗ 0.9241 20 0.8674 34 0.7667 33 0.5016 25 0.4511 25
✓ ✗ 0.9610 26 0.9349 47 0.9169 38 0.8643 35 0.7673 52
✗ ✓ 0.8988 27 0.9182 15 0.9343 13 0.8518 21 0.8288 31
✓ ✓ 0.9348 35 0.9428 40 0.9232 48 0.9260 40 0.9012 32

We investigate the effect of sequence pre-training by randomly initializing DPLM-2 instead of
using DPLM parameters, while for effect of synthetis structures we leverage PDB structures only
for training. We conduct experiments on 150M DPLM-2, for each DPLM-2 variant we sample
100 examples for each length in 100, 200, 300, 400 and 500. We compute scTM and the number
of difference clusters in each length. Tab. 7 demonstrates that sequence pre-training and data
augmentation can significantly improve the designability and diversity, especially in generating long
proteins (length > 300). We hypothesize that the limited number of long proteins in PDB leads to
insufficient training. In contrast, sequence pretraining, which includes evolutionary data, is essential
and can be transferred to improve protein structure modeling and generation quality. Additionally,
this evolutionary information boosts sampling diversity. While increasing the amount of training data
improves designability, it is less effective in enhancing diversity compared to sequence pretraining.
By combining both strategies, we achieve the best overall performance, which forms the core of our
training strategy.
A.2 SELF-MIXUP TRAINING STRATEGY

We find that discrete diffusion training will face the exposure bias problem (Ranzato et al., 2016;
Bengio et al., 2015), which means mismatch between training and inference. The model is trained
to denoise given the ground-truth context during training. However, during inference, the model
needs to denoise based on the predicted tokens, which may not be correct and inconsistent with the
always-accurate context during training. This may lead to error accumulation and negatively impact
the generation performance.
To address this issue, we propose a self-mixup training paradigm for discrete diffusion model,
enhancing the consistency between training and inference. During training, we perform an additional
forward pass, allowing the model to first make predictions and then denoise based on those predictions.
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Tab. 8 shows that the self-mixup training strategy effectively enhances the diversity of samples. We
attribute this to the model producing more accurate logits during inference, leading to more diverse
reasonable sampling paths instead of converging on the sampling paths with the highest probability,
which results in more diverse proteins.

Table 8: Ablation study on the self-mixup training strategy.
Mixup
strategy

length 100 length 200 length 300 length 400 length 500

scTM clusters scTM clusters scTM clusters scTM clusters scTM clusters

✗ 0.9237 44 0.9180 53 0.9147 48 0.9059 42 0.8896 33
✓ 0.8812 62 0.8820 62 0.9172 59 0.9099 54 0.8845 38

A.3 IMPLEMENTATION DETAILS

DPLM-2 takes the discrete structure token sequence and amino acid token sequence as input. As
demonstrated in Fig. 1, we concatenate the two sequences into one sequence of double length.
DPLM-2 employs an efficient warm-up strategy by initializing with pre-trained sequence-based
DPLM (§3.2) to leverage the evolutionary information learned by DPLM for protein structure
modeling. Considering that the vocabulary of DPLM only consists of amino acids, we expand the
vocabulary of DPLM-2 with discrete structure tokens. We initialize the embeddings of structure
tokens with the mean and standard variation of the learned amino acid embeddings. We hypothesis
this will keep the initial embedding distribution remains consistent with the pre-trained DPLM,
resulting in more stable training in early stage and preventing excessive gradients that could lead to
training crashes.

A.4 DISTINCT NOISE SCHEDULER OF TRAINING

We introduce a distinct scheduler to control the noise level of structure and sequence flexibly
during training (§3.1). Different combinations of structures and sequence schedulers (denoted as
tz and ts, respectively) imply training for different applications. Specifically, we mainly focus on
(1) sequence-conditioned structure generation (e.g., folding), (2) structure-conditioned sequence
generation (e.g., inverse-folding), (3) sequence generation, (4) structure generation, (5) structure-
sequence co-generation, as shown in Tab. 1. For conditional generation tasks (e.g., folding and
inverse-folding), we set the noise scheduler of the conditioned modality to 0, e.g., no noise in the
conditioned modality. Specifically, in the folding task, the ts is always set to 0, while in the inverse-
folding tasks the tz is always set to 0. In the structure-sequence co-generation task, we keep the tz
and ts for the same, enhancing the structure-sequence consistency in co-generation. The structure
or sequence generation tasks do not depend on another modality, so we set the noise scheduler of
another modality to T , e.g., 100% noise in another modality. For example, in structure generation
task, the ts is always set to T .
During training, we train the above 5 tasks simultaneously. We divide the training data in a batch
into 5 parts according to a preset proportion, and each part is used for a specific task training. In our
experiment, the proportion for each task is the same, which is 20%. After training, we can further
enhance a specific generation task by supervised finetuning (SFT). This involves continuing training
for the specific task with a proportion of 100%, while the proportion for other tasks is set to 0%. For
example, in Tab. 3, the folding supervised finetuning is performed by continue training based on a
pre-trained DPLM-2 with 100% proportion of training data.
A.5 DATASET

