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Abstract

Modeling multivariate time series remains a core
challenge due to complex temporal and cross-
variate dependencies. While sequence models
like Transformers, CNNs, and RNNs have been
adapted from NLP and vision tasks, they often
struggle with multivariate structure, long-range
dependencies, or error propagation. We intro-
duce Leto, a 2D memory module that leverages
temporal inductive bias while preserving vari-
ate permutation equivariance. By combining in-
context memory with cross-variate attention, Leto
effectively captures temporal patterns and inter-
variate signals. Experiments across diverse bench-
marks—forecasting, classification, and anomaly
detection—demonstrate its strong performance.

1. Introduction

Modeling multivariate time series data is a well-established
problem in the literature with a diverse set of applica-
tions ranging from healthcare (Ivanov et al., 1999; Tang
et al., 2023) and neuroscience (Behrouz & Hashemi, 2024a)
to finance (Gajamannage et al., 2023; Pincus & Kalman,
2004), energy (Zhou et al.,, 2021), transportation man-
agement (Durango-Cohen, 2007), and weather forecast-
ing (Allen et al., 2025; Price et al., 2025). Classical shallow
models—such as State Space Models (Harvey, 1990; Aoki,
2013), ARIMA (Bartholomew, 1971), SARIMA (Bender
& Simonovic, 1994), Exponential Smoothing (ETS) (Win-
ters, 1960)—have long been the de-facto mathematical mod-
els for time series prediction, modeling diverse complex
patterns (such as seasonal and trend patterns). Deploying
these models at scale in real-world settings remains chal-
lenging due to their reliance on manual data preprocessing,

!Comnell University *Mila - Que-
bec Al Institute *New Jersey Institute of Technology
“New York University. Correspondence to: Daniel Cao
<dyc33@cornell.edu>, Ali Behrouz <ab2947@cornell.edu>,
Ali Parviz <ali.parviz@mila.quebec>, Michele Santacatterina
<santam13 @nyu.edu>, Ramin Zabih <rdz@cs.cornell.edu>.

“Equal contribution

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

sensitive model selection, and inherently sequential, non-
parallelizable computations. Additionally, these models
often fail to capture (1) the inter-dependencies of different
variates, and (2) the complex non-linear dynamics inherent
to multivariate time series data.

The emergence of deep learning has shifted the focus of
recent time series research away from traditional statis-
tical methods toward deep neural network architectures
such as Transformer-based (Zhou et al., 2021; Wu et al.,
2021), recurrence-based (Behrouz et al., 2024d;e; Patro
& Agneeswaran, 2024; Jia et al., 2023), and temporal
convolutional-based (Bai et al., 2018; Sen et al., 2019; Luo &
Wang, 2024) models. Despite the outstanding performance
of Transformers (Vaswani et al., 2017) across various di-
verse domains (Du et al., 2023; Nguyen et al., 2024; Wu
et al., 2021), recent studies have highlighted their frequent
suboptimal performance compared to even linear methods,
mainly due to their inherent permutation equivariance that
contradicts the causal nature of time series (Zeng et al.,
2023c). Additionally, their quadratic time and memory com-
plexity is a notable bottleneck for their use in large-scale
long real-world settings with long-range prediction horizon.

While modern linear RNNs offer efficient alternatives to
Transformers (Peng et al., 2023a; Katharopoulos et al., 2020;
Kacham et al., 2023; Smith et al., 2023), their use in mul-
tivariate time series poses key challenges. First, the non-
stationary and noisy nature of time series data can lead to
error accumulation in additive recurrent models, requiring
careful design (Jia et al., 2023; Behrouz et al., 2024d). Sec-
ond, these models are inherently single-sequence and often
neglect cross-variate dependencies, which are crucial but
not always beneficial (Zeng et al., 2023a; Zhang et al., 2023;
Nie et al., 2023; Chen et al., 2023). Finally, recent 2D re-
current approaches (Jia et al., 2023; Behrouz et al., 2024d)
are sensitive to the order of variates, lacking permutation
equivariance.

