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ABSTRACT

We investigate oscillation phenomena observed in inversion methods applied to
large text-to-image diffusion models, particularly the “Flux” model. Using a
fixed-point-inspired iteration method to invert real-world images, we find that the
solution does not converge but instead oscillates between distinct clusters. Our
results, validated both on real diffusion models and toy experiments, show that
these oscillated clusters exhibit significant semantic coherence. We propose that
this phenomenon arises from oscillatory solutions in dynamic systems, linking it
to the structure of rectified flow models. The oscillated clusters serve as local la-
tent distributions that allow for effective semantic-based image optimization.We
provide theoretical insights, linking these oscillations to fixed-point dynamics and
proving conditions for stable cluster formation and differentiation in flow models.
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Oscillation in Large
Flow Model Image Enhancement

Inversion Decomposition  

Stroke-based Low-level Editing  

Figure 1: Oscillation Inversion is a phenomenon observed in large flow models that can serve as
a low-level image editing technique. It enables image enhancement and visual prompt-based low-
level editing.

1 INTRODUCTION

Very recently, large text-to-image diffusion models utilizing rectified flow ( Wang et al. (2024)), like
the Flux model from Black Forest Labs, have demonstrated exceptional performance in generating
high-quality images with rapid sampling. However, the underlying latent structure of rectified flow-
based models presents unique challenges, as it differs fundamentally from the layered manifold
structure of DDPMs ( Ho et al. (2020)) shaped by a parameterized Markov chain. This distinction
makes previous inversion techniques, such as DDIM inversion ( Song et al. (2020a)), and editing
methods like SDEdit ( Meng et al. (2021)), less viable. Therefore, adopting a new perspective for
understanding and navigating the latent space of these flow-based models is essential for enabling
more effective inversion and image manipulation strategies.

When attempting to invert real-world images using fix-point iteration methods in rectified flow-
based models, we observe that the sequence of iterates does not converge to a single point but
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instead oscillates between several clusters. These clusters are semantically meaningful and can be
leveraged for image optimization and editing tasks. This behavior contrasts with the fixed-point
methods used in DDIM, which are primarily designed to mitigate numerical accumulation errors at
each step, ensuring smooth convergence to a single, stable solution. The oscillatory nature observed
in rectified flow-based models, however, opens up new possibilities for iterative refinement and
enhanced flexibility in image inversion tasks.

To investigate this, we first propose Oscillation Inversion, a method that uses fixed-point iteration
to directly establish a one-to-one mapping between noisy latents at a given timestep and the cor-
responding encoded image latent. The inverted latents oscillate among several clusters, which can
serve as local latent distributions, facilitating effective semantic-based image optimization. Addi-
tionally, we generalize this fixed-point method in three ways for broader downstream applications:
1) Group Inversion: We invert a group of images simultaneously, rather than a single image, en-
abling semantic guidance and blending across images. 2) Finetuned Inversion: By controlling the
oscillation direction, we provide a mechanism for customized, user-driven manipulation of the im-
ages. 3) Post-Inversion Optimization: After inversion, we perform optimization, and analyze the
differentiable structure induced by the separated sub-distributions created by oscillation inversion.
These extensions make Oscillation Inversion a versatile tool for various image manipulation tasks.

The main contributions of this work are as follows:

• We propose Oscillation Inversion to facilitate one-step inversion to any timestep in rectified
flow-based diffusion models for the semantic manipulation of latents. Additionally, we
present three extensions that enable diverse user inputs for real-world applications.

• Extensive experiments on various downstream tasks, such as image restoration and en-
hancement, stroke based make up transfer, validate our theoretical findings and demonstrate
the effectiveness of our method on both perceptual quality and data fidelity.

