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Abstract

Graph anomaly detection (GAD) is becoming increasingly crucial in various applications,
ranging from financial fraud detection to fake news detection. However, current GAD meth-
ods largely overlook the fairness problem, which might result in discriminatory decisions
skewed toward certain demographic groups defined on sensitive attributes (e.g., gender).
This greatly limits the applicability of these methods in real-world scenarios in light of
societal and ethical restrictions. To address this critical gap, we make the first attempt
to integrate fairness with utility in GAD decision-making. Specifically, we devise a novel
DisEntangle-based FairnEss-aware aNomaly Detection framework on the attributed graph,
named DEFEND. DEFEND first introduces disentanglement in GNNs to capture informa-
tive yet sensitive-irrelevant node representations, effectively reducing bias inherent in graph
representation learning. Besides, to alleviate discriminatory bias in evaluating anomalies,
DEFEND adopts a reconstruction-based method, which concentrates solely on node at-
tributes and avoids incorporating biased graph topology. Additionally, given the inherent as-
sociation between sensitive-relevant and -irrelevant attributes, DEFEND further constrains
the correlation between the reconstruction error and predicted sensitive attributes. Empiri-
cal evaluations on real-world datasets reveal that DEFEND performs effectively in GAD and
significantly enhances fairness compared to state-of-the-art baselines. Our code is available
at https://github.com/AhaChang/DEFEND.

1 Introduction

Graph Anomaly Detection (GAD), which aims to identify nodes that deviate significantly from the majority
of nodes, has attracted wide attention in various domains, including fraudster detection in financial networks
(Zhang et al., 2022; Huang et al., 2022) and spammer detection in social networks (Li et al., 2019; Wu et al.,
2020). The advancement of Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017;
Veličković et al., 2017) has significantly enhanced the ability of GNN-based GAD methods to accurately
identify anomalies (Ding et al., 2019; Chai et al., 2022; Kim et al., 2023; He et al., 2023). However, a recent
study (Neo et al., 2024) reveal a concerning trend: current GAD methods exhibit substantial bias in decision.

Given the wide-ranging applications of GAD, particularly within high-stakes domains, the fairness problem
cannot be overlooked. Unfair decisions that skew toward certain demographic groups associated with sen-
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sitive attributes (e.g., gender, religion, ethnicity, etc.) might cause profound societal and ethical concerns.
For example, in the realm of social networks (e.g., Reddit and Twitter), anomalous users (e.g., spreading
misinformation or engaging in fake account interactions) might undergo strict investigation and even per-
manent account suspension. In such scenarios, biased decisions could result in unfairly focusing on certain
groups while inadvertently neglecting others. This undermines the effectiveness and reliability of anomaly
detection systems and raises critical ethical concerns. To balance fairness and utility in anomaly detection,
several methods have been proposed (Deepak & Abraham, 2020; Song et al., 2021; Zhang & Davidson, 2021;
Shekhar et al., 2021). These methods strive to optimize the balance between fairness and anomaly detection
performance in the absence of ground truth labels, which presents a fundamental challenge in unsupervised
anomaly detection. Nevertheless, they primarily focus on independent and identically distributed data,
thereby overlooking the societal bias in graphs, which manifests in both node attributes and graph topology.

The bias in graphs poses a significant challenge to achieving fairness in graph-related tasks (Dai & Wang,
2021; Zhu et al., 2023). First, sensitive attributes are inherently spread across other attributes (Deepak &
Abraham, 2020; Oh et al., 2022), so directly removing them is insufficient to ensure fairness (Neo et al.,
2024). For example, the geographic location might correlate with religion and ethnicity. Second, since
nodes with similar attributes are more likely to form connections, graph topology is also influenced by
sensitive attributes (Rahman et al., 2019; Spinelli et al., 2021). Third, biased topology coupled with the
message-passing mechanism in GNNs may inherit or even amplify the inherent bias in graphs (Dai & Wang,
2021; Wang et al., 2022; Zhu et al., 2023). Specifically, representations aggregated from neighboring nodes
that share identical sensitive attributes may amplify features of the demographic group, thereby potentially
affecting the fairness of the decision-making in GNNs.

Many efforts have been made to explore fairness for GNN-based methods (Li et al., 2021; Ma et al., 2022;
Kim et al., 2022; Song et al., 2022). A common strategy involves eliminating sensitive information from the
training graph and implementing the debiased graph for target tasks (Spinelli et al., 2021; Rahman et al.,
2019; Dong et al., 2022). However, it is non-trivial to concurrently mitigate bias and preserve the integrity
of anomalies, considering the overlap between the features of anomalies unrelated to sensitive attributes and
the features of demographic groups linked to sensitive attributes. For instance, an edge might indicate that
two nodes share the same sensitive attributes while displaying an anomalous connection. Another prevalent
strategy involves training fair GNNs to perform the target task independently of sensitive attributes (Dai
& Wang, 2021; Zhu et al., 2023). These methods are dedicated to end-to-end supervised node classification,
where ground-truth labels are available. Thus, applying them to unsupervised GAD is challenging due to
the absence of labels for anomaly detection.

In this paper, we propose a novel DisEntangle-based FairnEss-aware aNomaly Detection framework on
attributed graphs, named DEFEND. In the first stage, to address the societal bias embedded in both node
attributes and graph topology, we introduce disentangled fair representation learning on graphs to capture
node representations that are both informative and independent of sensitive attributes. Specifically, the
disentangled graph encoder can effectively separate sensitive-relevant and sensitive-irrelevant representations
into independent subspaces with the guidance of a learnable adversary. In the second stage, given the absence
of ground truth labels and the inherent complex bias in graph topology, we implement an additional decoder
that reconstructs node attributes from the well-trained disentangled encoder, utilizing the reconstruction
error as the anomaly score. To further alleviate discriminatory bias in detecting anomalies, we introduce
a fairness constraint that enforces invariance of reconstruction errors across different sensitive attribute
groups, effectively mitigating the influence of correlations between sensitive and the rest attributes. Our
main contributions are summarized as follows:

• To the best of our knowledge, we proposed the first method DEFEND for fair unsupervised graph
anomaly detection, which reduces discriminatory bias in anomaly detection.

• DEFEND employs constrained reconstruction error coupled with a disentangled graph encoder for
fair anomaly detection on graphs.

• Extensive experiments on real-world datasets show that DEFEND achieves a competitive perfor-
mance and significantly enhances fairness compared with baselines.
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2 Preliminaries

2.1 Problem Definition

Let G = (V, A, X, S) be an attributed graph with N nodes and E edges, where V = {v1, . . . , vN} is the set
of nodes. y ∈ {0, 1}N denotes the anomaly labels, where 1 indicates an anomalous node, and ŷ denotes the
predicted labels. The adjacency matrix is denoted as A ∈ {0, 1}N×N , where Aij = 1 if there exists an edge
between vi and vj , otherwise, Aij = 0. X ∈ RN×d represents the observed node attribute matrix, while
S ∈ RN×m represents the sensitive attribute matrix (e.g., gender, religion, ethnicity, etc.). vi and vj belong
to the same demographic group if si = sj . Here, m is the total number of sensitive attributes. As described
in (Deepak & Abraham, 2020; Sarhan et al., 2020; Oh et al., 2022), the sensitive attribute S is correlated with
both the observed attribute X and labels y on many real-world datasets. The goal of fair graph anomaly
detection is to provide unbiased prediction against sensitive attributes while achieving satisfactory accuracy
simultaneously. To simplify the problem, in this work, we mainly focus on a single binary sensitive attribute,
i.e., S ∈ {0, 1}N×1. We can easily extend our method to more complicated settings as previous studies
(Creager et al., 2019; Deepak & Abraham, 2020). More details are discussed in Section 3.3.