Contributions. In this paper, to mitigate the above-
mentioned limitations in existing time series models, we
present LETO, a novel 2-dimensional architecture based on
two meta in-context memory modules—called time and vari-
ate memory modules—that learns how to memorize cross-
time and cross-variate patterns at test time, respectively.
While LETO updates the time memory module using a re-
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current rule to take advantage of its temporal inductive bias,
it uses an attention-like (with Softmax) non-parametric
memory module across variates to accurately consider their
permutation equivariance property. To capture the dynam-
ics of dependencies across variates, LETO needs to mix the
states of both time and variate memories at each time stamps.
However, the non-parametric nature of variate memory mod-
ule makes it state-less, empowering the memory to learn the
dynamics of variate dependencies across time. To overcome
this challenge, LETO uses a parametric approximation of
the non-parametric memory and expresses the Softmax at-
tention using its Taylor series. To the best of our knowledge,
LETO is the first native 2-dimensional hybrid model. In our
experiments, we perform various evaluations and compare
LETO with state-of-the-art time series models on diverse
downstream tasks, including: (1) short-, long-, and ultra-
long-term forecasting, (2) classification, and (3) anomaly
detection tasks. We further demonstrate the effectiveness of
LETO for longer horizons and support the significance of
LETO’s design by performing ablation studies.

A more detailed discussion of background concepts and
related work is provided in Appendix B.

Notation. We let matrix X = {x1,...,xy} € RV*Txdn
denote a multivariate time series, where 1" and V' are the
number of time stamps and variates, respectively, and dj, is
the feature dimension of the input (often di, = 1). We use
Tyt € R9%» to refer to the value of the time series in v-th
variate at time ¢.

2. LETO: Learning to Memorize at Test Time
with 2-Dimensional Memory

We present our model: LETO, a native 2-dimensional ar-
chitecture that takes advantage of two separate memory
modules, each of which learns how to memorize patterns
across either time or variate dimensions. Figure 2 illustrates
the architectural design of LETO.

2.1. How to Memorize 2-Dimensional Data?

While sequence modeling with test-time memorization is ef-
fective for univariate time series, multivariate data requires
two memory modules—one for each dimension (time and
variate). Naively memorizing training data risks overfitting
and fails under distribution shifts. To address this, we pro-
pose a meta in-context memory that learns how to memorize
at test time. Instead of storing training samples, it captures
generalizable patterns, selectively retaining or discarding
information based on training-time dynamics.

Cross Time Dynamic. To illustrate the modeling of cross-
time patterns, we fix the variate v and omit it from subscripts
when clear. This setup defines a meta-learning problem

over the memory parameters, where the goal is to recon-
struct projected inputs v; = W, x; from corrupted versions
k; = Wyx;. Given a reconstruction loss £(-), training in-
volves two nested loops. In the inner loop, only the memory
is updated to minimize reconstruction error via gradient
descent:

M =aMiq — UtVf(Mt—l; Xv,t)- (1

All other parameters remain fixed. The outer loop then up-
dates the full model (excluding memory) for the downstream
task—e.g., forecasting, classification, or anomaly detection.
Using a reconstruction loss, i.e., {(M;x;) = || Mk; — 4|3,
where k; and v, are defined as previously, gives us a mem-
ory module with delta update rule (recurrence) (Schlag et al.,
2021) as:

Mt = Mt—l - TItVf(Mt—u Xt)
= (I - nikek) )My +nvik]  (2)

where (I — kk,") is the transition matrix from state M;_,
to M; and vtktT is the transformation of the input data.
This linear recurrent process is equivalent to a linear dy-
namical system with non-diagonal transition matrix, which
is more expressive than its counterpart dynamical systems
with diagonal transition (Behrouz et al., 2024d; Patro &
Agneeswaran, 2024; Li et al., 2024). In our later design of
LETO in Equation Variant 2, we further enhance the above
formulation by incorporating a gating mechanism from the
Titans architecture (Behrouz et al., 2024e¢) as:

My = (I = mkik )My +nevike . (3)

where « controls the retention from the previous state of the
memory. When o — 1, it fully retains the past state and
when oo — 0 it erases the past state of the memory.

Cross Variate Dynamic. In the previous section, we discuss
a neural memory module that learns how to memorize cross-
time patterns. While our memory module captures cross-
time patterns, multivariate time series often contain richer
cross-variate dependencies (Tang et al., 2023; Behrouz et al.,
2024a; Liu et al., 2024a). To model these, one might trans-
pose the input and apply the same memory mechanism
(Equation 3) across variates. However, this approach is sen-
sitive to variate order. Unlike time, variate dimensions are
typically unordered, so models must be permutation equiv-
ariant—producing outputs that permute consistently with
input permutations.

