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ABSTRACT

While generative models hold immense promise for protein design, existing models are typ-
ically backbone-only, despite the indispensable role that sidechain atoms play in mediating
function. As prerequisite knowledge, all-atom 3D structure generation require the discrete
sequence to specify sidechain identities, which poses a multimodal generation problem. We
propose PLAID (Protein Latent Induced Diffusion), which samples from the latent space
of a pre-trained sequence-to-structure predictor, ESMFold. The sampled latent embedding
is then decoded with frozen decoders into the sequence and all-atom structure. Importantly,
PLAID only requires sequence input during training, thus augmenting the dataset size
by 2-4 orders of magnitude compared to the Protein Data Bank. It also makes more annota-
tions available for functional control. As a demonstration of annotation-based prompting,
we perform compositional conditioning on function and taxonomy using classifier-free
guidance. Intriguingly, function-conditioned generations learn active site residue identities,
despite them being non-adjacent on the sequence, and can correctly place the sidechains
atoms. We further show that PLAID can generate transmembrane proteins with expected
hydrophobicity patterns, perform motif scaffolding, and improve unconditional sample
quality for long sequences. Links to model weights and training code are publicly available
at [redacted].
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Figure 1: PLAID learns non-adjacent cat-
alytic residues and sidechain positions at
active sites, while maintaining novelty with
low global sequence identity.

The typical workflow for de novo protein design involves spec-
ifying a function, and generating a corresponding structure and
sequence in two stages Chu et al. (2024). Structure-based gener-
ation can provide more precise control when a function can be
encapsulated as a motif. However, structure databases are lim-
ited in size, and biased towards crystallizable proteins Berman
et al. (2000). Sequence-based methods can have better coverage
of the protein distribution, but provide a coarser representation
of many protein functions. A natural way to combine the
benefits of both approaches would be to simultaneously rea-
son about sequence and structure during generation, known as
the co-generation1 or all-atom generation problem Wang et al.
(2024).

1Co-generation is sometimes used for methods that simultaneously generate structure and sequence, but do not specify
sidechain atom positions. We therefore use all-atom generation throughout to minimize confusion.
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Figure 2: PLAID unconditionally generates diverse,
high-quality all-atom structures, despite using only
sequences for training the generative model.

We introduce PLAID (Protein Latent Induced
Diffusion). Sampling from the latent space of a pre-
trained protein folding model Lin et al. (2023) com-
bines the function resolution afforded by structure
with the distribution coverage of sequence databases.
By making use of the rich textual annotation data
available to us, we demonstrate an alternative means
to achieve highly specific control over function.
Sampling latent representations of structure allows
us to directly use infrastructure built for other appli-
cations, such as diffusion transformers (Peebles and

Xie, 2023) and accelerated attention kernels (Dao et al., 2022; Lefaudeux et al., 2022). Our work is fully
open-source, including training code and model weights, available at Links to model weights and training
code are publicly available at [redacted].

2 PLAID: PROTEIN LATENT INDUCED DIFFUSION

ESM2

❄
CHEAP
Encoder
❄ESM2

❄
ESMFold
Structure

Head

❄

Sequence 
decoder

MQIFVKTL
TGKTITLE
VEPSDT

ESMFold

MQIFVKT
LTGKTIT
LEVEPSD
TTLEVEP

A B

[GO term]

[Organism]

MQIFVKTLTGKTITL
EVEPSTTLEVESDT…

Conditioning via classifier-free guidance 

Diffusion loss

DiT
❄

Sequence 
Decoder
❄

ESMFold
Structure
Decoder
❄

MVIHGKTLT
GKTIDLEVE
PSDTIENV…

CHEAP
Decoder
❄

C

Frozen weights from ESMFold (Lin et al.)
Frozen weights from CHEAP (Lu et al.)

[GO term]

[Organism]

DiT

D

[GO term] [Organism]

GO Embed Org. EmbedTime Embed.

Timestep t

MLPLayerNorm

Scale & Shift

Multihead 
Self-Attention

LayerNorm

Scale & Shift

Feedforward

Scale

Scale

Conditioning

Conditioning

DiT Blocks
with hardware-aware attention kernels

LayerNorm

Scale & Shift

Dropout p=0.3

α1

γ1 β1

α2

γ2 ,β2

N x

Figure 3: Overview of PLAID.

Related work can be found in Ap-
pendix E, and additional methods can be
found in Appendix B and C. Ablation re-
sults can be found in Appendix D.

Latent Diffusion Model Training Our
goal is to characterize a joint embedding
of structure and sequence information
p(x) over X , such that there exist map-
pings x = ϕs(s) and x = ϕΩ(Ω). To
do so, we use the latent space of protein
folding models, allowing us to repurpose
information from these predictive models
for generation. The trunk of the model provides x = ϕESM(s), and the structure module head provides
Ω = ϕSM(x). If we consider an implicit inverse function of the structure module such that x = ϕ−1

SM(Ω), then
we have x = ϕs(s) = ϕΩ(Ω), and s and Ω can be mapped to the same x.
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Figure 4: Schematic of metrics used to assess quality, diversity,
and novelty.

Our goal is to learn pθ(x) ≈ p(x), where
θ is the set of parameters of the model
learned through diffusion training (Fig-
ure 3C). Then, after training, we can sam-
ple x̃ ∼ pθ(x) (Figure 3C). To do so,
we use diffusion models Ho et al. (2020);
Song et al. (2020) with some modifica-
tions (described in ablation Table 4).

Decoding Sequence and Structure To
obtain the sequence, we train an implicit inverse mapping of ESM2 to get s̃ = ϕ−1

ESM(x̃), which is frozen
during inference. To obtain the all-atom structure from the sampled latent embedding, we use the frozen
ESMFold structure module weights to compute Ω̃ = ϕSM(x̃, s̃) (Figure 3C). Note that s̃ must be decoded
first, as it determines the side-chain atoms to be placed in Ω̃.
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In initial experiments, we found that directly learning pθ(x) without compression performed poorly (results
shown in Appendix Figure 10). We suspected that this might be due to the high dimensionality of x ∈ RL×1024.
Therefore, we mirror works in this literature and perform diffusion in the latent space of an autoencoder,
x′ = he(x), such that the dimensions of x′ are much smaller Rombach et al. (2022). More information on
compression using the CHEAP autoencoder can be found in Lu et al. (2024) and Appendix G.

