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Abstract
Decoding human visual representations from brain activity data is
a challenging but arguably essential task with an understanding of
the real world and the human visual system. However, decoding
semantically similar visual representations from brain recordings
is difficult, especially for electroencephalography (EEG), which has
excellent temporal resolution but suffers from spatial precision.
Prevailing methods mainly focus on matching brain activity data
with corresponding stimuli-responses using contrastive learning.
They rely on massive and high-quality paired data and omit se-
mantically aligned modalities distributed in distinct regions of the
latent space. This paper proposes a novel Multimodal Bidirectional
Cycle Consistency (MB2C) framework for learning robust visual
neural representations. Specifically, we utilize dual-GAN to gener-
ate modality-related features and inversely translate back to the
corresponding semantic latent space to close the modality gap and
guarantee that embeddings from different modalities with similar
semantics are in the same region of representation space. We per-
form zero-shot tasks on the ThingsEEG dataset. Additionally, we
conduct EEG classification and image reconstruction on both the
ThingsEEG and EEGCVPR40 datasets, achieving state-of-the-art
performance compared to other baselines.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); HCI theory, concepts and models;
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1 Introduction
Understanding the complex mechanism of how the human brain
perceives the world is fundamental to cognitive science and the de-
velopment of deep learning. We argue that the behavior of humans
recognizing objects and learning concepts are fundamentally linked
to brain activity. This connection is inherently multimodal [1], in-
deed, there exists lots of evidence from neuroscience suggesting
that cognitive representations are cross-modal. For instance, the
same evoke appears in the same brain neurons when humans watch
a picture and hear someone’s name or voice [2]. The correlation
between brain activity signals (such as electroencephalography
(EEG) signals) and external stimuli (such as visual and aural stim-
uli) elucidates how the brain perceives, processes, organizes, and
understands the information from the external environment.

Decoding brain activity signals aims to deepen our understand-
ing of the brain and create user-friendly brain-computer interfaces
(BCIs). EEG has garnered significant attention from researchers due
to its non-invasive nature, high temporal resolution, and portability.
Notably, learning robust visual neural representations from EEG
signals has been a focal point of research [3, 4]. Recently, to explore
the relationships between different modalities for decoding brain
activity, Du et al. [5] constructed three trimodal datasets and pio-
neered to present a generic neural decoding method named BraVL,
which employs intra- and inter-modality mutual information regu-
larization principles to achieve multimodal learning of brain-visual-
linguistic features. Subsequently, Song et al. [6] proposed NICE, a
self-supervised framework for learning visual representations from
EEG signals, particularly for object recognition. Specifically, they
aligned these two modalities by leveraging contrastive learning
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to compute their similarity. Singh et al. [7] utilized a two-stage
method that extracts robust EEG features and subsequently used
learned representations for image generation and classification.

However, these approaches above neglect the heterogeneity of
modalities, as embeddings of different modalities are distributed
in completely independent subspaces, increasing the difficulty of
modal alignment [8]. To address this issue, we require a robust
mechanism to close the modality gap and enable embeddings from
different modalities with similar semantics to distribute in the same
region of the representation space. Inspired by this motivation,
we introduce Multimodal Bidirectional Cycle Consistency (MB2C),
which enforces the generated features to approximate the distri-
bution of realistic samples by learning and utilizing a cycle con-
sistency loss between synthetic EEG/image representations and
ground truth data, narrowing the gap between modalities. Fur-
thermore, we combine MB2C with contrastive learning to jointly
constrain the model’s training, achieving cross-modal alignment
between EEG and images.

Beyond the challenges mentioned, due to privacy concerns and
the expensive nature of collection equipment, obtaining large datasets
of recorded brain activity signals poses challenges, resulting in a
scarcity of paired (stimulus-response) training data. When there
is a lack of sufficient paired data, models often suffer from poor
generalization, especially in zero-shot tasks [9]. To address this,
we introduce mixup-based data augmentation methods [10, 11] on
zero-shot learning (ZSL) to compensate for the scarcity of paired
brain-visual training data.

Contributions. In summary, our main contributions are listed
as follows:
• We propose a novel multimodal framework for learning robust
visual neural representations from EEG-based brain activity.

• The Multimodal Bidirectional Cycle Consistency (MB2C) pro-
posed is also utilized to narrow the gap between modalities and
ensure that embeddings from different modalities can be dis-
tributed in the same region of the representation space.

• We combine MB2C with contrastive learning to jointly constrain
the model’s training, effectively achieving cross-modal alignment
between EEG and images.

• We perform zero-shot recognition on the ThingsEEG dataset
and EEG classification and image reconstruction tasks on the
EEGCVPR40 dataset, achieving state-of-the-art performance com-
pared to other baselines.

