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ABSTRACT

Deep neural networks have achieved great success in computer vision, thanks to
their ability in extracting category-relevant semantic features. On the contrary,
irrelevant features (e.g., background and confusing parts) are usually considered
to be harmful. In this paper, we bring a new perspective on the potential benefits
brought by irrelevant features: they could act as references to help identify rel-
evant ones. Therefore, (1) we formulate a novel Category Disentangled Context
(CDC) and develop an adversarial deep network to encode it; (2) we investigate
utilizing the CDC to improve image classification with the attention mechanism
as a bridge. Extensive comparisons on four benchmarks with various backbone
networks demonstrate that the CDC could bring remarkable improvements con-
sistently, validating the usefulness of irrelevant features.

1 INTRODUCTION

With the emergence of deep neural networks, their performance on most vision tasks is surpassing
human-level. It has reached a consensus that the success of deep networks is brought by their
powerful ability in extracting high-level semantic features (Simonyan et al., 2014).

To take more insight into the internal behavior, researchers explain it in the view of attention. The
attention is a physiological mechanism which describes the phenomenon that human’s perception
system could focus on the object of interest (OOI) while suppressing the background. In the last few
years, more and more evidences have shown that deep networks originally have such ability to locate
OOI (e.g., the category-relevant regions) even without requiring any explicit supervision (Zhou et al.,
2015; 2016), therefore enabling them to encode category-relevant features.

To obtain more category-relevant features, researchers design various powerful networks, as stronger
networks usually have better attention (Zagoruyko & Komodakis, 2017). However, since the net-
works are deeper (He et al., 2015a) or wider (Zagoruyko & Komodakis, 2016), the overhead in-
creases accordingly. Other researchers instead control the networks’ attention via formulating ex-
plicit attention modules, directly refining the networks to encode more category-relevant features.
In contrast to the internal guidance, Zagoruyko & Komodakis (2017) attempt to improve the per-
formance of student networks with external guidance by mimicking the attention maps of more
powerful teacher networks inspired by knowledge distillation. However, since in both cases the
encoded relevant features in the attention maps have a large overlap with those in the backbone
networks, the room for improvement is somewhat limited. This brings us to the main topic of this
paper: could we solve the problem in the opposite way? More specifically, can we adopt irrelevant
features as references and forbid backbone networks to encode them? If so, can backbone networks
encode more relevant features with the guidance of pre-extracted category-irrelevant features?

To study these questions, one first needs to specify a proper context that only contains irrelevant
features. To that end, we propose to extract a novel Category Disentangled Context (CDC), which
is expected to encode all the information of the dataset except that is category-relevant. In this case,
the CDC is “complementary” to the category-relevant features. Therefore, the CDC could act as
a good reference to help identify the relevant features. We encode the CDC by designing a novel
conditional auto-encoder to capture the underlying property of the whole dataset with adversarial
training for category disentangling (Mathieu et al., 2016). To demonstrate the potential benefits
that could be brought by irrelevant features, we investigate utilizing the CDC to improve the task
of image classification. Specifically, we adopt the attention mechanism as a bridge by inferring
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Figure 1: (a) Input images; (b) ResNet-50 originally focuses on some background (black rectan-
gles) and misses part of the targets (red rectangles); (c) by utilizing the attention maps Ms inferred
from the CDCs, which indicate category-relevant/irrelevant regions to be encouraged/suppressed;
(d) ResNet-50 could be guided to correctly identify the objects of interest in both images. Note: we
visualize the focuses of networks following (Zagoruyko & Komodakis, 2017).

the attention map from the CDC and then multiplying it with the backbone networks to refine their
attention (e.g., OOI). With the CDC as a reference, backbone networks could purify their encoded
features by eliminating irrelevant information that is contained in the CDC (see the suppressed focus
marked with black rectangles in the top row of Fig. 1), and explore to encode more relevant features
that are not in the CDC (see the added focus marked with red rectangles in the bottom row of Fig. 1),
and thus improve the performance. To the best of our knowledge, this is the first work that utilizes
category-irrelevant features to improve a vision task.

To summarize, the contributions of this work are as follows:

• We introduce a novel CDC that captures the underlying property of the whole dataset except
category-relevant information and develop an adversarial network to obtain it.

• We demonstrate utilizing the CDC to improve image classification in a novel attention manner.

• We validate the effectiveness of the CDC by extensive evaluations with various backbone networks
on four public datasets.

2 CATEGORY DISENTANGLED CONTEXT

Our aim is to design a model that (1) captures the underlying property of the whole dataset; (2) does
not have any category-relevant information. We hypothesize that the information encoded in this
model is complementary to category-relevant features. Therefore, it could act as a good reference to
explore more category-relevant features.