3 EXPERIMENTS

3.1 UNCONDITIONAL GENERATION

We find that PLAID balances quality and diversity at longer sequence lengths., as shown in Figure 5.
Additionally, Figure 5A and Appendix Figure 11 shows that baselines methods exhibit mode collapse at
specific lengths. Furthermore, secondary structure diversity is closer to the profile of natural proteins in
PLAID versus baseline methods; Figure 5B shows that existing models often struggle to produce samples
with high β-sheet content. PLAID generations are also more consistent across modalities., as shown in
Table 1. Cross-modal consistency is generally highest for PLAID, possibly due to sampling directly from
p(s,Ω) (Table 1).

PLAID produces distinct, and designable samples. Table 2 assesses the diversity and quality trade-off by
comparing the number of distinct designable sequence and structure clusters, where designability is defined as
ccRMSD < 2Å. PLAID samples also have high distributional conformity to natural proteins., shown in
Table 2. This is potentially due to the removal of biases toward structure in its training data.More information
can be found in Appendix J.1.

Table 1: Comparison of model performance across consistency and quality metrics.

Cross-Modal Consistency Structure Quality Sequence Quality

ccTM
(↑)

ccRMSD
(↓)

ccSR
(↑)

% ccRMSD
< 2Å (↑)

scTM
(↑)

pLDDT
(↑)

Beta sheet
% (↑)

scSR
(↑)

Ppl.
(↓)

ProteinGenerator 0.58 11.86 0.28 0.08 0.72 69.00 0.04 0.40 8.60
Protpardelle 0.44 24.28 0.22 0.00 0.57 N/A 0.11 0.44 8.86
PLAID 0.69 9.47 0.26 0.32 0.64 59.46 0.13 0.27 14.61

Natural 1.00 0.07 0.39 1.00 0.84 84.51 0.13 0.39 7.40

Table 2: Diversity, novelty, and distributional conformity metrics across models. Bold values show best
performance among all-atom generation models. Descriptions of each biophysical parameter for distributional
conformity is described in Appendix J.1.

Diversity Novelty Distributional Conformity (Wasserstein Distance)

# Des.
(↑)

# Des.
Seq.

Clusts.
(↑)

# Des.
Struct.
Clusts.

(↑)

MMseqs
Seq Id%

(↓)

Foldseek
TMScore

(↓)
MW
(↓)

Aroma-
ticity
(↓)

Dipeptide
Instability
Index (↓)

Iso-
electricity

(↓)

Hydro
pathy

(↓)

Charge
at

pH=7
(↓)

ProteinGenerator 309 309 309 0.57 0.57 9.54 0.07 14.55 1.42 0.31 6.12
Protpardelle 0 0 0 0.56 0.72 10.4 0.07 8.61 1.99 0.37 8.58
PLAID 1171 809 522 0.60 0.67 0.62 0.01 1.98 0.49 0.28 2.71
Natural 3570 1362 600 0.81 0.87 0.0 0.0 0.0 0.0 0.0 0.0
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3.2 CONDITIONAL GENERATIONS

Structure Diversity, Representative Structure Clusters

Alpha Helix & Beta Sheet %

A

B

Figure 5: (A) Structural quality (ccRMSD, teal points)
and diversity (purple line, measured as ratio of unique
structural clusters to total samples). The red line in-
dicates the ccRMSD < 2Å threshold for desiganbility.
(B) Comparing α-helix and β-sheet content in struc-
tural samples; each data point is an unique cluster, to
account for sample diversity.

PLAID recapitulates active site sidechains. Fig-
ure 12 and Figure 1 demonstrate that function-
conditioned proteins can recapitulate known protein
active sites. For a given generation, we perform a
Foldseek search to find the closest structural neigh-
bor resolved in complex with a ligand, then overlay
the structures. Despite high levels of conservation at
catalytic sites, global sequence diversity is low, sug-
gesting that the model has learned key biochemical
features associated with the function prompt with-
out direct memorization. Transmembrane protein
generations also have expected hydrophobicity
patterns.

Generations prompted by transmembrane functions
consistency demonstrate hydrophobic cores and hy-
drophilic cytosol-facing residues. Generated G
protein-coupled receptors (GPCRs) strcutures pos-
sess the characteristic seven transmembrane helix
architecture. DeepTMMHMM Hallgren et al. (2022)
topology predictions on generated sequences con-
firm the expected transmembrane organization. This
again highlights PLAID’s ability to reason jointly about residue identity and position.

Figure 6: Transmembrane proteins have hydrophobic
cores and hydrophilic ends. GPCRs have characteristic
7-helix topology.

Further evaluation Figure 18 examines motif
scaffolding. Appendix Figure 11 visually inspects
sequence repeats in baselines versus PLAID gener-
ations. Appendix Figure 13, shows that conditional
generations generally have lower Sinkhorn distances
to validation proteins with the same annotation than
random samples, suggesting that the desired latent
information is captured in the embedding. In Ap-
pendix Figure 17, we consider how conditioning
scale might affect sample quality and possible GO
term characteristics that might be influencing the
difference in Sinkhorn distance between function-
conditioned generations and random proteins.

