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ABSTRACT

Multimodal large language models are an exciting emerging class of language mod-
els (LMs) that have merged classic LM capabilities with those of image processing
systems. However, the ways that these capabilities combine are not always intuitive
and warrant direct investigation. One understudied capability in MLLMS is visual
spatial planning—the ability to comprehend the spatial arrangements of objects
and devise action plans to achieve desired outcomes in visual scenes. In our study,
we introduce VSP, a benchmark that 1) evaluates the spatial planning capability
in these models in general, and 2) breaks down the visual planning task into finer-
grained sub-tasks, including perception and reasoning, and measure the capabilities
of models in these sub-tasks. Our evaluation shows that both open-source and
private MLLMs fail to generate effective plans for even simple spatial planning
tasks. Evaluations on the fine-grained analytical tasks further reveal fundamental
deficiencies in the models’ visual perception and bottlenecks in reasoning abilities,
explaining their worse performance in the general spatial planning tasks. Our work
illuminates future directions for improving MLLMs’ abilities in spatial planning.

1 INTRODUCTION

The rapid advancement of large language models has driven considerable growth in their capabilities
to produce fluent text in many domains, generating outputs exhibiting potential “reasoning” and
“understanding” abilities. Touvron et al. (2023);Bi et al.|(2024); Jiang et al.|(2024); Brown et al.|(2020).
Recently, multimodal large language models (MLLMs) have advanced on LLMs through additional
training on native image inputs, to achieve impressive performance generating text describing and
relating to input images |Achiam et al. (2023); Liu et al. (2024); [Team et al. (2023); Awadalla et al.
(2023); |Alayrac et al. (2022), with applications in image captioning, visual question answering,
visual reasoning, and others |Ying et al. (2024); Yang et al. (2024); [Shao et al.|(2023); Zheng et al.
(2023). The swift evolution of MLLMs has enabled them to tackle increasingly sophisticated tasks
that require multiple emerging abilities in complex scenarios. However, as model capabilities and
deployment needs advance, the challenges in usefully evaluating them grow in kind.

Planning is a fundamental capability in intelligent systems that is particularly contested in LMs
Valmeekam et al.|(2023), and is understudied in MLLMs. Visual spatial planning refers to the task of
comprehending the spatial arrangement of objects in a scene and designing action plans to achieve a
desired outcome. For example, the classical maze problem can be considered a visual planning task,
where an agent is given an input image describing the maze environment and is asked to produce
a viable path to navigate the player from the starting position to the goal. This task requires two
capabilities: image perception, which enables the agent to understand the objects, environment and
spatial relations present in the image, and reasoning, which enables the agent to perform strategic
decision-making.

Visual spatial planning is an important capability in many potential applications for MLLMs, such as
navigating in complex environments with autonomous driving Tian et al. (2024); Ma et al.[(2023) or
manipulating objects with robotic hands |Chang et al.|(2023); Hu et al.|(2023). However, although
there have been increasingly more benchmarks to evaluate the vision processing capabilities of
MLLMs, few current benchmarks systematically evaluate their capability of performing visual spatial
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Table 1: Comparison with representative existing benchmarks.

Name Tasks Description Keywords
MME Fu et al.|(2023) Image content understanding, reasoning perception, reasoning
MMMU Yue et al.|(2024) College-level knowledge reasoning multi-discipline knowledge, reasoning
MathVision Wang et al.[(2024)  Math problems with visual contexts mathematical reasoning
SeedBench |Li et al.|(2023a) Comprehension of scene & instance in image perception, reasoning, spatial relation
MM-Vet|Yu et al. (2023) General problems that need integrated abilities  perception, reasoning, spatial relation
Understand & extract Spatial planning,
VSP e . . ‘ .
spatial info and plan accordingly Spatial perception, reasoning

planning tasks. As shown in Table [T} existing benchmarks mostly focus on MLLMs’ ability to
understand image content and perform visual logic reasoning |[Fu et al.[|(2023); [Yue et al. (2024);
Wang et al.|(2024); however, they often overlook the ability to comprehend the spatial arrangements
of entities within images and to devise spatial action plans based on practical restrictions in the
visual environment. As a result, two research questions are left unanswered: @ How performant are
MLLMs in performing visual planning tasks? @ What are the bottleneck capabilities, e.g., perception
or reasoning, that limit the performance of MLLMs in visual planning tasks?

