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ABSTRACT

The 2D human pose estimation (HPE) is a basic visual problem. However, its
supervised learning requires massive keypoint labels, which is labor-intensive
to collect. Thus, we aim at boosting a pose estimator by excavating extra un-
labeled data with semi-supervised learning (SSL). Most previous SSHPE meth-
ods are consistency-based and strive to maintain consistent outputs for differently
augmented inputs. Under this genre, we find that SSHPE can be boosted from
two cores: advanced data augmentations and concise consistency training ways.
Specifically, for the first core, we discover the synergistic effects of existing aug-
mentations, and reveal novel paradigms for conveniently producing new superior
HPE-oriented augmentations which can more effectively add noise on unlabeled
samples. We can therefore establish paired easy-hard augmentations with larger
difficulty gaps. For the second core, we propose to repeatedly augment unlabeled
images with diverse hard augmentations, and generate multi-path predictions se-
quentially for optimizing multi-losses in a single network. This simple and com-
pact design is interpretable, and easily benefits from newly found augmentations.
Comparing to state-of-the-art SSL approaches, our method brings substantial im-
provements on public datasets. Code will be released for academic use.

1 INTRODUCTION

The 2D human pose estimation (HPE) aims to detect and represent human parts as sparse 2D key-
point locations in RGB images. It is the basis of many visual tasks such as action recognition (Yan
et al., 2018; Duan et al., 2022), person re-identification (Zhao et al., 2017; Sarfraz et al., 2018),
3D pose lifting (Nie et al., 2023; Dabhi et al., 2024) and 3D human shape regression (Pavlakos
et al., 2018; 2019). Modern data-driven HPE has been substantially improved by generous deep
supervised learning approaches (Cao et al., 2017; Cheng et al., 2020; Xu et al., 2022; Yang et al.,
2023; Tan et al., 2024). This greatly benefits from the collection and annotation of many large-scale
public HPE datasets (Andriluka et al., 2014; Lin et al., 2014; Wu et al., 2019). However, compared
to image classification and detection tasks requiring plain labels, obtaining accurate 2D keypoints
from massive images is laborious and time-consuming. To this end, some researches (Xie et al.,
2021; Moskvyak et al., 2021; Wang et al., 2022; Huang et al., 2023; Yu et al., 2024) try to alleviate
this problem by introducing the semi-supervised 2D human pose estimation (SSHPE), which can
subtly leverage extensive easier obtainable yet unlabeled 2D human images in addition to partial
labeled data to improve performance. Although methods (Xie et al., 2021; Huang et al., 2023) have
improved the accuracy of SSHPE task, they overlooked two fundamental questions:

Q1: How to judge the discrepancy of unsupervised data augmentations with different difficulty
levels? As shown in Fig. 1a, for a batch of unlabeled images I, its easy augmentation Ie and hard
augmentation Ih are generated separately in (Xie et al., 2021). Then, predicted heatmap He of Ie
is used as a pseudo label to teach the network to learn the harder counterpart Ih with its yielded
heatmap Hh. Xie et al. (2021) finds that the large gap between two augmentations (Ie, Ih) matters.
Essentially, this is a pursuit for more advanced data augmentations in SSHPE. To rank augmentations
of different difficulty levels, Xie et al. (2021) observes precision degradation of a pretrained model
by testing it on a dataset after corresponding augmentation. However, we declare that this manner
is not rigorous. An obvious counter-case is that over-augmented samples approaching noise will get
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(a) Single-Network (b) Dual-Network (c) Triple-Network

Figure 1: Frameworks of existing semi-supervised human pose estimation (SSHPE) methods in-
cluding (a) Single-Network and (b) Dual-Network which are proposed by (Xie et al., 2021), and (c)
Triple-Network proposed by (Huang et al., 2023).

worst evaluation results, but such hard augmentations are meaningless. Contrastingly, we deem that
a persuasive ranking requires independent training for each augmentation. We answer this question
in detail in Sec. 3.1.

Q2: How to generate multiple unsupervised signals for consistency training efficiently and
concisely? Previous work (Xie et al., 2021) proposes to use a Single-Network to perform the un-
supervised consistency training on the easy-hard pair (Ie, Ih). It also gives a more complicated
Dual-Network as in Fig. 1b for cross-training of two easy-hard pairs. SSPCM (Huang et al., 2023)
even constructs a Triple-Network as in Fig. 1c for interactive training of three easy-hard pairs. This
pattern of adding more networks with the increase of unsupervised signal pairs can certainly bring
gains. But this is cumbersome and will decelerate the training speed proportionally. In practice,
considering that augmentations are always performed on the same input, we can repeatedly aug-
ment I multiple times with n diverse hard augmentations, and generate multi-path easy-hard pairs
{(Ie, Ih1), (Ie, Ih2), ..., (Ie, Ihn)}. In this way, we can use only one single network (refer Fig. 6a)
to optimize n pairs of losses. This is also applicable to dual networks (refer Fig. 6b). We discuss
this question in detail in Sec. 3.2.

In this paper, we mainly revisit Q1 and Q2 to boost SSHPE. For Q1, after properly ranking existing
basic augmentations (DeVries & Taylor, 2017; Zhang et al., 2018; Yun et al., 2019; Cubuk et al.,
2018; 2020), we naturally try to extend it to discover new strong augmentations through reasonable
sequential combinations inspired by the AutoAug families (Cubuk et al., 2018; Lim et al., 2019;
Hataya et al., 2020; Zheng et al., 2022). Rather than trivial enumeration, we notice the synergistic
effects between different augmentations, and reveal novel paradigms for easily generating superior
combinations. Our paradigms for the SSHPE task contain three principles: (P1) Do not combine
MixUp-related augmentations. (P2) Try to utilize the synergistic effects. (P3) Do not over-combine
too many augmentations. These principles have favorable interpretability, and bypass painstaking
designs in other advanced augmentations (Hendrycks et al., 2020; Müller & Hutter, 2021; Zheng
et al., 2022; Pinto et al., 2022; Liu et al., 2022; Han et al., 2022). For Q2, we quantitatively vali-
dated the superiority of multi-path design over commonly used heatmaps fusion (Radosavovic et al.,
2018) and confidence masking Xie et al. (2020a); Huang et al. (2023). Combining it with newly
found advanced augmentations, our Single-Network based approach can surpass the original Dual-
Network (Xie et al., 2021) and come close to SSPCM using a Triple-Network.

In summary, our contributions are three-folds: (1) We comprehensively evaluated the difficulty lev-
els of existing data augmentations suitable for the SSHPE task, validated their synergistic effects
by properly combining different basic augmentations, and presented novel combination paradigms
which are intuitively interpretable. (2) We proposed to generate multi-path predictions of separately
strongly augmented samples for training only one single model, rather than adding auxiliary net-
works. Thus, we can optimize multiple unsupervised losses efficiently and concisely, and benefit
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from distinct superior augmentations. (3) We achieved new SOTA results on public SSHPE bench-
marks with less training time and parameters under same settings of previous methods.