4 DISCUSSION

We propose PLAID, a paradigm for multi-modal, controllable generation of proteins by diffusing in the latent
space of a prediction model that maps single sequences to the desired modality. It is straightforward to expand
PLAID to many downstream capabilities. Although we examine ESMFold Lin et al. (2023) in this work, the
method can be applied to any prediction model. There is rapid progress Krishna et al. (2024); Abramson
et al. (2024); Discovery et al. (2024); Liu et al. (2024); Wohlwend et al. (2024) in predicting complexes from
sequence, and diffusing in the latent space of such models would allow using the frozen decoder to obtain
more modalities than just all-atom structure.
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APPENDIX

A METRICS

Evaluating protein generative model outputs is notoriously difficult since humans cannot natively interpret
what makes for a “good” protein. This is especially difficult for all-atom generation, because backbone-only
structure metrics are not always meaningful in this setting. For unconditional generation, we check to see if
the simultaneously generated modalities accord with each other, if sequence and structure have high quality
when individually considered, at the naturalness of protein generations (due to their robust indication of
wet-lab expression rates in Frey et al. (2023)), and at novelty and diversity metrics. A schematic of these
metrics are shown in Figure 4. For distributional conformity scores, each biophysical property is outlined in
greater detail in Appendix J.1. Metrics are described in detail in Appendix Table 3.

Evaluation of conditional generations introduces a conundrum where structure and sequence should be
highly conserved when they exhibit similar functions, and thus similarity to known proteins should indicate
successful conditioning. However, in machine learning literature, works often prefer generations being
different from known proteins to emphasize novelty or lack of training data memorization.

In our case studies, we look for high structure similarity as a proxy for function, and low global sequence
similarity to account for memorization. In Appendix Figures, we examine the Sinkhorn distance between
function-conditioned generated latent embeddings and held-out real proteins with this GO term annotation,
to examine distribution similarities between real and generated samples. To compare, we also examine the
Sinkhorn distance between random proteins from the heldout set of real samples. Since we generate latent
representations, we directly compare the distance between the sampled latent and heldout validation proteins
in CHEAP Lu et al. (2024) embedding space. We also use Sinkhorn Distance rather than Fréchet Distance to
be more robust to smaller sample sizes, so that we can perform this analysis for GO term classes with fewer
samples. It also assesses conditional generations independent of the sequence and structural decoders, and
controls for memorization by comparing to a holdout dataset unseen during training.

B ADDITIONAL NOTATION DETAILS

A protein is composed of amino acids. A protein sequence s := {ri}Li=1 with length L is often represented
as a string of characters, with each character denoting the identity of an amino acid residue ri ∈ R, where
|R| = 20. Each unique residue r can be mapped to a set of atoms r := {aj}Mr

j=1, where each aj ∈ R3 is
the 3D coordinate of an atom, and the number of atoms Mr may differ depending on the residue identity. A
protein structure Ω := {ri}Li=1 consists of all atoms in the protein and therefore implicitly contains s. In
practice, to make use of array broadcasting, a standard M is selected for all residues, with an associated
one-hot mask to specify which atoms are present for a given residue. Following prior work Ahdritz et al.
(2024); Lin et al. (2023), we use the atom14 representation where M = 14. To reduce complexity, protein
designers sometimes work only with backbone atoms Ωbackbone ⊂ Ω only, which consists of [Cα, C,N ] atom
repeats. These are sufficient to define the general fold. Backbone-only structures induce 2(L− 1) degrees
of freedom from the ϕ and ψ angles (assuming that ω angles are held constant at 180◦). Depending on the
residue identity, there may be 0 to 4 additional rotamer angles associated with the side chains. Therefore,
even when the sequence is known, there may be up to 4L additional degrees of freedom necessary for all-atom
structure prediction.

B.1 OVERVIEW OF ESMFOLD

Briefly, ESMFold Lin et al. (2023) has two components: a protein language model component x = ϕESM(s),
and a structure module component Ω = ϕSM(x) that decodes these latent embeddings into a 3D structure. For
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@l>p1.5cm>p2.5cm>p1.8cm>X@
Category Modality Metric Abbrv. Description

Multimodal Cross
Consistency

Structure
cross-consistency RMSD ccRMSD When the generated sequence is folded,

does it match the generated structure?

cross-consistency TM-Score ccTM Similar to ccRMSD, but with TM-Score.

Designability ccRMSD < 2Å What percentage of generated samples are designable?

Sequence cross consistency sequence recovery ccSR When the generated structure is inverse-folded into a
sequence, does it match the generated sequence?

Unimodal Sample
Quality

Structure
self-consistency TM-Score scTM When the generated structure is inverse-

folded into a sequence, and the result is folded again with OmegaFold, is it consistent with the original
generation?

self-consistency RMSD scRMSD Similar to scRMSD, but with TM-Scores.

Sequence
self-consistency sequence recovery scSR If we fold a generated sequence, then inverse-fold, does

the output sequence match the original generation?

Perplexity on RITA XL Hesslow et al. (2022) Ppl. Do generated sequences have low perplexity on an
autoregressive protein language model?

Diversity
Structure Num. Foldseck clusters Structure clusters After clustering with Foldseck, what fraction

of structure generations are unique?

Sequence Num. MM-seqs clusters seq. clusters After clustering with MMseqs, what fraction of sequence
generations are unique?

Novelty
Structure TM-Score to nearest Foldseck neighbor Foldseck TMScore Among designable samples,

how similar are generated structures to the closest known protein?

Sequence Sequence identity to nearest MMseqs neighbor MMseqs seq. id. What is the sequence identity to
the closest mmseqs easy-search neighbor in UniRef90 after pairwise alignment?

Table 3: Evaluation metrics for protein structure and sequence generation.
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x ∈ RL×1024, we use the layer outputs representation just prior to the structure module (pseudocode provided
in Appendix F). This is because when ESMFold is used at inference time, the pairwise input is initialized as
zeros, such that the sequence input contains all information necessary for structure prediction (Figure 3A).