To this end, we introduce Visual Spatial N
Planning (VSP), a benchmark specifically .
designed to evaluate the spatial planning R s e
capabilities of MLLMs. As illustrated in @ o @ @ je e o

Figure |I, the VSP benchmark consists of = @@ |jgee __

various environment settings designed to |t = e_e

assess the capabilities of models in dif- | [ Blocks World Scenario 1

ferent scenarios. The first two scenarios, '
Maze Navigation and Blocks World, are ba- sofNuf e Gooste Map Scenario :
sic environments developed from classical |: Q g
planning tasks. Additionally, we challenge el

the model’s abilities in dynamic and realis- el | P’ .

tic applications through the Collision and - - g
Google Map scenarios, respectively. All Eigure 1: The overview of the proposed visual spatial plan-
environments are fully observable through ~Ning benchmark.

input images. The MLLMs are required to

interpret the visual inputs, deduce the consequences of each action, and execute the designated tasks.
To comprehensively evaluate the fine-grained capabilities needed for visual spatial planning, VSP
includes 4.6K questions in 10 meticulously designed tasks that feature both simulated and photo-
realistic visual inputs. In addition to testing end-to-end spatial planning, these tasks test essential
individual visual planning abilities, such as image perception and reasoning.

We apply the VSP benchmark to evaluate existing state-of-the-art MLLMs, including both open-
source and private ones. Surprisingly, we find that even the most competitive MLLMs sometimes
struggle in performing the simplest visual planning tasks, such as a 3x3 maze problem. Our fine-
grained capability analysis further reveals that existing MLLMs have flaws in reasoning and bigger
bottlenecks in perception. We believe the VSP benchmark highlights critical weaknesses in current
MLLMs and sheds light on future directions for enhancing their spatial understanding and planning
capabilities.

2 RELATED WORK

2.1 GENERAL PLANNING IN LMS

Planning has been a central focus of research in Al. Traditional work in Al planning includes
using formal languages to represent and solve planning problems |Aeronautiques et al. (1998), and
developing algorithms like dynamic programming and reinforcement learning to explore environments
and formulate viable plans |Guo et al. (2014); [Sutton (1991). While these works mostly focus on
predefined and restricted environments, recently, with the advancement of LMs, it has become
intriguing to study whether LMs, with the potential to be general intelligent agents, can perform
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Figure 2: Overview of the Maze Navigation scenario.

planning in different settings and environments [Kambhampati| (2024); [Kambhampati et al.| (2024);
Stechly et al. (2024). Many works explore the best ways to activate the planning capabilities of LMs,
including divide and conquer [Wei et al.|(2022); Yao et al.|(2024); [Shen et al.| (2024); Yao et al.|(2022),
grounding outputs in admissible actions |Ahn et al.| (2022); Hazra et al.| (2024), retrospecting and
refining [Shinn et al.|(2024); Madaan et al. (2024), and leveraging external tools Guan et al.|(2023);
(2023). Meanwhile, with the increasing capabilities of LMs, growing research efforts are
now dedicated to benchmark their planning capabilities in various complex environments Wu et al.
(2023)); [Xie et al. (2024); [Valmeekam et al.| (2022).

2.2  SPATIAL AND VISUAL PLANNING IN LMS

Many general planning tasks in LMs involve understanding visual environments and comprehending
spatial information. In robotics and embodied agent studies, LMs play a crucial role in grounding
visual entities with references in open-domain instructions and formulating plans based on spatial
constraints. Consequently, they are increasingly used in physically grounded scenarios such as object
rearrangement |[Chang et al.| (2023); (2023), cooking [Joublin et al. (2023); [Sakib and Sun
(2023), and navigation [Hazra et al. (2024);Ahn et al.|(2022). LMs are also used in AIGC to propose
spatial arrangements of entities following instructions (2024). While realistic planning
tasks align with real needs, their complexity and expansive action spaces limit the analysis of LMs’
detailed planning capabilities. Therefore, research also focuses on LMs’ planning in simulated
environments and games. For example, mystery blocksworld is a dynamically generated set of
blocksworld tasks to test generalization in LMs [Valmeekam et al. (2023). Additionally, many text
games have been introduced to test LMs’ abilities in spatial understanding and imagination [Shridhar|
et al.| (2020); [Wu et al.| (2023); Yang et al.| (2023); [Aghzal et al. (2023). However, most of these studies

transform visual information into text inputs, thus not directly measuring LMs’ visual abilities.