Transformers are one of the most powerful architectures
with the permutation equivariance property (Yun et al., 2020;
Xu et al., 2024). Although this property makes their direct
applicability to time series data limited, it makes them a
great choice of architectural backbone for use in learning
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the cross-variate information (Liu et al., 2024a). To this
end, given the input data X = {x1,...,xy} € RV *Txdn
one can define X = X = {X;,...%r} € RT*V*dn and
then pass it to a Transformer block to capture the cross-

variate dependencies: Y = Transformer (X) While

the above method can satisfy both (1) fusing information
across variates, and (2) preserving the robustness to the
permutation of variates, it only models cross-variate patterns
and misses the dynamics of variates dependencies (Behrouz
et al., 2024d; Jia et al., 2023).

2.2. LETO: A Native 2-Dimensional Memory System

Previously we discussed how one can design an effective
memory module that learns how to map underlying patterns
across time or variate dimensions in the data. A simple
and commonly used method in the literature is to use two
different modules, each for one of the dimensions, and then
mix their outputs for the final prediction (Ahamed & Cheng,
2024b; Christou et al., 2024). That is, given input X €
RV *T>dn_one can use Module;(-) and Modulesy(:) to
fuse information across time and variates, respectively, and
then combine them for the final output:

Yiasiae = MOdUleQ(X)v
(Variant 1)

Yiime = Module; (X),
}/()utput = Combine (Kime, )/variale) .

Another commonly used method is to employ Moduleq(+)
and Modules(-) in a sequential manner (instead of the
above parallel manner). However, all these models treat each
dimension separately and thus miss the inter-dependencies
of time and variate dimensions at each state of the system,
resulting in less expressive power in modeling time series
data. We present a native 2-D memory system that not only
has the temporal inductive bias across time, but also has the
permutation equivariance property across variates.

We use two memory modules M) () and M?)(-) to learn
the underlying mappings/patterns across time and variate
dimensions, respectively. To design such memory modules
it is appropriate to use a reconstruction objective ¢(-) for
the memory and then optimize this objective with an opti-
mization algorithm (such as gradient descent). However, to
capture the inter-dependencies of dimensions at each step of
optimization, it is necessary to fuse the information between
the memory modules as well. Therefore, the state of each
memory module not only depends on its time stamp, but
it also depends on its variate. Given X = {xy,...,xy}
as the input, and arbitrary v € {1,...,V} we define the
cross-time memory update as:

ML) = ar, MP, = o VMY, x00)
+61‘ v/Vy )11; Ve, 1,v€(./\/lt 1,00 Xt, U) 4

where E(/\/lt])1 s Xt, U) = ||M§jf)1,vkt_v — vyl forj €
{1,2} and v € {1 ., V}iand ky,, = Wixy, and vy, =

Wyx¢t . Expanding the gradient for the above formula-
tion results in the recurrent update rule for the cross-time
memory module as follows:

M(l) (at oI — M, vktv tU)Mt 1,0 T NtwVe vk;rv

(ﬁt,v - 'Vt,vkt,v tyv)Mtfl,v +%,th,ka@- (5)

The above formulation demonstrates how to update the
cross-time memory. To get the final output from this mem-
ory, we need to multiply it by the input data x; ,, to achieve
the x; ,’s corresponding information in the memory: i.e.,

(1) ME 3xt,v. One can similarly define the recurrence

for the cross-variate memory module M?g as

Mf)—GMMM 1~ M vg(Mtv 1 Xt0)
+Nt,vM,(523 1 — W, UVE(Mt? 17Xtv) (6)

However, it is still sensitive to the order of variates. This
sensitivity to variate ordering comes from the parametric
nature of gradient descent algorithm as its iterations requires
a series of ordered steps. Therefore, the use of any other
parametric optimizer can cause such sensitivity to the or-
der. To overcome this issue, we use the non-parametric
estimate of our objective. Interestingly, with a small modifi-
cation and using Nadaraya-Watson estimators (Fan, 2018;
Zhang et al., 2022b), the non-parametric estimate of the
objective is equivalent to softmax attention mechanism in
Transformers (Vaswani et al., 2017), as also discussed in
previous studies (Sun et al., 2024; Behrouz et al., 2025).
Therefore, due to this theoretical connection, we use an
attention module for the cross-variate information mixing.
The final output of this block can simply be defined as:

Yt(QU) =6, Attention ({M X i by )
+ fu0 Attention ({Xm}i:l). @)

Note that Mglz) x; ; provides the x; ;’s corresponding in-
formation in cross-time memory module and so the first
term combines the cross-time dynamic of all variates at the
same time. While computation of the final output for the
cross-variate memory is clear, we need to access its memory

(i.e., M?g) to use in the update of cross-time memory (i.e.,
Equation 4). The memory of Transformers are known to be
the pair of key and value matrices (K, V) in the attention
mechanism (Zhang & Cai, 2022; Wu et al., 2022b; Behrouz
et al., 2024e; Bietti et al., 2023). However, incorporating a
pair of matrices into the recurrence update rule of Equation 4
is unclear and challenging. Therefore, we utilize a kernel-
ized variant of attention, in which we replace Softmax
with a separable kernel ¢(-) (Katharopoulos et al., 2020;
Kacham et al., 2023; Arora et al., 2024) (see Appendix A
for the corresponding background and detailed formula-
tion). This allows us to concretely define the memory of
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Table 1: Average performance on long term forecasting tasks over four prediction lengths: {96, 192, 336, 720}. A lower MAE and MSE
indicates a better prediction. The best performance is highlighted in red, and the second-best is underlined.

Models | LETO (Ours) | TimeMixer |  Simba | ModernTCN | iTransformer | RLinear | PatchTST | Crossformer | TiDE | TimesNet DLinear
MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
ETTml | 0347 0375 | 0381 0385 | 0.383 0396 | 0351 0381 | 0.407 0410 | 0.414 0407 | 0387 0400 | 0.513 0496 | 0.419 0.419 | 0400 0406 | 0.403 0.407
ETTm2 | 0249 0302 | 0275 0323 | 0271 0327 | 0253 0314 | 0.288 0332 | 0.286 0.327 | 0281 0326 | 0.757 0.610 | 0358 0404 | 0.291 0333 | 0.350 0.401
ETTh1 | 0.393 0401 | 0447 0440 | 0441 0432 | 0404 0420 | 0454 0447 | 0.446 0434 | 0469 0454 | 0.529 0.522 | 0541 0507 | 0458 0450 | 0.456 0452
ETTh2 | 0318 0381 | 0364 0395 | 0.361 0391 | 0322 0379 | 0.383 0407 | 0.374 0.398 | 0387 0407 | 0.942 0.684 | 0.611 0550 | 0.414 0427 | 0.559 0.515
Exchange | 0.297 0364 | 0391 0453 | 0.298 0363 | 0302 0366 | 0.360 0403 | 0.378 0417 | 0367 0404 | 0.940 0707 | 0370 0413 | 0416 0443 | 0.354 0414
Traffic | 0.408 0.267 | 0484 0297 | 0493 0291 | 0.398 0270 | 0428 0282 | 0.626 0.378 | 0481 0304 | 0.550 0.304 | 0.760 0473 | 0.620 0336 | 0.625 0.383
Table 2: Average performance on Ultra long-term forecasting tasks (MSE / MAE)

Dataset Metric | LETO | MICN | TimesNet | PachTST |  DLinear | FiLM | FEDformer | Autoformer | Informer
| MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
720-1440 | 0.4782 05614 | 1.0460 0.7765 | 0.6119 0.5962 | 0.8243 0.6704 | 0.4923 0.5473 | 0.4730 0.5336 | 0.4833 0.5393 | 1.4957 0.9533 | 0.5064 0.5317
ECL 1440-1440 | 0.4639  0.5387 | 0.8262 12207 | 0.5720 0.5712 | 0.9053 07328 | 0.5146 0.5615 | 0.4849 0.5429 | 0.5142 05571 | 1.7873 1.0283 | 0.7247 0.6920
1440-2880 | 0.6047 0.5868 | 2.8936 1.3717 | 0.7683 0.6846 | 11282 0.8087 | 0.8355 0.7193 | 0.6847 0.6493 | 3.9018 15276 | 12867 0.8878 | 0.6152 0.5953
720-1440 | 0.1672 02431 | 02876 0.3916 | 0.1882 0.2656 | 0.1904 02685 | 0.1639 0.2412 | 0.1638 02448 | 02753 0.3650 | 0.3104 0.4095 | 0.7614 0.6496
Traffic  1440-1440 | 0.1521 02497 | 02905 0.3923 | 0.2081 02712 | 0.1917 02764 | 0.1590 0.2411 | 0.1602 02437 | 02848 03681 | 0.2970 0.3999 | 0.7375 0.6414
1440-2880 | 0.1425 02433 | 02823 0.3874 | 0.1560 0.2409 | 0.1819 02761 | 0.1550 0.2421 | 0.1744 0.2693 | 0.2952 03844 | 03035 0.3982 | 0.9408 0.7618
720-1440 | 0.1331 02943 | 04640 0.5836 | 0.1391 03049 | 0.3708 0.4906 | 0.2952 0.4370 | 0.2049 0.4388 | 0.1768 03409 | 0.3298 0.4741 | 0.1378 03051
ETThl  1440-1440 | 0.1359 03120 | 05188 0.6075 | 0.1404 0.3093 | 0.4475 05392 | 02200 0.3714 | 0.3226 0.4678 | 0.1928 03576 | 0.3618 0.5507 | 0.1402 03192
1440-2880 | 0.2591 0.3949 | 0.7591 0.7215 | 02732 0.4094 | 0.9617 0.8072 | 03773 04794 | 0.3624 0.4705 | 0.2627 0.3754 | 03177 04733 | 0.3495 04111
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(a) Classification Results (b) Anomaly Detection Results