2.2 Fairness Metrics

Following (Agarwal et al., 2021; Wang et al., 2022; Zhu et al., 2023), we utilize two widely used metrics to
evaluate the fairness of models among demographic groups.

Demographic Parity Dwork et al. (2012) dictates the equal predicted probability across demographic
groups. It ensures predictions are statistically unbiased to sensitive attributes, e.g., if gender is a sensitive
attribute, ∆DP implies that the probability of individuals from different genders being classified as anomalous
should be identical.

∆DP = |P (ŷ = 1|s = 0)− P (ŷ = 1|s = 1)|, (1)

where ŷ ∈ {0, 1} is the predicted node label, and ŷi = 1 indicates node vi is a predicted anomaly.

Equal Opportunity (Hardt et al., 2016) requires the same true positive rates of identifying anomalies
for each demographic group. Considering gender as a sensitive attribute, ∆EO encourages individuals from
different genders to have an equal probability of being correctly identified as anomalous. Given the ground-
truth label y ∈ {0, 1} where yi = 1 denotes vi is a true anomaly, ∆EO can be defined as:

∆EO = |P (ŷ = 1|s = 0, y = 1)− P (ŷ = 1|s = 1, y = 1)|. (2)

3 Proposed Method

We now introduce DEFEND, which aims to identify anomalies without skew towards demographic groups
defined on sensitive attributes. The disentangled representation learning separates sensitive-relevant and
sensitive-irrelevant representations in the latent space (see Section 3.1). Fair anomaly detection is achieved
through constrained reconstruction error using the disentangled representations (see Section 3.2). We then
discuss its generalization capability across diverse sensitive attributes in Section 3.3. We introduce the train-
ing and inference processes in Appendix A and provide a computational complexity analysis in Appendix B.

Figure 1 illustrates the overall workflow of DEFEND, which contains two major phases. Firstly, as shown
in the left part of Figure 1, the disentangled fair representation learning phase separates sensitive-relevant
representations Zx and sensitive-irrelevant representations Zs in the latent space. Specifically, a disentangled
graph encoder fe maps the node attribute X and graph topology A into independent sensitive-relevant and
-irrelevant subspaces. Subsequently, fa and fx decode adjacency matrix Â and node attributes X̂, respec-
tively. Ideally, Zx contains no sensitive information with a well-trained fe. To promote the independence
of Zx from Zs, we include a learnable adversary gω. Besides minimizing reconstruction error to obtain
informative representations, we also endeavor to accurately infer sensitive attributes S from Zs. As shown
in the right part of Figure 1, the unsupervised graph anomaly detection phase identifies anomalies based on
sensitive-irrelevant representations Zx. However, the reconstruction of attributes and structures may lead
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Figure 1: An overview of proposed DEFEND framework. (Left) Disentangled fair representation learning.
The disentangled graph encoder fe can separate sensitive-irrelevant representations Zx and sensitive-relevant
representations Zs in latent space. (Right) Reconstruct-based graph anomaly detection. The constrained
reconstruction error between X and X̃ are used to identify anomalies. ^ means fixing model parameters.

to biased outcomes in decision-making, considering biases inherent in both attributes and structures. As
such, the decoder fϕ only reconstructs node attributes from Zx based on Multi-Layer Perceptron (MLP)
without involving graph topology. Moreover, as node attributes X inherently have potential correlations
with sensitive attributes S, we further constrain the correlation between the reconstruction error and the
predicted sensitive attributes.

3.1 Disentangled Fair Representation Learning

Informative sensitive-irrelevant representations are crucial for fair and accurate decision-making in GAD,
which thoroughly considers features of nodes at both node and structural levels. However, since the potential
bias in node attributes and graph topology, GNNs might amplify sensitive information when generating
node representations with the message-passing mechanism (Dai & Wang, 2021; Zhu et al., 2023). Previous
theoretical insights and empirical evidence have highlighted the effectiveness of disentangled representation
learning in separating sensitive-irrelevant representations for augmenting fairness in downstream tasks like
image classification (Creager et al., 2019; Oh et al., 2022). We posit that disentangled representation learning
is also feasible to provide informative yet sensitive-irrelevant node representations for GAD. The details of
disentangled fair representation learning on graph-structured data in DEFEND are described as follows.

3.1.1 Disentangled Graph Encoder

Based on the assumption that the latent space can be decomposed into two independent subspaces (Creager
et al., 2019; Oh et al., 2022): one associated with sensitive attributes and the other devoid of them, the
disentangled graph encoder fe strives to capture informative node representations that are irrelevant to
sensitive attributes. For graph data, the posterior distribution of node representations q(Zx, Zs|X, A) is
derived from node attributes X and graph topology A. To achieve disentanglement, it is necessary to
establish conditional independence between sensitive-irrelevant representations Zx and sensitive-relevant
representations Zs, given X and A. The variational posterior distribution q(Zx, Zs|X, A) can be defined as
the product of the individual distributions for Zx and Zs:

q(Zx, Zs|X, A) = q(Zx|X, A)q(Zs|X, A). (3)

As the disentanglement is conducted in latent space, it is crucial to capture informative node representa-
tions from both node attributes and topological structure. Thus, we adopt GNNs as the backbone of the
disentangled graph encoder fe. In this work, we take Graph Convolutional Network (GCN) (Kipf & Welling,
2016) as an example. For the l-th convolutional layer, the node representation H(l) is updated by:

H(l) = Conv(H(l−1), A) = ϕ
(

D̃− 1
2 ÃD̃− 1

2 H(l−1)Wl
)

, (4)

where Ã = A + I, D̃ii =
∑

j Ãij , I is the identity matrix of A, Wl is the weight matrix at the l-th layer
and the initial node representation H(0) is set to X. Next, we use the reparameterization trick to estimate
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the sensitive-irrelevant representations Zx with GCN:

Zx = µ + σ · ε, ε ∼ N (0, I), (5)

where N (0, I) is the standard Gaussian distribution with a mean vector of zeros 0 and an identity covariance
matrix I. The mean matrix µ = Convµ(Convshr(X, A), A) and the log standard deviation matrix log σ =
Convσ(Convshr(X, A), A) are obtained by GCNs with a shared convolutional layer Convshr. Following
(Creager et al., 2019), we estimate the sensitive-relevant representations Zs in a deterministic manner:

Zs = Convφ(Convshr(X, A), A). (6)

where Convφ is an additional layer for sensitive representations.

3.1.2 Decoders

In the decoding phase of disentangled representation learning, we reconstruct the attribute matrix X, the
adjacency matrix A, and sensitive attributes S. Due to sensitive-irrelevant representations Zx are condition-
ally independent of the given sensitive attributes S, the probability p(S|Zx, Zs) can be simplified to p(S|Zs).
Consequently, the decoding phase can be formulated by:

p(X, A, S|Zx, Zs) = p(X|Zx, Zs)p(A|Zx, Zs)p(S|Zs). (7)

We adopt an attribute decoder fx based on GNNs to model the distribution of reconstructed node attributes
p(X|Zx, Zs). Besides, we consider an inner product decoder fa for structure reconstruction:

p(A|Zx, Zs) = Sigmoid(ZZ⊤), (8)

where Z = Concat(Zx, Zs). Next, to model the conditional probability distribution p(S|Zs), we employ a
binary classifier, where sensitive attributes S are assumed to follow a Bernoulli distribution parameterized
by the Sigmoid function applied to Zs. The conditional distribution for sensitive attributes is formulated as:

p(S|Zs) = Bernoulli(S|Sigmoid(Zs)). (9)

3.1.3 Adversary

To encourage the independence between sensitive-irrelevant representations Zx and sensitive-relevant rep-
resentations Zs, it is imperative that the aggregate posterior distribution can be factorized as q(Zx, Zs) =
q(Zx)q(Zs). Thus, we employ the Kullback-Leibler (KL) divergence between q(Zx, Zs) and q(Zx)q(Zs) as
the disentanglement criteria, which can be expressed as KL

[
q(Zx, Zs) ∥ q(Zx)q(Zs)

]
. Following (Kim &

Mnih, 2018; Sugiyama et al., 2012; Creager et al., 2019), we adopt a binary adversary gω to encourage the
disentanglement by approximating the log density ratio inherent in the KL divergence term:

KL
[
q(Zx, Zs) ∥ q(Zx)q(Zs)

]
= Eq(Zx,Zs) log q(Zx, Zs)

q(Zx)q(Zs)
≈ Eq(Zx,Zs)[log p(ỹ = 1|Zx, Zs)− log p(ỹ = 0|Zx, Zs)],

(10)

where ỹ = 1 denotes "true" samples from the aggregate posterior q(Zx, Zs) and ỹ = 0 denotes "fake" samples
from the product of the marginals q(Zx)q(Zs). Specifically, we implement an MLP as gω to predict whether
the sensitive-irrelevant representation zi

x and the sensitive-relevant representation zj
s are from the same node.