2.3 BENCHMARKS FOR MLLMs

MLLMs have inherited and advanced many intriguing features from text-only LMs|Yang et al. (2023);
(2023). Benchmarks for MLLMs have rapidly emerged to evaluate performance in areas such
as image content understanding [Fu et al. (2023)); [Cha et al.| (2024)), perception [Ge et al. (2023); Tong

et al| (2024), knowledge [Yue et al. (2024); Wang et al. (2024); [Lu et al.| (2023), and reasoning
et al. (2023);[Yue et al.|(2024); [Liu et al. (2023). While these benchmarks quantify MLLMs’ abilities

in many fields, their capabilities in spatial understanding and reaction are relatively under-explored.
Some benchmarks cover spatial relations understanding [Li et al.| (2023a); [Yu et al.| (2023), but often
overlook the ability to devise complex spatial action plans based on visual environment constraints.
We focus on visual spatial planning - the ability to comprehend spatial arrangements of objects and
devise action plans to achieve specific outcomes. We fill the gap in benchmarking MLLM abilities
for visual spatial planning and highlight future directions for improving MLLMs towards models
with general intelligence.
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Figure 3: Overview of the Blocks World scenario.

3 THE VISUAL SPATIAL PLANNING BENCHMARK

3.1 OVERVIEW OF THE BENCHMARK

In this benchmark, our objectives are two-fold: @ quantify the visual spatial planning capabilities of
current MLLMs; and @ uncover current capability bottlenecks that limit the effectiveness of MLLMs
in visual spatial planning tasks. The first objective requires broader task designs. Specifically, the
tasks should range from classical planning tasks Brockman et al.|(2016); Valmeekam et al. (2022) to
ones in those more dynamic and realistic environments. On top of that, the second objective requires
deeper task designs. In particular, performing spatial planning in visual environments requires a
series of cohesive steps. For example, to generate an accurate path to navigate a player to a goal, an
agent needs to be able to correctly view and understand the visual map, reason to find which actions
are safe or dangerous, and come up with a detailed plan to achieve the goal. Each of these steps could
be challenging for a developing MLLM, and understanding which of these subtasks challenge them
most will drive future improvement.

To this end, we propose the Visual Spatial Planning (VSP) benchmark, with the objective of measuring
and diagnosing the capabilities of MLLMs in producing accurate spatial plans in visual environments.
The VSP benchmark consists of four scenarios: @ the simulated Maze Navigation scenario, whose
main task is to move a game character through a maze; @ the photo-realistic Blocks World scenario,
whose main task is to move blocks from a starting configuration to a goal configuration; @ the
dynamic Collision scenario, whose main task is to determine if there is a danger of collision between
two objects in the environment, and @ the realistic Google Map scenario, whose main task is to find
a path in real streets of New York City. In addition to the main task, VSP introduces four sub-tasks in
first two scenarios that focus on the individual capabilities needed for the main task:

e T1. Single Object Perception — Determine the characteristics of a single object;

o T2. Spatial Relation Perception — Determine the relative positions of two objects;

¢ T3. Environment Perception — Find textual descriptions that describe the visual environment;

o T4. Spatial Reasoning — Determine the consequence of a series of actions or moves.

The sub-task details are designed specific to both scenarios. Furthermore, to demonstrate the model’s
performance under different levels of environmental complexity, we establish progressive difficulty
settings for various tasks, which are measured by parameters such as map size, minimum required

number of actions, efc. The detailed task statistics are provided in appendix [A. In what follows, we
introduce each scenario in detail, as well as the data curation and the task creation processes.

3.2 THE MAZE NAVIGATION SCENARIO

The Maze Navigation scenario is inspired by the popular implementation |Brockman et al. (2016) of a
fully observable path-finding problem. As depicted in Figure[2]left, it simulates a classical grid world
environment with a designated start and goal position, where part of the grids contain obstacles (the
“holes”) and cannot be passed through.
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Figure 4: Benchmark creation process. Left: We prepare input images that fulfill the task requirements
with different difficulties. Mid: We formulate input prompts for each task. The input prompts consists
of interleaved texts and images. Right: We develop automatic evaluation process for each task.