2 RELATED WORKS

Flow Model. Diffusion models Rombach et al. (2022) Saharia et al. (2022) Ramesh et al. (2022)
generate data by a stochastic differential equation (SDE)-based denoising process and probability
flow ordinary differential equations (ODE) Song et al. (2020b) Lipman et al. (2022) Lipman et al.
(2022) Salimans & Ho (2022) Song et al. (2023) improves sampling efficiency by formulating the
denoising process into a ODE-based process. However, probability flow ODE-based methods suffer
from the computational expense of denoising via numerical integration with small step sizes. To
address these issues, some simulation-free flow models have emerged, e.g. flow matching Lipman
et al. (2022) and rectified flow Liu et al. (2022). Flow matching introduces a training objective for
continuous normalizing flows Chen et al. (2018) to regress the vector field of a probability path.
Rectified flow learns a transport map between two distributions through constraining the ODE to
follow the straight transport paths. Since the latent structure of flow models differs fundamentally
from the layered manifold structure of Denoising Diffusion Probabilistic Models (DDPMs) Ho et al.
(2020), it is valuable to explore the intrinsic characteristics of the flow models’ latent space.

Diffusion-based Inversion. The rise of diffusion models Rombach et al. (2022) Saharia et al.
(2022) Ramesh et al. (2022) has unlocked significant potential of inversion methods for real image
editing, which are primarily categorized into Denoising Diffusion Probabilistic Models (DDPM Ho
et al. (2020))-based Wu & De la Torre (2023) Huberman-Spiegelglas et al. (2024) and Denoising
Diffusion Implicit Models (DDIM Song et al. (2020a))-based methods Pan et al. (2023b) Garibi et al.
(2024) Li et al. (2024) Meiri et al. (2023a). While DDPM-based methods yield impressive editing
results, they are hindered by their inherently time-consuming and stochastic nature, due to the ran-
dom noise introduced across a large number of inversion steps Wu & De la Torre (2023) Huberman-
Spiegelglas et al. (2024). DDIM-based methods utilize the DDIM sampling strategy to enable a more
deterministic inversion process, substantially reducing computational overhead and time. However,
the linear approximation behind DDIM often leads to error propagation, resulting in reconstruction
inaccuracy and content loss, especially when classifier-free guidance (CFG) is applied Mokady et al.
(2023). Recent approaches, Wallace et al. (2023) Mokady et al. (2023) Pan et al. (2023b) Miyake
et al. (2023) Han et al. (2023) Hong et al. (2024), address these issues by aligning the diffusion
and reverse diffusion trajectories through the optimization of null-text tokens Mokady et al. (2023)
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or prompt embeddings Han et al. (2023) Miyake et al. (2023). EDICT Wallace et al. (2023) and
BDIA Zhang et al. (2023) introduce invertible neural network layers to enhance computational effi-
ciency and inversion accuracy, though these methods suffer from notably longer inversion times. To
tackle this, recent works Meiri et al. (2023a) Pan et al. (2023b) Garibi et al. (2024) Li et al. (2024)
have adopted fixed-point iteration for each inversion step, mitigating numerical error accumulation
and ensuring smooth convergence to a single, stable solution. Interestingly, when applied to recti-
fied flow-based methods, the sequence of fixed-point iterates oscillates between several semantically
meaningful clusters, presenting significant potential for downstream applications.

3 OSCILLATION INVERSION

3.1 PRELIMINARY

3.1.1 RECTIFIED FLOW

Rectified flow (Liu et al. (2022)) is a novel generative approach that facilitates smooth transitions
between two distributions, denoted π0 and π1, by solving ordinary differential equations (ODEs).
Specifically, for X0 ∼ π0 and X1 ∼ π1, the transition between x0 and x1 is defined through an
interpolation given by Xt = (1 − t)X0 + tX1 for t ∈ [0, 1]. Liu et al. (2022) demonstrated that,
starting from Z0 ∼ π0, the following ODE can be used to obtain a trajectory that preserves the
marginal distribution of Zt at any given time t:

dZt

dt
= vX(Zt, t), where vX(x, t) := E[X1 −X0 | Xt = x]. (1)

The solution of vX in Eq. (1) is obtained by optimizing the following loss via stochastic coupling
sampling (X0, X1) ∼ (π0, π1) and t ∼ Uniform([0, 1]),

vX = argmin
v

E
[∥∥(X1 −X0)− v(tX1 + (1− t)X0, t)

∥∥2] . (2)

3.2 METHOD

In this section, we first formulate the inversion problem for rectified flow-based models (Sec.3.2.1).
To address this, we introduce Oscillation Inversion, which constructs one-step inversion using fixed-
point iteration (Sec.3.2.2). We then propose fine-tuned inversion to enable controllable latent struc-
tures (Sec.3.2.3), followed by post-inversion optimization for further image refinement (Sec.3.2.4).
The concept behind our general method is depicted in Figure 2.