We define the latent featuresTTT ∈ RC×H×W encoded in the above model as “Category Disentangled
Context”, where TTT is an intermediate 3D tensor derived from an input image x. Fig. 2 demonstrates
the structure of our CDC Extraction Network, which is adapted from (Lample et al., 2017) with the
following key components.

Conditional Auto-encoder. The general architecture of our CDC Extraction Network is a con-
ditional auto-encoder. Compared with (Lample et al., 2017), (1) we choose the latent features en-
coded in a latter layer, since we require TTT in a larger spatial resolution, but directly let the original
latent features in a high resolution will hinder the auto-encoder to learn a good embedding (Hin-
ton & Salakhutdinov, 2006); (2) we add a skip-connection since it has been validated in previous
work (Ronneberger et al., 2015) that skip-connection in the auto-encoder could ease training.

Category Disentangling Branch. To remove category-relevant features, we add a category dis-
entangling branch by extending (Lample et al., 2017), which is originally designed for two-attribute
disentangling via attribute flipping and thus could not be directly used in our problem. Specifically,
we iteratively train the discriminator D to classify the correct category based on TTT using the cross
entropy loss, and then update the auto-encoder to output a new TTT to fool D, which is achieved by
minimizing the predicted confidence of the correct category,

Lfool(x, y) = Softmax(V (x))[y], (1)
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Figure 2: The CDC Extraction Network: given an image-category pair (x, y) as input, the conditional
auto-encoder (E1 and E2 are encoders, G1 and G2 are decoders) outputs a reconstructed image x

′
;

D is the discriminator for category disentangling and TTT is the CDC. Note that only the networks
within the green box are executed for generating TTT in the evaluation stage.

Figure 3: Demonstration of applying the CDC-based framework to the feature maps FFF : L1 is the
network to infer spatial attention map M from the pooled CDCs [TTT s

avg;TTT
s
max], L2 and L3 are

embedding networks to project [TTT s
avg;TTT

s
max] and FFF into the same feature space for calculating

channel compatibility; R is the residual unit for adjusting the feature maps after applying attention.
Note that the CDC Extraction Network is pre-trained and its parameters are fixed.

where V (x) is the output of the last fully connected layer of the discriminator for image x, and y
is the corresponding category. We normalize V (x) using the Softmax function such that each item
indicates the predicted probability of one category. We set the weight of Lfool as 0.0001.

Repulsive Loss. To guarantee the conditional vector could really work, we add a repulsive loss
following (Yu et al., 2018; Wang et al., 2019b) to enforce the discrepancy between images generated
with the same TTT but different conditional vectors to be large enough.

Lrepul(T) = max(δ − ||G2(TTT , g(y))−G2(TTT ,1− g(y))||, 0), (2)

where g(y) is a function that represents y as a one-hot vector, δ (e.g., 0.01) is the margin to guarantee
reasonable changes, and the weight of Lrepul is 0.001.

3 UTILIZING THE CDC IN IMAGE CLASSIFICATION

To demonstrate the usefulness of the CDC, we investigate utilizing it to improve image classifi-
cation, which is the basis for almost all the other vision tasks. Specifically, we adopt the attention
mechanism as a bridge to utilize the CDC by inferring the attention map from it and then multiplying
with the feature maps of backbone networks. Unlike the traditional positive attention mechanism
that amplifies category-related neurons (Hu et al., 2018; Woo et al., 2018), our mechanism is in the
opposite way, whose goal is to suppress irrelevant neurons. However, unlike in positive ones, where
amplified neurons could easily contribute to the network, suppressed neurons will leave activated
to deteriorate the performance. Therefore, we multiply the inferred attention maps with the feature
maps before activation, and then add a Residual Unit to learn a residual to adjust the suppressed
feature maps, such that those irrelevant neurons could be totally inactivated by ReLU. Furthermore,
since the inferred attention maps from the CDC are very noisy (see Fig. 4(b)), we adopt a Channel
Compatibility Module to alleviate the effects on less related channels. For residual networks, we
apply the framework to the feature maps outputted by a residual group. For VGG, we choose the
feature maps outputted by the convolutional layer that is just before a maximum pooling layer and
have the same resolution as the CDC to apply our framework (see Fig. 3 for demonstration). In the
following, we will describe the key components.

Infer Attention Maps. Instead of computing the attention maps from 3D tensors directly (Wang
et al., 2017), we conduct two pooling operations to reduce the computational complexity as in (Woo
et al., 2018). Specifically, given the CDC TTT extracted from x, we conduct an average pooling
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Figure 4: Qualitative results for demonstrating the function of each component in our framework:
(a) input images; (b) inferred attention maps Ms from the CDCs; (c) the focused areas by the
second residual group of ResNet-50; (d) the focused areas after applying channel-aware suppres-
sion/amplification; (e) the focused areas after applying RU; (f) the focused areas by the last residual
group; (g) the focused areas by the last residual group of baseline ResNet-50.

and a maximum pooling along the channel axes, generating TTT s
avg and TTT s

max. Then we infer the
attention map M(TTT ) ∈ R1×H×W (will be abbreviated as M ) by forwarding [TTT s

avg;TTT
s
max] to the

convolutional network L1 (see Fig. 3):

M(T) = L1([AvgPool(TTT );MaxPool(TTT )]) = L1([TTT
s
avg;TTT

s
max]), (3)

where [·; ·] denotes concatenation.