The main spatial planning task and the four sub-tasks are defined as follows:

e Main Task (Spatial Planning) — Generate a safe path to navigate from the start grid to the goal;
o T1 (Single Object Perception) — Determine if a specified grid is safe;

e T2 (Spatial Relation Perception) — Find spatial relations between the player and the goal;

o T3 (Environment Perception) — Find the textual description that fits the visual environment;

o T4 (Spatial Reasoning) — Determine the consequence of a given action series.

An example of input image and questions is demonstrated in Figure[2. Each task is equipped with
progressive adjusted difficulty settings to evaluate the model’s capability under various circumstances.
For Main Task and T1-T3, the difficulties are measured by the size of the map, ranging from 3x3
to 8x8, where a larger map introduces more challenges in correctly perceiving objects and planning
accordingly. For task T4, since a longer path naturally introduces more challenges for reasoning, we
adopt path length ranging from 1 to 9 as the difficulty measure. Please refer to Appendix [A for the
complete example of the question and answer in each task.

3.3 THE BLOCKS WORLD SCENARIO

The Blocks World is a widely-adopted planning problem [Valmeekam et al. (2022); Hao et al. (2023);
Gokhale et al.| (2019). As depicted in Figure [3 left, in this scenario, the agent is given images
containing sets of blocks in unique colors. These blocks are stacked vertically, forming multiple
stacks on the table. The agent is asked to turn the blocks from initial state to target state through
a series of moving actions. For each action, the agent can only move the top block of any stack,
providing it is moved to either the table or the top of another stack.

Similarly, the main spatial planning task and the four sub-tasks are defined as follows:

e Main Task (Spatial Planning) — Form a moving plan to achieve the target state of block arrangement;
e T1 (Single Object Perception) — Determine the color of the block at a specific position;

o T2 (Spatial Relation Perception) — Determine the spatial relation between two blocks;

o T3 (Environment Perception) — Find the text representation that fits the visual environment;

o T4 (Spatial Reasoning) — Determine the consequence of a given moving plan.

An example of input image and questions is demonstrated in Figure[3] Similar to the Maze Navigation
scenario, each task is equipped with progressive adjusted difficulty. Specifically, in Main Task and
T4, the difficulties are measured by the number of actions involved, ranging from 1 to 7, which
quantifies the complexity of the action plan. On the other hand, for tasks T1-T3, which focus on
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perception, the difficulty is measured by the number of blocks presented in the image, ranging from 3
to 5. Please refer to Appendix [A for the complete example of the question and answer in each task.

3.4 THE COLLISION SCENARIO AND GOOGLE MAP SCENARIO

On top of the previous two scenarios, we further experiment in a more dynamic (the collision
scenario) and realistic (the Google map scenario) settings to explore the capabilities of models in
more challenging cases. The input of these two scenarios are shown in the right panels of Figure[L.
Please refer to Appendix [A]for the complete example of each scenario.

o Collision Scenario In this scenario, the input map is similar to Maze Navigation scenario. However,
in this case, the player is moving in an environment where a car is also present and moving. Given
the moving information (speed, direction) of the player and the car, the model needs to determine the
time the player and the car reaches the goal, and then determine if there is a collision danger here.

e Google Map Scenario In this scenario, the input image is a real Google map depicting the streets
and avenues in New York City. The starting location and the goal are randomly chosen crossroads
in the map and are marked on the image. The goal of the model is to find a path from the starting
location to the goal. The model needs to output a path described by directions (north, east, west,
south) and the number of blocks to traverse (e.g., head north for 2 blocks, then head east for 3 blocks).

3.5 BENCHMARK CREATION PROCESS

In Figure [, we demonstrate the general process for benchmark creation. We use the Blocks World
and Maze Navigation scenarios as examples.