3.2.1 INVERSION PROBLEM

In practice, the large flow model in the context of generative modeling operates within the latent
space of a Variational Autoencoder (VAE) (Kingma (2013)), utilizing an encoder E : Rd → Rn

and a decoder D : Rn → Rd. The sampling process begins from Gaussian noise zT ∼ N (0, I),
and the latent variable is progressively refined through a sequence of transformations. The forward
generative process is defined by the following iterative formula starting from t = T all the way back
to t = 0:

zt−1 = zt + (σt−1 − σt) vθ(zt, σt), (3)

where vθ(zt, σt) represents the learned velocity field parameterized by a transformer with weights
θ, and σt is a monotonically increasing time step scaling function depending on time t with σ0 = 0
and σT = 1. Here, T denotes the total number of discredited timesteps. The final latent variable,
z0, is the output ready for decoding.

The inversion problem involves seeking for the initial noise zT given an observed pixel image I with
corresponding latent encoding y ∈ Rd, such that generating from zT using the flow model described
above allows us to either reconstruct y or apply desired modifications to it.

However, the gradual process of sampling from Gaussian noise to the original y diminishes the
advantage of GAN-like one-step mappings for direct latent space optimization. To address this,
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(a) Oscillation Inversion

(b) Control Inversion Direction 

(b) Control Oscillation Direction

 Control 

Figure 2: In the left figure (a), fixed-point iteration causes oscillation, leading to subdomains with
opposite features in the case of the brown-skinned girl, resulting in more tan and red tones. In the
right figure (b), we demonstrate how this oscillation can be customized to achieve desired separa-
tions, such as changes in hair color.

unlike tackling with the initial noise at t = T , we introduce the assumption that, at a selected
intermediate timestep t0, there exists a direct one-step mapping from the noisy latent at timestep t0
to the clean latent at timestep 0 via a “jumping” transformation.

More specifically, assuming y is the latent code to recover, we aim to figure out the intermediate
latent code zt0 satisfying

zt0 + (σ0 − σt0) vθ(zt0 , σt0) = y. (4)
Solving Eq. (4) is non-trivial, and in the following sections, we will describe how we find a set of
approximated solutions using iterative method and analyze its oscillating properties.

3.2.2 OSCILLATIONS INVERSION

Center
<A>1

Center
<A>2

Oscillate

(a) 1 Initial A Trigger 

Center
<B>2

Center
<B>1

Oscillate

(b) 1 Initial B Trigger

Input A

Input B

Images A and B are
alternately fed as

target inputs

Oscillate

Center <AB>1

Center <AB>2Center <AB>3

Good Center
Picked

(c) 2 Initials AB Trigger in turn

Figure 3: This is an example of group
inversion, where the high-quality distri-
bution is triggered by two degenerate
distributions. We also apply this method
to large-scale experiments in Section
4.1.

To address the inversion problem, we employ a fixed-
point iteration method to approach the solution of Eq. (4).
Instead of directly seeking a point zt0 such that applying
the one-step generative process as described in the left
side of (4) yields the target latent y, we define an itera-
tive process that refines our approximation of the inverted
latent code. We define the fixed-point iteration as:

z
(k+1)
t0 = y − (σ0 − σt0)vθ(z

(k)
t0 , σt0), (5)

with the initial condition z
(0)
t0 = y. The sequence

{z(k)t0 }∞k=0 represents successive approximations of the
inverted latent code at timestep t.

Rather than converging to a single point as suggested by
Banach’s Fixed-Point Theorem (Banach (1922)), we em-
pirically observed that the sequence {z(k)t0 }∞k=0 generally
oscillates among several clusters in the latent space. Each
cluster corresponds to a semantically concentrated region
that shares similar low-level features. This oscillatory be-
havior can be harnessed to explore different variations of
the input image, providing a richer inversion that captures
multiple aspects of the data.