The training set of DPLM-2 is composed by experimental data, i.e., PDB (Berman et al., 2000),
and high quality synthetic data, i.e., SwissProt (Varadi et al., 2022). We filter the SwissProt data by
pLDDT > 85. After filtering, the overall training set contains approximately 200,000 proteins. We
limit the maximum length of the training set to 512. For proteins longer than 512, we randomly crop
it to 512. We crop the low pLDDT (pLDDT < 50) segments located at the both ends of proteins in
the SwissProt dataset. These segments are typically non-structural and may negatively impact the
training results. Moreover, we find that the length distribution of the training set is not balanced,
where the number of proteins with length less than 100 is relatively small, leading to a suboptimal
diversity among the short proteins. Therefore, during training, we randomly crop long proteins to
short proteins with a probability of 50% for each batch to improve the diversity.
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Figure 6: Sequence-based, structure-based and co-generation evaluation pipeline of motif-
scaffolding.

*RFDiff ESM3*DPLM2DPLMEvoDiff

seqpred: ✓ structpred: !
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

pLDDT(ESMFold(seqpred))>70

seqpred: ! structpred: ✓
motif-preserving

designability
RMSD(ESMFold(PMPNN(structpred))[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(PMPNN(structpred)), structpred)>0.8

seqpred: ✓ structpred: ✓
motif-preserving

designability
RMSD(ESMFold(seqpred)[motif],structnative[motif])<1.0

prediction

TMScore(ESMFold(seqpred), structpred)>0.8

DPLM2ESM3 DPLM2 *DPLM2
sequence-based structure-based co-generation

* means best of 8 samples

sequence-based

structure-based

co-generation

A.6 HYPERPARAMETER

We train all models using AdamW optimizer (Kingma & Ba, 2015) with β1 = 0.9 and β2 = 0.95. We
use a weight decay of 0.01 and gradient clipping of 0.5. We employ 2K warmup steps until reaching
the maximum learning rate, and utilize a linear decay scheduler to decay LR to 10% of the maximum
learning rate by the end of training. The maximum learning rate is 1e-4, and the overall training step
is 100,000. We utilize the pretrained DPLM as the parameter initialization, and the diffusion timestep
is set to 500. We train 150M DPLM-2 with 8 A100 GPUs for 3 days, while 650M with 16 A100
GPUs for 3 days and 3B with 16 A100 GPUs for a week.

B MOTIF SCAFFOLDING

B.1 EVALUATION PIPELINE

We evaluate DPLM-2 in sequence-based, structure-based and co-generation ways. The overall
illustration is shown in Fig. 6.
We focus on the two aspects: overall quality and motif part consistency. The assessment of overall
quality varies across different approaches. Specifically, (1) For sequence-based method, we only
take the generated sequence and utilize ESMFold to obtain the predicted structure, and the pLDDT
score provided by ESMFold is used to assess overall quality. (2) For structure-based method, we only
take the generated structure, and then leverage ProteinMPNN to predict the sequence, followed by
ESMFold to predict the structure, where overall quality is assessed by scTM. (3) For co-generation
method, we take both the generated structure and sequence, and predict structure given generated
sequence with ESMFold, where scTM is calculated between generated structure and ESMFold
predicted structure to evaluate overall quality. Considering that the ground truth motif structure is
given, we only utilize the ESMFold predicted structure to calculate motif-RMSD.
B.2 RESULT OF EACH PROBLEM

Tab. 9 presents the result of each motif-scaffolding problem. DPLM-2 achieves the best average
success rate in each evaluation. Compared with ESM3, DPLM-2 shows better results in 12 problems
in co-generation evaluation and 10 problems in sequence-based evaluation. Meanwhile, DPLM-2
outperforms RFDiffusion in 14 problems in structure-based evaluation. This demonstrates that
DPLM-2 can achieve strong performance under various evaluation methods.
We also find that taking the best result from 8 samples can bring significant improvement compared to
1 sample, especially in terms of success rate. In the co-generation evaluation, DPLM2 with sampling
8 times improves the success rate of most of the problems by a large margin. We hypothesize that
sampling eight times largely alleviates errors caused by randomness in the sampling process, thereby
producing a more suitable scaffold for the given motif.

C RELATED WORK

C.1 PROTEIN LANGUAGE MODELS

There is growing interest in developing protein LMs at the scale of evolution, such as the series
of ESM (Rives et al., 2019; Lin et al., 2022), TAPE (Rao et al., 2019), ProtTrans (Elnaggar et al.,
2021), PRoBERTa (Nambiar et al., 2020), PMLM (He et al., 2021), ProteinLM (Xiao et al., 2021),
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Table 9: Motif-scaffolding results of each problem. * means best result from 8 samples.
sequence-based structure-based co-generation