First, in the left panel of Figure [, we prepare the input images used for each task and scenario. In
the Maze Navigation scenario, we generate input maps using the OpenAl Gym package Brockman
et al. (2016), with modifications to ensure that the positions of the player, the goal, and the holes are
all randomly generated. In the Blocks World scenario, we sample pairs of images from the BIRD
dataset|Gokhale et al.|(2019), ensuring there is at least one viable plan to move the blocks from the
initial state to the target state. The images are prepared conditional on different levels of difficulty.

Second, as shown in the center of Figure[d, we formulate input prompts for each task. The prompt
consists of interleaved text and images to provide sufficient information. For example, for Maze
Navigation, we include images to show the appearance of elements in the map and provide example
maps to better illustrate how the models should interpret the map. We invite native speakers to refine
the prompts so that they accurately describe the task requirements. The prompts are in Appendix[A.

Finally, in the right panel of Figure 4, we evaluate the performance of MLLMs under each task. It
is worth noting that the answer for each task is often not unique. For example, in the Blocks World
scenario, there can be many ways to move the blocks to reach the target state. As such, we develop
scripts to automatically evaluate the answers for each task.

In addition to the steps above, some tasks require extra steps to construct meaningful questions,
candidates, and answers. For example, in T4 of the Blocks World scenario, the input actions must
cover various valid/invalid movements. The detailed steps we followed to create each task set are
provided in Appendix[A. We release all images, texts, and scripts to facilitate replication and scaling.

4 EXPERIMENTS

In this section, we present evaluation results of state-of-the-art MLLMs under our main tasks and
sub-tasks. Our goal is to answer the following research questions: @ How well can state-of-the-art
MLLMs perform in the visual spatial planning tasks? @ What are the bottleneck capabilities that
limit the MLLM:s in visual spatial planning tasks?

4.1 BASELINES

We evaluate various representative MLLMs including both private and open-source models.
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Table 2: Zero-shot success rates for the spatial planning task, at various difficulty levels. Maze Navigation
difficulty levels represent the maze’s square grid length. Blocks World difficulty levels correspond to the
minimum number of steps to a solution. Results better than 30% are bolded.

MAZE NAVIGATION BLOCKSWORD COLLISION ](\}/[(/)\(; OVERALL

Difficulty level 3 4 5 6 7 8 1 3 5 7

GeminjTeam et al. |(2023) 031 026 0.15 0.06 0.14 010 0.10 0.14 000 0.01 0.13 0.00 0.1167
GPT-VisionAchiam et al. (2023)  0.55 0.36 0.27 0.13 0.17 0.10 0.50 0.17 0.03 0.00 0.24 0.02 0.2117
Claude-3A1|(2024a) 052 033 0.16 0.15 0.16 0.09 0.12 0.03 0.00 0.00 0.18 0.02 0.1467
GPT-40AI 068 058 035 024 0.18 023 071 033 012 0.03 0.16 0.04 0.3042
Pixtral AT|(2024b) 032 020 0.17 0.10 0.06 0.06 021 011 001 0.00 0.22 0.03 0.1242
LLaVALiu et al. (2024) 0.03 0.03 0.02 0.08 0.09 0.04 0.04 0.01 0.00 0.00 0.02 0.00 0.0300
InternLMDong et al. (2024) 027 0.16 0.06 0.05 0.04 0.07 0.10 0.03 0.00 0.00 0.25 0.00 0.0858
InternLM-VLDong et al. (2024)  0.15 0.14 0.08 0.04 002 005 002 000 000 0.00 0.22 0.01 0.0600
InstructBLIFDai et al.|(2024) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.0000
SPHINXLin et al. [(2023) 0.11 0.08 0.05 0.02 0.04 0.03 007 006 001 0.00 0.04 0.00 0.0425
LLaMA-3.2Meta (2024) 023 0.18 0.16 0.08 0.08 0.10 0.05 0.00 000 0.00 0.14 0.00 0.0850