Building upon the fixed-point method, we introduce group inversion that can trigger more stable
oscillation phenomena by inverting a set of images simultaneously in a periodic fashion as shown in
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Figure 3. Suppose we obtain their corresponding latent encodings y1, . . . , ym from a collection of
images I1, . . . , Im using the VAE encoding. Given a sequence b1, . . . , bN ∈ {1, . . . ,m}, we could
perform the iteration on the group:

z
(k+1)
t0 = yb(k mod N)

− (σ0 − σt0)vθ(z
(k)
t0 , σt0), (6)

with initial conditions z(0)t0 = yb1 . By inverting the images together, we enable interactions between
their latent representations during the iteration process. Our experimental findings indicate that
this collective inversion induces more diverse oscillatory clusters in the latent space. Each cluster
center represents a semantic blending of the input group of images, capturing shared attributes and
features across the group. This process could provide a basis for semantic guidance and blending,
potentially supporting tasks such as style transfer, identity transfer, and object modification (e.g.,
adding or removing objects) by exploring the latent space influenced by the oscillations. Also, the
oscillation phenomenon observed in the flow model trained on a toy distribution transitions from a
large central Gaussian to a mixture of four smaller Gaussians, as showed in Figure 6 This behavior
aligns closely with the results from our experiments on larger models.

3.2.3 FINTUNED INVERSION

While the fixed-point iteration method introduced earlier reveals oscillations that segment the latent
space into separate clusters, these clusters are not directly controllable.

To overcome this limitation, we propose finetuned inversion, a simple fine-tuning step that adjusts
the inversion direction, allowing the separated clusters to align with customized semantics. This
approach can also induce more diverse oscillatory separations in the latent space.

Given an input image I with its encoded latent representation y, we consider the image Ĩ modified
from I that reflects desired editing, such as alterations made using off-the-shelf masking and in-
painting models or customized doodling edits. For example, if original I is an image of a girl with
black hair, Ĩ could be a roughly edited version where the girl’s hair is doodled to appear purple.
Importantly, the edited image Ĩ does not have to be photo-realistic nor perfect.

Encoding the edited image Ĩ to obtain ỹ, our goal is to fine-tune the parameters θ of the velocity
field network vθ so that the inversion process aligns with the desired modifications. The fine-tuning
optimization problem could be formulated as below.

minimize
θ

Lfinetune =
∥∥vθ(y, σt)− vpt(ỹ, σt)

∥∥2
2
, (7)

Center of Sub Cluster 1 after Fintuning Step 1, 3, 5, 15 

Center of Sub Cluster 2 after Fintuning Step 1, 3, 5, 15 

Figure 4: Gradual evolution of two os-
cillating distributions occurs under the
influence of visual prompts during fine-
tuning. We utilize this method in the ex-
periments discussed in Section 4.2.

where vθ is the velocity field parameterized by θ that we
aim to finetune, and vpt is the pretrained velocity field
with frozen weights.

Through force aligning vθ(y) and vgt(ỹ) via optimizing
over θ, we effectively put strong guidance on the inver-
sion direction so that the resulting oscillatory clusters ob-
tained as described in Sec. 3.2.2 would be pulled towards
the semantics specified by the reference image Ĩ .

3.2.4 POST-INVERSION OPTIMIZATION

Following the fixed-point iterations and optional fine-
tuning, we perform a post-inversion optimization to re-
fine the found latent code zt further. Unlike previous ap-
proaches that aim at enhancing image quality, our opti-
mization focuses on utilizing the sub-distribution formed
by the oscillatory clusters to guide the latent code towards
clusters with desired semantics while maintaining stylis-
tic consistency with the cluster.

After identifying the sub-distribution characterized by the
points in the clusters obtained from the oscillations, we
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use these points as reference samples in a Gaussian Pro-
cess (GP) framework to serve as regularization in our op-
timization loss. This approach ensures that the optimized latent code retains the same style and
features as the sub-distribution while allowing gradual evolution guided by a customized loss func-
tion.