2 Related Works
2.1 Multimodal Learning
Our research focuses on multimodal learning. Human perception
is inherently multimodal, constituting a complex process involving
close collaboration between the brain and multiple sensory systems.
Some studies try to decode brain activity and translate it into under-
standable outputs such as natural language or speech. Dewave et al.
[12] translated brain dynamics into natural language using a quan-
tized variational encoder to derive codex encoding and aligned it
with pre-trained language models. Guo et al. [13] introduced Dual-
Dual GAN that translates neural activity to speech. Other studies
focused on sensory stimuli comprising visual stimuli (such as im-
age and video). Kupershmidt et al. [14] proposed a self-supervised

method by utilizing cycle consistency over Encoding-Decoding
natural videos to achieve natural-movie reconstruction from brain
activity. Xia et al. [15] and Takagi et al. [16], both based on diffu-
sion model to reconstruct images via functional magnetic resonance
imaging (fMRI).

2.2 Zero-shot Learning (ZSL)
Zero-shot Learning is a task that recognizes unseen classes using a
model trained on seen classes. The critical point is to learn how to
extract useful features from different modalities and map them to a
representation space that reflects class semantics. A taxonomy of
ZSL methods can be categorized into two types: embedding-based
methods and generative methods [17]. Jiang et al. [18] proposed
a method Transferable Contrastive Network (TCN) that contrasts
images from different classes to exploit the consistency of their
class similarities. Liu et al. [19] introduced a novel goal-oriented
gaze estimation module to predict actual human gaze location that
gets discriminative visual areas for recognizing novel classes. In the
context of ZSL using generative methods, Gao et al. [20] proposed f-
VAEGAN, which combined VAE and GAN for discriminative feature
synthesis, and Narayan et al. [21] designed a feedback module in
a VAE-GAN architecture. The modalities (such as text and image)
used in previous methods are more easily collected than brain
activity data. In our work, both brain activity and corresponding
visual stimuli are provided for training, while during the testing
phase, only brain activity data of novel classes are available to
perform the unseen class neural decoding task.

2.3 Generating Images from Brain Activity Data
Generative Adversarial Network (GAN) [22] was proposed to train
a generative model from atributive data distribution. The conven-
tional methods used to generate unimodal data (such as text, image,
audio, EEG), EEG-GAN [23], a modification of Wasserstein GANs,
was introduced to generate naturalistic EEG data. Recently, Singh
et al. [24] proposed a contrastive learning-based method to extract
features for conditional GAN (cGAN) to generate images from brain
activity signals on EEGCVPR40 dataset that was used in the initial
work [25]. Following this, Singh et al. [7] continued introducing
a two-stage framework, EEGStyleGAN-ADA, using the CLIP [26]
for joint representation learning and transforming the unseen im-
ages into EEG feature space with a pre-trained image encoder to
reconstruct the images. Unlike GAN-based models, Bai et al. [27] in-
troduced the Diffusion model DreamDiffusion based on the concept
of Mind-vis [28], achieving excellent performance. Additionally,
Benchetrit et al. [29] proposed a MEG-based model called MEG-
BD to ensure the temporal and spatial resolution of the generated
images.

3 Methodology
3.1 Overview
The dataset is defined as 𝐷 = {(𝑥𝑒 , 𝑥𝑣, 𝑦) |𝑥𝑒 ∈ 𝑋𝑒 , 𝑥𝑣 ∈ 𝑋𝑣, 𝑦 ∈ 𝑌 },
where 𝑋𝑒 denotes the EEG data, 𝑋𝑣 represents the corresponding
image data and 𝑌 denotes the set of class labels. We input stimulus-
response pairs, which consist of images and EEG signals, into the
model. The brain and image encoder extract features from their
respective modalities, resulting in features 𝑓𝑒 (𝑥𝑒 ) and 𝑓𝑣 (𝑥𝑣).
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Figure 1: The overview of our proposed framework MB2C. MB2C mainly contains two parts: Multimodal Learning of Brain-
Visual Features and Bidirectional Cycle Consistency Loss. Given paired EEG and image inputs are processed using mixup-based
augmentation, then fed into the brain and image encoders to acquire EEG and visual embeddings respectively. Both embeddings
are input into a Bidirectional Classified WGAN to generate inverted features. This process utilizes cycle consistency loss for
mapping back to the original embeddings, assisted by InfoNCE loss.

In ZSL [30], the dataset 𝐷 is partitioned into distinct seen and
unseen subsets, serving as the training set 𝐷𝑠 and testing set 𝐷𝑢 ,
respectively. Similarly, the label set𝑌 is divided into mutually exclu-
sive seen 𝑌 𝑠 and unseen 𝑌𝑢 subsets. It is crucial to emphasize that
the unseen class labels 𝑌𝑢 are unavailable in the training phase;
they are used exclusively during testing. ZSL aims to predict im-
ages corresponding to previously unseen EEG data by leveraging
information from EEG introduced during the testing phase.

As illustrated in Figure 1, we present multimodal bidirectional
cycle consistency (MB2C). Firstly, we introduce mixup-based data
augmentation methods and multimodal learning of Brain-Visual
features. Subsequently, we introduce bidirectional cycle consistency
loss based on bidirectional classified WGAN (BCWGAN).