C ADDITIONAL TRAINING DETAILS

Architecture We use the Diffusion Transformer (DiT) Peebles and Xie (2023), with the goal of maximizing
portability and weight reuse. In early experiments, we found that allocating available memory to a larger DiT
model was more beneficial than using triangular self-attention Jumper et al. (2021). We train our models using
the xFormers Lefaudeux et al. (2022) implementation of Rabe and Staats (2021), which provided a 55.8%
speedup and a 15.6% reduction in GPU memory usage during our inference-time benchmarking experiments
compared to a standard implementation using PyTorch primitives (see Appendix Table 6). We train two
versions of the model with 100 million and 2 billion parameters, respectively, both for 800,000 steps. More
details are provided in Appendix C.

Diffusion Hyperparameters We use the discrete-time diffusion framework in Ho et al. (2020) with
employing 1,000 timesteps. To stabilize training and improve performance, we incorporate additional
strategies: min-SNR reweighting Hang et al. (2023), v-diffusion Lin et al. (2024); Salimans and Ho (2022),
self-conditioning Chen et al. (2022); Jabri et al. (2022), a sigmoid noise schedule Chen (2023), and exponential
moving average (EMA) decay. Ablation results are shown in Table 4.

For sampling, unless otherwise noted, all results use the DDIM sampler Dhariwal and Nichol (2021); Song
et al. (2020) with 500 timesteps. We use c = 3 as the conditioning strength for conditional generation;
however, we find (Appendix Figure 17C) that sample quality is not strongly affected by this hyperparameter.
We also find that DPM-Solvers Lu et al. (2022) can achieve comparable results with 10× fewer steps in
scenarios where speed is a concern (see Appendix Figure 17), but in this work, we prioritize sample quality.
More details on sampling methodology can be found in Appendix I. A comparison of sampling speeds across
all-atom baselines can be found in Appendix K.

Classifier-Free Guidance Classifier-free guidance (CFG) Ho and Salimans (2022) is used to condition
the model (Figure 3D). As an overview of classifier-free guidance, we first consider the case where we use
only one conditioning label, c. In CFG an additional "unconditional class" ∅ is defined. During training, we
replace c with ∅ with some dropout probability puncond, such that we alter p̃θ(x|c) to p̃θ(x|∅). The effect
is that p̃θ(·) can be used as both an conditional and unconditional model. Then, inference time, guided
generations can be obtained as p̃θ(xt, c) = (1 +w) · pθ(xt, c)−w · pθ(xt), where increasing w strengthens
the conditioning effect. To perform unconditional sampling, one can use the ∅ variable during inference.

In our case, we apply compositional conditioning, such that we have cfunction and corganism. For cfunction, we
use 2,219 Gene Ontology (GO) (Consortium et al., 2023; Ashburner et al., 2000) terms, which is a structured
hierarchical vocabulary for annotating gene functions, biological processes, and cellular components across
species. For corganism, we examine all unique organisms in our dataset, and identify 3,617 organisms. During
training, puncond is sampled separately for cfunction and corganism, and we use puncond = 0.3 for both. At inference,
we can condition by one variable but not the other by replacing corganism with ∅ while keeping cfunction as is
(and vice versa).

Training Details We train two variants of the model: a 2B version and a 100M version, both with the
memory-efficient attention implementation in xFormers, using float32 precision. A learning rate of 1e-4 was
used, with cosine annealing applied over 800,000 steps. The xFormers memory-efficient attention kernel
requires input lengths to be a multiple of 4. Since we also apply an upsampling factor of 2, the actual inference
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Table 4: Ablation results for metrics defined in Section ??.

Configuration ccTM scTM Ppl. Seq.
Div. %

Struct.
Div.%

A cosine noise sched. & pred. noise 0.54 0.55 16.97 0.98 0.86
B A + v-diffusion 0.52 0.53 17.37 0.98 0.89
C A + MinSNR 0.59 0.59 16.76 0.97 0.86
D A +B + C + sigmoid noise sched. 0.56 0.58 16.88 0.92 0.86
E D + self-conditioning 0.70 0.65 15.38 0.93 0.76
F E + no cond drop 0.57 0.57 17.28 0.97 0.85

length must be a multiple of 4. During training, the maximum sequence length we use is 512, based on the
distribution of sequences in Pfam and a shortening factor of 2 based on results in Lu et al. (2024).

Conditioning Following Ho and Salimans (2022), with puncond = 0.3, the class label is replaced with the ∅
unconditional token. Note that not all data samples will have an associated GO term; we use the ∅ token
for those cases as well. At inference time, to generate unconditionally (for either or both of function and/or
organism), we use the ∅ token for conditioning.

Figure 7: Size comparison of datasets drawn to scale. Sequence databases provide significantly more
comprehensive coverage of the natural protein space than structural databases.

D ABLATIONS

E RELATED WORK

Denoising Diffusion Models and Latent Diffusion Since the empirical success Ho et al. (2020); Song
et al. (2020); Dhariwal and Nichol (2021) of extending denoising diffusion Sohl-Dickstein et al. (2015) and
score-matching Vincent et al. (2010) to generative modeling, there has been an explosion of works that has
achieved state-of-the-art results on applications across images Saharia et al. (2022); Rombach et al. (2022),
video Ho et al. (2022), audio Liu et al. (2023), and more. We refer the reader to resources Nakkiran et al.
(2024) for a more detailed tutorial. Diffusion models Ho et al. (2020); Song et al. (2020); Sohl-Dickstein
et al. (2015) approach the generative modeling task of approximating the data distribution pθ(x) by training a
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denoiser to remove iteratively added noise; during inference-time sampling, one starts from noise, and uses
the denoiser to remove noise, until we arrive back at the data distribution.

Single Modality Protein Generation Protein backbone structure generation aims to find novel folds that
are distinct from known proteins. This is traditionally done by biophysical approaches, though recently,
diffusion Ho et al. (2020); Song et al. (2020) and flow-matching Lipman et al. (2022) based approaches have
been empirically successful Ingraham et al. (2023); Watson et al. (2023); Wu et al. (2022a); Yim et al. (2023).
Since these methods do not generate sequence, an important metric is whether if there exists a sequence which
folds into the generated backbone, known as the designability Trippe et al. (2023). Relatedly, hallucination
approaches Anishchenko et al. (2021); Wang et al. (2022) use discrete optimization or backpropagation
through a structure prediction model to find sequences that fold into a desired structure.