The optimization problem is formulated as:

minimize
zt0

Lrgb ◦D
(
zt0 + (σ0 − σt0)vθ(zt0 , σt0)

)
+ β LGP(zt0), (8)

where ◦ represents function composition operator while D(·) is the VAE decoder that converts the
latent code back to the pixel space, Lrgb is a customized loss function defined directly on the decode
pixel image space designed based on the specific application or desired attributes. Another loss
LGP(·) is the Gaussian Process regularization term that encourages zt0 to stay close in distribution
to the sub-distribution formed by the oscillatory cluster. β is a scalar hyperparameter that balances
the influence of the customized loss and the GP regularization.

Figure 5: Illustration of how our Gaussian Regularization Domain Preserving method works. The
red skin and purple hair domains are optimized toward minimizing photo loss, resulting in an image
that retains these domains while appearing younger.

The Gaussian Process regularization term LGP(z) is computed using a Radial Basis Function (RBF)
kernel to measure similarity between zt0 and the reference points from the sub-distribution. Specif-
ically, the GP loss is defined as:

LGP(z) := k(z, z)− 2

N

∑
i

k(z, z′i) +
1

N2

∑
i,j

k(z′i, z
′
j), (9)

where k(a, b) := exp
(
− ∥a−b∥2

2l2

)
is the RBF kernel with scale l, {z′i}Ni=1 are N reference latent

codes from the oscillatory cluster (sub-distribution).

This GP loss is derived from the Maximum Mean Discrepancy (MMD) measure, which quanti-
fies the difference between the distribution of zt and the sub-distribution represented by {z′i}. By
minimizing LGP(zt0), we encourage zt0 to share similar statistical properties with the cluster, thus
maintaining stylistic and feature consistency.

In the overall optimization, the first term Lrgb guides the latent code towards satisfying specific goals
or attributes defined by the application, such as emphasizing certain visual features or styles in the
decoded image. The GP regularization term ensures that these changes remain coherent with the
characteristics of the sub-distribution, preventing the optimization from deviating too far from the
latent space regions that correspond to realistic and semantically meaningful images.

By integrating these two components, we achieve a balance between customizing the output accord-
ing to desired specifications and preserving the inherent style and features of the sub-distribution
identified through oscillation inversion. This method allows for controlled manipulation of the gen-
erated images while maintaining high fidelity and coherence with the original data manifold.
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(a) 1 Initial Triggered Oscillation 

(b) 2 Initials Triggered Oscillation 

(c) 3 Initials Triggered Oscillation 

(d) 4 Initials Triggered Oscillation 

Figure 6: The oscillation phenomenon observed in the flow model trained on a toy distribution
transitions from a large central Gaussian to a mixture of four smaller Gaussians. This behavior
aligns closely with the results from our experiments on larger models.

In this section, we provide a theoretical framework to explain the oscillatory behavior observed
in the fixed-point inversion of large-scale diffusion models, specifically within the rectified flow
framework. We aim to show that, under certain assumptions and conditions, the inversion iteration
will oscillate between several concentrated regions without diverging to unbounded, meaningless
regions.

4 APPLICATIONS

In this section, we refer to our proposed method, Oscillation Inversion, as OInv. Our experiments
consist of three parts: stroke-based human makeup synthesis to demonstrate the effectiveness of
OInv-Finetune, human face post-enhancement to refine industry-standard enhancement results and
verify OInv-Group, and finally, a quantitative evaluation of the reconstruction quality and guided
diverse sampling compared to state-of-the-art inversion methods.

Experiment Settings All of our experiments are based on the ‘black-forest-labs/FLUX.1-schnell’
checkpoint. We run the experiments on a single A6000 GPU with 48GB of memory. All images are
cropped and resized to 512×512 pixels. The oscillation inversion consistently runs for 30 iterations,
taking 8.74 seconds per image. For OInv-Finetune, we fine-tune only the Attention modules of
the model while freezing all other components, using a consistent 15-step process that takes 10.88
seconds in total. Once a suitable latent representation is found, the reverse steps take 3-5 iterations
depending on the settings, and this step is optional.