Figure 1: Anomaly detection and classification results of LETO
and baselines. Higher accuracy/F1-score indicate better perfor-
mance.

the Transformer with keys and values of {k;} and {¥;}
as (Katharopoulos et al., 2020) /\/lg = Zz/:l \A/“qb(l;;'—l)

The question about what would be the optimal kernel ¢(+)
to use in the above formulation remains. To answer this,
we recall the formulation of Softmax attention that is
proportional to softmax(q, k;)v;. To replace softmax
softmax(-) with a separable kernel ¢(-), we can choose
the kernel to approximate the exponential term in softmax
with its Taylor series. Accordingly, we use the first four
terms of the Taylor series of exp(-) defined as: exp(x) ~
dplx)y=14x+ %2 + %? Combining the prior expressions,
we can define our native 2-dimensional update rule as:

MEB = Oétva(lf)l,v - nt,vvg(MngXt,v)
+ ﬁt,vMEQ,)Lv - %,UVE(M@LU, X¢w), (Variant2)

where ME? Z:/:l \Aft,iqb(f{zi) and ¢(z) = = + %2 + é—?
In the above formulation v; and lAcl are keys and values of the

Transformer block, coming from the keys and values of the
cross-variate dynamic attention mentioned in Equation 7.

3. Experiments

Goals and Baselines. In this section, we evaluate LETO on
a wide range of time series tasks, comparing with the state-
of-the-art multivariate time series models (Wu et al., 2023;
Luo & Wang, 2024; Lim & Zohren, 2021; Woo et al., 2022;
Wau et al., 2021; Zhou et al., 2022b; Zhang & Yan, 2023;
Liu et al., 2024a; Dehghani et al., 2023; Das et al., 2023;
Liu et al., 2022a; Patro & Agneeswaran, 2024; Zeng et al.,
2023b; Xu et al., 2021; Wang et al., 2024) on forecasting:
long, ultra-long, and short term, classification, and anomaly
detection tasks. Detailed dataset descriptions and complete
experimental results are provided in Appendix E.

3.1. Main Results: Classification and Forecasting

Long-Term Forecasting. We conduct experiments on the
long-term forecasting tasks using commonly used bench-
mark datasets used by Zhou et al. (2021). The average per-
formance across different horizons is summarized in Table 1.
LETO consistently delivers strong results across different
datasets, highlighting its robustness compared to recurrent,
convolutional, SSM, and Transformer-based models.

Ultra Long-term Forecasting. We further extend the evalu-
ation to ultra-long-range forecasting on the same benchmark
datasets (Zhou et al., 2021) to observe the effectiveness of
LETO in longer horizons. The tasks on the left side of the
Table 2 retain the same interpretation as in the standard
long-term forecasting setting. The results in Table 2 demon-
strate LETO’s ability to capture long-term dependencies
from extremely long historical inputs, maintaining its strong
performance across various extended prediction horizons.