3.2 Mixup-based Data Augmentation
In ZSL, due to the training set only containing EEG-image pairs
for seen classes, using a mapping learned from seen data without
accommodating the unseen data can lead to a model bias towards
these seen classes. To address this issue, we employ a mixup-based
data augmentation method [10], which generates diverse samples
by performing convex combinations of two instances and their
respective labels, preventing deep models from overfitting. Since
image features are already preserved using a pre-trained image
encoder, and recent studies suggest the superior performance of

mixing features over original images [11], we opt for a feature-
level mixup approach, where we randomly combine different class
image features from the current batch to synthesize new image data.
Additionally, for EEG data with a low signal-to-noise ratio, we apply
data-level mixup to blend EEG raw data of different classes. Given
randomly two different class EEG-image sample pairs (𝑥𝑖𝑒 , 𝑥𝑖𝑣, 𝑦𝑖 )
and (𝑥 𝑗𝑒 , 𝑥

𝑗
𝑣 , 𝑦

𝑗 ) from our training data, the augmentation process
using the following formulation:

𝑥𝑘𝑒 = 𝛾 𝑥𝑖𝑒 + (1 − 𝛾)𝑥 𝑗𝑒 , (1)

𝑥𝑘𝑣 = 𝛾 𝑓𝑣 (𝑥𝑖𝑣) + (1 − 𝛾) 𝑓𝑣 (𝑥 𝑗𝑣 ), (2)

𝑦𝑘 = 𝛾 𝑦𝑖 + (1 − 𝛾)𝑦 𝑗 , (3)

The mixing ratio 𝛾 ∈ [0, 1] is randomly sampled from a Beta
distribution. Values of 𝛾 close to 0 or 1 result in generated samples
more similar to one of the input data, while values close to 0.5
lead to a more balanced mixture of the data. The generated image
features and EEG data are fed into the visual projector and brain
encoder, respectively, participating in the ensuing training process.

3.3 Multimodal Learning of Brain-Visual
Features

Generating high-quality and discriminative images from EEG fea-
tures is challenging due to the high noise in EEG embedding com-
pared to the attribute vector (semantic embedding) for class and
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the inherent problems of mode collapse and convergence failure in
GANs. Inspired by [31], we employ a cross-modal contrastive learn-
ing approach to align images and EEG, maximizing the similarity
between EEG signals and corresponding visual stimuli. Specifically,
we input image and EEG signals stimuli-response pairs into the
model, employing an image encoder and a brain encoder to learn
image and EEG embeddings, respectively. Subsequently, we utilize
the InfoNCE loss [32] as the objective function to maximize the
cosine similarity between matching pairs while minimizing the
cosine similarity between non-matching pairs. This cross-modal
alignment approach at the instance level, rather than the pixel level,
ensures distinguishable model outputs, enabling accurate retrieval
of visual stimuli corresponding to EEG encodings. In a batch con-
taining 𝑁 pairs of EEG-image, denote the embedding of the 𝑖th
image as 𝑧𝐼

𝑖
and that of the 𝑖th EEG as 𝑧𝐸

𝑖
in the same bath. The

InfoNCE loss for images is formulated as:

𝐿𝐼2𝐸 = − 1
𝑁

𝑁∑︁
𝑖=0

log
exp(𝑧𝐼

𝑖
· 𝑧𝐸

𝑖
/𝜏)∑𝑁

𝑘=0 exp(𝑧
𝐼
𝑖
· 𝑧𝐸

𝑘
/𝜏)

, (4)

where similarity is measured by dot product and the temperature
hyper-parameter 𝜏 is used for adjusting distribution probability.
Symmetrically, we define the loss for the EEG as follows:

𝐿𝐸2𝐼 = − 1
𝑁

𝑁∑︁
𝑖=0

log
exp(𝑧𝐸

𝑖
· 𝑧𝐼

𝑖
/𝜏)∑𝑁

𝑘=0 exp(𝑧
𝐸
𝑖
· 𝑧𝐼

𝑘
/𝜏)

, (5)

The total loss of the InfoNCE thus expresses:

𝐿𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 =
1
2
(𝐿𝐼2𝐸 + 𝐿𝐸2𝐼 ), (6)

Brain and image encoder. Any parameter model based on deep
neural networks (DNNs) can encode raw EEG signals into EEG
embedding. Currently, researchers propose several excellent mod-
els for analyzing EEG data, and in this study, we use the TSConv
[6] as the brain encoder for extracting EEG features. Additionally,
we introduce a brain projector to convert the EEG embedding into
image embedding of the same dimension. Similarly, a robust image
encoder can extract visually distinctive features from images. We
use pre-trained CLIP [26] as the image encoder to extract visual
features and save them to speed up the training of our model. Simi-
larly, we feed the extracted image features into a visual projector
during training.

3.4 Bidirectional Cycle Consistency Loss
3.4.1 Bidirectional Classified Wasserstein GAN (BCWGAN). Build-
ing on the inspiration of f-CLSWGAN [33], we propose a bidi-
rectional classified Wasserstein GAN (BCWGAN). Differing from
f-CLSWGAN, BCWGAN consists of two GAN modules: an EEG
feature generation network 𝐸 = {𝐺𝑒 , 𝐷𝑒 } and a visual feature gener-
ation network𝑉 = {𝐺𝑣, 𝐷𝑣}. Specifically, both generative networks
consist of a generator 𝐺 and a discriminator 𝐷 participating in an
adversarial min-max game, generating synthetic features from a
predefined distribution.