2 RELATED WORK

Semi-Supervised Learning (SSL) originated in the classification task by exploiting a small set
of labeled data and a large set of unlabeled data. It can be categorized into pseudo-label (PL)
based (Radosavovic et al., 2018; Oliver et al., 2018; Xie et al., 2020b; Sohn et al., 2020; Guo &
Li, 2022; Wang et al., 2023) and consistency-based (Laine & Aila, 2016; Tarvainen & Valpola,
2017; Berthelot et al., 2019; Xie et al., 2020a; Zhang et al., 2021; Gui et al., 2023; Huang et al.,
2024). PL-based methods iteratively add unlabeled images into the training data by pseudo-labeling
them with a pretrained or gradually enhanced model. It needs to find suitable thresholds to mask
out uncertain samples with low-confidence, which is a crucial yet tricky issue. Consistency-based
methods enforce model outputs to be consistent when its input is randomly perturbed. They have
shown to work well on many tasks. For example, MixMatch (Berthelot et al., 2019) combines the
consistency regularization with the entropy minimization to obtain confident predictions. FixMatch
(Sohn et al., 2020) utilizes a weak-to-strong consistency regularization and integrates the pseudo-
labeling to leverage unlabeled data. FlexMatch (Zhang et al., 2021) and FreeMatch (Wang et al.,
2023) adopt the curriculum learning and adaptive thresholding based on FixMatch, respectively.
CRMatch (Fan et al., 2023) and SAA (Gui et al., 2023) try to design strategies and augmentations
to enhance the consistency training. These SSL methods give us primitive inspirations.

Semi-Supervised Human Pose Estimation (SSHPE) is relatively less-studied comparing to other
visual tasks classification and object detection. A few SSHPE methods are based on pseudo labeling
(Wang et al., 2022; Springstein et al., 2022) or consistency training (Xie et al., 2021; Moskvyak
et al., 2021; Li & Lee, 2023; Huang et al., 2023). SSKL (Moskvyak et al., 2021) designs a se-
mantic keypoint consistency constraint to learn invariant representations of same keypoints. It has
been evaluated on small-scale HPE benchmarks MPII (Andriluka et al., 2014) and LSP (Johnson
& Everingham, 2011), instead of the larger COCO (Lin et al., 2014). Following it, PLACL (Wang
et al., 2022) introduces the curriculum learning by auto-selecting dynamic thresholds for produc-
ing pseudo-labels via reinforcement learning. Inspired by co-training (Qiao et al., 2018) and dual-
student (Ke et al., 2019), Dual-Network (Xie et al., 2021) points out the typical collapsing problem in
SSHPE, and proposes the easy-hard augmentation pair on the same input to imitate teacher-student
signals without relying on Mean Teacher (Tarvainen & Valpola, 2017). SSPCM (Huang et al., 2023)
extends the Dual into Triple by adding an auxiliary teacher for interactive training in multi-steps.
It designs a handcrafted pseudo-label correction based on the predicted position inconsistency of
two teachers, and has achieved SOTA performances. Still based on Dual-Network, Pesudo-HMs
(Yu et al., 2024) utilizes the cross-student uncertainty to propose a threshold-and-refine procedure,
which can denoise and select reliable pseudo-heatmaps as targets for learning from unlabeled data.
While, in this paper, we revisit the less efficient consistency training way in (Xie et al., 2021; Huang
et al., 2023), and propose to upgrade the Single-Network by multi-path predictions.

Unsupervised Data Augmentations The UDA (Xie et al., 2020a) has emphasized and verified the
key role of high-quality noise injection (e.g., data augmentations) in improving unsupervised con-
sistency training. It utilizes advanced augmentations (Cubuk et al., 2018; 2020) to promote the SSL
classification. Then, Xie et al. (2021) transfers the positive correlation between strong augmenta-
tions and SSL performance to the HPE field. It introduces a more advanced augmentation called
Joint Cutout inspired by Cutout (DeVries & Taylor, 2017). Similarly, SSPCM (Huang et al., 2023)
provides a harder keypoints-sensitive augmentation Cut-Occlude inherited from CutMix (Yun et al.,
2019). In this paper, we thoroughly revisit existing data augmentations suitable to SSHPE, give a
rank of their difficulty levels by controlled trainings, and produce simple paradigms for getting novel
superior joint-related augmentations. We also compare them with other well-designed counterparts
(Cubuk et al., 2020; Müller & Hutter, 2021; Han et al., 2022) to reveal our advantages.

3 EMPIRICAL STUDIES

Problem Definition: The task of 2D HPE is to detect k body joints in an image I ∈ Rh×w×3. The
state-of-the-art methods (Xiao et al., 2018; Sun et al., 2019) tend to estimate k Gaussian heatmaps
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Figure 2: Comparison of applying differ-
ent easy-hard pairs for training a Single-
Network model as in Fig. 1a. We can sort
these six augmentations indisputably based
on either best mAP results or distinct con-
vergence curves.

Figure 3: Illustrations of two novel superior combina-
tions TJOCO and TJCCM . Either of them is a sequen-
tial operations using ready-made collaborative aug-
mentation. And TJO and TCM introduce extra patches
cropped from other images which are not displayed.

H ∈ Rh
s ×

w
s ×k downsampled s times. For inference, each keypoint is located by finding the pixel

with largest value in its predicted heatmap. We denote the labeled and unlabeled training sets as
Dl={(Ili,Hl

i)}|Ni=1 and Du={Iui }|Mi=1, respectively. Here, the Ili or Iui means a labeled or unlabeled
image sample, respectively. And N or M is the total number of image samples. The Hl are ground-
truth heatmaps generated using 2D keypoints. For supervised training of the network f , we calculate
the MSE loss:

Ls = EI∈Dl ||f(Te(I))− Te(H)||2, (1)
where Te represents an easy affine augmentation including a random rotation angle from [−30◦, 30◦]
and scale factor from [0.75, 1.25] (denoted as TA30). For unlabeled images, we calculate the unsu-
pervised consistency loss:

Lu = EI∈Du ||Te→h(f(Te(I)))− f(Th(I))||2, (2)

where Th is a harder augmentation with strong perturbations than affine-based Te. The Te→h means
a known affine transformation on heatmaps if Th contains additional rotation and scaling operations.
In this way, we can obtain a paired easy-hard augmentations (Ie, Ih) = (Te(I), Th(I)) for generat-
ing corresponding teacher signals and student signals. During training, we should stop gradients
propagation of teacher signals to avoid collapsing. Next, we answer two questions Q1 and Q2 by
extensive empirical studies in Sec. 3.1 and Sec. 3.2, respectively. After that, we provide a theoretical
perspective for understanding the pursuit of designing stronger augmentations in Sec. A.1.

3.1 PARADIGMS OF GENERATING SUPERIOR AUGMENTATIONS

Ranking of Basic Augmentations The core of the easy-hard pair paradigm (Ie, Ih) is a more ad-
vanced augmentation. For this reason, Dual-Network (Xie et al., 2021) and SSPCM (Huang et al.,
2023) propose pseudo keypoint-based augmentations Joint Cutout (TJC) and Joint Cut-Occlude
(TJO), respectively. They also reach a similar yet crude conclusion about difficulty levels of ex-
isting augmentations: {TJO, TJC}> {TRA, TCM , TCO, TMU , TA60}, where TRA, TCM , TCO and
TMU are RandAugment (Cubuk et al., 2020), CutMix (Yun et al., 2019), Cutout (DeVries & Taylor,
2017) and Mixup (Zhang et al., 2018), respectively. The TA60 consists of two TA30. We give them a
new ranking by conducting more rigorous trainings one-by-one. The TRA is removed for it contains
repetitions with TCO and TA60. As shown in Fig. 2, we divide the rest by their distinguishable gaps
into four levels: {TJC , TJO}>{TCO, TCM}>{TMU}>{TA60}.