We cover the following private models: © Gemini Team et al.| (2023)) has demonstrated remarkable
capabilities in image understanding and reasoning. We adopt Gemini-1.0-Pro-Vision in our
experiments @ GPT-4 Turbo with vision |Achiam et al. (2023) inherent strong text understanding
capabilities from GPT-4 and is equipped with vision capabilities. We use turbo-2024-04-09 for
evaluation. ® Claude-3 |Al|(2024a) is a family of MLLMs strong at advanced reasoning and vision
analysis. We adopt claude-3-sonnet-20240229, the default model used in chat interface and
has comparable speed & cost with GPT Vision. ® GPT-4o Al is a recently released MLLM with one
of the most advanced abilities in processing combination of text, audio, and image outputs. We adopt
gpt-40-2024-05-13 in experiments. ® Pixtral |AI (2024b) is a recent MLLM that demonstrates
strong performance across a series of multimodal tasks. We adopt pixtral-12b-2409 in our
experiments. Additionally, we attempt to evaluate the latest OpenAl GPT ol |OpenAl| (2024);
however, the currently available version only supports text input, preventing us from evaluating it in
our benchmark.

We cover the following open-source models: ® LLaVA |Liu et al.|(2024) performs instruction tuning
on LLaMA and projects image into text embedding space through CLIP Radford et al.| (2021).
We adopt LLAVA-V1.6-VICUNA-7B for evaluation. @ InternLM-XComposer2 |Dong et al. (2024)
enhances ability to understand free-form text-image composition. The latest released checkpoints
include internlm-xcomposer2-7b and internlm-xcomposer2-v1-7b, with the former
focusing on general text-image composition and the latter focusing on VL benchmarks. We adopt
both for evaluation. ® InstructBLIP |Dai et al.| (2024) is a popular MLLM based on pre-trained
BLIP-2 L1 et al.| (2023b) model. We adopt blip2-t5-instruct-flant5xx1 for evaluation.
©® SPHINX [Lin et al.[(2023) unfreezes the LM during pre-training to enhance cross-model alignment.
We adopt SPHINX~-v2-1k for evaluation. @ LLaMA-3.2 Meta (2024) is a recently released MLLM
exceeding on image understanding tasks. We adopt 1 1ama-3.2-90B-Vision in our experiments.
We use the public released checkpoints and codes.

4.2  MAIN TASK (SPATIAL PLANNING) EVALUATION

First, we present the main task evaluation results for the four scenarios, which reflect the general
spatial planning capabilities of existing MLLMs. All the evaluation in this section is conducted under
zero-shot setting without any fine-tuning or in-context learning. Evaluations with in-context learning
and fine-tuning are presented in Sections .5]and 4.6

The performance is demonstrated in Table[2. We also present difficulty levels in the table, which is
measured by the size of the map (3 represents 3x3 maps) in Maze Navigation and by the minimum
number of steps in Blocks World. From the table, we summarize our findings as follows:

MLLMs have considerable room for improvement in spatial planning tasks. We observe that both
private and open-source models exhibit sub-optimal performance in various scenarios. In particular,
open-source models face significant challenges and rarely succeed in these tasks. Besides, even the
most capable private models could frequently make mistakes on relatively simple tasks, such as those
involving a 3x3 size map or a single-step block moving task. Considering that these tasks would be
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Table 3: Decomposed Capability Analysis. Similar to the spatial planning task, each task consists of test with
different difficulties. Results better than 70% are bolded. Please refer to Appendix [E]for the complete evaluation
results for different difficulties.

MAZE NAVIGATION BLOCKSWORD
Task T1 T2 T3 T4 T1 T2 T3 T4
Random Guess 05 025 025 05 017 025 025 05
Gemini|Team et al. (2023) 0.58 056 033 049 086 051 054 0.55
GPT-Vision|Achiam et al.|(2023) 0.56 0.27 046 0.56 0.73 0.80 0.70 0.71
Claude-3 Al (2024a) 045 067 032 061 043 053 049 0.66
GPT-40 Al 058 067 058 074 095 090 090 0.76
Pixtral /AT (2024b) 044 035 033 051 049 0.72 0.63 0.57
LLaVA [Liu et al. (2024) 049 027 021 054 022 021 024 0.55
InternLM Dong et al.|(2024) 048 027 029 058 025 032 026 0.53
InternLM-VL |Dong et al. (2024) 041 020 0.17 047 022 020 020 0.53
InstructBLIP |Dai et al. [(2024) 044 023 021 037 021 0.16 022 047
SPHINX |Lin et al. (2023) 056 028 032 059 024 033 027 0.58

simple for humans, the VSP benchmark poses a substantial challenge to MLLMs, illustrating that
current MLLMs have considerable potential for improvement in spatial planning tasks.