Visual feature generation network. The visual generator 𝐺𝑣

uses EEG embedding 𝑓𝑒 (𝑥𝑒 ) obtained from the brain encoder and
a random noise distribution 𝑧1 ∈ R𝑑𝑧 sampled from a Gaussian
distribution 𝑁 (0, 1) to generate fake visual features intended to
deceive the visual feature discriminator 𝐷𝑣 . To distinguish between

the synthetic features and the real features, the visual discriminator
𝐷𝑣 employs a fully connected (FC) layer for binary classification.
Additionally, introducing classification loss in the discriminator
has demonstrated significant potential in auxiliary classifier GANs
[34, 35]. Therefore, we incorporate an auxiliary classifier into 𝐷𝑣

for classifying input samples into their respective image categories.
Due to challenges associated with traditional GANs [22] such as
training difficulties and the inability of generator and discriminator
losses to guide training progress, we opt for a more stable training
method known asWGAN [36]. Its loss function is defined as follows:

𝐿𝑊𝐺𝐴𝑁 1 = min
𝜃𝐺𝑣

max
𝜃𝐷𝑣

E[𝐷𝑣 (𝑓𝑣 (𝑥𝑣), 𝜃𝐷𝑣
)]

− E[𝐷𝑣 (𝐺𝑣 (𝑓𝑒 (𝑥𝑒 ), 𝑧1;𝜃𝐺𝑣
);𝜃𝐷𝑣

]

− 𝛽E[(
△𝑓𝑣 (𝑥𝑣 )𝐷𝑣 (𝑓𝑣 (𝑥𝑣))


2
− 1)2], (7)

𝐿𝐵𝐶𝑊𝐺𝐴𝑁 1 = min
𝜃𝐺𝑣

max
𝜃𝐷𝑣

𝐿𝑊𝐺𝐴𝑁 1 − 𝛼 (𝐿𝐶𝐿𝑆1 (𝐷𝑣 (𝑓𝑣 (𝑥𝑣), 𝜃𝐷𝑣
))

+ 𝐿𝐶𝐿𝑆1 (𝐷𝑣 (𝐺𝑣 (𝑓𝑒 (𝑥𝑒 ), 𝑧1;𝜃𝐺𝑣
)))). (8)

In the formula,E[.] represents themathematical expectation,𝜃𝐺𝑣

and 𝜃𝐷𝑣
respectively denote the parameters of the visual generator

and visual discriminator. In the last term of equation (7), a gradient
penalty term is employed to impose the Lipschitz constraint [37].
Specifically, 𝑓𝑣 (𝑥𝑣) = 𝛾 𝑓𝑣 (𝑥𝑣) + (1 − 𝛾)𝐺𝑣 (𝑓𝑒 (𝑥𝑒 ), 𝑧1;𝜃𝐺𝑣

), where
𝛾 ∼ 𝑈 (0, 1). The variables 𝛽 and 𝛼 are two hyperparameters, with 𝛽
representing the gradient penalty factor, and 𝛼 is utilized to weigh
the contribution to the visual feature classification loss 𝐿𝐶𝐿𝑆1. Here,
𝐿𝐶𝐿𝑆1 denotes the cross entropy loss between the visual features
and their corresponding real labels 𝑦.

EEG feature generation network. Considering the introduced
multimodal cycle consistency loss, which involves generating EEG
features from visual features, we propose the EEG Feature Genera-
tion Network 𝐸 = {𝐺𝑒 , 𝐷𝑒 }, analogous to 𝑉 = {𝐺𝑣, 𝐷𝑣}, 𝐸 consists
of an EEG feature generator 𝐺𝑒 and an EEG feature discriminator
𝐷𝑒 . First, we concatenate the image embedding with a randomly
sampled noise vector 𝑧2 from a standard Gaussian distribution. The
generator 𝐺𝑒 takes the concatenated vector of EEG features and
noise, represented as [𝑥𝑣, 𝑧2], as the input to generate synthesized
EEG features in the latent space. Meanwhile, the discriminator 𝐷𝑒

discriminates between the real EEG features and synthetic features
from 𝐺𝑒 (𝑓𝑣 (𝑥𝑣), 𝑧2;𝜃𝐺𝑒

). To improve the accuracy of the EEG fea-
ture generation, we introduce the EEG feature classification loss
𝐿𝐶𝐿𝑆2, which guides the EEG generation toward the specified di-
rection. Therefore, the objective function can be formulated as
follows:

𝐿𝑊𝐺𝐴𝑁 2 = min
𝜃𝐺𝑒

max
𝜃𝐷𝑒

E[𝐷𝑒 (𝑓𝑒 (𝑥𝑒 ), 𝜃𝐷𝑒
)]

− E[𝐷𝑒 (𝐺𝑒 (𝑓𝑣 (𝑥𝑣), 𝑧2;𝜃𝐺𝑒
);𝜃𝐷𝑒

]