4.1 IMAGE RESTORATION AND ENHANCEMENT

Image restoration and enhancement can be seen as a specialized editing task that aims to recover an
underlying clean image with high fidelity and detail from degraded measurements. Existing inver-
sion methods, such as BlindDPS Chihaoui et al. (2024), often achieve good perceptual quality but
tend to compromise on fidelity to the original image. Meanwhile, current image restoration tech-
niques and enhancers, like ILVR Choi et al. (2021), struggle with real-world blind scenarios where
the type of degradation is unknown or undefined. Image enhancement is a challenging problem, as
it involves transferring a degenerated distribution to a natural image distribution. To demonstrate
the effectiveness of our method in discovering high-quality distributions, as discussed in Section ??,
we perform both qualitative and quantitative evaluations. We use real-world degraded (low-quality)
images for the qualitative assessment and apply simulated noise, blur, and low-resolution degrada-
tion to the CelebA validation dataset ( Liu et al. (2015)) for the quantitative analysis. For the latter,
we follow the protocols of previous studies, using metrics like PSNR and LPIPS to measure per-
formance. We compare our approach against existing image restoration and enhancement methods,
including BlindDPS, DIP, GDP, and BIRD ( Chung et al. (2023); Ulyanov et al. (2018); Fei et al.
(2023); Chihaoui et al. (2024)). Since our approach is positioned as a post-processing image en-
hancement technique, we also select an image enhancement baseline. We chose Piscart due to its

7
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strong identity preservation and efficient batch processing capabilities. To further demonstrate the
efficacy of our method, we report not only the original performance of Piscart but also results from
several straightforward diffusion-based editing techniques, such as FluxODEInversion and Flux Lin-
ear, which are counterparts to DDIM Inversion and SDEdit. Table 1 presents the quantitative results
on the CelebA dataset, highlighting the superior fidelity of our method while maintaining excellent
perceptual quality. Figure 7 provides visual examples of our method’s ability to enhance and restore
images in real-world blind scenarios, including cases of noise, blur, and other types of degradation.
Our approach consistently restores richer details compared to existing open-source and commer-
cial methods. During our experiments, we observed a recurring pattern of distribution oscillation.
While it is challenging to determine which oscillation center provides the highest-quality results
across different degradation types, the oscillation behavior remained consistent within each degra-
dation recovery task. This observation suggests that our inversion method successfully introduces
a distribution transfer mechanism. In large-scale experiments, we visually inspected a small subset
of recovered samples from the three distribution centers and manually selected the best-performing
center. This center index was then applied to the entire set of images within the same degradation
recovery task, ensuring consistency across the dataset.

Figure 7: Enhancer as Example of Triggered New Distribution from two Lower-quality Distribution

Method Denoise Deblur 4× SR Time
(s)

PSNR
↑

LPIPS
↓

PSNR
↑

LPIPS
↓

PSNR
↑

LPIPS
↓

BlindDPS - - 23.56 0.257 21.82 0.345 270
DIP - - - - 18.64 0.415 -
GDP - - 22.53 0.304 20.78 0.357 118
BIRD - - 24.67 0.225 22.75 0.306 234
Piscart 28.21 0.15 30.23 0.15 29.68 0.12 7.8
(P)+ODEinv 20.12 0.22 19.34 0.38 27.56 0.37 +6.5
(P)+Linear 23.01 0.40 25.12 0.44 24.76 0.39 +4.5
(P)+OInvOurs 25.50 0.13 26.90 0.12 25.44 0.17 +9.5

Table 1: Comparison of BlindDPS Chung et al. (2023), DIP Ulyanov et al. (2018) and GDP Fei
et al. (2023) BIRD Chihaoui et al. (2024) on Denoise, Deblur, 4× Super Resolution (SR), and Time
(in seconds). The best results are indicated in bold. + indicates the additional time required by the
postprocessing method compared to its baseline time.
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4.2 LOW LEVEL EDITING