Synergy between Augmentations Then, instead of laboriously designing stronger augmentations,
we consider to conduct two or more augmentations in sequence to obtain superior combinations
conveniently. This idea is feasible because it essentially belongs to the AutoAug families (Cubuk
et al., 2018; Lim et al., 2019; Hataya et al., 2020; Zheng et al., 2022). Instead of auto-searching,
we expect to find some heuristic strategies for the HPE task. In fact, after performing joint-related
TJO or TJC on one image, we can continue to perform some joint-unrelated augmentations such as
TCM , TCO and TMU on random areas. As shown in Fig. 3, applying TJOCO (a TCO after TJO) or
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TJCCM (a TCM after TJC) will bring harder samples for generating more effective student signals,
but not destroy the semantic information visually. We call this discovery the synergistic effect
between different augmentations. The TA60 can server as an essential factor in any Th for keeping
the geometric diversity.

Selection of Augmentations Combination Now, if selecting from the rest five basic augmentations,
there are up to 26 choices (25 −

(
5
0

)
−

(
5
1

)
). The optimal combinations are still time-consuming to

acquire. Fortunately, not arbitrary number or kind of augmentations are collaborative. We intuitively
summarize three simplistic principles. (P1) A global TMU does not make sense for the HPE task.
(P2) Stacking augmentations with the similar perturbation type (e.g., TJO∼TCM and TJC ∼TCO)
or difficulty level (e.g., TJO ∼TJC and TCM ∼TCO) may not bring significant gain. (P3) Adding
too many augmentations (e.g., three or four) will be profitless or even harmful for seriously polluting
the image. We thus nominate the most likely superior combinations: TJOCO and TJCCM . A case
of setting Te as TA30 and Th as TJOCO for getting corresponding easy teacher signals He and hard
student signals Hh is shown as below:

He = TA30→A60(f(Ie)), Ie = TA30(I),

Hh = f(Ih), Ih = TA30(TCO(TJO(TA30(I)))),
(3)

where TA60 is the default of Th, and divided into two separate TA30 for being compatible with
Te. To further verify the above intuitive principles, we follow the augmentations ranking way and
conduct empirical studies on the performance of up to 13 selected representative combinations out
of 26 choices.

Table 1: Best mAPs of
different combinations.

Id Combination mAP
– TMU 39.4
– TCO 40.9
– TCM 40.4
– TJC 42.4
– TJO 41.9
c1 TJC,CM 42.7
c2 TJO,CO 43.7
c3 TJC,MU 41.8
c4 TJO,MU 42.1
c5 TJC,CO 42.1
c6 TJO,CM 42.5
c7 TJC,JO 42.0
c8 TJC,CM,MU 42.0
c9 TJO,CO,MU 42.8
c10 TJC,JO,CO 41.7
c11 TJC,JO,CM 42.3
c12 TJC,CO,CM 42.8
c13 TJO,CO,CM 42.8

Figure 4: The conver-
gence curves of differ-
ent tests in Tab. 1.

Table 2: Best mAP re-
sults of different Mul-
tiAugs tests.

Id MultiAugs mAP
m1 TJC , TCM 43.0
m2 TJO, TCO 43.4
m3 TJC , TJO 43.1
m4 TJCCM , TCO 43.7
m5 TJOCO, TCM 43.1
m6 TJOCO, TJC 44.2
m7 TJCCM , TJO 42.9

m8
TJC , TJO,
TCO, TCM

43.6

m9 TJCCM (twice) 43.6
m10 TJOCO (twice) 44.0

m11
TJOCO,
TJCCM

44.9

m12
TJOCO, TJC ,
TJCCM , TJO

45.5

Figure 5: The conver-
gence curves of different
tests in Tab. 2.

As shown in Tab. 1 and Fig. 4, we can examine three principles one-by-one: (P1) TMU often
causes adverse or inferior effects for each combination. Please refer paired combinations c1-c3,
c2-c4, c1-c8 and c2-c9. Thus, we do not add it for finding superior combinations. (P2) Synergistic
effects between augmentations do exist. Please refer paired combinations c1-c5, c1-c7, c2-c6 and
c2-c7. Especially, the TJCJO with two most advanced augmentations performs the worst among
combinations {c1,c2,c5,c6,c7}, which roundly reveals the harm of violating the principle of synergy.
(P3) Do not overly combine too many augmentations. Please refer paired combinations c1-c12, c2-
c13, c1-c11 and c2-c10. Stacking more augmentations brings non-significant gains or even results
in degradation. We attribute it to deviating from the rule of collaboration and possibly producing
meaningless or difficult-to-recognize images. Based on these facts, we have sufficient reasons not
to check the performance of rest combinations, and recommend two new strongest combinations
TJOCO and TJCCM .

3.2 MULTI-PATH CONSISTENCY LOSSES

Intuitive Motivation To further amplify the advantage of easy-hard augmentation, Xie et al. (2021)
adopts two independent networks containing two easy-hard pairs for producing two consistency
losses. SSPCM (Huang et al., 2023) continues this route by designing a Triple-Network with three
easy-hard pairs. Meanwhile, some SSL methods construct multi-view inputs for unlabeled data
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without adding accompanying networks. For example, SwAV (Caron et al., 2020) enforces the local-
to-global consistency among a bag of views with different resolutions. ReMixMatch (Berthelot
et al., 2020) feeds multiple strongly augmented versions of an input into the model for training.
Therefore, we wonder whether such a simple idea can also benefit the SSHPE task.

Specifically, rather than feeding a single hard augmentation Ih into the model, we independently
yield n strongly augmented inputs In={Ih1

, Ih2
, ..., Ihn

} from I by applying n hard data augmen-
tations T n = {Th1

, Th2
, ..., Thn

} accordingly. The augmentation set T n is de-emphasized in order
and non-deterministic, and will generate distinct multi-path augmented inputs In. Then, we can
calculate n-stream heatmaps Hn = {f(Thi

(Ihi
))|ni=1}. This multi-path augmentation framework

is illustrated in Fig. 6. For regularizing n easy-hard pairs, we obtain multi-path consistency losses
using Eq. 2 in separate, and optimize them jointly by applying multi-loss learning:

L∗
u = EHhi

∈Hn

∑n

i=1
||He −Hhi

||2, (4)

where He and Hhi
are obtained as dissected in Eq. 3. The He keeps constant for each Hhi

. Com-
parably, Data Distill (Radosavovic et al., 2018) applies a single model to multiple transformations of
unlabeled data to train a student model. Then, it ensembles predictions to obtain keypoint locations,
and re-generates a pseudo heatmap for supervision. Differently, we argue that conducting a fusion
on predicted heatmaps in SSHPE is harmful. We consider that there are always differences in the
estimation of keypoint positions for each Ihi . It is an ill-posed problem to heuristically evaluate the
consistency regularization contribution of each heatmap in pixel during ensemble. We will explain
this in ablation studies Sec. 5.3.