Classification and Anomaly Detection. We evaluate the
performance of LETO on 10 multivariate datasets from
the UEA Time Series Classification (Bagnall et al., 2018)
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(see Figure 1 and Table 10). For anomaly detection,
we conduct experiments on five widely-used benchmarks:
SMD (Su et al., 2019), SWaT (Mathur & Tippenhauer,
2016), PSM (Abdulaal et al., 2021), and SMAP (Hundman
et al., 2018) and observe the effectiveness of our approach.

Impact Statement

LETO delivers strong, general-purpose performance across
forecasting, classification, and anomaly detection tasks. Its
adaptability makes it suitable for real-world applications
like energy forecasting, weather prediction, financial mod-
eling, and supply chain demand estimation. Notably, it
performs well in industrial anomaly detection, where robust-
ness to noise and structural shifts is critical—underscoring
its potential as a foundational model for time series analysis.
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Figure 2: An Overview of LETO’s Architecture: We define two inter-connected memory blocks M, M? corresponding
to time and variate axes, where the recurrence is updated by fusing together both cross-time and cross-variate information,
using an approximation of softmax attention for M?2.

A. Preliminaries and Background

Transformers and their Permutation Equivariance Property. Transformers (Vaswani et al., 2017) have been the de
facto backbone for many deep learning models and are based on attention module. Let 2 € RV X9 be the input, attention
computes output y € RV *9n based on softmax over input dependent key, value, and query matrices:

QZQ’JWQ, KZLL’WK, VZZEWV, (8)

X exp QK /) V;
Yi= Z N T ’
Y exp (Q) K/ Vdin)

®

where Wq, Wk, and Wy € R xdin are learnable parameters. This formulation of attention makes it permutation
equivariant, meaning that the permutation of the input cannot change the output but permute it. That is, let 7(.) be a
permutation, and A(-) be the above attention module, we have:

A(r(z)) = m(A(x)). (10)

The property, which is called permutation equivariance, is a desirable property for the data that is permutation equivariant,
such as variates in the multivariate time series. When encoding the multivariate time series, we do not want the output of the
model to be sensitive to the order of the input (variates) and so transformers are great architectures as any change to the
order, does not change the output, but just permute it.

Learning to Memorize at Test Time. The concept of learning to memorize at test time is derived from the learning at
test time or learning to learn, which backs to very early studies on local learning (?): i.e., training each test sample on its
neighbors before making a prediction (??). Later, test time training shows promising results in vision tasks (??), mainly
because of the ability to properly address out-of-distribution cases. Using this perspective, recently this idea has been applied
on sequence modeling (Sun et al., 2024; Behrouz et al., 2024e; 2025). These methods that aim to train a memory module
that learns how to memorize the context at test time, have shown promising results in language and sequence modeling tasks.
In this work, we also take this perspective and design a 2-dimensional test time memorizer that generalizes all these methods
to 2-dimensional data modality.

B. Additional Related Work

Classical Approach. Time series modeling has been a fundamental research topic, Classical approaches include a range
of statistical models such as exponential smoothing (Winters, 1960), ARIMA (Bartholomew, 1971), SARIMA (Bender
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& Simonovic, 1994), and the Box-Jenkins methodology (Box & Jenkins, 1968), with later advancements introducing
state-space models (Harvey, 1990; Aoki, 2013). While these models offer interpretability, they often fall short in capturing
complex non-linear dynamics and typically rely on manual inspection of time series characteristics—such as trend and
seasonality—limiting their adaptability across diverse datasets.

Transformer-based models. Transformer-based architectures have become increasingly prominent in multivariate time
series forecasting, particularly when modeling complex inter-variable and temporal dependencies (Zhou et al., 2022b; Kitaev
et al., 2020; Zhang & Yan, 2023; Zeng et al., 2023a; Zhou et al., 2021; Liu et al., 2021; Wu et al., 2021; Ilbert et al., 2024;
Nie et al., 2023). A line of research has focused on designing specialized attention mechanisms that leverage the unique
structure of time series data (Woo et al., 2022), while others have explored strategies for capturing long-term temporal
patterns to improve forecasting accuracy (Nie et al., 2023; Zhou et al., 2022a).

In parallel, recent works have revisited linear recurrent neural networks (Linear RNNs) as efficient alternatives to Trans-
formers, aiming to reduce the quadratic complexity while maintaining competitive performance on long-range dependency
modeling (Sun et al., 2023; Peng et al., 2023b; Wu et al., 2023). For instance, Chen et al. (2023) introduce TSMixer, a purely
MLP-based model that demonstrates strong performance on time series forecasting tasks. Notably, the expressive capacity
of certain linear models aligns with 2D state space models (SSMs), suggesting that these architectures can be interpreted as
specific instances within the broader 2D SSM framework. Additionally, convolution-based models have shown renewed
promise (Luo & Wang, 2024), where the use of global convolutional kernels facilitates an expanded receptive field for
capturing long-range dynamics.