− 𝛽E[(
△𝑓𝑒 (𝑥𝑒 )𝐷𝑒 (𝑓𝑒 (𝑥𝑒 ))


2
− 1)2], (9)

𝐿𝐵𝐶𝑊𝐺𝐴𝑁 2 = min
𝜃𝐺𝑒

max
𝜃𝐷𝑒

𝐿𝑊𝐺𝐴𝑁 2

− 𝛼 (𝐿𝐶𝐿𝑆2 (𝐷𝑒 (𝑓𝑒 (𝑥𝑒 ), 𝜃𝐷𝑒
))

+ 𝐿𝐶𝐿𝑆2 (𝐷𝑒 (𝐺𝑒 (𝑓𝑣 (𝑥𝑣), 𝑧2;𝜃𝐺𝑒
))). (10)
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where equation (9) denotes Wasserstein adversarial loss, the first
two terms calculate the Wasserstein distance between the synthe-
sized EEG feature distribution and the real EEG feature distribution.
The last term computes the gradient penalty by linearly interpo-
lating between the real and generated EEG features. Equation (10)
introduces the EEG feature supervised classification loss to ensure
that EEG features are as discriminative as visual features.

3.4.2 Multimodal Bidirectional Cycle Consistency Loss. In recent
years, numerous studies have successfully employed GAN to trans-
form extracted EEG features into corresponding image features
[7, 24, 38]. However, existing methods solely rely on unidirectional
generative networks, specifically transforming EEG into images.
This limitation of the network architecture does not guarantee
the accurate representation of the generated visual features corre-
sponding to the underlying brain activities. To address this issue, we
propose a bidirectional multimodal cycle consistency loss designed
to encourage the visual features generated from EEG features to
transform back to their respective EEG embeddings. Similarly, the
EEG features generated from image features should also be capable
of transforming back to their corresponding image embeddings.
After𝐺𝑣 and𝐺𝑒 have generated the corresponding reconstructed
features, we compute the bidirectional cycle consistency loss to
update the parameters of 𝐺𝑣 and 𝐺𝑒 . In this way, 𝐺𝑣 and 𝐺𝑒 can
perform feature reconstruction while retaining information from
the original data. Formally, the loss is defined as follows:

𝐿𝑐𝑦𝑐1 (𝜃𝐺𝑣
, 𝜃𝐺𝑒

) = 1
𝑁

𝑁∑︁
𝑖=1

| |𝐺𝑒 (𝐺𝑣 (𝑓𝑒 (𝑥𝑒 ), 𝑧1, 𝜃𝐺𝑣
), 𝑧1;𝜃𝐺𝑒

) − 𝑓𝑒 (𝑥𝑒 ) | |2,

(11)

𝐿𝑐𝑦𝑐2 (𝜃𝐺𝑣
, 𝜃𝐺𝑒

) = 1
𝑁

𝑁∑︁
𝑖=1

| |𝐺𝑣 (𝐺𝑒 (𝑓𝑣 (𝑥𝑣), 𝑧2, 𝜃𝐺𝑒
), 𝑧2;𝜃𝐺𝑣

) − 𝑓𝑣 (𝑥𝑣) | |2,

(12)
𝐿𝑎𝑙𝑙_𝑐𝑦𝑐 = 𝜆(𝐿𝑐𝑦𝑐1 + 𝐿𝑐𝑦𝑐2) . (13)

where 𝑁 denotes the number of samples and 𝜆 is the coefficient
used in the computation. The bidirectional cycle consistency loss is
computed using the mean squared error between the reconstructed
features and real features, ensuring consistency between these
features and closing the modality gap.

4 Experiments
4.1 Datasets
ThingsEEG dataset [39]. It comprises EEG data from 10 partic-
ipants collected using the rapid serial visual presentation (RSVP)
paradigm. Except for a single reference electrode, the data of 63
electrode channels can be obtained simultaneously, with a sampling
frequency set at 1000Hz. Each participant took part in a total of
82,160 trials. The training set, which consists of 1,654 categories,
each with 10 images, is repeated 4 times; The test set, on the other
hand, comprises 200 categories, each with only 1 image, and is
repeated 80 times. In the preprocessing stage, we average all EEG
repetitions for each image to reduce noise impact and enhance the
quality of the EEG signals. We select EEG time series from 0 ms
to 1000 ms post-image onset. The EEG signals are down-sampled
to 250 Hz, a frequency that captures the brain electrical activity

Figure 2: The decoupled training flow of our image re-
construction using EEG signals. In stage 1, we utilize our
proposed method, MB2C, to align EEG-image pairs on the
EEGCVPR40 dataset in the shared latent space, as described
in Section 3. In stage 2, we utilize EEG information as condi-
tional input to train StyleGAN or finetune SDXL for image
reconstruction.

induced by visual stimuli while significantly reducing the data
volume for subsequent analysis.