3.1.4 Learning Objective

We optimize the disentangled graph encoder fe, structure decoder fa, and attribute decoder fx from three
aspects, including the variational lower bound term, disentanglement term, and predictiveness term. First,
the variational lower bound term comprises a reconstruction term and a KL divergence regularization term.
The reconstruction term is defined as:

Lrec = Eq(Zx,Zs|X,A) [(1− ϵ) log p(X|Zx, Zs) + ϵ log p(A|Zx, Zs)] , (11)
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where the first term is the reconstruction error for node attributes and the second term is for graph topology.
Moreover, ϵ = σX

σX+σA
is the weight coefficient for automated balancing the impact of structure and attribute

reconstruction (Liu et al., 2022b), where σA and σX denotes the standard deviations of A and X, respectively.
The KL divergence regularization term (Kingma, 2013) is employed to minimize the KL divergence between
the posterior distribution q(Zx, Zs|X, A) and the prior distribution p(Zx, Zs). Thus, the variational lower
bound term can be formulated as:

Lvae = Lrec −KL[q(Zx, Zs|X, A) ∥ p(Zx, Zs)], (12)

where p(Zx, Zs) = p(Zx)p(Zs) under the assumption that Zx and Zs are independent. The prior dis-
tributions p(Zx) and p(Zs) are modeled by the standard Gaussian distribution and uniform distribution,
respectively. Next, the disentanglement term, which encourages the separation of sensitive-relevant and
-irrelevant representations as detailed in Eq. (10), is calculated as follows:

Ldis = Ezi
x,zi

s∼q(Zx,Zs) log p(ỹ = 1|zi
x, zi

s)− log p(ỹ = 0|zi
x, zi

s). (13)

Intuitively, accurate prediction of sensitive attributes can enhance the comprehensive understanding of node
attributes in latent space and facilitate a clearer distinction between representations associated with sensitive
attributes and those that are not. Thus, DEFEND incorporates a predictiveness term to align the sensitive
representation Zs closely with the given sensitive attributes S:

Lpre = Eq(Zs|X,A) log p(S|Zs). (14)

The overall loss for optimizing fe, fa and fx can be defined as:

Ltotal = Lvae + γLdis + αLpre, (15)

where α and γ are the weight coefficients to control the impact of the predictiveness and disentanglement
terms relative to the variational lower bound term, respectively.

To train the binary adversary gω, the true sample (zi
x, zi

s) is sampled from the aggregate posterior q(Zx, Zs)
while the fake sample (zj

x, zk
s) is sampled from the product of marginal posterior distributions q(Zx)q(Zs).

The adversarial loss is formulated as:

Ladv = Ezi
x,zi

s∼q(Zx,Zs) log p(ỹ = 1|zi
x, zi

s) + Ezj
x,zk

s ∼q(Zx)q(Zs) log[1− p(ỹ = 0|zj
x, zk

s)]. (16)

where ỹ = 1 denotes true samples and ỹ = 0 denotes fake samples.

The optimizations of fe, fa and fx using Ltotal and gω using Ladv are conducted adversarially. A well-
trained disentangled graph encoder fe, which effectively separates sensitive-irrelevant representations from
node attributes and graph topology, can be adeptly employed in downstream tasks for enhancing fairness.

3.2 Graph Anomaly Detection

Next, the primary objective is to detect anomalies unbiased to any demographic groups based on deterministic
sensitive-irrelevant representations Z̄x = µ. Since anomalies typically significantly deviate from the majority
of nodes, reconstruction error has been widely used to measure anomaly scores (Ding et al., 2019; Fan et al.,
2020; Shekhar et al., 2021). Considering the potential bias in graph topology as demonstrated in previous
studies (Rahman et al., 2019; Spinelli et al., 2021; Zhu et al., 2023), we solely reconstruct node attributes
and employ MLP as the backbone of the attribute decoder fϕ to mitigate the impact of biased topology
during the message-passing process. The anomaly score oi is evaluated by reconstructing node attributes X
from sensitive-irrelevant representations Z̄x:

oi = ||xi − x̃i||2F , (17)

where X̃ = fϕ(Z̄x, Z̃s) and Z̃s denotes a shuffled variant of Zs. Additionally, since sensitive attributes are
correlated with observed node attributes (Deepak & Abraham, 2020; Sarhan et al., 2020; Oh et al., 2022)
and Z̄x is supposed to be devoid of sensitive information, the reconstruction error inevitably correlates with
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sensitive attributes. To mitigate the impact of this correlation and prevent directly leveraging sensitive
attributes, we propose a correlation constraint term, which measures the absolute correlation between the
reconstruction error oi and predicted sensitive attributes zi

s:

Lcorr =
∣∣∣∣ (∑i∈V oi − µo)(

∑
i∈V zi

s − µzs))
σoσzs

∣∣∣∣ , (18)

where µo and µzs are the corresponding means, while σo and σzs are the standard deviations of o and Zs.

3.2.1 Learning Objective

In the anomaly detection phase, the encoder fe is set to be non-trainable, as it has already mastered
the separation of sensitive-relevant and -irrelevant representations during the disentangled representation
learning phase. Accordingly, the optimization is exclusively concentrated on the decoder fϕ. The overall loss
consisting of the reconstruction term and the correlation constraints term can be formulated as:

Lad = LX
rec + βLcorr, (19)

where LX
rec =

∑n
i oi is the attribute reconstruction loss and β is the penalty of sensitive information in X.

3.3 Discussion

We analyze the generalization of DEFEND on various types of sensitive attributes. (1) Multiple Bi-
nary Sensitive Attributes. Let s =

[
s0, s1, . . . , sm−1] denotes the sensitive attributes for each node,

where sj ∈ {0, 1}(0 ≤ j < m). The disentanglement between sensitive-irrelevant representations Zx and
sensitive-relevant representations Zs ∈ RN×m requires that Zx is independent of each sensitive attribute Z(j)

s .
Thus, Zx and Zs are disentangled if the aggregate posterior distribution can be factorized as p(Zx, Zs) =
p(Zx)

∏
j p(Z(j)

s ). (2) Single Categorical/Continuous Sensitive Attributes. With single binary sensi-
tive attributes, the conditional distribution p(S|Zs) is typically modeled by a Bernoulli distribution. If with
categorical attributes, it shifts to a Multinomial distribution, i.e. p(S|Zs) = Multinomial(S|SoftMax(Zs)).
Similarly, for continuous attributes, p(S|Zs) can be modeled by a Gaussian distribution.

4 Experiments

4.1 Experimental Setup

Datasets. We employ three real-world datasets for fair GAD, which provide both real sensitive attributes
and ground-truth labels for GAD. In Reddit and Twitter (Neo et al., 2024) datasets, the sensitive attribute
is the political leaning of users, while the anomaly label is assigned to misinformation spreaders. The Credit
(Agarwal et al., 2021) dataset focuses on payment default detection, with age as the sensitive attribute.
Details of these datasets are summarized in Table 1. More details are introduced in Appendix C.