Channel Compatibility Module. Suppose FFF (before activation) is immediate feature maps out-
putted by the classification network that have the same spatial resolution as M . Since M may not
be compatible with all the channels of FFF , therefore instead of applying M to all the channels of FFF
equally, we choose only a part of channels to apply M via computing a channel compatibility mea-
sure between TTT and each channel ofFFF . Specifically, we compute the compatibility similar as (Jetley
et al., 2018) by first projecting [TTT s

avg;TTT
s
max] andFFF into the same high-dimensional feature space via

using the embedding networks L2 and L3 respectively, and then conducting dot product between the
embedded features Me ∈ R1×H×W and FFF e ∈ RC×H×W after squeezing the spatial dimensions,
and finally normalizing them with a sigmoid function:

Ci = Sigmoid(
〈
L2([TTT

s
avg;TTT

s
max]), L3(FFF )i

〉
) = Sigmoid(〈Me,FFF e

i 〉), (4)

where 〈·, ·〉 denotes dot product after squeezing the spatial dimensions, and subscript i indicates the
i-th channel. After that, channel-aware suppression could be realized by applying an element-wise
multiplication between each channel of FFF and the attention map M , weighted with the channel
compatibility C, resulting in an irrelevant-suppressed feature FFF

′
:

FFF
′

i = FFF i ⊗M ⊗ Ci, (5)

where ⊗ denotes conducting expansion and then element-wise multiplication.

Residual Unit. After suppression, the activation of task-irrelevant neurons will be decreased (e.g.,
from 0.1 to 0.001), but leave activated (see the black rectangle in Fig. 4). Similarly, the activation
of some task-relevant neurons will be relatively enlarged, but since the positive signal is weak, their
activations are still very low (e.g., from 0.0001 to 0.001, see the red rectangle in Fig. 4). To resolve
these issues, we intentionally add a residual unit R, which is a skip connection as in ResNets (He
et al., 2015a), to adaptively learn to adjust FFF

′
with FFF as input (e.g., adjust an irrelevant neuron with

value 0.001 to -0.001 and thus is inactivated by ReLU or adjust a relevant neuron with value 0.001 to
0.1). Therefore, the final feature maps areReLU(R(FFF )+FFF

′
), with suppressed neurons inactivated.

Multi-layer Extension. Our framework could be applied to intermediate feature maps outputted
by multiple layers with moderate additional computational cost. Specifically, for the feature maps
outputted by another layer that have the same spatial resolution as FFF , Me and M could be directly
reused, while for the feature maps with a different resolution, we could down/up-sample Me and M
to make them consistent with the resolution of the target feature maps.

4 EXPERIMENTS AND DISCUSSIONS

We demonstrate the usefulness of the CDC by taking the task of image classification as an example.
Therefore, we exhaustively evaluate the CDC-based classification framework on four benchmarks,
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Top-1 Acc(%)
Architecture CIFAR-10 CIFAR-100

VGG13 94.18 74.72
VGG13 + DM 93.47 73.62
VGG13 + GM 94.39 75.48
VGG13 + CGM 94.45 75.56
VGG13 + CDCGM 94.71 75.81

Top-1 Acc(%)
Architecture CIFAR-10 CIFAR-100

VGG16 93.85 73.78
VGG16 + DM 93.16 73.42
VGG16 + GM 94.15 75.03
VGG16 + CGM 94.18 74.85
VGG16 + CDCGM 94.33 75.24

Table 1: Comparison results of different context modeling approaches on the CIFAR datasets.

including CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), ImageNet32×32 (Chrabaszcz
et al., 2017) and the full ImageNet (Deng et al., 2009), with various network architectures as
backbones, including VGG (Simonyan & Zisserman, 2014), ResNet (He et al., 2016) and Wide
ResNet (Zagoruyko & Komodakis, 2016) (we refer Wide ResNet with depth i and widening factor
k as WRN-i-k). We first apply ablation studies on CIFAR datasets due to limited computational
resources, and then report more comparisons with the state-of-the-art methods on the other datasets.
For the implementation details and more experiments, please refer to the Appendix.

4.1 CIFAR EXPERIMENTS

Context Modeling Methods. We first investigate whether the CDC is the best context for improv-
ing classification. In a multi-category problem with n classes (denote x as the data and y ∈ {1, ..., n}
as its label), there are four mathematical models that could be utilized for modeling context:

• Discriminative model (DM) attempts to compute p(y|x), with p(1|x)+p(2|x)+ ...+p(n|x) = 1.
This formulation could be implemented with a classification network.