EEGCVPR40 dataset [25]. It is a subset of the ImageNet dataset
[40], comprising EEG-image pairs from 40 classes. During the exper-
iment, 6 subjects viewed 2000 different images, where each image
appeared once for 0.5 seconds, resulting in 12,000 visual-evoked
EEG sequences. The EEG data are 128 channels with a sampling
rate of 1000 Hz. For EEG data preprocessing, we select EEG data
ranging from 20 to 460 ms and discard some faulty samples, re-
sulting in 11,940 EEG-image pairs. To ensure a fair comparison,
we have concatenated the data of all participants together, and the
splitting of training and testing sets followed the same approach as
[7].

4.2 Implementation Details
This section describes the implementation details of the visual fea-
ture generation network𝑉 = {𝐺𝑣, 𝐷𝑣} and the EEG feature genera-
tion network 𝐸 = {𝐺𝑒 , 𝐷𝑒 }.𝐺𝑣 (·) and𝐺𝑒 (·) are implemented with a
hidden layer containing 900 hidden units, activated by LeakyReLU,
and the output layer has dimensions identical to those of the image
encoder. 𝐷𝑣 (·) and 𝐷𝑒 (·) have two hidden layers with 400 hidden
units, applying a dropout rate of 0.25 and LeakyReLU activation.
Furthermore, discriminators contain two fully connected layers,
where one fully connected layer identifies whether the input fea-
tures are real or not, and the other fully connected layer classifies
the input features into the corresponding categories. In all datasets,
the noise vector 𝑧 is set to a dimension of 100. We select Adam
as the optimizer for the brain encoder, brain projector, and image
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Table 1: Classification accuracy (%) of 𝑁 -way Top-𝐾 on ThingsEEG dataset. 𝑁 -way Top-𝐾 decoding means predicting the Top-𝐾
predicted classes out of 𝑁 novel classes

Subject dependent: using one subject’s training data for training and test data for testing

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 AverageType Method

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

200-way
BraVL [5] 6.11 17.89 4.9 14.87 5.58 17.38 4.96 15.11 4.01 13.39 6.01 18.18 6.51 20.35 8.79 23.68 4.34 13.98 7.04 19.71 5.82 17.45

NICE-GA [6] 15.2 40.1 13.9 40.1 14.7 42.7 17.6 48.9 9.0 29.7 16.4 44.4 14.9 43.1 20.3 52.1 14.1 39.7 19.6 46.7 15.6 42.8
MB2C(mixup) 23.67 56.33 22.67 50.50 26.33 60.17 34.83 67.00 21.33 53.00 31.00 62.33 25.00 54.83 39.00 69.33 27.50 59.33 33.17 70.83 28.45 60.37

50-way BraVL [5] 14.8 41.5 12.88 39.15 15.0 40.85 12.35 36.45 10.45 33.77 15.1 41.17 15.12 42.38 20.32 49.83 10.55 34.1 16.75 43.6 14.33 40.28
MB2C(mixup) 41.33 83.33 38.67 82.67 48.67 84.67 56.00 84.67 39.33 70.00 54.67 86.67 45.33 80.67 68.67 89.33 53.33 89.33 58.67 90.67 50.47 84.20

Subject independent: using one subject’s data for testing and the rest of the subjects’ data for training

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 AverageType Method

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

200-way
BraVL [5] 2.3 7.99 1.49 6.32 1.39 5.88 1.73 6.65 1.54 5.64 1.76 7.24 2.14 8.06 2.19 7.57 1.55 6.38 2.3 8.52 1.84 7.02

NICE-SA [6] 7.0 22.6 6.6 23.2 7.5 23.7 5.4 21.4 6.4 22.2 7.5 22.5 3.8 19.1 8.5 24.4 7.4 22.3 9.8 29.6 7.0 23.1
MB2C (mixup) 10.50 28.17 11.33 32.83 8.83 27.67 13.67 33.50 10.67 27.50 12.17 33.17 11.50 31.83 12.00 32.17 12.17 31.33 16.17 42.17 11.90 32.03

50-way BraVL [5] 6.38 22.98 4.98 20.7 3.92 17.8 5.6 18.6 4.67 19.38 5.65 23.08 6.25 24.12 6.02 23.9 4.58 18.7 5.85 22.8 5.39 21.2
MB2C (mixup) 25.33 68.00 34.67 74.00 18.00 59.33 29.33 63.33 22.00 59.33 20.00 54.67 22.67 59.33 26.67 48.67 23.33 62.67 31.33 77.33 25.33 62.67

projector with the learning rate set to 2× 10−4. RMSProp is used as
the optimizer for the feature generation network with a learning
rate of 5×10−5. Default hyperparameters are set to 𝛽 = 1.0, 𝛼 = 1.0,
and 𝜆 = 500. In the ThingsEEG dataset, the batch size is 256, and
training epochs are set to 200. To prevent model overfitting or un-
derfitting, we adopt an early stopping strategy. In the EEGCVPR40
dataset, we set the batch size to 64, and the training process runs
for 2048 epochs. To ensure more accurate experimental results, we
conduct each experiment three times with different random seeds
and report the average results. All experiments are conducted using
PyTorch on a GeForce 3090 GPU. The code has been released at:
https://github.com/leeh2213/MB2C

Table 2: EEG classification accuracy (%) of Top-𝐾 on
EEGCVPR40 dataset

EEG data Method top-1 top-5 top-10

raw EEGClip [7] 79.0 96.0 98.0
MB2C 88.73 98.24 99.14

5-95 Hz filter
Palazzo et al. [41] 60.4 - -

EEGClip [7] 64.0 86.0 92.0
MB2C 93.74 99.18 99.63

Table 3: MB2C with different generative models Image re-
construction comparison with baselines in EEGCVPR40 and
ThingsEEG datasets.