Table 1: Statistics of datasets. ρG denotes the ratio of the minority and majority group and ρA denotes the
ratio of the anomalies and normal nodes.

Dataset # Nodes # Edges # Attributes ρG ρA Sensitive Attributes Anomaly Labels
Reddit 9,892 1,211,748 385 0.1502 0.1584 Political leaning Misinformation spreader
Twitter 47,712 468,697 780 0.1365 0.0713 Political leaning Misinformation spreader
Credit 30,000 1,436,858 13 0.0983 0.2840 Age Payment default

Baselines. We compare DEFEND with (1) GAD methods, including DOMINANT (Ding et al., 2019),
CoLA (Liu et al., 2021), CONAD (Xu et al., 2022), and VGOD (Huang et al., 2023); (2) GAD methods
augmented with Fairness Regularizers like FairOD (Shekhar et al., 2021), HIN (Zeng et al., 2021), and
Correlation (Shekhar et al., 2021), which incorporate fairness constraints into optimization process; (3)
GAD methods operated on graphs pre-processed by Graph Debiasers, such as FairWalk (Rahman et al.,
2019) and EDITS (Dong et al., 2022). The details of baselines are introduced in Appendix D.
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Table 2: Comparison results of DEFEND against all baseline methods on Twitter. ↑ denotes larger values are
better, whereas ↓ denotes lower values are preferable. The best and second best performances are highlighted
in bold and underlined, respectively.

AUC-ROC ↑ AUC-PR ↑ ∆DP ↓ ∆EO ↓ Comp. Avg. Rank

-

DOMINANT 56.49±0.61 8.92±0.15 4.33±0.47 4.51±0.44 -29.36 13.25
CoLA 43.74±1.08 5.23±0.15 2.63±0.32 2.47±1.08 -42.06 18.375
CONAD 56.12±0.73 8.83±0.17 4.08±0.47 4.48±0.35 -29.54 13.25
VGOD 73.59±0.31 16.02±0.72 12.56±1.01 11.49±1.84 -20.37 14

FairWalk

DOMINANT 53.06±0.81 8.17±0.43 1.32±0.27 1.27±0.35 -27.29 11.75
CoLA 49.02±0.54 6.34±0.23 0.23±0.14 0.34±0.16 -31.14 10.75
CONAD 53.36±0.70 8.32±0.42 1.30±0.18 1.37±0.39 -26.92 11
VGOD 60.21±0.26 9.14±0.15 9.84±0.27 4.98±0.37 -31.40 14.25

EDITS

DOMINANT 53.79±0.25 8.75±0.06 2.63±0.05 2.21±0.15 -28.23 12.75
CoLA 46.62±1.35 5.70±0.30 1.84±0.39 1.03±0.82 -36.48 14.25
CONAD 53.83±0.24 8.75±0.06 2.62±0.03 2.16±0.13 -28.13 11.875
VGOD 82.06±0.87 25.75±1.40 20.43±1.42 22.32±2.45 -20.87 13

FairOD

DOMINANT 53.69±3.63 7.87±1.10 2.56±1.51 2.49±1.52 -29.42 14.25
CoLA 45.81±7.40 6.29±1.52 1.95±1.82 1.23±0.77 -37.01 14.625
CONAD 57.09±0.43 9.08±0.13 4.48±0.45 4.59±0.56 -28.83 13.75
VGOD 76.27±1.12 15.56±0.54 9.75±1.07 5.61±1.67 -9.46 12.5

HIN

DOMINANT 54.07±2.22 8.23±0.79 2.50±1.24 3.51±0.96 -29.64 13
CoLA 48.08±5.31 6.49±1.18 2.38±1.23 0.62±0.69 -34.36 12.75
CONAD 53.74±2.74 8.12±1.02 2.59±1.36 3.34±1.04 -30.00 14.25
VGOD 81.58±1.88 18.86±1.00 12.52±0.91 9.32±1.38 -7.33 12.5

Correlation

DOMINANT 56.21±0.60 8.81±0.14 4.22±0.38 4.58±0.29 -29.71 14.25
CoLA 48.65±2.89 6.29±0.48 3.32±1.18 3.42±2.10 -37.73 17.875
CONAD 55.94±0.71 8.76±0.17 4.00±0.44 4.52±0.31 -29.75 14.25
VGOD 71.78±0.58 11.80±0.24 5.22±0.56 0.76±0.53 -8.33 8.75

Ours DEFEND 75.59±2.00 11.85±0.79 0.72±0.70 0.79±0.61 0 3.75

Evaluation metrics. Following (Ding et al., 2019; Liu et al., 2021; Xu et al., 2022; Chai et al., 2022; Neo
et al., 2024), we evaluate the anomaly detection performance with the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) and the Area Under the Precision-Recall Curve (AUC-PR). Higher
AUC-ROC and AUC-PR indicate superior anomaly detection capabilities. Regarding demographic fairness,
we adopt Demographic Parity (∆DP ) and Equal Opportunity (∆EO) following (Dai & Wang, 2021; Dong
et al., 2022). The concepts are detailed in Section 2.2. Lower ∆DP and ∆EO suggest better fairness. To
quantitatively exhibit the performance trade-offs, we introduce Average Rank of two accuracy metrics and
two fairness metrics (Wang et al., 2022; Guo et al., 2023) and Composite Score that reflects the combined
performance improvement relative to our proposed DEFEND across all metrics.

Implementation details. For DEFEND, we use 2-layer GCN for the disentangled graph encoder fe and
attribute decoder fx, and 2-layer MLP for the decoder fϕ in the anomaly detection phase. The hidden
dimension of each layer is fixed to be 64. We employ the Adam optimizer with a learning rate set to 0.001
for Reddit and Credit datasets and 0.005 for Twitter. We set the maximum training epoch in disentangled
representation learning as 100, and adopt an early stopping strategy when the loss does not decrease for
20 epochs. In the anomaly detection phase, we train the decoder fϕ for 100 epochs. We tune α and γ
in Equation 15 from {0.1, 0.5, 1.0, 1.5, 2.0, 2.5}, and the weight of correlation constrains β in Equation 19
from {1e−15, 5e−15, 1e−10, 5e−10, 1e−9}, respectively. We conduct all experiments on one Linux server
with an NVIDIA TESLA A800 GPU (80 GB RAM). We run all methods ten times and report the average
results to prevent extreme cases. More implementation details of baselines are described in Appendix E.

4.2 Performance Comparison

4.2.1 Fairness and Utility Performance

Table 2, Table 3 and Table 4 show the fairness (∆DP and ∆EO) and utility (AUC-ROC and AUC-PR)
performance of DEFEND and all baselines on Twitter and Reddit, respectively. We have the following ob-
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Table 3: Comparison results of DEFEND against all baseline methods on Reddit. ↑ denotes larger values are
better, whereas ↓ denotes lower values are preferable. The best and second best performances are highlighted
in bold and underlined, respectively. OOM indicates out of memory.