Sequence-based generation typically train on large protein sequence datasets Suzek et al. (2015); Mistry
et al. (2021); Richardson et al. (2023) to recover the natural distribution. This can be especially useful for
generating proteins without fixed structure, such as intrinsically disordered proteins. Most recent methods
adopt autoregressive Madani et al. (2023); Hesslow et al. (2022); Ferruz et al. (2022); Nijkamp et al. (2023),
discrete diffusion Alamdari et al. (2023); Gruver et al. (2024), or walk-jump sampling Frey et al. (2023)
approaches. The model itself does not produce atomic positions, though one can predict the structure using
another model.

Multimodal Sequence-Structure Co-Generation Generative models which directly produce sequence
and structure remains under-explored. Models which produce positions of both sidechains and backbones
typically involve a two-stage process at each diffusion iteration. Chu et al. (2023) and Ingraham et al. (2023)
produce all-atom positions, but the sequence must be predicted in a separate step. Lisanza et al. (2024) instead
performs diffusion in the one-hot sequence space, and uses RosettaFold Baek et al. (2021) to predict the
structure. Multiflow Campbell et al. (2024) generates sequence and structure in one step, but does not place
the sidechain atoms.

Functionally Controllable Protein Structure Generation The central aim of protein design is to conjure
proteins that fulfill a predefined function. Current structure generation methods typically achieve functional
control by scaffolding around a motif. This falls short for enzymatic active sites, which often involve non-
adjacent sidechain atoms. Kim et al. (2024) extends RFDiffusion Watson et al. (2023) beyond backbone-level
motifs to “scaffold" heavy-atoms without pre-specifying the positions of the catalytic residues. However,
the motif must still be predefined, and the model does not produce sidechain positions for other parts of the
protein. Development concurrently with this work, ESM3 Hayes et al. (2024) provides similar axes of control
by generating in a shared sequence-structure space, conditioned on InterPro Paysan-Lafosse et al. (2023)
function terms. However, the ESM3 tokenizer is trained on structure datasets rather than sequence databases.

F DEFINING THE LATENT SPACE: PSEUDOCODE

To better clarify how we obtain the latent representation from ESMFold Lin et al. (2023), we provide a
code sketch for the relationship of this representation and the rest of the ESMFold architecture: Note that
self.esm_s_combine and self.esm_s_mlp are both trained end-to-end with loss objectives from
the original ESMFold paper.

# self.esm_s_combine is a learnable weight
self.esm_s_combine = nn.Parameter(torch.zeros(self.esm.num_layers + 1))

# Forward pass through ESM2 language model.
# `esm_s` is a stack of representations from all layer outputs
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# esm_s = torch.stack(
# [v for _, v in sorted(res["representations"].items())], dim=2
# )
# Typically, when working with ESM2 LM embeddings, one would use
# embeddings from `res["representations"][final_layer_number]
esm_s, esm_z = self._compute_language_model_representations(esmaa)

# weigh representations from different layers
esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2)

# Simple MLP for manipulating output representation
s_s_0 = self.esm_s_mlp(esm_s)

# Pairwise input is initialized to zero:
s_z_0 = s_s_0.new_zeros(B, L, L, self.cfg.trunk.pairwise_state_dim)

# Pointwise add embedding of amino acid
s_s_0 += self.embedding(aa)

########
# Use this representation for CHEAP experiments:
# return s_s_0
########

# In ESMFold code, this embedding is then used as input
# to the structure trunk. We also use this to
# reconstruct structure from the CHEAP embedding.

structure: dict = self.trunk(
s_s_0, s_z_0, aa, residx, mask, no_recycles=num_recycles

)

G CHEAP COMPRESSION DETAILS

Compression is performed using the CHEAP autoencoder Lu et al. (2024), using a compressor that compresses
from 1024 → 32 channels and downsamples by 2× along the length (for memory efficiency when training the
transformer-based diffusion model). The task is now to learn pθ(x′) ≈ p(x′), where x′ = he(x) (Figure 3B).
At inference time, we begin by sampling the compressed latent variable x̃′ ∼ pθ(x

′), decompress to obtain
x̃ = hd(x̃

′), then use frozen decoders as previously described.

Briefly, the CHEAP encoder and decoder use an Hourglass Transformer Nawrot et al. (2021) architecture
that downsamples lengthwise, and downprojects the channel dimension, to create a bottleneck layer. The
output of the encoder is our compressed embedding. The entire model is trained with the reconstruction loss
MSE(x, x̂). Results in Lu et al. (2024) show that structural and sequence information in ESMFold latent
spaces are in fact highly compressible, and despite using very small bottleneck dimensions, reconstruction
performance can nonetheless be maintained when evaluated in sequence or structure space.

The embedding x, defined just before the structure module, is actually a linearly projected version of the
ESM2 embeddings. If we defined x as the ESM2 embeddings directly, we could use the decoder from ESM2’s
MLM training. However, since we use this modified embedding space, an approximation is necessary.
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Figure 8: When noise is added via a cosine schedule Dhariwal and Nichol (2021) (true signal-to-noise ratio
(SNR) curve overlaid in orange) to the uncompressed latent space x, the sequence and structure remain
uncorrupted until the final forward diffusion timesteps, meaning most sampled timesteps are trivial for
learning. After compression, noising in the compressed latent space x′ = he(x) better aligns with the true
SNR in the sequence and structure space, thereby improving the effectiveness of the diffusion task.

Based on reconstruction results in Lu et al. (2024), we choose x′ ∈ RL
2 ×32 with L = 512, which balances

reconstruction quality at a resolution comparable to the size of latent spaces in image diffusion models (Rom-
bach et al., 2022). Dividing the length in half allows us to better leverage the scalability and performance of
Transformers, while managing their O(L) memory needs.