Methods Datasets IS ↑ FID ↓ KID ↓ SSIM ↑ PCC ↑
Improved-SNGAN [42] EEGCVPR40 5.53 - - - -

DCLS-GAN [43] EEGCVPR40 6.64 - - - -
EEGStyleGAN-ADA [7] EEGCVPR40 10.82 174.13 0.065 - -
NEUROIMAGEN [44] EEGCVPR40 33.50 - - 0.249 -
MB2C-stylegan EEGCVPR40 12.85 153.37 0.042 0.442 0.075
MB2C-SDXL EEGCVPR40 21.87 171.36 0.044 0.382 0.131

MB2C-SDXL ThingsEEG 10.19 163.94 0.027 0.333 0.188

4.3 Experimental Results
𝑁 -way Zero-shot classification.We perform 𝑁 -way zero-shot
classification tasks on the ThingsEEG dataset following the proce-
dure outlined in Figure 1 for intra-subject and inter-subject experi-
ments. As shown in Table 1, the results indicate that our proposed
method possesses excellent neural decoding capabilities. Specifi-
cally, in intra-subject experiments, MB2C achieves a top-1 accuracy
of 50.47% and an average top-5 accuracy of 84.20% in a 50-way
classification task, significantly surpassing chance levels of 2% and
10%, respectively. Even when tested with 200 unseen classes, the
model maintains a top-1 accuracy of 28.45% and a top-5 accuracy
of 60.37%. In the inter-subject experiments, due to individual dif-
ferences among subjects, the neural decoding performance falls
short of the intra-subject predictions but still significantly outper-
forms chance levels. We also compare MB2C with state-of-the-art
methods, namely BraVL [5] and NICE [6]. Considering NICE with
self-attention (NICE-SA) or graph attention (NICE-GA) as two vari-
ants that outperform the original NICE model, we select the best-
performing model for comparison. The results demonstrate that,
regardless of whether the experiments were intra-subject or inter-
subject, MB2C outperforms the current state-of-the-art models in
both 50-way and 200-way zero-shot classifications.

Joint representation learning on EEGCVPR40 dataset. To
verify the robustness of MB2C, we conduct experiments on the
EEGCVPR40 raw dataset and the EEGCVPR40 filter dataset (5-
95Hz). During the model training process, we observe that directly
using EEG-visual correlations for classification performed poorly.
In the EEGCVPR40 dataset, each EEG-image pair corresponds to
having real class labels. To improve the classification of EEG data,
we train the EEG Encoder and two projection layers, similar to [7],
and then fine-tune the network using EEG data. This refinement
results in excellent EEG classification results. As shown in Table
2, our method outperforms the current state-of-the-art models in
top-𝐾 accuracy, where 𝐾 ∈ {1, 5, 10}, on both the EEGCVPR40 raw
dataset and the EEGCVPR40 filter dataset (5-95Hz).

Image reconstruction. Here we evaluate the effectiveness of
MB2C in the image reconstruction task. Quantitative and qualitative
experiments are conducted following the training flow outlined in
Figure 2. Due to the small size of the EEGCVPR40 dataset, we train

https://github.com/leeh2213/MB2C
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Figure 3: Image reconstruction conditioned on the EEG for
the EEGCVPR40 filtered (5-95 Hz) and ThingsEEG dataset.
The rows labeled ’Ground Truth’ (highlighted with a red
box) represent the ground truth image stimulus. Images with
red text correspond to reconstructions using EEG features
extracted by the MB2C model, while others correspond to
the results presented in the paper.

StyleGAN from scratch to achieve stability and high fidelity. Addi-
tionally, we employ the more powerful generative model SDXL[45],
using EEG information as a conditional input for image reconstruc-
tion on the EEGCVPR40 filtered (5-95 Hz) and ThingsEEG datasets.
Notably, to our knowledge, this is the first image reconstruction
on the ThingsEEG dataset.The quantitative comparison results of
image reconstruction are listed in Table 3. We utilize five evaluation
metrics that shed light on the quality and diversity of the synthe-
sized images (resized to 128×128) to compare our model with some
state-of-the-art methods. Inception score (IS), Frechet Inception
Distance (FID), Kernel Inception Distance (KID), Per-pixel Corre-
lation Coefficient (PCC), and Structural Similarity Index Measure
(SSIM) are calculated based on reconstructed images. As summa-
rized in Table 3, our method outperforms other SOTA baselines.
Meanwhile, the results of EEG-conditioned image reconstruction
are shown in Figure 3. As can be seen, the quality of the sampling
of reconstructed images is semantically similar to the ground truth
images, and our method maintains generation consistency in terms
of shape, color, and semantics. Additionally, it can be observed that
compared to recent work, our approach produces reconstructed
results that are visually more similar to the ground truth both in
terms of semantics and structure.