AUC-ROC ↑ AUC-PR ↑ ∆DP ↓ ∆EO ↓ Comp. Avg. Rank

-

DOMINANT 60.82±0.09 20.02±0.04 13.20±0.08 5.59±0.19 -13.01 10.25
CoLA 45.20±0.98 17.90±1.54 4.95±1.78 4.06±1.85 -20.97 12.5
CONAD 60.81±0.10 20.02±0.05 13.32±0.33 5.70±0.37 -13.25 11.5
VGOD 72.01±0.93 39.38±2.45 42.47±5.61 46.79±6.09 -52.93 12

FairWalk

DOMINANT 51.26±1.08 14.55±0.65 2.45±0.79 1.97±1.25 -13.67 11
CoLA 51.12±0.83 14.83±0.85 0.69±0.37 0.60±0.59 -10.40 10
CONAD 51.26±1.88 14.68±1.15 2.49±1.28 2.52±1.58 -14.13 11.25
VGOD 67.08±0.61 28.53±0.28 31.99±0.53 29.89±1.02 -41.33 11.75

EDITS

DOMINANT OOM OOM OOM OOM - -
CoLA 54.41±1.62 23.13±3.67 23.74±5.76 21.00±5.38 -42.26 14
CONAD OOM OOM OOM OOM - -
VGOD OOM OOM OOM OOM - -

FairOD

DOMINANT 60.94±0.07 19.97±0.08 13.08±0.21 5.04±0.15 -12.27 9.5
CoLA 45.76±10.23 15.77±5.42 13.26±6.24 5.98±5.83 -32.77 16.5
CONAD 60.53±0.11 19.53±0.08 12.57±0.11 5.02±0.11 -12.59 11
VGOD 71.65±2.55 30.40±4.98 28.66±7.70 37.74±4.28 -39.41 11.5

HIN

DOMINANT 60.91±0.06 20.10±0.04 13.38±0.10 5.69±0.22 -13.12 10.5
CoLA 45.52±1.47 18.59±1.68 4.58±2.50 4.43±2.28 -19.96 12.25
CONAD 60.89±0.18 20.06±0.10 13.35±0.21 5.81±0.45 -13.27 11.25
VGOD 72.66±3.32 26.18±3.36 17.92±6.12 30.39±9.38 -24.53 10.75

Correlation

DOMINANT 60.38±0.08 19.57±0.06 12.27±0.25 4.42±0.20 -11.80 10.25
CoLA 50.94±6.37 15.29±3.50 9.63±7.26 11.68±8.23 -30.14 15.25
CONAD 59.51±0.33 18.86±0.28 10.94±0.74 3.80±0.35 -11.43 10.25
VGOD 75.68±3.07 31.09±2.83 32.42±9.53 42.72±9.65 -43.43 11.25

Ours DEFEND 60.67±0.42 16.46±0.25 0.94±0.72 1.13±0.81 0 8
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Figure 2: Fairness-Utility trade-off curves of different methods on three datasets. The upper-left corner is
optimal, which has high AUC-ROC and low ∆EO.

servations: (1) DEFEND demonstrates superior performance in balancing fairness and accuracy
trade-offs. To evaluate this trade-off quantitatively, we analyze the average ranks and relative improve-
ments across two accuracy metrics and two fairness metrics. The runner-up performing model shows a 7.33%
decline in performance compared to DEFEND, with DEFEND achieving an average rank of 3.75 versus 8.75
for the runner-up model on Twitter. Figure 2 illustrates the fairness-utility trade-off curve, which further
validates the superiority of DEFEND (detailed analysis provided in Section 4.2.2). (2) Standard GAD
methods exhibit a clear trade-off between accuracy and fairness. For instance, VGOD with Cor-
relation achieves superior detection performance with AUC-ROC reaching 75.68% and AUC-PR attaining
31.09%, but demonstrates substantial fairness violations with ∆DP at 32.42% and ∆EO at 42.72% on Reddit.
This observation reveals an inherent tension between detection capability and fairness in existing approaches.
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Table 4: Comparison results of DEFEND against all baseline methods on Credit. ↑ denotes larger values are
better, whereas ↓ denotes lower values are preferable. The best and second best performances are highlighted
in bold and underlined, respectively.

AUC-ROC ↑ AUC-PR ↑ ∆DP ↓ ∆EO ↓ Comp. Avg. Rank

-

DOMINANT 52.34±4.14 25.28±4.33 1.63±1.00 2.34±1.62 -2.11 8.75
CoLA 46.31±0.94 18.96±0.54 3.04±1.22 1.48±1.26 -15.01 16
CONAD 53.68±5.28 26.02±5.03 3.91±2.77 4.19±2.61 -4.16 10.75
VGOD 54.81±0.90 26.02±0.86 17.54±1.83 13.59±1.84 -26.06 14.75

FairWalk

DOMINANT 49.56±0.40 21.78±0.44 0.67±0.74 1.50±0.99 -6.60 11.75
CoLA 50.29±0.17 22.63±0.31 0.32±0.28 0.22±0.23 -6.32 8
CONAD 49.76±0.55 21.91±0.63 1.21±0.83 1.02±0.80 -3.38 10.25
VGOD 49.33±0.10 22.00±0.06 31.57±0.94 29.43±1.17 -65.44 22

EDITS

DOMINANT 49.19±1.71 22.06±1.85 2.99±2.12 2.73±1.59 -10.23 14.5
CoLA 49.82±1.01 21.81±0.73 5.07±2.79 2.95±2.40 -13.54 16.25
CONAD 49.60±1.50 22.36±1.14 5.23±4.18 4.51±2.66 -12.14 17
VGOD 46.61±3.23 20.52±1.61 9.32±10.38 9.27±9.20 -27.23 21.75

FairOD

DOMINANT 52.59±4.01 24.64±4.29 4.37±3.54 5.04±3.67 -7.95 13.5
CoLA 47.43±6.33 21.24±4.40 7.99±5.79 6.09±4.93 -21.18 20.25
CONAD 55.03±5.39 27.38±5.14 4.10±3.59 4.02±3.66 -1.48 8.5
VGOD 55.70±1.32 26.87±1.39 16.76±1.29 13.02±1.35 -22.98 13

HIN

DOMINANT 51.98±4.27 24.88±4.38 1.81±1.28 2.40±1.60 -3.11 10
CoLA 46.31±0.94 18.96±0.54 3.06±1.20 1.45±1.28 -15.01 15.5
CONAD 53.77±3.69 25.40±3.54 2.73±1.48 2.66±1.71 -1.99 8.25
VGOD 57.26±3.19 28.15±2.66 13.54±4.17 11.11±3.78 -15.00 11.5

Correlation

DOMINANT 52.37±4.11 25.33±4.28 1.55±0.99 2.27±1.62 -1.87 7.75
CoLA 50.58±7.68 23.33±5.34 4.92±3.18 6.32±4.14 -13.10 15.75
CONAD 53.68±5.26 26.02±5.03 3.87±2.78 4.13±2.55 -4.07 10.25
VGOD 55.86±1.10 26.85±0.99 12.42±1.42 8.27±1.90 -13.75 11.75

Ours DEFEND 55.41±1.80 23.70±0.45 1.78±1.12 1.57±1.00 0.00 7.25

(3) The integration of graph debiasers and fairness regularizers typically improves fairness. For
example, DOMINANT with FairWalk achieves better fairness with ∆DP of 2.45% and ∆EO of 1.97%, while
DOMINANT with FairOD achieves better fairness with ∆DP of 13.08% and ∆EO of 5.04% on Reddit.
However, these fairness improvements sometimes comes at the cost of reduced detection performance, e.g.
AUC-ROC of DOMINANT with FairWalk dropping from 60.82% to 51.26% on Reddit.

4.2.2 Trade-off between Fairness and Utility

We extend our analysis to a comparative evaluation of the fairness-utility trade-off performance of DEFEND
with GAD methods incorporating fairness regularizers. We choose ∆EO to measure fairness and AUC-ROC
for utility assessment. Each method is trained on a range of hyperparameters and the resulting Pareto
front curves are presented in Figure 2. Notably, the optimal point is at the upper-left corner, which has
perfect accuracy and fairness, reflected by a high AUC-ROC coupled with a low ∆EO. Specifically, a high
AUC-ROC signified proficient detection of both normal and anomalous nodes, whereas a low ∆EO indicates
an equivalent probability of correctly identifying anomalies across different demographic groups. In contrast,
the upper-right corner represents high performance at the cost of poor fairness, while the lower-left exhibits
strong fairness but compromised performance. From Figure 2, we can observe the trade-off curve of DEFEND
exhibits a superior distribution near the optimal point than the baselines.