The CHEAP module involves a channel normalization step prior to the forward pass through the autoencoder.
We find that the distribution of embedding values is fairly “smooth" here (Figure 9). Althoughgh the original
Rombach et al. (2022) paper was trained with a KL constraint to a Gaussian distribution, we use the embedding
output as is. CHEAP embeddings were also trained with a tanh layer at the output of the bottleneck; this
allows us to clip our samples between [−1, 1] at each diffusion iteration, as was done in original image
diffusion works Ho et al. (2020); Ho and Salimans (2022); Dhariwal and Nichol (2021); Saharia et al. (2022).
We found in early experiments that being able to clip the output values was very helpful for improving
performance. Without using CHEAP compression prior to diffusion, sample quality was poor, even for short
(L = 128) generations, as shown in Figure 10.

Compressing the Latent Space Regularizes Pathologies Figure 8 shows that when noise is added to
the latent space, the sequence and structure remain unaltered until later timesteps. By adding noise in the
compressed latent space, the resulting corruptions in sequence and structure space more closely match the
true signal-to-noise ratio. Applying embedding compression prior to learning the latent diffusion model was
crucial for performance in our experiments. Considering the importance of diffusion noise schedules for
sample performance Chen (2023), we suspect these irregularities in how perturbations in the latent space is
mapped back to sequence and structure space might be contributing to this empirical observation.
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Figure 9: Visualizing the original ESMFold latent space before normalization, after per-channel normalization,
and after compression. The value distribution of p(x′) is fairly smooth and “Gaussian-like," making it
amenable to diffusion.

H DATA

The PLAID paradigm can be applied to any sequence database. As of 2024, sequence-only databases
range in size from UniRef90 Suzek et al. (2015) (193 million sequences) to metagenomic datasets such as
BFD Steinegger et al. (2019) (2.5 billion sequences) and OMG Cornman et al. (2024) (3.3 billion sequences).
We use Pfam because it provides more annotations for in silico evaluation and because protein domains are
the primary units of structure-mediated functions.

We use the September 2023 Pfam release, consisting of 57,595,205 sequences and 20,795 families. PLAID is
fully compatible with larger sequence databases such as UniRef or BFD (roughly 2 billion sequences), which
would offer even better coverage. We elect to use Pfam because sequence domains have more structure and
functional labels, making it easier for in silico evaluation of generated samples. We also hold out about 15%
of the data for validation.

We examine all Pfam domains that have a Gene Ontology mapping, resulting in 2,219 GO terms compatible
with our model. For domains with multiple associated GO term labels, the GO term that is least prevalent in
our dataset is selected, to encourage the selected terms to be more specific.

Approximately 46.7% of the dataset (N = 24, 637, 236) is annotated with a GO term. Using the publicly
available mapping as of July 1, 2024, we count all GO occurrences; for each Pfam entry with multiple GO
entries, we pick the one with the fewest GO occurrences to encourage more descriptive and distinct GO
labels.
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scTM vs. pLDDT ccTM vs. scTM

ccSR vs scSR

Figure 10: Results when running PLAID on the ESMFold latent space naively without CHEAP compression,
for proteins of length 128. There is a tendency to generate repeated sequences, and quality is low compared
to baselines.

The Pfam-A.fasta file available from the Pfam FTP server includes the UniRef code of the source organ-
ism from which the Pfam domain is derived. The UniRef code furthermore includes a 5-letter “mnemonic" to
denote the organism. We examine all unique organisms in our dataset and find 3,617 organisms.

I SAMPLING

Inference-time sampling hyperparameters provide the user with additional control over quality and sampling
speed trade-offs. PLAID supports the DDPM sampler Ho et al. (2020) and the DDIM sampler Dhariwal and
Nichol (2021), as well as the improved speed samplers from DPM++ Lu et al. (2022). We find that using the

18



Under review at the GEM workshop, ICLR 2025

DDIM sampler with 500 timesteps using either the sigmoid or cosine schedulers works best during inference,
and reasonable samples can be obtained using the DPM++2M-SDE sampler with only 20 steps. Experiments
shown here use the DDIM sampler with the sigmoid noise schedule at 500 timesteps.

Note that the performance bottleneck is found mostly during the latent sampling and structure decoding
(which depends on the number of recycling iterations Jumper et al. (2021); Lin et al. (2023) used); however,
these two processes can be easily decoupled and parallelized, which cannot be done in existing protein
diffusion methods. Furthermore, it allows us to prefilter which latents to decode using heuristic methods, and
decode only those latents to structure, which would boost performance for nearly the same computational
cost. We do not empirically explore this in this paper to provide a fair comparison, and because the filtering
criteria would vary greatly by downstream use.

J EVALUATION DETAILS

For all benchmarks and models, we use default settings provided in their open-source code. For Protein-
MPNN Dauparas et al. (2022), we use the v_48_002 model with a sampling temperature of 0.1 and generate
8 sequences per protein, from which the best performing sequence is chosen. To calculate self-consistency,
we fold sequences using OmegaFold Wu et al. (2022b) rather than ESMFold, again using default settings.

Though our models generate all-atom structure, we examine Cα RMSD rather than all-atom RMSD to avoid
misattributing sequence generation underperformance to structure generation failures. Also, since there are
usually differences in the sequences that are generated, different numbers of atoms make it difficult to assess
all-atom RMSD.

For the hold-out natural reference dataset, we use sequences from Pfam and keep length distributions similar
to that of the sampled proteins. Specifically, for each sequence bin between {64, 72, . . . , 504, 512}, we take
64 natural sequences of that length. For the experiment in Figure 17D, we use the Sinkhorn Distance rather
than the Fréchet Distance used commonly in images and video. Since not all functions have a large number
of samples, we elected to use a metric that works better in low-sample settings.