4.4 Ablation Study
To demonstrate the effectiveness of each component proposed in
our method, we introduce two variants of MB2C for comparison:

• InfoNCE-only: It retains only the InfoNCE loss, removing all
components related to BCWGAN from the model.

• InfoNCE-CYC-only: The model removes the classification (CLA)
loss in MB2C, retaining both the InfoNCE loss and the cycle
consistency (CYC) loss.

• no Mixup: The model does not utilize Mixup-based data augmen-
tation.
For a fair comparison, ablation experiments for InfoNCE-only

and InfoNCE-CYC-only are conducted with a Mixup ratio coeffi-
cient of 0.75 (which yielded the best performance). We will dis-
cuss in detail the impact of the Mixup mixing coefficient on model
performance in Section 4.6. Additionally, as ZSL is our primary
classification task, all ablation experiments are performed on the
ThingsEEG dataset. Table 4 displays the performance of each vari-
ant. Firstly, it is evident that adding the CYC loss individually on
top of contrastive learning can improve overall performance, while
jointly training the model with both CYC loss and CLA loss can
significantly enhance performance, indicating that the constraint
of cycle consistency effectively assists in multimodal alignment.
Furthermore, the performance of each variant surpasses that of the
methods presented in Table 1, BraVL and NICE-GA, demonstrating
the effectiveness of the MB2C approach.

Table 4: Effects of different components on zero-shot classifi-
cation accuracy (%) on ThingsEEG datasets

200-way 50-way
Method top-1 top-5 top-1 top-5

CLIP-only 26.17 59.30 46.87 84.87
CLIP-CYC-only 27.55 59.95 50.33 84.53
no Mixup 26.60 58.57 48.40 84.86

MB2C 28.45 60.37 50.47 84.20

4.5 Smilarity Measures and Visualization
Analysis

To visually demonstrate the effectiveness of MB2C, we perform
similarity measures and visualization analysis on the ThingsEEG
dataset. Firstly, to validate whether the EEG features we extract
contain semantic information capable of distinguishing between
different image classes, we categorize the image stimuli in the
test set into six superclasses: animals, clothes, food, household,
tools, and transportation. For instance, "tie" belongs to clothes, and
"fork" belongs to tools. Then, we compute the cosine similarity of
feature pairs for all subjects in the test set, as shown in Figure 4 (a).
The results in Figure 4 (a) indicate that the similarity within the
superclass is high, indicating that EEG features effectively reflect
the semantic categories of corresponding images.

In addition, we depict the t-SNE [46] plots of visual features and
EEG features learned from the training and test sets in Figure 4
(b) and Figure 4 (c). As per our observations, the features of test
images exhibit similar distributions to those of training images.
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Figure 4: Cosine similarity and t-SNE visualization on the ThingsEEG dataset. (a) Confusion matrix of feature pairs for all
subjects in the test set. All the concepts were reclassified into five categories: animals, clothes, food, household, tools, and
transportation. (b) t-SNE visualization of the learned visual feature for the six categories. (c) t-SNE visualization of the learned
EEG feature for the six categories.

Figure 5: The ground truth image and the top-5 predicted re-
sults for the given EEG signal from the test set of ThingsEEG.

Moreover, except for a few categories, the spatial distributions of
the EEG features in the test and training datasets also maintain
high consistency.

In Figure 5, we randomly present the top-5 predicted results from
subject 8. We can observe that they are semantically similar to the
ground truth; for example, "gopher", "piglet", "beaver", "lamb", and
"antelope" all belong to the category of animals.

4.6 Sensitivity of Hyper-parameters
We conduct all experiments on the ThingsEEG dataset under the
setting of 𝑁 -way Top-𝐾 classification task and present the optimal
ratio of Mixup samples in Figure 6. Given a fixed batch size 𝐵 of

256, within a range of ratio in {0, 0.25, 0.5, 0.75, 1.00}, indicating the
choice of 0.75 sampling ratio achieves the best while considering
both model performance and training computation (The higher the
ratio, the more computations). Thus, we set the ratio to 0.75 under
all experiment settings of the ThingsEEG dataset.

Figure 6: The ratio of Mixups.

5 Conclusion
In this study, our primary objective is to learn robust visual neu-
ral representations from EEG-based brain activity. We propose a
novel multimodal framework that combines MB2C with contrastive
learning to achieve cross-modal alignment. Notably, MB2C utilizes
dual-GAN to generate modality-relevant features and inversely
transform them back into corresponding semantic latent spaces,
thereby narrowing the modality gap and ensuring embeddings
of different modalities with similar semantics reside in the same
region of the representation space. Our results demonstrate that
decoding seen or even unseen visual categories from EEG signals
is potential, and image reconstruction with EEG is also feasible.
Lastly, although this paper focuses on EEG and images, we show
that MB2C can generalize to other paired modalities. We believe
our research holds significant value for practical BCIs and research
in multimodal learning.
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