Recurrent-based models. Another line of research closely related to our work involves deep sequence modeling. Recurrent
neural networks (RNNs), including variants such as GRUs (Chung et al., 2014), LSTMs (Hochreiter & Schmidhuber,
1997), and DeepAR (Salinas et al., 2020), have been widely used for sequential data. However, these models suffer from
well-known limitations such as vanishing and exploding gradients, along with inherently sequential computation that slows
down training and inference. To address these inefficiencies, recent efforts have explored linear attention mechanisms as
faster alternatives (Katharopoulos et al., 2020; Schlag et al., 2021; Kacham et al., 2023). For instance, Katharopoulos et al.
(2020) propose a linear attention model with a recurrent formulation, enabling efficient inference and reduced computational
complexity.

In parallel, deep state space models (SSMs) have gained momentum as a compelling alternative to Transformer-based
architectures (Vaswani et al., 2017), offering improved scalability and training efficiency (Gu et al., 2020). These models
blend classical state space formulations with deep learning by parameterizing neural network layers using multiple linear
SSMs. This hybrid formulation leverages the convolutional interpretation of SSMs to mitigate the optimization challenges
typically associated with RNNs (Gu et al., 2020; 2021; 2022a;b; Smith et al., 2023). Recently, Gu & Dao (2023) introduced
Mamba, a novel deep SSM architecture where parameters dynamically depend on input features. This approach has been
successfully extended to various modalities—including images (Ma et al., 2024; Liu et al., 2024b; Behrouz et al., 2024c¢),
point clouds (Liang et al., 2024), tabular data (Ahamed & Cheng, 2024a), graphs (Behrouz & Hashemi, 2024b; Behrouz
et al., 2024b; Huang et al., 2024), and time series (Behrouz et al., 2024d; Cao et al., 2025)—demonstrating strong capabilities
in modeling long-range dependencies across domains.

Other Methods. Graph-based models have emerged as powerful tools for time series forecasting(Wu et al., 2020; Yi et al.,
2024), especially when the data exhibits spatial or relational structure across variables or entities. Approaches such as graph
neural networks (GNNs) model dependencies through learned graph representations, enabling effective spatiotemporal
forecasting in domains like traffic (Yu et al., 2017; Li et al., 2017) and sensor networks (Wu et al., 2019). Recent work
has extended these ideas by incorporating dynamic graphs (Wu et al., 2023; Dwivedi et al., 2022; Gastinger et al., 2024),
learning graph structures jointly with temporal dynamics to better capture evolving relationships over time. These methods
offer strong performance in settings where explicit or latent graph structure underpins multivariate time series behavior.

C. Parallelizable Training of LETO

While the recurrence-based formulation of LETO enables it to better capture joint temporal and variate dependencies, as
well as their independent dynamics, it introduces sequential dependencies that can hinder training efficiency. To address this,
we develop a parallelizable training strategy inspired by recent advances in test-time memorization frameworks (Sun et al.,
2024; Behrouz et al., 2024e¢).

11



LETO: Modeling Multivariate Time Series with Memorizing at Test Time

Specifically, for a given variate v, we divide its time series {xlﬂ), ey xTﬂ,} into C' disjoint chunks of length b = T'/C'. Each
chunk S; = {*(;_1)p41,0,-- -, Tip} can be treated as an independent subsequence for computing the inner—loop updates of

the memory module. This chunklng allows us to approximate the gradient V/ (Mt(l)1 o Tt v) With V(M 3), T1.5), Where
= |t/b] - b is the last time step of the previous chunk. Since ¢’ is fixed for each chunk, this gradient can be computed in

parallel for all time steps within a chunk.

Moreover, the cross-variate dynamic component—modeled via the attention mechanism—is independent of time and

can be computed in advance. We precompute the attention-based memory M, (2) for all variates using equation above

with a Taylor-approximated softmax kernel. This enables us to also precompute V€ (M, t 1,) , Ty, ), further decoupling the
cross-variate dynamics from the sequential recurrence.