• Generative model (GM) attempts to model p(x) without explicitly considering y. Researchers
usually model it as an auto-encoder.

• Conditional generative model (CGM) attempts to compute p(x|y). Generally, researchers adopt
the architecture of conditional auto-encoder trained in a semi-supervised manner to model it (Che-
ung et al., 2014).

• Category disentangled conditional generative model (CDCGM) attempts to model p(x), with
p(x) = p(x|y), namely the model shouldn’t be relevant to y at all. The readers need to distinguish
between CDCGM and GM, although GM does not explicitly consider y, the information of y is
still included, while CDCGM explicitly enforces the model without containing any information of
y. Our CDC Extraction Network is a CDCGM.

Although all four models could capture the underlying property of a dataset, their abilities vary a lot.
Discriminative models focus on classification boundaries, whereas generative models emphasize the
data generation process, and thus generative models could carry richer information (Tu, 2007). In
addition, among the three generative models, only CDCGM does not encode any information of y.

We investigate the benefits brought by the context encoded in the above four modeling methods.
For DM, we choose WRN-16-10, while for GM and CGM, the networks are simply adapted from
our CDC Extraction Network by canceling the introducing of conditional vector and/or removing
the category disentangling branch. Comparison results on the CIFAR-10 and CIFAR-100 datasets
are reported in Tab. 1. It could be seen that both VGG13 and VGG16 obtain a certain amount of
improvements by “attending” the context computed by generative models. In addition, the final
results of attending the context in GM and CGM are very similar (e.g., 94.39% and 94.35% on
CIFAR-10), since both of their models are relevant to the category, no matter explicitly modeled
or not. Obviously, our approach that adopts the CDC performs the best, validating that the CDC
could bring more guidance. Interestingly, the performance drops heavily by “attending” the context
in a discriminative model, although the approach (Zagoruyko & Komodakis, 2017) that enforces
their attention maps to be exactly the same could work (see Tab. 3). The reason is probably that the
information of classification boundaries alone is not suitable for the trainable attention mechanism.

Residual Unit (RU). To demonstrate the importance of RU, we train another VGG13/16 with ap-
plying the CDC-based framework that has no RU. The results in Tab. 2 show that both networks
obtain slight improvement without the help of RU, and the performance is far behind to that of the
full framework, validating that the attention maps inferred from the CDC could be hardly utilized
without RU. In addition, we also investigate whether the improvement is brought by RU alone via
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Top-1 Acc(%)
Architecture CIFAR-10 CIFAR-100

VGG13 94.18 74.72
VGG13 + Ours w/o RU 94.24 74.98
VGG13 + Ours w/o CC 94.60 75.62
VGG13 + Ours w/o RL 94.41 75.37
VGG13 + OursN 94.40 74.48
VGG13 + OursH 94.06 75.20
VGG13 + Ours 94.71 75.81
VGG13 + Ours after ReLU 94.51 75.33
VGG13 + RU 94.22 75.03

Top-1 Acc(%)
Architecture CIFAR-10 CIFAR-100

VGG16 93.85 73.78
VGG16 + Ours w/o RU 94.04 74.21
VGG16 + Ours w/o CC 94.28 74.54
VGG16 + Ours w/o RL 94.19 74.36
VGG16 + OursN 94.23 74.73
VGG16 + OursH 93.95 74.11
VGG16 + Ours 94.33 75.24
VGG16 + Ours after ReLU 94.12 74.71
VGG16 + RU 94.06 73.84

Table 2: Ablation studies on the CIFAR-10/100 datasets. Note that OursN indicates the results of
applying CDGC to one layer with 16× 16 resolution, OursH indicates the results of applying CDGC
to one layer with 8 × 8 resolution, and Ours indicates the results of applying CDGC to both layers.

Top-1 Acc(%)
Architecture CIFAR-10 CIFAR-100

VGG13 94.18 74.72
VGG13 + AT (WRN-16-10) 94.43 75.58
VGG13 + Ours 94.71 75.81
VGG16 93.85 73.78
VGG16 + AT (WRN-16-10) 94.23 74.76
VGG16 + Ours 94.33 75.24

Top-1 Acc(%)
Architecture CIFAR-10 CIFAR-100

WRN-16-10 94.58 77.72
WRN-16-10 + AT (WRN-28-10) 94.86 78.77
WRN-16-10 + Ours 95.23 79.06
WRN-16-10 + SE 95.81 80.38
WRN-16-10 + SE + Ours 96.02 80.86
WRN-16-10 + CBAM 95.09 79.51
WRN-16-10 + CBAM + Ours 95.60 80.38
WRN-28-10 95.18 79.15

Table 3: Comparison results on CIFAR-10/100. Note that the architecture described in the bracket
after AT denotes the corresponding teacher network.

applying RU to the baseline networks without using the attention mechanism. The limited improve-
ments reported in Tab. 2 validate that RU could not work without the attention framework. Please
refer to Fig. 4(d,e) and Fig. 6(d,e) in the Appendix to see the qualitative effects brought by RU.