Despite the simplicity, such a minor modification brings consistent gains over the original Single-
Network under same SSL settings. With our discovered augmentation combinations TJOCO and
TJCCM , the boosted Single-Network can surpass the original Dual-Network evidently. We validated
in ablation studies that the performance gain is non-trivial. We conjecture that regularizing multi-
ple hard augmentations with a shared easy augmentation can be regarded as enforcing consistency
among advanced augmentations as well, which inherits the concept of training positive-negative
paired samples in contrastive learning (Chen et al., 2020; He et al., 2020; Chen & He, 2021) and its
SSL-related variations (Li et al., 2021a; Yang et al., 2022; Wu et al., 2023).

Effectiveness Verification As shown in Tab. 2 and Fig. 5, we also experimentally verified the major
advantage of the multi-path augmentations (dubbed as MultiAugs) strategy. Here, we have two vari-
ables of MultiAugs: the number of paths and the category of augmentations. For acquisition of an
optimal augmentations set, similarly, we continue with the rules summarized in the previous section,
and elect 12 different MultiAugs schemes for illustrating. We can witness the effectiveness of Mul-
tiAugs from two aspects: (1) It can inherit and even expand the synergistic effects between different
augmentations. (2) It can alleviate the defects caused by excessive stacking of augmentations.

Specifically, by comparing c1-m1, c2-m2 and c7-m3, we find that MultiAugs provides comparable
performance with the same augmentations. By comparing c10-m6, c11-m7, c12-m4 and c13-m5,
we can observe the sustained large gains brought by MultiAugs. The scheme m8 does not obtain
a better result than m11 showing that new augmentations TJOCO and TJCCM have their essential
properties. Schemes m9 and m10 which utilize a single augmentation twice are also inferior to m11

showing the cooperativity of using multi-path distinct augmentations. Moreover, the optimal scheme
m12 further unleashes capabilities of four advanced augmentations. In order to balance performance
and time consumption, we do not add more augmentation paths.

4 OUR OVERALL FRAMEWORK: MULTIAUGS

We leverage unlabeled images by applying multiple augmentations with integrating two key tech-
niques introduced in Sec. 3.1 and Sec. 3.2. Firstly, assuming that we have obtained an optimal
augmentation set T̂ n = {T̂hi |ni=1}, where T̂hi may be an old single augmentation or a novel com-
bined one. Then, we present how to construct our overall training framework in Fig. 6 based on
either the Single-Network or the Dual-Network.

MultiAugs (Single-Network) It is a consistency-based approach. We only need to maintain a single
model as in Fig. 6a during training. For each input batch with equal number of labeled images Il and
unlabeled images Iu, we calculate the supervised loss with the ground-truth heatmaps as in Eq. 1,
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(a) MultiAugs with Single-Network (b) MultiAugs with Dual-Network

Figure 6: Our proposed MultiAugs uses the (a) Single-Network or (b) Dual-Network, which can
utilize multiple hard augmentations and also facilitate multi-path consistency training.

and the multiple unsupervised losses as in Eq. 4, respectively. The final loss is obtained by adding
the two loss functions L = Ls + λL∗

u with λ = 1. Note that we only pass the gradient back through
n hard augmentations În for generating teacher signals to avoid collapsing. Based on this boosted
Single-Network, we complete all ablation experiments by changing the augmentation categories and
quantities in T̂ n for controlling the unsupervised loss factor L∗

u.

MultiAugs (Dual-Network) As shown in Fig. 6b, this framework learns two identical yet indepen-
dent networks with each similar to the Single-Network. For one input batch in every step, each
of the two networks serves as both a teacher and a student. They both are fed by easy and hard
augmentations of unlabeled images Iu when they produce teacher signals and student signals, re-
spectively. Assuming we have two networks fA and fB , and also the augmented easy images Iue
using Te and n-path hard images {Iuh1

, Iuh2
, ..., Iuhn

} using T̂ n, we first predict the following four
types of heatmaps:

He,A = TA30→A60(fA(I
u
e )),HA = {Hhi,A|ni=1,Hhi,A = fA(I

u
hi
)},

He,B = TA30→A60(fB(I
u
e )),HB = {Hhi,B |ni=1,Hhi,B = fB(I

u
hi
)},

(5)

where TA30→A60 is a pre-generated affine transformation. Based on above heatmaps, we calculate
two unsupervised losses for training two networks as follows:

L∗
u,A = EHhi,A

∈HA

∑n

i=1
||He,B −Hhi,A||2,

L∗
u,B = EHhi,B

∈HB

∑n

i=1
||He,A −Hhi,B ||2,

(6)

where we swap positions of teacher signals He,A and He,B for realizing the cross training of net-
works fB and fA. Following (Xie et al., 2021), we report the average accuracy of the final two
well-trained and performance-approached models. Besides, fA and fB can have different structures
as in (Xie et al., 2021; Huang et al., 2023), where the large one often helps to distill a better small
model, but not vice versa. We do not intend to explore this consensus anymore in this paper.

5 EXPERIMENTS

5.1 DATASETS AND SETUPS

COCO The dataset COCO (Lin et al., 2014) has 4 subsets: train-set (118K images), val-set (5K
images), test-dev and test-challenge. It is a popular large-scale benchmark for human pose estima-
tion, which contains over 150K annotated people. In addition, there are 123K wild unlabeled images
(wild-set). We selected the first 1K, 5K and 10K samples from train-set as the labeled set. In some
experiments, unlabeled data came from the remaining images of train-set. In other experiments, we

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

used the whole train-set as the labeled dataset and wild-set as the unlabeled dataset. The metric of
mAP (Average AP over 10 OKS thresholds) is reported.

MPII and AI-Challenger The dataset MPII (Andriluka et al., 2014) has 25K images and 40K
person instances with 16 keypoints. The dataset AI-Challenger (AIC) (Wu et al., 2019) train-set has
210K images and 370K person instances with 14 keypoints. We use MPII as the labeled set, AIC as
the unlabeled set. The metric of PCKh0.5 is reported.

Implementation Details For a fair comparison with prior works, we use SimpleBaseline (Xiao
et al., 2018) to estimate heatmaps and ResNet (He et al., 2016) and HRNet (Sun et al., 2019) as
backbones. The input image size is set to 256× 192. We adopt the PyTorch 1.30 and 4 A100 GPUs
with each batch size as 32 for training. The initial learning rate is 1e-3. When training on COCO
with 10K labeled data, it decreases to 1e-4 and 1e-5 at epochs 70 and 90, respectively, with a total of
100 epochs. When using 1K or 5K labeled data, total epochs are reduced to 30 or 70, respectively.
When training on the complete COCO or MPII+AIC, it drops to 1e-4 and 1e-5 at epochs 220 and
260, respectively, with a total of 300 epochs. When testing, we do not flip horizontally.