4.3 Ablation Study

We conduct ablation studies to evaluate the effectiveness of key components of DEFEND. We verify the
performance of four variants of DEFEND: (1) DEFEND without correlation constraints term in Equa-
tion 19 in anomaly detection (DEFEND-C). (2) DEFEND without the disentangled representation learning
(DEFEND-D). (3) DEFEND without the adversary gω in disentangled representation learning (DEFEND-
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Table 5: Comparison results of DEFEND and its variants. ↑ denotes larger values are better, whereas ↓
denotes lower values are preferable. The best and second best performances are highlighted in bold and
underlined, respectively.

Dataset Method AUC-ROC ↑ AUC-PR ↑ ∆DP ↓ ∆EO ↓ Comp. Avg. Rank

Reddit

DEFEND-D 64.41±1.23 20.50±0.82 14.36±1.23 13.57±1.66 -18.08 3
DEFEND-C 64.54±0.75 20.43±0.45 13.95±1.79 12.51±3.03 -16.55 3
DEFEND-A 60.44±1.06 16.39±0.41 1.64±1.36 2.53±1.99 -2.4 3.5
DEFEND+S 54.74±1.02 14.78±0.33 0.90±0.54 1.50±1.39 -7.94 3.25

DEFEND 60.67±0.42 16.46±0.25 0.94±0.72 1.13±0.81 0.00 2.25

Twitter

DEFEND-D 87.44±0.14 23.63±0.19 15.53±0.22 13.85±1.20 -4.24 3
DEFEND-C 87.58±0.16 23.85±0.27 15.86±0.47 15.31±0.97 -5.67 3
DEFEND-A 83.29±4.70 18.83±5.34 8.89±7.18 8.37±7.03 -1.07 3
DEFEND+S 50.15±0.74 6.48±0.13 1.28±0.19 1.59±1.21 -32.17 3.5

DEFEND 75.59±2.00 11.85±0.79 0.72±0.70 0.79±0.61 0.00 2.5

Credit

DEFEND-D 67.60±0.19 36.12±0.27 18.98±0.42 22.04±0.94 -13.06 3
DEFEND-C 67.23±1.04 35.83±1.13 18.42±1.07 20.96±1.77 -12.08 3
DEFEND-A 54.69±1.27 23.47±0.36 1.56±0.79 2.45±1.35 -1.60 3.25
DEFEND+S 49.08±1.35 21.65±0.75 1.33±1.61 1.66±1.25 -8.03 3.25

DEFEND 55.41±1.80 23.70±0.45 1.78±1.12 1.57±1.00 0.00 2.5

A). (4) DEFEND with a dot product decoder to reconstruct the graph structure for anomaly detection
(DEFEND+S). The results are shown in Table 5.

The following observations can be made from Table 5. (1) DEFEND outperforms all variants in fairness,
which validates the importance of each component in promoting fairness for GAD. Nevertheless, the accuracy
of DEFEND is surpassed by several variants, such as DEFEND-C and DEFEND-D, likely due to the stringent
fairness requirements. As illustrated in Figure 2 (b), relaxing the fairness constraints can improve utility
performance. Specifically, the trade-off curve shows that DEFEND achieves an AUC-ROC of nearly 80% with
a ∆EO of about 1.5%. In this case, DEFEND not only exceeds its variants in fairness but also maintains
a comparable utility performance to them. (2) The fairness of DEFEND-C is significantly worse than
DEFEND, indicating a notable correlation between reconstruction error and sensitive attributes. (3) The
fairness performance of DEFEND-D further drops than DEFEND, highlighting the efficacy of disentangled
sensitive-irrelevant representations in enhancing fairness in downstream tasks. For example, the ∆EO of
DEFEND-D improves 1% and 12% than that of DEFEND-C and DEFEND on Reddit, respectively. (4)
DEFEND-A underscores the effectiveness of the adversary in enhancing fairness, although this comes at a
cost of accuracy. For instance, the improvement in AUC-ROC from 75.59% to 83.29% is accompanied by a
considerable decrease in ∆DP from 0.72% to 8.89%. In some cases, sacrificing partial accuracy to achieve
higher fairness is a justified trade-off. (5) Compared to DEFEND+S, DEFEND not only achieves superior
accuracy but also demonstrates enhanced fairness in most cases, which suggests that biased graph topology,
negatively impacts the performance of reconstruct-based GAD method. This finding supports our choice to
avoid structure reconstruction in the anomaly detection phase.

4.4 Parameter Analysis

In this section, we investigate the impact of three key parameters within DEFEND on Reddit, including
α and γ controlling the weight of prediction term and disentanglement term in disentangled representation
learning, while β controlling the weight of correlation constraints in the anomaly detection phase.

4.4.1 Impact of α and γ

To investigate the influence of predictiveness and disentanglement terms, We train DEFEND with the values
of α and γ among {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 5.0}. The results in terms of AUC-ROC and ∆EO are presented
in Figure 3 (a) and Figure 3 (b), respectively. Figure 3 (a) reveals that the anomaly detection efficacy remains
substantially stable when α ≥ 2.0 and γ ≤ 1.0, which represents an optimal range for anomaly detection
capabilities. When γ ≥ 1.0, there is a marked enhancement in fairness at the expense of a rapid decline
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in accuracy. This trade-off occurs because larger γ forces the model to achieve more similar predictions
across demographic groups, potentially compromising its ability to identify true anomalies. Besides, a
reduction in α alone significantly decreases both AUC-ROC and ∆EO. It underscores that without accurate
sensitive attribute prediction, the model fails to effectively disentangle the representations, leading to both
poor detection performance and unfair predictions. Therefore, selecting appropriate values for α and γ is
instrumental in navigating the tradeoff between anomaly detection accuracy and fairness.

(a) AUC-ROC (%) (b) ∆EO(%)

Figure 3: Impacts of varying predictiveness term weight
α and disentanglement term weight γ in Equation 15 on
Reddit dataset in terms of AUC-ROC and ∆EO.

Figure 4: Impacts of varying correlation con-
straints weight β in Equation 19 on Reddit.

4.4.2 Impact of β

To evaluate the effect of the constraint term, we further train DEFEND with different values of β among
{1e − 15, 5e − 15, 1e − 12, 5e − 12, 1e − 10, 5e − 10, 1e − 9, 5e − 9} on Reddit. The results are depicted in
Figure 4. First, we can observe that the ∆EO decreases more than 10% while the AUC-ROC witnesses a
marginal decline of nearly 4% at β around 5e−12. This favorable trade-off demonstrates that our constraint
mechanism effectively reduces the model’s reliance on sensitive information during anomaly scoring while
largely preserving its detection capability. It emphasizes the necessity of integrating constraints within the
reconstruction-based evaluation of anomalous nodes, considering the interrelation between input and sensitive
attributes. Moreover, it is evident that both AUC-ROC and ∆EO exhibit a decrement as the weight assigned
to correlation constraints increases. It reveals that stronger constraints force the reconstruction process to be
more independent of sensitive attributes, leading to fairer but potentially less discriminative representations.
The judicious selection of β is crucial for the trade-off between utility and fairness.