Repulsive Loss (RL). We demonstrate the importance of RL by training another CDC Extraction
Network without adding RL, and then applying the corresponding CDC to VGG13/16 to evaluate
the performance. The results in Tab. 2 show that the framework using the CDC extracted without
adding repulsive loss could still improve the classification performance, but is consistently worse
than that of the full version, validating the importance of repulsive loss.

Channel Compatibility. To investigate the benefits brought by channel compatibility (CC), we
compare the results of using CC or not. The results in Tab. 2 show that, without channel compati-
bility, the models with applying our framework could still outperform the baseline networks, but are
worse than their full versions, validating the usefulness of channel compatibility.

Multi-layer. We investigate the usefulness of applying the framework to multiple layers. The
results in Tab. 2 show that the performance of only applying the CDC to the layer with 16 × 16
(8 × 8)’s output is worse than applying it to both two layers, validating the usefulness of extending
to multiple layers. We have also tried to apply the CDC to more layers, but the improvement is very
limited compared to the increased overhead.

Apply Attention After ReLU. We investigate whether we could apply the framework to the feature
maps after activation. The results in Tab. 2 show that our framework could also work, but the
performance is a bit worse than that of applying attention before activation, validating that our
framework could utilize ReLU to inactivate irrelevant features instead of only suppressing them.

Comparisons with the State-of-the-art Methods. We make comprehensive comparisons with
the state-of-the-art methods using various backbone networks (e.g., VGG and WRN) on the CIFAR
datasets. The results in Tab. 3 show that networks with applying the CDC-based framework could
bring substantial improvements consistently. We would like to point out that by applying the CDC-
based framework, WRN-16-10 achieves comparable results with WRN-28-10, validating that our
framework provides a useful alternative to simply deepening or widening networks. Besides, our
method outperforms the approach of Attention Transfer (AT) (Zagoruyko & Komodakis, 2017) in
all cases including two VGG networks with WRN-16-10 as the teacher and WRN-16-10 with WRN-
28-10 as the teacher. Note that, due to the degradation problem (He et al., 2015a), VGG16 performs
slightly worse than VGG13, which also indicates the importance of exploring other directions to
improve networks. Although the accuracies of Squeeze-and-Excitation Networks (SE) (Hu et al.,
2018) and Convolutional Block Attention Module (CBAM) (Woo et al., 2018) are slightly higher
than ours, their methods could be further improved (e.g.,∼0.5%/0.9% for CBAM) by combining our
framework, indicating that our framework is complementary to traditional attention-based methods.
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Acc(%)
Architecture Top-1 Top-5

ResNet-32 37.31 62.97
ResNet-32 + AT (ResNet-56) 37.20 62.74
ResNet-32 + Ours 40.37 66.06
ResNet-32 + SE 37.41 63.02
ResNet-32 + SE + Ours 40.11 65.82
ResNet-32 + CBAM 37.82 63.35
ResNet-32 + CBAM + Ours 40.22 65.88

Acc(%)
Architecture Top-1 Top-5

ResNet-56 42.35 68.01
ResNet-56 + AT (ResNet-110) 42.48 68.18
ResNet-56 + Ours 44.43 70.18
ResNet-56 + SE 42.53 68.29
ResNet-56 + SE + Ours 45.08 70.57
ResNet-56 + CBAM 43.18 68.92
ResNet-56 + CBAM + Ours 44.55 70.06

Acc(%)
Architecture Top-1 Top-5

ResNet-110 49.08 74.35
ResNet-110 + AT (ResNet-164) 49.03 74.11
ResNet-110 + Ours 51.36 75.93
ResNet-110 + SE 49.18 74.32
ResNet-110 + SE + Ours 50.29 75.17
ResNet-110 + CBAM 49.43 74.55
ResNet-110 + CBAM + Ours 50.91 75.72

Table 4: Classification results on ImageNet32×32. Note that the architecture described in the
bracket after AT denotes the corresponding teacher network.

Figure 5: Row 1: input images; Row 2: the inferred attention maps Ms from the CDCs; Row 3:
the focused areas by baseline ResNet-50; Row 4: the focused areas by ResNet-50 after applying the
CDC-based framework.