For data augmentation settings, we keep the easy augmentation Te as TA30 in all experiments. In
Section 3.1 and Section 3.2, we have presented details of finding two novel superior hard aug-
mentations (e.g., TJOCO and TJCCM ) and recommending the optimal multi-path augmentation set
T̂ 4 (please see the scheme m12 in Tab. 2), repsectively. Therefore, the hard augmentations set
T̂ 4 = {TJOCO, TJCCM , TJC , TJO} is chosen for settings S1, S2 and S3. While, the less optimal
augmentations set T̂ 2 = {TJOCO, TJCCM} is chosen for settings S4 and S5 to balance the perfor-
mance and training time.

5.2 PERFORMANCE COMPARISON

Table 3: AP of different methods on COCO val-
set when different numbers of labels are used.
The backbone of all methods is ResNet18.

Method Net.
Num. 1K 5K 10K All

Supervised (Xiao et al., 2018) 1 31.5 46.4 51.1 67.1
PseudoPose (Xie et al., 2021) 2 37.2 50.9 56.0 —
DataDistill (Radosavovic et al., 2018) 2 37.6 51.6 56.6 —
PoseCons (Xie et al., 2021) 1 42.1 52.3 57.3 —
PoseDual (Xie et al., 2021) 2 44.6 55.6 59.6 —
SSPCM (Huang et al., 2023) 3 46.9 57.5 60.7 —
Pseudo-HMs (Yu et al., 2024) 2 47.6 — — —
Ours (Single) 1 45.5 56.2 59.9 —
Ours (Dual) 2 49.7 58.8 61.8 —

Figure 7: Comparison between state-of-the-art
SSHPE methods and our proposed MultiAugs
on the COCO dataset.

We mainly compare our MultiAugs with representative SSHPE methods including PoseDual (Xie
et al., 2021), SSPCM (Huang et al., 2023) and Pseudo-HMs (Yu et al., 2024) under various con-
ditions. Note that Pseudo-HMs does not follow the same setup as PoseDual (Xie et al., 2021) and
SSPCM (Huang et al., 2023), and its code has not been released. We have tried our best to list partial
comparable data in some tables to maintain completeness.

S1: Firstly, we conduct experiments on the COCO train-set with 1K, 5K and 10K labeled data, and
evaluate on the val-set. As shown in Tab. 3 and Fig. 7, our method brings substantial improvements
under the same setting. For example, when using a Single-Network, our method exceeds both
PoseCons and PoseDual significantly, and is close to the SSPCM based on three networks. When
using a Dual-Network, our method exceeds previous SOTA results by 2.8 mAP, 1.3 mAP, and 1.1
mAP under 1K, 5K and 10K settings, respectively. Note that our method can bring greater gains
with less labeled data (e.g., 1K images), which further explains its efficiency and superiority.

S2: Then, we conduct larger scale SSHPE experiments on the complete COCO dataset by using
train-set as the labeled dataset and wild-set as the unlabeled dataset. As shown in Tab. 4, regardless
of using any backbone, our method can always improve all supervised baseline results, and bring
more gains than two compared SSHPE methods (Xie et al., 2021) and (Huang et al., 2023) with
using dual networks. When using a single network, our method is still superior to PoseDual (Xie
et al., 2021), and fairly close to SSPCM (Huang et al., 2023) based on triple networks.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Results on the COCO val-set with using the
labeled train-set and unlabeled wild-set for training.

Method Backbone Nets AP AP.5 AR AR.5

Supervised (Xiao et al., 2018) ResNet50 Single 70.9 91.4 74.2 92.3
PoseDual (Xie et al., 2021) ResNet50 Dual 73.9 92.5 77.0 93.5
SSPCM (Huang et al., 2023) ResNet50 Triple 74.2 92.7 77.2 93.8
Pseudo-HMs (Yu et al., 2024) ResNet50 Dual 74.1 — — —
Ours (Single) ResNet50 Single 74.4 93.6 77.4 94.0
Ours (Dual) ResNet50 Dual 74.6 93.5 77.6 94.0
Supervised (Xiao et al., 2018) ResNet101 Single 72.5 92.5 75.6 93.1
PoseDual (Xie et al., 2021) ResNet101 Dual 75.3 93.6 78.2 94.1
SSPCM (Huang et al., 2023) ResNet101 Triple 75.5 93.8 78.4 94.2
Pseudo-HMs (Yu et al., 2024) ResNet101 Dual 75.7 — — —
Ours (Single) ResNet101 Single 75.8 93.5 78.8 94.4
Ours (Dual) ResNet101 Dual 76.4 93.6 79.3 94.7
Supervised (Xiao et al., 2018) HRNet-w48 Single 77.2 93.5 79.9 94.1
PoseDual (Xie et al., 2021) HRNet-w48 Dual 79.2 94.6 81.7 95.1
SSPCM (Huang et al., 2023) HRNet-w48 Triple 79.4 94.8 81.9 95.2
Pseudo-HMs (Yu et al., 2024) HRNet-w48 Dual 79.4 — — —
Ours (Single) HRNet-w48 Single 79.3 94.6 81.9 95.1
Ours (Dual) HRNet-w48 Dual 79.5 94.6 82.1 95.2

S3: We also report results using HRNet-w48
on the COCO test-dev in Tab. 5. The up-
per, middle and lower panels show CNN-
based supervised, Transformers-based super-
vised, and SSHPE methods, respectively. For
SSHPE, COCO train-set and wild-set is the
labeled set and unlabeled set, respectively.
Our method can slightly outperform the Pose-
Dual but fall behind the best SSPCM. We at-
tribute it to our fewer training epochs (300
vs. 400) and less parameters (2 Nets vs. 3
Nets) which may lead to weaker generaliza-
tion. Besides, we can observe that MultiAugs
outperforms some burdensome transformer-
based methods (Yang et al., 2021; Li et al.,
2021b; Yuan et al., 2021), which reveals the
significance of rational utilization of unla-
beled data and advanced SSL techniques.

Table 5: Comparison to the SOTA methods on the COCO test-dev.
The person detection results are provided by SimpleBaseline (Xiao
et al., 2018) and flipping strategy is used.

Method Backbone Input Size Gflops Params AP AR
SimpleBaseline (Xiao et al., 2018) ResNet50 256×192 8.9 34.0 70.2 75.8
HRNet (Sun et al., 2019) HRNet-w48 384×288 32.9 63.6 75.5 80.5
MSPN (Li et al., 2019) ResNet50 384×288 58.7 71.9 76.1 81.6
DARK (Zhang et al., 2020) HRNet-w48 384×288 32.9 63.6 76.2 81.1
UDP (Huang et al., 2020) HRNet-w48 384×288 33.0 63.8 76.5 81.6
TransPose-H-A6 (Yang et al., 2021) HRNet-w48 256×192 21.8 17.5 75.0 —
TokenPose-L/D24 (Li et al., 2021b) HRNet-w48 384×288 22.1 29.8 75.9 80.8
HRFormer (Yuan et al., 2021) HRFormer-B 384×288 26.8 43.2 76.2 81.2
ViTPose (Xu et al., 2022) ViT-Large 256×192 59.8 307.0 77.3 82.4
DUAL (+HRNet) (Xie et al., 2021) HRNet-w48 384×288 65.8 127.2 76.7 81.8
DUAL (+DARK) (Xie et al., 2021) HRNet-w48 384×288 65.8 127.2 77.2 82.2
SSPCM (+DARK) (Huang et al., 2023) HRNet-w48 384×288 98.7 190.8 77.5 82.4
Ours (Dual) (+HRNet) HRNet-w48 384×288 65.8 127.2 76.8 81.8
Ours (Dual) (+DARK) HRNet-w48 384×288 65.8 127.2 77.3 82.3