EvoDiff DPLM ESM3 DPLM2 *RFDiffusion *DPLM2 ESM3 DPLM2 *DPLM2

1BCF 0.00 0.00 0.89 0.01 1.00 0.07 0.23 0.01 0.05
1PRW 0.61 0.83 0.96 0.86 0.08 0.96 0.54 0.84 0.95
1QJG 0.00 0.00 0.02 0.03 0.00 0.00 0.03 0.02 0.05
1YCR 0.02 0.38 0.41 0.77 0.74 0.93 0.18 0.53 0.98
2KL8 0.04 0.08 0.11 0.47 0.88 0.94 0.11 0.57 1.00
3IXT 0.06 0.17 0.18 0.67 0.25 0.77 0.02 0.41 0.73
4JHW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4ZYP 0.00 0.00 0.03 0.16 0.40 0.51 0.08 0.10 0.64
5IUS 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
5TPN 0.00 0.00 0.03 0.00 0.61 0.06 0.01 0.00 0.00

5TRV long 0.00 0.00 0.19 0.00 0.37 0.08 0.19 0.00 0.07
5TRV med 0.00 0.00 0.16 0.03 0.24 0.07 0.16 0.02 0.19
5TRV short 0.00 0.00 0.01 0.07 0.04 0.10 0.01 0.03 0.11

5WN9 0.00 0.00 0.02 0.00 0.00 0.20 0.00 0.00 0.00
5YUI 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

6E6R long 0.01 0.65 0.07 0.91 0.86 0.92 0.04 0.78 1.00
6E6R med 0.03 0.94 0.24 0.93 0.89 0.88 0.14 0.77 0.97
6E6R short 0.07 0.87 0.09 0.86 0.39 0.78 0.06 0.64 0.99
6EXZ long 0.00 0.01 0.32 0.61 0.76 0.63 0.13 0.44 0.95
6EXZ med 0.00 0.00 0.31 0.66 0.49 0.63 0.31 0.55 0.96
6EXZ short 0.00 0.00 0.31 0.66 0.39 0.41 0.28 0.58 0.87
7MRX long 0.00 0.02 0.36 0.23 0.09 0.32 0.37 0.20 0.73
7MRX med 0.00 0.31 0.65 0.28 0.11 0.31 0.59 0.22 0.70
7MRX short 0.00 0.34 0.68 0.26 0.02 0.41 0.74 0.24 0.88

pass rate 7/24 11/24 21/24 18/24 20/24 20/24 20/24 18/24 19/24
avg. success rate 0.04 0.19 0.25 0.35 0.40 0.42 0.18 0.29 0.53

PLUS (Min et al., 2021), Adversarial Masked LMs (McDermott et al., 2021), ProteinBERT (Brandes
et al., 2022), CARP (Yang et al., 2022a) in masked language modeling (MLM) paradigm, Prot-
GPT2 (Ferruz et al., 2022) in causal language modeling paradigm, and several others (Melnyk et al.,
2022a; Madani et al., 2021; Unsal et al., 2022; Nourani et al., 2021; Lu et al., 2020; Sturmfels et al.,
2020; Strodthoff et al., 2020). These protein language models exhibit remarkable generalization
ability on various downstream tasks and be able to capture evolutionary information about secondary
and tertiary structures from sequences alone. Meanwhile, recent study shows these models’ po-
tency in revealing protein structures (Lin et al., 2022), predicting the effect of sequence variation
on function (Meier et al., 2021), antibody infilling (Melnyk et al., 2022a) and many other general
purposes (Rives et al., 2019). Simultaneously, Verkuil et al. (2022) demonstrate that the large scale
protein LMs can generate de novo proteins by generalizing beyond natural proteins, both theoretically
and experimentally validating their hypothesis in exhaustive detail, in which pLMs demonstrate
competency in designing protein structure despite being exclusively trained on sequences.
C.2 PROTEIN STRUCTURE GENERATIVE MODELS

Diffusion models have become popular tools in structural biology for protein generation, and their
utility has been demonstrated across a range of generative tasks in recent years. Trippe et al.
(2022), along with others, have introduced several diffusion model variants, each with its unique
approach. For instance, while some models focus on generating the protein backbone by diffusing
over protein coordinates, others, such as those proposed by Wu et al. (2022b), target inter-residue
angles. Lin & AlQuraishi (2023) and Yim et al. (2023) have developed models that handle both
the position and orientation of residue frames. RFDiffusion (Watson et al., 2023) is a model that
assists in designing protein structures for specific functions, such as enzymes. It is versatile in protein
design and has been used to create therapeutic proteins, with some designs being confirmed in the
laboratory. ProteinSGM (Lee et al., 2022) is a model that uses 2D matrices, which represent the
distances and angles between protein parts, to create 3D protein structures for novel protein designs.
FoldingDiff (Wu et al., 2022a) is a model that generates protein sequences expected to fold into a
specific structure. These sequences are verified with prediction tools, although they have not been
experimentally confirmed yet. Chroma (Ingraham et al., 2023) is a model designed for creating
large proteins and protein complexes, considering various constraints like distances and symmetry. It
transforms a collapsed polymer into protein backbone and sequence more quickly than older methods,
thereby allowing for the efficient generation of large structures. Multiflow (Campbell et al., 2024)
develop mulitmodal flow matching for protein structure-sequence co-generation (Jin et al., 2021; Shi
et al., 2022).
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