4.2 IMAGENET32×32 EXPERIMENTS

To demonstrate the superiority of our method, we perform extensive comparisons with the state-of-
the-art methods on ImageNet32×32 (Chrabaszcz et al., 2017). Tab. 4 shows that all three ResNets
obtain substantial improvements (e.g., 2∼3% on top-1 accuracy) after applying the CDC-based
framework, demonstrating that our approach could generalize well on the large-scale dataset with
more categories. In contrast, CBAM- and SE-based approaches improve the baseline networks
slightly. Whereas, for the AT-based methods, we could not see any improvement, which probably
due to AT-based methods require attention maps to be with high resolutions. In addition, by combin-
ing our framework with CBAM or SE, we could see another improvement, validating that utilizing
the CDC in an attention manner is complementary to traditional attention-based methods.

Complexity. To make our framework scalable, it must provide an effective trade-off between
model complexity and performance. Therefore, we use PARAMs (the number of parameters) and
FLOPs (floating-point operations per second) to measure the complexity of the framework. Without
considering the network for extracting the CDC, the PARAMs of our framework is 0.034M, while
that of ResNet-32, ResNet-56, and ResNet-110 is 0.53M, 0.92M and 1.79M. For the FLOPS, our
framework is 3.61M while that of ResNet-32, ResNet-56, and ResNet-110 is 68.19M, 125.51M and
254.46M. We do not report the complexity of the CDC Extraction Network, since it is pretrained and
could be reused unlimitedly for different models on the same dataset. Indeed, the CDC Extraction
Network requires 0.35M PARAMs and 7.21M FLOPs, which are acceptable, especially for its low
FLOPs. Overall, our CDC-based framework is scalable.

4.3 FULL IMAGENET EXPERIMENTS

We conduct experiments on the full ImageNet (Deng et al., 2009) to validate our framework could
handle high-resolution images. The results on the validation set reported in Tab. 5 show that by
applying the CDC-based framework, all backbone networks obtain large margins of improvement
(e.g., 2.4% top-1 accuracy increment for ResNet-50). Besides, our framework with all four ResNets
as the backbones outperforms the corresponding SE- and CBAM-based methods. Furthermore, we
would like to point out that our approach with ResNet-50 performs better than ResNet-101. Overall,
our framework perform well on large-scale datasets in high resolutions.

Visualization. To demonstrate how the CDC bootstrap the backbone networks intuitively, we visu-
alize the focused areas by the last residual group of the original ResNet-50 and those after utilizing
the CDC following (Zagoruyko & Komodakis, 2017), together with the attention maps Ms inferred
from the CDCs in Fig. 5. It could be seen that ResNet-50 originally fails to locate the objects
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Acc(%)
Architecture Top-1 Top-5

ResNet-18 70.33 89.38
ResNet-18 + SE 70.48 89.60
ResNet-18 + CBAM 70.64 89.83
ResNet-18 + Ours 71.38 90.12
ResNet-34 73.21 91.32
ResNet-34 + SE 73.76 91.56
ResNet-34 + CBAM 73.89 91.73
ResNet-34 + Ours 74.97 92.11

Acc(%)
Architecture Top-1 Top-5

ResNet-50 75.49 92.43
ResNet-50 + SE 76.38 92.89
ResNet-50 + CBAM 77.31 93.44
ResNet-50 + Ours 77.85 93.71
ResNet-101 76.52 93.04
ResNet-101 + SE 77.28 93.31
ResNet-101 + CBAM 78.39 94.25
ResNet-101 + Ours 78.63 94.42

Table 5: Classification results on the full ImageNet dataset.
of interest, and all these locations are correctly identified with the guidance of Ms, validating the
usefulness of the CDC. For more visualizations, please refer to Fig. 6 in the Appendix.

5 RELATED WORK

Background Modeling. Most studies in the computer vision community focus on modeling objects
in the foreground, leaving background modeling (Bewley & Upcroft, 2017) less investigated. Until
very recently, some pioneering work (Zhu et al., 2017; Xiao et al., 2020) have demonstrated that
background contains many useful hints for improving image recognition, since it usually has strong
semantic correlation with the foreground objects. Compared with them, our work is to model the
“semantic” background that is not relevant to the foreground objects at all.