S4: For the MPII dataset, we
allocate its train-set as the la-
beled set and whole AIC as
the unlabeled set. This is a
more realistic setting where
labeled and unlabeled images
are from different datasets.
The Tab. 7 (see Sec. A.2)
shows results on the MPII
val-set. Our method out-
performs both the fully su-
pervised HRNet (Sun et al.,
2019) and semi-supervised
PoseDual (Xie et al., 2021) by
a large margin under the same
backbone. It is worth noting
that our semi-supervised MultiAugs with applying the model ensemble can even approach the su-
pervised HRNet with using extra labeled AIC.

S5: Finally, as shown in Tab. 8 (see Sec. A.2), our results on the MPII test-set surpass all those
of previous fully supervised methods and two semi-supervised counterparts PoseDual and SSPCM.
This further validates the effectiveness and superiority of our proposed method.

5.3 ABLATION STUDIES

For empirical studies in Fig. 2, 4, 5 and Tab. 1, 2, we conducted them follow the setting of COCO
1K with a total of 30 epochs. The learning rate drops 10× twice separately at epochs 20 and 25. All
studied models take ResNet18 as the backbone, and use the Single-Network framework. With the
same setting, we conducted more ablation experiments to further analyze the proposed MultiAugs.

Comparing to Other Advanced Augmentations Three advanced augmentations are selected: Ran-
dAugment (Cubuk et al., 2020), TrivialAugment (Müller & Hutter, 2021) and YOCO (Han et al.,
2022). We refer to them as TRA, TTA and TY OCO. For TY OCO, it may be based on TRA or
TTA. And we compare them with previous SOTA augmentations TJO and TJC for SSHPE, and
our recommended TJOCO and TJCCM . We did not compare to Mixup families (Zhang et al., 2018;
Hendrycks et al., 2020; Pinto et al., 2022; Liu et al., 2022) or AutoAug families (Cubuk et al., 2018;
Lim et al., 2019; Hataya et al., 2020; Zheng et al., 2022). Because Mixup is verified not to work
with SSHPE, and AutoAug needs to search optimal parameters. Finally, as shown in Tab. 6 and
Fig. 8, our optimal combinations are always better than TRA-based or TTA-based TY OCO, which
are meticulously designed and also composed of existing basic augmentations. These further prove
the superiority and conciseness of our synergistic combinations.
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Table 6: Best mAP results of different aug-
mentations on COCO val-set.

Augmentations Year mAP
TRA (Cubuk et al., 2020) CVPRW’2020 41.9
TTA (Müller & Hutter, 2021) ICCV’2021 40.2
TY OCO (Han et al., 2022) (TRA) ICML’2022 42.5
TY OCO (Han et al., 2022) (TTA) ICML’2022 41.6
TJC (Xie et al., 2021) ICCV’2021 42.4
TJO (Huang et al., 2023) CVPR’2023 41.9
Ours (TJCCM ) — 42.7
Ours (TJOCO) — 43.7

Figure 8: The convergence curves and best mAP results
of different strong augmentations.

Training Techniques of Multiple Heatmaps In this part, we present additional techniques com-
monly used for unsupervised consistency training. Especially, for predicted multi-heatmaps, we
propose to optimize them by applying the multi-loss learning (ML) as in Eq. 4. Other two alterna-
tive techniques are confidence masking (CM) and heatmaps fusion (HF). For CM, the consistency
loss term in each mini-batch is computed only on keypoint channels whose maximum activation
value is greater than a threshold τ , which is set as 0.5. For HF, also termed as heatmaps ensemble,
we sum and average multi-path heatmaps to obtain a fused heatmap for loss computing. Then, we
compare MultiAugs (e.g., m11 and m12) using either of these three techniques ML, CM and HF.

As shown in Fig. 9, our ML is strictly superior than the other two techniques under either m11 or
m12. For CM, we assume it may filter out some keypoint heatmaps with low confidence but high
quality. This surely has a negative impact. For HF, although it is widely used in other SSL tasks
for model ensemble, it may not necessarily be applicable to our intermediate keypoint heatmaps.
We deem this is because each predicted heatmap is distinctive and meaningful (see Fig. 10). It is
tricky to replace them equivalently with a fused heatmap. In comparison, our multi-loss learning is
a simple yet effective choice.

Figure 9: The convergence curves and best
mAP results of two MultiAugs schemes with
using three different training techniques.

Figure 10: The predicted heatmaps of one easy aug-
mentation (TA60) and four hard augmentations in
m10. We also report the pixel-wise heatmap dif-
ference (with red borders) of each easy-hard pair to
highlight subtle dissimilarities.

6 CONCLUSIONS

In this paper, we aim to boost semi-supervised human pose estimation (SSHPE) from two perspec-
tives: data augmentation and consistency training. Instead of inventing advanced augmentations in
isolation, we attempt to synergistically utilize existing augmentations, and handily generate superior
ones by novel combination paradigms. The discovered collaborative combinations have intuitive
interpretability. We verified their advantages in solving the SSHPE problem. For consistency train-
ing, we abandon the convention of stacking networks to increase unsupervised losses, and train a
single network by optimizing multi-path consistency losses for the same batch of unlabeled images.
Combined with the optimal hard augmentations set, this plain and compact strategy is proven to be
effective, and leads to better performance on public benchmarks. Last but not least, we declare that
the synergy effects of augmentations and multiple consistency losses are generic and generalizable
for other SSL vision tasks such as image classification, object detection and semantic segmentation.
We will explore them in the future.
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A APPENDIX

A.1 ANALYSIS OF SUPERIOR AUGMENTATIONS

(a) Top-50 singular values (b) mAP vs. Entropy

Figure 11: SVD analysis. The backbone of all six mod-
els is ResNet18. The 512-D features of 6,352 samples
in COCO val-set are extracted.

In this part, we tentatively analyze why
employing a superior augmentation to
strongly augment the unlabeled data can
improve model performance. Differ-
ent from UDA (Xie et al., 2020a) using
the improved connectivity of constructed
graphs to explain, we start from the per-
spective of shaped feature space of un-
labeled data based on the singular value
spectrum, which is widely considered to
be related to the model transferability and
generalization (Chen et al., 2019; Xue
et al., 2022). Specifically, we perform
singular value decomposition (SVD) on
features F∈RN×D1 extracted by various
trained models with different strong aug-
mentations on one dataset: F=UΣVT ,
where U and V is the left and right sin-
gular vector matrices, respectively, and Σ
denotes the diagonal singular value ma-
trix {σ1, σ2, ..., σD}. Then, we plot cal-
culated singular values in Fig. 11a. To further measure the flatness of the singular value distribution,
we calculate the entropy of normalized singular values Hnsv:

Hnsv = −
∑D

i=1

σi∑D
j=1 σj

log
σi∑D
j=1 σj

. (7)

Usually, a larger Hnsv indicates that the feature space captures more structure in the data and thus
spans more dimensions due to more discriminated representations learned. As shown in Fig. 11b, the
model performance is positively correlated with the Hnsv value. Therefore, a superior augmentation
facilitates better model generalization to unseen test sets.