Structure novelty is obtained by searching samples against PDB100 using Foldseek van Kempen et al. (2022)
easy-search. We examine the TM-score to the closest neighbor. For Foldseek and MMseqs experiments,
all clustering experiments are performed by length. We use default settings for both tools. Though we report
the average TM-Score to the top neighbor for Foldseek, we run easy-search in 3Di mode. For sequences,
we use MMseqs2 Steinegger and Söding (2017) to see if sequences have a homolog in UniRef50, using
default sensitivity settings. For samples with homologs, we further calculate the average sequence identity to
the closest neighbor to assess novelty (Seq ID %).

J.1 DISTRIBUTIONAL CONFORMITY TO BIOPHYSICAL ATTRIBUTES

For Wasserstein Distance to the distribution of biophysical attributes, we examine the following:

• Molecular Weight (MW): the molecular weight calculated from residue identities specified by the
sequence.

• Aromaticity: relative frequencies of phenylalanine, tryptophan, and tyrosine, from Lobry and Gautier
(1994).

• Instability Index: dipeptide-based heuristic of protein half-life, from Guruprasad et al. (1990).

• Isoelectricity (pI): the pH at which a molecule has no net electrical charge.

• Hydropathy: based on the GRand AVerage of hYdropathy (GRAVY) metric, from Kyte and Doolittle
(1982).
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• Charge at pH = 7: the charge of a given protein at pH = 7, i.e., neutral pH.

K SAMPLING SPEEDS

We examine the amount of time necessary for generating a simple sample. We first explore the time necessary
to generate 100 sequences withL = 600. Multiflow and ProteinGenerator does not support batched generation
in its default implementation, so in this experiment, we simply generate one sample at a time for a total of
100 samples. We report the amount of time per sample. For comparison, we also run an experiment where
we only generate a single sample, such that none of the methods can make use of any improvements from
batching.

Table 5: Time required to sample proteins with 600 residues. We assess time required both for sampling
N = 100 samples in batches whenever possible, and when generating a single sequence. Experiments are
run on Nvidia A100. Methods marked by (*) do not support batching in the default implementation.

seconds/sample, batched seconds/sample, unbatched

Sample Latent Decode Sample Latent Decode

Protpardelle 11.21 - 17.16 -
Multiflow* 231.32 - 277.11 -

ProteinGenerator* 343.32 - 342.28 -
PLAID (100M) 1.64 15.12 27.63 1.07

PLAID (2B) 19.34 15.07 49.03 0.9

Table 6: Forward pass benchmark of vanilla multihead attention compared to the optimized xFormers
implementation of memory-efficient attention (Rabe and Staats, 2021) and FlashAttention-2 Dao (2023).
Though FlashAttention2 performed best in our benchmarks, a fused kernel implementation with key padding
was not yet available at the time of writing. Since our data contained different lengths (as compared to most
image diffusion use cases, or language use-cases that can make use of the implemented causal masking), we
instead use the xFormers implementation. We expect that sampling speed results would improve once this
feature is becomes available in the FlashAttention package.

Method Mean Time (s) Mean Memory (GB)
Standard Multihead Attention 0.0946 ± 9.23e-4 76.0 ± 0.409
xFormers Memory Efficient Attention 0.0519 ± 4.33e-05 64.0 ± 0.409
Flash Attention 0.0377 ± 1.91e-3 49.2 ± 0.783

L ADDITIONAL RESULTS

Motif scaffolding Figure 18 demonstrates how motif scaffolding can be used with PLAID, by holding
parts of the motif constant at each reverse diffusion step during latent generation. Generations maintain the
sequence motif, and is able to generate the all-atom structure scaffolding. However, we focus on enabling
new axes of capabilities in this work, and leave further exploration as future work.

Taxonomic evaluations Appendix Figure 13 shows t-SNE plots of generated embeddings colored by
organism. Organisms that are more distantly related phylogenetically, such as Glycine max (i.e., soybean) and
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Protpardelle

ProteinGenerator

PLAID

Multiflow

Protpardelle

>len600_samp97

AGGGGGGGGGGGGGGGGGGGGGGGGGLGLGLLLPPAGL...

>len600_samp98

PPPPGGAGGGGAAAALAGGSPGGPPGGGGGGGGGGGGG...

>len600_samp99

PPGPALPPSPGPGGVPPPPPLPPPPLPGGAPPAGGGLL...

ProteinGenerator

>len600_000097

GAAGLTAAAAVVGAAAAAGAAAAAALAAAAGAGAAAAA...

>len600_000098

AGAAGAAAAAAAAAAGAAAAGAGGGAGGAAAAAAAAAG...

>len600_000099

VAAAQAVQGAIAAAAALAATAALGLTAAGIAAPLLALV...

Multiflow

>len600_sample_97

LLGGLLGGLLGGAAGGAGAGAAAAGGGAVGVGVAGAVT...

>len600_sample_98

ADAATLTVGGGGTGGGGGAGGALGGAAAGGGGRVTLVV...

>len600_sample_99

AGGGAGLAGGAGGAGGAAAAAAAAAAAAAGAGGGAAAA...

PLAID

>len600_sample97

PDMGTVLGLAHSVGHLDFKTPDLSVADLETNLALLAAH...

>len600_sample98

FEMFDDKGGDLWERAASSGQLLIDVAYLANNGLRDGAT...

>len600_sample99

GNGGQARGTDDPLTHALQTLFQSAALDQSLQGDPENAV...