Our proposed method, oscillation group inversion with fine-tuning, is designed to support a variety
of general low-level editing tasks. As illustrated in Figure 8, rough strokes from doodle drawings
serve as guides for fine-tuning, while text prompts direct semantic details. Although our method can
achieve effects like relighting and recolorization, these tasks are more challenging to evaluate due
to the intuitive and non-precise nature of the prompts. Therefore, we primarily focus on makeup
synthesis and transfer for validation. In the first part of our experiments, we use stroke prompts
to create new makeup styles by altering facial and hair features. We compare our results with
two recent makeup transfer methods, CSDMT (Sun et al. (2024)) and Stable-Makeup (Zhang et al.
(2024)). In the second part, we take the ’before’ and ’after’ makeup images generated from the style
transfer results as low-level prompts, using them to produce higher-quality makeup images. This
demonstrates our method’s ability to capture complex color distributions. Visual results are shown
in Figure 8, and quantitative results are presented in Table 2. These results follow the metrics used
by CSDMT for evaluation. The stroke editing experiments were conducted on a manually labeled
dataset, which includes 10 high-quality face images and 77 different stroke variations, encompassing
both makeup and hair color changes. The enhancement experiments were performed on the LADN
dataset.

Figure 8: stroke makeup example and our enhanced result based on SOTA stylish make up transfer
method CSDMT( Sun et al. (2024))

Methods PSNR Stroke SSIM Stroke PSNR Enhance SSIM Enhance
SDEdit( Meng et al. (2021)) 19.32 0.719 23.45 0.842
SDXL-turbo i2i 20.05 0.733 24.10 0.851
Flux 18.89 0.710 22.90 0.830
Oinv Ours 20.45 0.785 25.10 0.89
CSDMT( Sun et al. (2024)) 19.90 0.715 25.32 0.86
Stable-Makeup( Zhang et al. (2024)) 18.60 0.705 24.30 0.884

Table 2: Comparison of different methods on the task of stroke make-up transfer and enhancement.
The metrics demonstrate that our method is robust in stroke makeup transfer and significantly im-
proves the quality of the baseline method compared to others.

4.3 RECONSTRUCTION AND DIVERSE SAMPLE

We performed an evaluation on image reconstruction task on the COCO Validation set, utilizing the
default captions as text prompts. The quantitative results are presented in Table 4.3. We followed the
same settings in Pan et al. (2023b). We selected the existing inversion methods, including DDIM,
NULL Text , AIDI, ReNoise ( Pan et al. (2023b); Mokady et al. (2023); Pan et al. (2023a); Garibi
et al. (2024); Meiri et al. (2023b)) as competing methods. Our method achieves near-exact inversion,
comparable to them.

Since our proposed inversion method is intended for low-level editing, we do not claim that it pro-
vides semantic editing capabilities. However, as discussed in Section 3.2.4, we explore optimization

9
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Figure 9: We use Image Space L2 Loss to align the latent with the visual prompt while preserving
the image’s style. Oscillation separates clean and watermarked domains, and optimization yields a
watermark-free result, demonstrating the effectiveness of Gaussian Processing Regularization.

Method PSNR (dB) LPIPS
DDIM 12.20 0.409
NULL Text 25.47 0.208
AIDI 25.42 0.249
EDICT 25.51 0.204
ReNoise 17.95 0.291
RNRI 22.01 0.179
Oinv (Ours) 20.87 0.154

Table 3: Reconstruction Quality Comparison
based on PSNR and LPIPS

Method CLIP SSIM
NULL Text 0.68 0.80
EDICT 0.70 0.78
IP-Adapter 0.82 0.72
MimicBrush 0.60 0.84
Oinv (Ours) 0.85 0.87

Table 4: Editing Quality Comparison based
on CLIP and SSIM

strategies around the inverted latents to achieve customized functions, as illustrated in Figure 9.
Quantitative results are provided in Table 4.3

5 ABLATIONS

We also applied the same method to short sampling methods, including SD3 and the Latent Con-
sistency Model; however, the same phenomena were not observed. Interestingly, we found this
behavior to be quite prominent in our flow model trained from scratch on toy distributions.

6 CONCLUSIONS

In this work, we introduced Oscillation Inversion, a novel method for image manipulation within
rectified flow-based diffusion models, addressing the challenges posed by the unique latent struc-
tures of these models. Our approach leverages oscillatory behavior in fixed-point iteration to enable
semantic-based image optimization, while extensions like Group Inversion, Finetuned Inversion, and
Post-Inversion Optimization provide flexibility for diverse image editing tasks. Theoretical analy-
sis and extensive experiments across various applications, including image restoration, relighting,
and watermark removal, validate the effectiveness of our method, showcasing improvements in both
perceptual quality and fidelity.
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