Visual Attention is a basic concept in psychology (Bundesen, 1990). In the field of computer vision,
current attention-based methods could be classified into two categories. Post-hoc attention methods
analyze the attention mechanism mostly to reason for the task of visual classification (Simonyan
et al., 2014; Cao et al., 2015; Zhang et al., 2016; Zhou et al., 2016; Selvaraju et al., 2017). Besides
analyzing, Zagoruyko & Komodakis (2017) defined the gradient-based and activation-based atten-
tion maps, and improved the student networks by mimicking the attention maps of a more powerful
teacher network. Trainable attention methods instead incorporate the extraction of attention and task
learning into an end-to-end architecture and are mostly applied to query-based tasks. By projecting
the query instance into the same high-dimensional space as the target, relevant spatial regions of the
query will be highlighted to guide the desired inference (Jetley et al., 2018; Anderson et al., 2018;
Chen et al., 2017; Bahdanau et al., 2014). In contrast to those approaches that adopt query-based
attention, self-attention based methods attempt to learn the attention maps by themselves (Hu et al.,
2018; Wang et al., 2017; Woo et al., 2018; Wang et al., 2019a; Bello et al., 2019; Parmar et al., 2019;
Zhao et al., 2020). Our approach consists both the post-hoc and trainable attention modules. For the
extraction of the CDC, it could be considered as a post-hoc attention method. The most similar work
to ours is (Zagoruyko & Komodakis, 2017), as they also attempt to adopt the “context” of a teacher
network to guide the student network. However, the difference is still two-fold. Firstly, they apply
the context as a “hard” constraint, enforcing the two attention maps to be exactly the same, such
that some valuable information of the student network is forced to be discarded; while we apply it
as soft guidance, and thus could take advantage of both networks. Secondly, unlike their approach
that obtains the context via a deep network which is a discriminative model, the CDC is encoded
in a category disentangled conditional generative model, and thus could bring more guidance. For
“attending” the CDC, it is a trainable attention method. Compared with (Hu et al., 2018; Woo et al.,
2018) that encourage feature activation on category-relevant regions, our mechanism is in the op-
posite way. Besides, we adopt the CDC as external knowledge to infer the attention maps instead
of totally by the backbone networks themselves. Last but not least, since our key idea is to utilize
category-irrelevant features, it is complementary to traditional attention-based methods.

6 CONCLUSION

We have presented a novel Category Disentangled Context (CDC), which is a kind of category-
irrelevant features capturing the underlying property of the whole dataset. We demonstrate its
usefulness by utilizing it as a reference to guide image classification networks, with the attention
mechanism as a bridge. Extensive experimental results validate the CDC could bring substantial
improvements for various backbone networks and is superior to the state-of-the-art methods. In the
future, we plan to apply the CDC to handle more complex vision applications, e.g., generating bet-
ter region proposals and making more accurate predictions on them in object detection. Overall, we
think that our interesting findings will help further advance the research on irrelevant features, and
understanding convolutional neural networks in general.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The CDC Extraction Network.

We adapt our CDC Extraction Network from (Lample et al., 2017). Denote c(i, j, k) as a convolution
layer, where each convolution uses kernel of size i × i, with a stride of j, and a padding of k, and
let C(i, j, k) be a group of layers with c(i, j, k), BatchNorm (BN) and ReLU. For images with the
resolution of 32×32, our encoder consists of the following six groups: C(4, 2, 1) − C(3, 1, 1) −
C(4, 2, 1) − C(3, 1, 1) − C(4, 2, 1) − C(4, 2, 1), with the first four groups belonging to E1. The
decoder is symmetric to the encoder, except replacing the convolutions in C(4, 2, 1) with transposed
convolutions and appending the conditional vector as additional constant input channels for all the
layers of G2 (see Fig. 2). Therefore, the final resolution of the CDC is 8×8. For images with the
resolution of 224×224, the second C(3, 1, 1) group is replaced by C(4, 2, 1), resulting in 28×28’s
CDC. For images on ImageNet-150K with the resolution of 128×128, the encoder is defined as
C(4, 2, 1)− C(4, 2, 1)− C(4, 2, 1)− C(4, 2, 1)− C(4, 2, 1)− C(4, 2, 1) for a 8×8 CDC, and we
replace the fourth convolution group with C(3, 1, 1) for a 16×16 CDC. Note that, for the cases with
more than ten categories, we additionally adopt a fully connected network with two layers to embed
the one-hot category vector into a ten-dimensional conditional vector. We train the CDC Extraction
Network in the same way as (Lample et al., 2017). Note that, for each dataset, the CDC Extraction
Network is required to be trained only once.

The CDC-based Framework.

R and L3 are with the same structure of BN-ReLU-c(1, 1, 0)-BN-ReLU-c(3, 1, 1)-BN-ReLU-
c(1, 1, 0), which uses the bottleneck structure to reduce complexities. For the experiments with
32×32 images, channel numbers are reduced to 1

2 of the original ones, while 1
4 for 224×224 and

128×128 images. L1 is with c(3, 1, 1)-BN-ReLU-c(3, 1, 1)-BN-Sigmoid, and L2 is with c(3, 1, 1)-
BN-ReLU-c(3, 1, 1). To fit the CDC Extraction Network, we normalize all the input images into
[-1, 1], except for those experiments on the full ImageNet, where mean/std normalization is applied,
and thus we should transform them back into [-1,1] before feeding to the CDC Extraction Network.
We adopt the two-layer CDC-based framework by adding a 2×2 up-sampling of the CDC.

Backbones.