MLLMs face significant difficulties with spatial planning in dynamic and realistic environments.
Based on the experimental results, most models perform worse when tested in dynamic (Collision
scenario) and realistic (Google Map scenario) settings. We identify two major reasons for this:
First, the tasks in the Collision scenario are complex and typically require multiple capabilities. For
example, to assess collision danger, the model must locate both the player and the car on the map,
calculate the time needed for the player to reach the goal, and determine if the car will hit the player
during that time. This poses significant challenges for the models. Second, the inputs in the Google
Map scenario are intricate and contain a series of irrelevant symbols, making it difficult for the model
to accurately interpret the map. The models’ performance in these environments suggests that current
models are not yet equipped to handle spatial reasoning in such complex environments. Consequently,
we focus on the Maze Navigation and Blocks World scenarios in the following experiments to diagnose
the models’ hidden weaknesses in VSP tasks.

Quick performance decay as difficulty increases. We observe a significant drop in the success
rates of MLLMs as task difficulty escalates. For example, GPT-Vision may achieve a success rate of
over 50% on 3x3 size maps, but this plummets to just 10% on 8x8 maps. Analyzing the impact of
increased difficulty, we identify two major challenges for the models: First, increasing size of the
map in Maze Navigation scenario could make it difficult for the model to accurately perceive the
positions of elements within the map. Second, the increase in both map size and the number of steps
required for moving blocks heightens the challenge for the model to reason deeply through the entire
path and devise a complete, viable solution. In the following experiments, we focus on these two
factors and provide in-depth analysis with subsequent tasks.

Challenges in open-source models. Finally, we note that open-source models often face challenges
when evaluating on these tasks. We identify two main factors. @ Context length: Open-source
models typically have significantly shorter context windows compared to private models. Besides,
image embeddings can occupy many tokens. Thus, these models may not have enough capacity to
understand the complete inputs. For example, LLAVA-V1.6-VICUNA-7B is trained with a maximum
context window of 2048 tokens, while each image consumes 576 tokens. Consequently, when fed
with multiple images and relatively long texts in our tasks, the total token length may surpass training,
resulting in poor performance. @ Multiple image input: Our tasks require the model to understand
multiple images interleaved with text inputs, whereas many open-source models are only trained
with single-image inputs, with the image positioned at the start of the input. To further explore
their potential in our tasks, we assess their performance after training on our inputs in Section4.6]
Meanwhile, we suggest that future open-source models could consider increasing their context length
and reducing restrictions on input formats to address complex and realistic tasks effectively.
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Figure 6: Performance comparison with the visual/textual input. When the environment is described by text
instead of image, the performance increases significantly.

4.3 THE PERCEPTION AND REASONING SUB-TASKS EVALUATION

From the previous observation, we identify that spatial perception and reasoning could be two
important capabilities for an agent to successfully perform visual spatial planning. Next, we evaluate
these two abilities through the remaining tasks T1-T4. Similar to previous setting, all the evaluation
is conducted under zero-shot settings.

Table [3 shows the decomposed capability results. GPT-40 and GPT-Vision perform well across
many tasks, showing decent perception and reasoning capabilities. However, the overall performance
of private models hovers around 50%, which is far from satisfactory for agents requiring spatial
intelligence. Furthermore, the performance of open-source models is mostly close to random guessing
on these tasks, indicating significant gaps compared to private models. One caveat is that while T4
focuses on reasoning capabilities, it still relies on the perception capabilities because the input still
contains images. We perform further analysis to disentangle these two abilities in Section

4.4 THE EFFECTS OF VISUAL INPUT PERCEPTION AND REASONING

Previous analysis shows that even current state-of-the-art models have clear deficiencies in various
aspects of visual spatial planning. In this study, we focus on disentangling the effects of perception
and reasoning by exploring the performance gain assuming the model had perfect perception.

The key strategy here is to create a scenario where the model has acquired all necessary information
that would typically be obtained through visual perception. To this end, for every input image, we
produce the corresponding textual inputs and replace those images, as shown in Figure[5. For the
Maze Navigation scenario, we use either pure text descriptions or tables to depict the image. For
the Blocks World scenario, we use pure text descriptions. We do not use tables for the Blocks World
scenario because the number of blocks in each horizontal stack is usually unequal, making it difficult
to form a complete table. Appendix [B]includes complete examples with pure text or table input.