5 Related Work

5.1 Graph Anomaly Detection

Graph anomaly detection (GAD) has drawn rising interest since graph-structured data becoming increas-
ingly prevalent in complex real-world systems. Given the absence of ground truth anomaly labels, many
GAD methods focus on an unsupervised manner. Autoencoder is a prominent paradigm in this domain,
which hypothesizes that the decoder cannot properly reconstruct anomalies deviating significantly from the
majority. DOMINANT (Ding et al., 2019) employs GCN-based autoencoder and evaluates anomalies based
on the reconstruction errors of node attributes and graph topology. AnomalyDAE (Fan et al., 2020) adopts a
dual autoencoder structure to capture the cross-modality interactions between topology and node attributes.
GAD-NR (Roy et al., 2023) further incorporates neighborhood reconstruction. Contrastive learning is an-
other prevalent self-supervised paradigm in GAD. CoLA (Liu et al., 2021) firstly introduces node-subgraph
contrast to identify anomalies based on the relation between nodes and their neighbors. Building upon this,
ANEMONE (Jin et al., 2021) incorporates node-node contrast and GRADATE (Duan et al., 2023) incor-
porates subgraph-subgraph contrast to explore multi-level characteristics. Several studies also investigate
anomaly detection across different levels of supervision (Chang et al., 2024; Xu et al., 2024; Liu et al., 2024;
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2025). Despite the efficacy of these methods in anomaly detection, they are prone to biased decisions due
to the neglect of sensitive attributes. To bridge this gap, we explore a novel problem of fair graph anomaly
detection, aiming to detect anomalies impartially, without bias toward sensitive attributes.

5.2 Fairness on Graphs

Numerous studies have been conducted to mitigate source bias in training data to promote fairness in
decision-making for graph learning tasks (Dong et al., 2023; Chen et al., 2023). Graph debiasing methods
involve removing bias from the input graph before conducting target tasks. For example, FairWalk (Rahman
et al., 2019) enhances the general random walk algorithm to capture more diverse neighborhoods, thereby
producing embeddings that exhibit reduced bias, while FairDrop (Spinelli et al., 2021) alters graph topology
to reduce homophily related to sensitive attributes. EDITS (Dong et al., 2022) goes further by adjusting both
graph topology and node attributes based on the distance among demographic groups. In-processing methods
represent another pipeline that revises the model training process to achieve more fair outcomes. For instance,
FairGNN (Dai & Wang, 2021) integrates an adversary to achieve fair outputs for node classification with
limited sensitive attributes, while Graphair (Ling et al., 2022) seeks to learn fair representations by automated
graph data augmentations. FairVGNN (Wang et al., 2022) tackles the sensitive attribute leakage caused by
feature propagation in GNNs by automatically learning from fair views. Additionally, FairGKD (Zhu et al.,
2023) investigates the fairness performance in different training strategies and uses distilled knowledge from
partial data training to enhance model fairness. However, directly applying the above methods for GAD
poses significant challenges. A primary issue is the overlap between anomalous characteristics and sensitive
attributes, which complicates the debiasing process. Besides, these methods are typically designed for or
validated on supervised tasks, while the lack of ground truth is a fundamental issue in anomaly detection.

5.3 Fair Representation Learning

Fair representation learning has shown great success in learning representations free from sensitive infor-
mation while maintaining downstream task-related information for decision-making (Zemel et al., 2013;
Liu et al., 2022a). Disentangled representation learning provides a novel perspective in fair representation
learning, enabling the simultaneous maintenance of sensitive-relevant and -irrelevant information, which are
separated into independent subspaces. While disentangled fair representation learning has shown promise in
benefiting fairness in image classification (Creager et al., 2019; Kim et al., 2021; Oh et al., 2022), its applica-
bility on unsupervised GAD is non-trivial. The first challenge involves effectively encoding node attributes
and graph topology into disentangled i.i.d. representations while preserving the information essential for
anomaly detection. An additional challenge lies in achieving fair GAD based on sensitive-irrelevant repre-
sentations. In prior studies, disentangled sensitive-irrelevant representations are directly used for supervised
downstream tasks (Creager et al., 2019; Oh et al., 2022). However, in unsupervised GAD, where labels
are not available, the reconstruction error serves as an effective criterion for decision-making. Considering
the correlation between sensitive attributes and other attributes, as well as the connections influenced by
sensitive attributes, direct reconstruction of the original graph may result in biased decisions.

6 Conclusion

In this paper, we propose DEFEND, a novel disentangle-based framework for fair graph anomaly detection,
aiming to balance fairness and utility in decision-making. To the best of our knowledge, DEFEND is the first
method in enhancing fairness in the task of graph anomaly detection. DEFEND first introduces disentangled
representation learning to capture informativeness yet sensitive-irrelevant representations, thereby mitigating
societal bias associated with sensitive attributes within the input graph. Furthermore, to alleviate discrimi-
natory decisions in anomaly detection, DEFEND reconstructs input attributes from the sensitive-irrelevant
representations and implements a constraint on the correlation between reconstruction error and predicted
sensitive attributes. The effectiveness of DEFEND has been substantiated through extensive experiments
on real-world datasets, demonstrating its superiority over several baselines regarding accuracy and fairness.
We discuss limitations and future work in Appendix F.
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A Pseudo Code

The overall training process of DEFEND is presented in Algorithm 1. Firstly, given an attributed graph G,
we aim to train a variational graph autoencoder, in which the disentangled encoder fe can separate sensitive-
irrelevant representations while maintaining information for reconstructing G by the decoder fa and fx (Line
4-6). We encourage the disentanglement with a learnable adversary gω optimized by Ladv (Line 8-9). The
optimization of fe, fa and fx and that of gω are conducted adversarially. Next, the frozen fe captures
sensitive-irrelevant node representations (Line 14), and the decoder fϕ solely reconstructs attributes (Line
15). We utilize reconstruction error as the anomaly score and constrain the correlation between reconstruction
error and predicted sensitive attributes (Lines 16-19). Finally, only fϕ will be updated by Lad in the anomaly
detection phase.

B Complexity Analysis

We analyze the time and space computational complexity of DEFEND. Let N , E, d and h denote the number
of nodes, edges, attribute dimensions and hidden dimensions, respectively.
In the disentangled representation learning phase, the encoder fe exhibits a complexity of O(Ed), while the
decoders fa and fx exhibit a complexity of O(N2) for adjacency matrix reconstruction. The adversary gω

operates at O(Nh). For loss computations, the variational reconstruction loss Lvae exhibits O(N2) com-
plexity for adjacency matrix reconstruction and O(Nd) for attribute reconstruction. The disentanglement
loss Ldis, predictive loss Lpre, and adversarial loss Ladv each exhibit O(Nh) complexity. In the anomaly de-
tection phase, the frozen encoder fe maintains O(Ed) complexity, while the MLP-based decoder fϕ exhibits
O(Nh) complexity. Both the correlation constraint loss Lcorr and reconstruction loss LX

rec exhibit O(Nh)
complexity. Thus, the total time complexity is O(N2 +Ed). The space complexity of DEFEND is dominated
by the storage of the dense adjacency matrix O(N2), node feature matrix O(Nd), and model parameters
with intermediate results O(Nh), resulting in a total space complexity of O(N2 + Nd + Nh).
To enhance scalability, we implement a sparse version that computes reconstruction only for existing edges
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Algorithm 1 DEFEND algorithm
Input: Graph G = (V, E), adjacency matrix A, attribute matrix X, sensitive attribute matrix S, GNN

encoder fe, attribute decoder fx, structure decoder fa, binary adversary gω, linear attribute decoder fϕ,
training iteration T ;

Output: Anomaly scores o
1: // Disentangled representation learning phase;
2: Initialize fe, fa, fx, gω;
3: while not converged do
4: Zx, Zs ← fe(X, A);
5: Â, X̂← fa(Zx, Zs), fx(Zx, Zs);
6: Calculate Ltotal according to Equation 15;
7: Update fe, fa, fx by gradient descent using Ltotal;
8: Calculate Ladv according to Equation 16;
9: Update gω by gradient descent using Ladv;

10: end while
11: // Anomaly detection phase;
12: Freeze fe and initialize fϕ;
13: for t = 1, 2, . . . , T do
14: Z̄x, Zs ← fe(X, A);
15: X̃← fϕ(Z̄x, Z̃s);
16: Calculate anomaly score o according to Equation 17;
17: Calculate Lad according to Equation 19;
18: Update fϕ by gradient descent using Lad;
19: end for
20: return o;

and approximates the global statistics using row/column means, instead of reconstructing the full adjacency
matrix. We also replace dense matrix operations with sparse operations in loss computations. This optimiza-
tion reduces the complexity of the decoder fa to O(Eh) for structure reconstruction. Besides, the complexity
of Lvae decreases to O(E) for structure and maintains O(Nd) for attribute reconstruction. Thus, the overall
time complexity is reduced to O(Ed+Nd). The space complexity decreases significantly to O(E +Nd+Nh)
by utilizing sparse matrix representations and eliminating dense adjacency matrices.