For VGG, we add BatchNorm (Ioffe & Szegedy, 2015) while leaving Dropout (Srivastava et al.,
2014) removed, and use one fully connected layer. The implementation of ResNets and Wide
ResNets are identical to the original papers.

Training Details.

We adopt SGD using default parameters as the optimizer with a batch size of 128 for CIFAR datasets
and ImageNet32×32, 32 for ImageNet-150K, and 256 for ImageNet. The initial learning rate for
CIFAR datasets is set as 0.1, and it is divided by 5 at 60, 120 and 160 epochs for total 200 epochs.
For ImageNet32×32 and ImageNet-150K, we start the learning rate with 0.01, and divide it by 5
every 10 epochs for total 40 epochs. For ImageNet, the initial learning rate of ResNets is set as 0.1,
and we divide it by 10 at 30, 60 and 90 epochs for a total of 100 epochs. For data augmentation,
we follow (Zagoruyko & Komodakis, 2016) on CIFAR datasets and ImageNet32×32 but without
mean/std normalization. Similarly, we horizontally flip each image and randomly take a 128×128
crop with 16 pixels padded on each side on ImageNet-150K. While for ImageNet, we apply minimal
data augmentation including random resized crop, flip and the simple mean/std normalization. We
initialize the weights following (He et al., 2015b) and warm up the training with a learning rate of
0.001 for 2 epochs. The final results are averaged based on three independent runs. For each run,
we evaluate the single-crop performance at each epoch on NVIDIA Tesla V100 GPUs and report
the best one.

All the CDC Extraction Networks in our experiments are trained with the Adam optimizer, using a
learning rate of 0.0002, β1=0.5, and β2=0.999. We train the models with a batch size of 32 for 600
epochs on CIFAR datasets, 300 epochs on ImageNet-150K, and 50 epochs on ImageNet32×32 and
the full ImageNet datasets.

We reproduce all the networks in PyTorch (Paszke et al., 2019) without any model pre-training.
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Table 6: Classification results on ImageNet-150K.

Acc(%)
Architecture Top-1 Top-5

ResNet-101 78.70 94.55
ResNet-101 + AT (teacher: ResNet-152) 78.40 94.35
ResNet-101 + Ours (8×8) 79.00 95.10
ResNet-101 + Ours (16×16) 80.85 95.15
ResNet-101 + SE 79.30 94.35
ResNet-101 + SE + Ours 80.65 94.80
ResNet-101 + CBAM 78.80 94.20
ResNet-101 + CBAM + Ours 80.35 95.50

A.2 IMAGENET-150K EXPERIMENTS

We also conduct experiments on the ImageNet-150K dataset (Liu et al., 2017), which is a subset of
ImageNet and also contains 1k categories but with 150 images per category (148 for training, 2 for
testing). We resize all the images into 128×128.

Experimental results are depicted in Tab. 6. It is shown that ResNet-101 obtains the largest improve-
ment by applying the CDC-based framework, compared with three other state-of-the-art methods:
CBAM (Woo et al., 2018), SE (Hu et al., 2018) and AT (Zagoruyko & Komodakis, 2017) (e.g.,
80.85% vs. 78.40%, 79.30% and 78.80% top-1 accuracy), validating that our approach could gener-
alize well on the datasets with higher resolutions. Particularly, AT could hardly work on ResNet-101
with ResNet-152 as the teacher. This is probably due to ResNet-101 has reached the performance
limit in this dataset as with limited training images. Without depending on other networks, CBAM-,
SE-based methods and our framework do not suffer from it. In addition, by combining our frame-
work with CBAM or SE, we could see another improvement, validating that utilizing the CDC in an
attention manner is complementary to traditional attention-based methods.

Different Resolutions of the CDC. We also investigate whether different resolutions of the CDC
will influence the final results. It is shown that the framework with the CDC in a higher resolution
(e.g., 16×16) performs better. Therefore, we attempt to obtain higher resolutions of the CDC to
make more comparisons. However, we find the CDC Extraction Network could hardly converge,
indicating the challenging of disentangling latent features with a high resolution.

A.3 MORE VISUALIZATIONS AND QUALITATIVE RESULTS

Fig. 6 visualizes the focused areas by the last residual group of the original ResNet-50 and the one
after applying our proposed CDC-based framework following (Zagoruyko & Komodakis, 2017),
together with their corresponding attention maps inferred from the CDCs and some intermediate
results to demonstrate the usefulness of each component in our framework.
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Figure 6: Qualitative results for demonstrating the function of each component in our framework:
(a) input images; (b) inferred attention maps Ms from the CDCs; (c) the focused areas by the
second residual group of ResNet-50; (d) the focused areas after applying channel-aware suppres-
sion/amplification; (e) the focused areas after applying RU; (f) the focused areas by the last residual
group; (g) the focused areas by the last residual group of baseline ResNet-50.
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