Table 7: Results on the val-set of MPII dataset. HRNet is trained only on the MPII train-set. The
“*” means using extra labeled dataset AIC. The “+” means applying the model ensemble.

Method Hea Sho Elb Wri Hip Kne Ank Total
HRNet (Sun et al., 2019) 97.0 95.7 89.4 85.6 87.7 85.8 82.0 89.5
HRNet* (Sun et al., 2019) 97.4 96.7 92.1 88.4 90.8 88.6 85.0 91.7
PoseDual (Xie et al., 2021) 97.4 96.6 91.8 87.5 89.6 87.6 83.8 91.1
Ours (Dual) 97.3 96.8 91.7 87.5 90.3 88.6 84.6 91.4
Ours+ (Dual) 97.3 96.8 91.9 88.1 90.6 89.2 85.0 91.7

Table 8: Comparisons on the test-set of the MPII dataset. We use HRNet-w32 as the backbone. The
input image size is 256×256. The MPII (w/ labels) and AIC (w/o labels) are used for SSL training.

Method Hea Sho Elb Wri Hip Kne Ank Total
Newell et al. (2016) 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Xiao et al. (2018) 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
Ke et al. (2018) 98.5 96.8 92.7 88.4 90.6 89.4 86.3 92.1
Sun et al. (2019) 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
Zhang et al. (2019) 98.6 97.0 92.8 88.8 91.7 89.8 86.6 92.5
Xie et al. (2021) 98.7 97.3 93.7 90.2 92.0 90.3 86.5 93.0
Huang et al. (2023) 98.7 97.5 94.0 90.6 92.5 91.1 87.1 93.3
Ours (Dual) 98.8 97.6 94.1 90.3 92.4 91.1 87.2 93.4

1We denote N as the number of samples and D as feature dimensions (a.k.a, D ≤ N ).
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A.2 MORE PERFORMANCE COMPARISON DETAILS

In this section, we place more quantitative data that do not have space to present in the main content,
including the detailed results of MPII val-set and MPII test-set in Tab. 7 and Tab. 8, respectively.

Besides, to further verify the effectiveness of our method, we conducted experiments on an indoor
overhead fisheye human keypoint dataset WEPDTOF-Pose which is based on CEPDOF (Duan et al.,
2020) and WEPDTOF (Tezcan et al., 2022). Followed SSPCM (Huang et al., 2023), we used the
complete WEPDTOF-Pose train-set (4,688 person instances) as the labeled dataset, and CEPDOF
(Duan et al., 2020) with 11,878 person instances as the unlabeled dataset for experiment. The
WEPDTOF-Pose test-set (1,179 person instances) is used as the evaluation set. The metric of mAP
(Lin et al., 2014) is reported for comparing. More details of WEPDTOF-Pose dataset can be found
in (Huang et al., 2023). It should be noted that SSPCM does not open source the BKFisheye dataset
included in WEPDTOF-Pose, so we cannot conduct corresponding experimental comparisons in-
volving the BKFisheye with it.

For training on WEPDTOF-Pose, the hard augmentations set T̂ 4={TJOCO, TJCCM , TJC , TJO} is
chosen as in settings S1, S2 and S3. The used backbone is ResNet-18. Given the particularity of the
fisheye dataset, the random rotation range used in all hard data augmentations is (-90◦, 90◦), which
means TA60 is changed into TA90. We use the Adam optimizer to train these models. The initial
learning rate is 1e-3, which decreases to 1e-4 and 1e-5 at 140 epochs and 180 epochs, respectively,
with a total of 200 epochs. As shown in Tab. 9, our method always achieves the best AP and
AR results whether using a single network or a dual network structure, surpassing the previous
SOTA method SSPCM using a triple network. These experiments in the fisheye domain once again
demonstrate the superiority and universality of our proposed MultiAugs.

Table 9: Comparison of our method to the SOTA methods on the dataset WEPDTOF-Pose collected
by indoor overhead fisheye camera.

Method Network Number Labeled Dataset Unlabeled Dataset AP AR
Supervised (Xiao et al., 2018) 1 WEPDTOF-Pose — 49.5 53.4
PoseCons (Xie et al., 2021) 1 WEPDTOF-Pose CEPDOF 54.6 58.1
PoseDual (Xie et al., 2021) 2 WEPDTOF-Pose CEPDOF 55.1 59.0
SSPCM (Huang et al., 2023) 3 WEPDTOF-Pose CEPDOF 55.6 60.0
Ours (Single) 1 WEPDTOF-Pose CEPDOF 56.5 60.6
Ours (Dual) 2 WEPDTOF-Pose CEPDOF 57.1 61.3

In addition, we consider that reporting the comparison results based on the more important ResNet-
50 is more convincing than ResNet-18. Therefore, we replaced the backbone in Tab. 3 with ResNet-
50 according to setting S1 and re-conducted the comparative experiments. The results are shown
in Tab. 10. Similar to using ResNet-18, our method can still achieve a clear advantage. When
using a single network, our method outperforms PoseCons and Posedual, while being comparable
to SSPCM. And our dual-network based approach achieves significant advantages.

Table 10: AP of different methods on COCO val-
set when different numbers of labels are used.
The backbone of all methods is ResNet-50. The
trend of accuracy change is shown in Fig. 12.

Method Net.
Num. 1K 5K 10K All

Supervised (Xiao et al., 2018) 1 34.8 50.6 56.4 70.9
PoseCons (Xie et al., 2021) 1 43.1 57.2 61.8 —
PoseDual (Xie et al., 2021) 2 48.2 61.1 65.0 —
SSPCM (Huang et al., 2023) 3 49.8 61.8 65.5 —
Ours (Single) 1 49.3 61.4 65.2 —
Ours (Dual) 2 51.7 62.9 66.3 —

Figure 12: Comparison between state-of-the-
art SSHPE methods and our proposed Multi-
Augs on the COCO dataset.

Moreover, we deem that conclusions drawn from testing and evaluation on small-scale data may not
necessarily be generalized to other datasets. Therefore, we repeated the comparison in setting S1 and
Tab. 3 by replacing the COCO dataset into MPII dataset. Specifically, we conducted experiments
using the first 1K samples as labeled data and the left 39K samples as unlabeled data in MPII. The
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validation set of MPII is used to evaluate. The backbone is ResNet-18. The final comparison results
are shown in Tab. 11. Not surprisingly, our method still maintains a clear lead in performance, both
in terms of overall accuracy and the specific accuracy of each joint. These experiments once again
demonstrate that our method is indeed universally effective and superior across different datasets.

Table 11: Results on the val-set of MPII dataset. All models utilize ResNet-18 as the backbone. The
best results are highlighted in bold.