The results are shown in Figure[f] We observe a clear performance improvement when using textual
input across every task. This suggests image perception presents significant challenges for MLLMs,
and poor perception ability is a key factor in the inferior performance observed in previous tasks.
Meanwhile, we observe that even with textual input, Gemini still cannot achieve decent performance
on tasks that require reasoning. This indicates deficiencies in its reasoning capabilities as well.

4.5 IN-CONTEXT LEARNING IN VISUAL SPATIAL PLANNING

In-context learning is a widely-adopted method to enhance LM’s reasoning ability Brown et al. (2020).
In this analysis, we study if it boosts the visual spatial planning capabilities. We included varying
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Table 4: Effects of providing in-context examples.

MAZE NAVIGATION BLOCKSWORD
Task T1 T2 T3 T4 Main T1 T2 T3 T4  Main
Gemini, 0-shot 058 056 033 049 0.17 086 051 054 055 0.03
Gemini, 1-shot 050 0.66 031 048 020 091 068 071 059 0.03
Gemini, 2-shot 053 068 031 051 021 09 076 070 0.61 0.03
Gemini, 4-shot 053 067 035 053 019 091 064 0.69 062 0.06

GPT-Vision, 0-shot  0.56 027 046 056 026 073 080 070 0.71 0.10
GPT-Vision, 1-shot 055 0.50 047 057 028 0.89 084 094 073 0.11
GPT-Vision, 2-shot  0.55 0.63 050 056 030 090 083 095 071 0.16
GPT-Vision, 4-shot 054 0.69 0.54 056 029 090 0.79 09 0.73 -

Table 5: Fine-tuning results for open-source models.

MAZE NAVIGATION BLOCKS OF WORLD
Model Setting T1 T2 T3 T4 Main Ti1 T2 T3 T4  Main

zero-shot 049 027 021 054 005 022 021 024 055 001
fine-tune 053 099 051 093 0.60 1.00 1.00 1.00 1.00 0.97
zero-shot 048 027 029 058 011 025 032 026 053 0.00
fine-tune 0.52 059 091 059 017 029 044 0.69 062 0.09

LLaVA

InternLM

numbers of examples for Gemini and GPT-Vision (refer to Appendix [C|for the input examples). The
result is shown in Table . There are two key observations: First, in-context examples make some
potential contributions, but they are not significant. Introducing examples only benefits in several
sparse cases, such as T2 in Maze Navigation and T3 in Blocks World. Second, scaling in-context
examples generally does not help, as illustrated by the saturated performance in each task.

4.6 FINE-TUNING IN VSP TASKS

Finally, we assess the capabilities of the open-source model through dedicated training. We per-
formed LoRA fine-tuning on 1lava-vl.6-vicuna—-7b and internlm-xcomposer2-"7b.
The models are trained on 10k data points (image-text pairs) for each task and scenario. We use the
default hyperparameters provided in the official repository. More fine-tuning details can be found
in Appendix [D. The results, shown in Table [5, demonstrate clear performance improvements for
both models across a series of tasks, highlighting their potential in spatial planning. Additionally, we
observe that LLaVA shows greater improvement compared to InternLM, suggesting that different
model architectures may exhibit varying levels of efficacy in spatial planning capabilities.

5 CONCLUSION

We present VSP, a benchmark measuring and diagnosing the visual spatial planning capabilities
in MLLMs. VSP quantifies the model’s performance through a series of carefully designed tasks,
with main tasks focusing on general spatial planning abilities and sub-tasks focusing on individual
capabilities needed for the main task. Experiments show that both private and open-source models
fail to generate effective plans for even simple spatial planning tasks, and further analyses expose
their bottlenecks in spatial perception and reasoning abilities. Our work illuminates future directions
for improving MLLMs’ abilities in spatial planning.

6 REPRODUCIBILITY STATEMENT

Our dataset is anonymized and released on https://anonymous.4open.science/r/
Visual-Spatial-Planning-B131/README.md. Besides, the input images and text for
each task can be found in Appendix [A. We also detail how the data are processed in Section and
Appendix [A.
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