Figure 11: Qualitative comparison of samples. (Left) PLAID samples are structurally diverse, whereas
baseline methods demonstrate mode collapse towards common structures such as TIM barrels and α-helix
bundles at L = 256. (Right) Baseline methods generate sequences which have more repeats, especially at
longer sequence lengths. Shown are sequences with L = 600, truncated for visualization.
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Prompt:
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RMSD: 2.25Å

Seq. Id.: 24.3%
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H214H17
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D273
D295

7RTG

(Crystal Structure of the Human 
Adenosine Deaminase 1)

Sampled
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H69

H92

F79

F103

L64

L141L67


L91

L72

L96

F17

F41

F39

F63 L82


L106

1y4v

(T-To-T(High) quaternary transitions in human 
hemoglobin)

Prompt:

  HUMAN [and] HEME BINDING

Prompt:

  HUMAN [and] MONOATOMIC CATION 

TRANSMEMBRANE TRANSPORTER ACTIVITY

RMSD: 1.16Å

Seq. Id.: 53.3%

Sampled

heme substrate
H145

H164 D37


D74

H33 
H70

D149 
D244

8J80

(hZnT7-Fab complex in zinc state 1)

SampledRMSD: 0.78Å

Seq. Id.: 53.6%

zinc ion

Figure 12: PLAID enables function-guided protein generation while preserving critical structural
motifs. Additional examples provided in Appendix 14. (A) Generated proteins capture sequence motifs
and approximate side-chain orientations at active sites despite low sequence identity. Each panel shows
a PLAID-generated structure aligned with its closest PDB structural neighbor (identified via Foldseek)
containing a bound ligand or substrate. RMSD and sequence similarity metrics are calculated globally.

Prompt:

 [organism] [and]


DNA-binding transcription 
factor activity

Prompt:

 [organism] [and]


PROTEIN KINASE ACTIVITY

Figure 13: (Left) For each unique GO term in the validation set, we examine the Sinkhorn distance between
generated samples and real proteins in the heldout subset in this class. For reference, we also calculate the
Sinkhorn distance between random real proteins to the heldout subset. (Right) t-SNE reduction of generated
embeddings, colored by the organism used for conditioning.

E. coli, form more distinct clusters than those more closely related evolutionarily, such as human and mouse.
This suggests that function- and organism-conditioned samples have been imbued with desired characteristics.
This embedding-level analysis provides an early investigation into organism-specific conditioning abilities.
We observe, for human organism conditioned samples in Figure 12 and Appendix Figure 14, that for 66.5% of
samples, the closest mmseqs easy-search neighbor also come from Homo sapiens. We leave it as future
work to do a more in-depth analysis of organism conditioning, since nearest-neighbor taxonomic analyses are
very sensitive to search settings, and favors overrepresented species in the database.
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Sampled

Prompt:

 HUMAN [and] HYDRO-LYASE 

ACTIVITY
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synthase activity

Sampled

Prompt:

  HUMAN [and] RNA LIGASE 
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Prompt:

 HUMAN [and] 3-beta-hydroxy-

delta5-steroid dehydrogenase 
activity

Prompt:

  HUMAN [and] interleukin-4 
receptor binding

Prompt:
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type endopeptidase 
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1HZJ (Human UDP-
galactose 4-epimerase)

SampledRMSD: 2.85Å

Seq. Id.: 20.3%

RMSD: 0.56Å

Seq. Id.: 38.1% 6HAR 

(Crystal 
structure of 
Mesotrypsin)

RMSD: 0.96Å

Seq. Id.: 47.9% 6HAR (Crystal 

structure of 
Mesotrypsin)

Sampled RMSD: 5.03Å

Seq. Id.: 31.4% 4YDY (DARPIN 

44C12V5 IN 
COMPLEX WITH 
HUMAN IL-4)

Sampled

Prompt:

  HUMAN [and] fatty 

acid elongase 
activity

Prompt:

 HUMAN [and] 

endonuclease activity

Prompt:

 HUMAN [and] CoA-

transferase activity

Prompt:

 HUMAN [and] 

PEPTIDASE ACTIVITY

Prompt:

 HUMAN [and] beta-

amylase activity

RMSD: 1.10Å

Seq. Id.: 27.8% 6ozq (Mus 

musculus (Mm) 
Endonuclease V)

Sampled RMSD: 1.30Å

Seq. Id.: 34.7% 1UKP 

(Soybean 
beta-amylase)

Sampled

1HZJ (Human 
UDP-galactose 
4-epimerase)

RMSD: 0.93Å

Seq. Id.: 46.2%

Sampled RMSD: 1.42Å
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PPPDE1)
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Figure 14: Additional examples of function-conditioned generations.
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Figure 15: Examining histogram of metrics for nuanced comparison of how generated samples compare to
that of natural proteins.
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Figure 16: To examine the degree to which co-generation methods are overfitting to structure-based metrics,
we examine properties on natural proteins.
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Prompt:

 YEAST [and]


ATP-DEPENDENT PROTEIN FOLDING CHAPERONE

Figure 17: (Left) Frechet Distance between sampled protein and reference set of real protein, across sampling
(reverse diffusion) timesteps, for the DDIM Dhariwal and Nichol (2021) sampler and the DPM++2M Lu et al.
(2022) sampler. For both, sample quality decreases steadily over time before plateauing. DPM++2M can
achieve low FID results with only 10% of the original number of steps, but final results are still slightly worse.
(Center) Examining the effect of conditioning scale on the output quality. (Right) Analyzing factors which
may be contributing to a greater δ difference between the Sinkhorn distance of samples-to-real-functional-
proteins vs random-proteins-to-real-functional-proteins.
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Motif:

5TPN.pdb 

Chain A, residue 
163-181

Motif
Sampled

Motif

Sampled

Figure 18: Demo of motif scaffolding. We use the same motif as the RFDiffusion Watson et al. (2023)
design_motifscaffolding.sh example for this experiment. The input motif is held constant at the
user-prescribed location. Note that PLAID generates all-atom structure, whereas RFDiffusion does not
position the sidechain atoms.
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Cross-Consistency RMSD (Clustered Structures)

Self-Consistency RMSD (Clustered Structures)

Sequence Perplexity Under RITA XL (Clustered Sequences)

Cross-Consistency Sequence Recovery (Clustered Sequences)

Self-Consistency Sequence Recovery (Clustered Sequences)

Figure 19: More comparison results between PLAID and baselines. Note that we omit Multiflow in most
comparisons to avoid confusion, since unlike the other models, Multiflow only generates sequence identity,
and not the sidechain positions.
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