Method Hea Sho Elb Wri Hip Kne Ank Total
Supervised (Xiao et al., 2018) 89.6 84.8 72.0 58.4 57.8 49.4 41.2 65.3
PoseCons (Xie et al., 2021) 92.7 87.6 74.5 67.9 72.3 64.2 59.4 75.2
PoseDual (Xie et al., 2021) 93.3 88.4 75.0 67.3 72.6 65.3 59.7 75.6
SSPCM (Huang et al., 2023) 93.5 90.6 80.2 71.3 75.9 68.9 62.3 78.3
Ours (Single) 94.1 91.1 80.5 72.2 76.3 69.2 62.8 79.1
Ours (Dual) 94.7 92.4 81.2 73.3 76.8 70.6 63.9 79.7

A.3 QUALITATIVE VISUALIZATION COMPARISON

To make our advantages more intuitively demonstrated, we have added qualitative visualization
comparison results, mainly including the conventional human images from the COCO val-set and
the fisheye camera images from the WEPDTOF-Pose dataset. We take use of the backbone ResNet-
18 for all compared methods to highlight the their performance differences. For models trained on
COCO dataset, we use the label set with 10K samples for comparison. As shown in Fig. 13, pure
supervised learning methods usually are prone to making mistakes or messing up, and other SSHPE
methods do not perform well in some occlusion cases or edge keypoint detection. While, our method
often obtains more accurate estimations.

Figure 13: Qualitative results on COCO val-set (the first 6 examples) and WEPDTOF-Pose test-
set (the last 3 examples). The predicted results of methods Supervised and SSPCM are directly
fetched from the supplementary paper of SSPCM (Huang et al., 2023). The details of the comparison
between SSPCM and our predictions are highlighted in yellow circles for quick identification.

A.4 PARAMETERS OF BASIC AUGMENTATIONS

The hyper-parameters involved in each augmentation are indeed important. In order to make a
fair comparison, each basic augmentation we selected is derived from various compared methods
without additional fine-tuning. For example, the parameters of Joint Cutout are the same as those
in PoseDual (Xie et al., 2021) which used JC5, and the parameters of Joint Cut-Occlude are the
same as those in SSPCM (Huang et al., 2023) which used JO2. We list the parameters of the basic
augmentations used in this paper in Tab. 12, so that readers can quickly and clearly know these
details. Please see Fig. 3 for some visualization results after applying augmentations.
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Table 12: The hyper-parameters details of the basic augmentations.

Aug. Type Description
TA30 easy random scale within range [0.75, 1.25], random rotation within range (−30◦, 30◦).
TA60 hard random scale within range [0.75, 1.25], random rotation within range (−60◦, 60◦).
TCO hard random generation 5 zero value patches with size 20× 20.
TCM hard random cropping 2 patches from other images with size 20× 20.
TJC hard random generation 5 zero value patches with size 20× 20 around predicted joints.
TJO hard random cropping 2 patches from other images with size 20× 20 around predicted joints.

A.5 ADDITIONAL ABLATION STUDIES

Firstly, we need to investigate whether the multi-path consistency loss strategy is sensitive to the
training batch size. In fact, when designing the ablation studies in Tab. 1 using the single-path loss
and Tab. 2 using multi-path losses, we always chose a fixed batch size 32 to perform all experiments.
Moreover, in final comparative experiments (see Tab. 3), we still keep the batch size as 32 and use
the optimal four-path losses. Now, in order to investigate the possible impact of different batch
sizes, we report the effects of PoseCons and PoseDual when the batch size is 128. As can be seen in
Tab. 13, after increasing the batch size of PoseCons or PoseDual accordingly, the final mAP results
under different labeling rates (e.g., 1K, 5K and 10K) did not get significantly better. This indicates
that batch size does not have a large impact on the performance of existing methods.

Then, we also need to conduct additional experiments to probe whether to use a single constant
easy augmentation as input for multi-path losses (the pair {Ie} + {Ih1

, ..., Ihn
}, termed as 1-vs-n)

or to use different easy augmentations multiple times as input (the pair {Ie1 ,...,Ien} + {Ih1
,...,Ihn

},
termed as n-vs-n). As shown in Tab. 14, whether using 1-v-n augmented input or n-vs-n augmented
input, the final mAP results obtained under various labeling rates are not significantly different.
This is mainly because the used easy augmentation is always fixed (e.g., TA30), so the input does
not change in essence when applying 1-vs-n input or n-vs-n.

Table 13: AP results of baseline methods PoseC-
ons and PoseDual after increasing the batch size.
The used backbone is ResNet-18.

Method Net.
Num.

Loss
Num.

Batch
Size 1K 5K 10K

PoseCons 1 1 32 42.1 52.3 57.3
PoseCons 1 1 128 42.3 52.6 57.5
PoseDual 2 1 32 44.6 55.6 59.6
PoseDual 2 1 128 44.9 58.7 59.6
Ours (Single) 1 4 32 45.5 56.2 59.9
Ours (Dual) 2 4 32 49.7 58.8 61.8

Table 14: AP results of our methods based
on single-network or dual-network after adjust-
ing the augmentation way of inputs. The used
backbone is ResNet-18.

Method Net.
Num. Input 1K 5K 10K

Ours (Single) 1 1-vs-n 45.5 56.2 59.9
Ours (Single) 1 n-vs-n 45.6 56.4 59.8
Ours (Dual) 2 1-vs-n 49.7 58.8 61.8
Ours (Dual) 2 n-vs-n 49.7 58.9 61.9

Finally, in order to fairly and reasonably reflect the efficiency of our method in the training phase,
we follow the setting S1 (using ResNet-18 as the backbone, batch size is set to 32, total training
epochs are 30, and the amount of labeled data is 1K), and conduct each experiment on four 3090
graphics cards (with each containing 24 GB memory) to compare the training time of our method
with that of PoseCons and PoseDual. The strong augmentation used by PoseCons or PoseDual is
TJC . Considering that our method often uses different strong augmentations, their computation is
not the main bottleneck. Therefore, in order to be fair, all strong augmentations in our method are
also replaced into TJC . Assuming that the total training time of PoseCons is one unit time T0, which
is actually about 7 hours. Then the total training time of running other methods is summarized in
Tab. 15.

Table 15: Quantitative comparison of training time between baseline methods (PoseCons and Pose-
Dual) and our proposed method. The integer number with the marker # in our method means how
many multi-path losses are used.

Method PoseCons Ours
(Single,2#)

Ours
(Single,3#)

Ours
(Single,4#) PoseDual Ours

(Dual,2#)
Ours

(Dual,3#)
Ours

(Dual,4#)
Time T0 1.36*T0 1.50*T0 1.83*T0 2.49*T0 2.62*T0 2.88*T0 3.14*T0
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From those results in Tab. 15, we can see that when using four-path losses, although the training time
increases, it is still faster than PoseDual (1.83*T0 vs. 2.49*T0 ). Referring to the quantitative results
in Tab. 3 of the main paper, our method based on single-network using four-path losses achieves
higher mAP than PoseDual. In addition, when using dual networks with four-path losses, the total
training time does not increase significantly (2.49*T0 vs. 3.14*T0 ). These indicate that our method
is both efficient and effective.
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