C Datasets

We employ three real-world datasets for fair GAD, which provide both real sensitive attributes and ground-
truth labels for GAD. In Reddit and Twitter datasets, the sensitive attribute is the political leaning of users,
while the anomaly label is assigned to misinformation spreaders. The Credit dataset focuses on payment
default detection, with age as the sensitive attribute. Details of these datasets are summarized in Table 1.

• Reddit (Neo et al., 2024) contains 110 politically oriented subreddits, encompassing all historical postings
within these forums. It also includes all historical posts from several active discussion participants. A
relational graph was constructed by linking users who posted in the same subreddit within 24 hours.

• Twitter (Neo et al., 2024) is conducted on 47,712 users with historical posts, user profiles, and follower
relationships. The user information, such as the organization status, was inferred using the M3 System
from user profiles and tweets. The key account metrics and averaged post embeddings were combined to
form node features. The network structure was established based on follower relationships between users.

• Credit (Agarwal et al., 2021) contains 30,000 individuals with features like education, credit history,
age, and features derived from their spending and payment patterns. Two nodes are connected if their
similarity exceeds 70% of the maximum similarity between all node pairs, measured using Minkowski
distance.
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D Baselines

In this subsection, we introduce the baselines employed in our experiments, including GAD methods (i.e.,
DOMINANT, CoLA, CONAD, and VGOD), Fairness Regularizers (i.e., FairOD, Correlation, and HIN), and
Graph Debiasers(i.e., FairWalk and EDITS).

• DOMINANT (Ding et al., 2019) devises a GCN-based autoencoder to detect anomalies by reconstruct-
ing node attributes and graph structure. The attribute decoder is the reverse structure of the encoder
and the structure decoder is applied by dot product. Anomalous nodes are evaluated by reconstruction
errors.

• CoLA (Liu et al., 2021) is a contrastive self-supervised learning framework for anomaly detection. It
conducts a node-subgraph contrast to capture anomalies that are dissimilar from their local neighbors.
Anomalous nodes are evaluated by the agreement between each node and its neighboring subgraph with
a GNN-based model.

• CONAD (Xu et al., 2022) introduces a contrastive learning framework that leverages human knowledge
through data augmentation to enhance anomaly detection capabilities. It employs a Siamese graph
neural network with a contrastive loss to encode both the modeled knowledge and the original attributed
networks. Anomalous nodes are evaluated by reconstruction errors.

• VGOD (Huang et al., 2023) proposes a variance-based framework that combines a variance-based model
for structural outlier detection with an attribute reconstruction model for contextual outlier detection.
It achieves balanced detection performance between structural and contextual outliers while addressing
data leakage issues present in existing injection-based approaches.

• FairOD (Shekhar et al., 2021) is a fairness-aware outlier detector on independent and identically dis-
tributed (i.i.d.) data. It devises a regularization term to prompt the fairness of demographic parity by
minimizing the reconstruction errors o and the sensitive attributes S.

LF airOD
DP =

∣∣∣∣ (∑n
i=1 oi − µo) (

∑n
i=1 si − µs)

σoσS

∣∣∣∣ (20)

where µo and µs represent the means, while σo and σs denote the corresponding standard deviations of
o and S, respectively. Besides, it utilizes an approximation of Discounted Cumulative Gain (DCG) to
enforce the group fidelity.

LF airOD
ADCG =

∑
s∈{0,1}

1−
∑

{vi:si=s}

2obase
i − 1
DNMs

 , (21)

where DNMs = log2

(
1 +

∑
{vj :sj=s} σ(oj − oi)

)
· IDCGs and IDCGs =∑|{vj :sj=s}|

j

(
2obase

j − 1/log2(1 + j)
)

. Here, obase
i is the reconstruction error of vi in the base model and

σ(·) is the Sigmoid function. The overall loss of the model equipped with FairOD regularizer can be
calculated by L = Lbase + λLF airOD

DP + γLF airOD
ADCG , where λ and γ are weight parameters.

• Correlation (Shekhar et al., 2021) is an implementation of FairOD, which measures the correlation
between sensitive attributes S and reconstruction errors o using the cosine similarity.

LCorr =

∣∣∣∣∣ o · S√
(o · o)(S · S)

∣∣∣∣∣ , (22)

where (·) represents the dot product of two vectors. The overall loss of the model equipped with the
Correlation regularizer can be calculated by L = Lbase + λLCorr.
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• HIN (Zeng et al., 2021) focuses on fair representation learning for heterogeneous information networks.
The demographic parity-based fairness-aware loss function is calculated by:

LHIN
DP =

∑
k∈{0,1}

(∑
{vi:si=1} P (ŷi = k)
|{vi : si = 1}| −

∑
{vi:si=0} P (ŷi = k)
|{vi : si = 0}|

)2

, (23)

where P (ŷi = 1) denotes the predicted probability of vi to be identified as an anomalous node. The equal
opportunity-based fairness-aware loss is calculated by:

LHIN
EO =

∑
k∈{0,1}

(∑
{vi:si=1,y=k} Pr(ŷi = k)
|{vi : si = 1, y = k}|

−
∑

{vi:si=0,y=k} Pr(ŷi = k)
|{vi : si = 0, y = k}|

)2

. (24)

As the calculation of LHIN
EO requires task-related labels and anomaly detection tasks typically lack ground

truth labels, we use LF airOD
ADCG as a replacement to enhance the fairness in equal opportunity. Thus, the

modified overall loss of the model equipped with HIN regularizer can be calculated by:

L = Lbase + λLHIN
DP + γLF airOD

ADCG . (25)

• FairWalk (Rahman et al., 2019) introduces a fairness-aware embedding method that generates node
embeddings by considering sensitive attributes and the topology of the graph. It enhances the gen-
eral random walk algorithm to capture more diverse neighborhoods, thereby producing embeddings that
exhibit reduced bias.

• EDITS (Dong et al., 2022) is a graph debiasing method for attributed graphs, mitigating bias present
in both graph topology and node features. It minimizes the approximated Wasserstein distance between
the distributions of different groups for any attribute dimension to enhance group fairness.

E Implementation Details

For DOMINANT, CoLA, CONAD and VGOD, we use the code and default hyper-parameters provided by
PyGOD1 (Liu et al., 2022c). For FairWalk2 and EDITS3, we implement them using the code published by
their authors. For FairOD, HIN, and Correlation, we implement the code provided by FairGAD4.

F Limitations and Future Work

First, DEFEND encounters difficulties when protected attributes are highly correlated with other features,
potentially resulting in information loss during disentanglement. Additionally, DEFEND relies on adversarial
learning to approximate the Total Correlation penalty used for disentanglement. This dependency introduces
potential convergence instability issues that might compromise the robustness of learned representations
(Oh et al., 2022). We plan to extend the framework to handle multiple and continuous sensitive attributes
simultaneously, which would enhance its practical applicability.

1https://pygod.org
2https://github.com/urielsinger/fairwalk
3https://github.com/yushundong/EDITS
4https://github.com/nigelnnk/FairGAD
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