With the cross-variate memory and its corresponding gradient terms available, the remaining computation in each chunk
reduces to a linear update over the cross-time memory using the precomputed components. As a result, we obtain a
recurrence that is linear within chunks and can be parallelized across both time and variates.

D. Dataset and Experimental Details

The experimental details are reported in Table 3.

E. Additional Experimental Results
E.1. Metrics

We utilize the mean square error (MSE) and mean absolute error (MAE) for long-term forecasting. For short-term forecasting
on the M4 datasets, we follow the methodology of N-BEATS (Oreshkin et al., 2019) and utilize the symmetric mean absolute
percentage error (SMAPE), mean absolute scaled error (MASE), and overall weighted average (OWA) as metrics. It is worth
noting that OWA is a specific metric utilized in the M4 competition. The calculations of these metrics are:

F F
RMSE = () (X, — X;)%)?2, MAE = > |X; - X4,
=1 =1
F A~
X; - X 1 X; — X
SMAPE = 22 g Mapg — 200§~ X = X
Foo X+ |X I F= Xl
MASE — li X, — X owa — 1 { SMAPE  MASE
F i—1 ﬁ Z] s+1 |X XJ Sl 2 SMAPENa‘l’V@Z MASENai‘veZ ’

where s is the periodicity of the data. X, X € RF*C are the ground truth and prediction results of the future with F' time
pints and C' dimensions. X; means the i-th future time point. For classification, we use accuracy as the metric. Lastly for
anomaly detection, we use F1-Score as the metric.

E.2. Short Term Forecasting

The complete results of short term forecasting are reported in Table 6.

E.3. Long Term Forecasting

The complete results of long term forecasting are reported in 7.

E.4. Anomaly Detection

The complete results of Anomaly Detection are reported in Table 9.

E.5. Classification

The complete results of Classification are reported in 10.
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Table 3: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks | Dataset | Dim | Series Length | Dataset Size | Information (Frequency)
| ETTm1, ETTm2 | 7 | {96,192,336,720} | (34465, 11521, 11521) | Electricity (15 mins)
| ETTh1, ETTh2 | 7 | {96,192, 336,720} | (8545, 2881, 2881) | Electricity (15 mins)
Forecasting | Electricity | 321 | {96,192,336,720} | ~ (18317,2633,5261) | Electricity (Hourly)
(Long-term) | Traffic | 862 | (96,192,336,720} |  (12185,1757,3509) | Transportation (Hourly)

| Weather | 21 |{96,192,336,720} | (36792,5271,10540) | Weather (10 mins)

| Exchange | 8 | (96,192,336,720} | (5120, 665, 1422) | Exchange rate (Daily)

| Md-Yearly |1 6 | (23000,0,23000) |  Demographic

| M4-Quarterly | 1 | 8 | (24000,0,24000) | Finance
Forecasting | M4-Monthly | 1 | 18 | (48000, 0, 48000) | Industry
(short-term) | M4-Weakly | 1 | 13 | (359, 0, 359) | Macro

| M4-Daily |1 14 \ (4227, 0, 4227) \ Micro

| M4-Hourly | 1 | 48 | (414, 0, 414) | Other

| ETTml,ETTm2 | 7 | 96 | (34465, 11521, 11521) | Electricity (15 mins)
Imputation | ETTRLETTR2 | 7 | 96 | (8545,2881,2881) | Eleciricity (15 mins)

| Weather | 21 | 96 | (36792,5271,10540) |  Weather (10 mins)

| EthanolConcentration | 3 | 1751 | (261, 0, 263) | Alcohol Industry

| FaceDetection | 144 | 62 | (5890, 0, 3524) | Face (250Hz)

| Handwriting | 3 | 152 | (150, 0, 850) | Handwriting

| Heartbeat | 61 | 405 \ (204, 0, 205) | HeartBeat
Classification | JapaneseVowels | 12 | 29 | (270, 0, 370) | Voice

(UEA) | PEMS-SF | 963 | 144 | (267, 0, 173) | Transportation (Daily)
| SelfRegulationSCPI | 6 | 896 | (268, 0, 293) | Health (256Hz)
| SelfRegulationSCP2 | 7 | 1152 | (200, 0, 180) | Health (256Hz)
| SpokenArabicDigits | 13 | 93 | (6599, 0, 2199) | Voice (11025Hz)
| UWaveGestureLibrary | 3 | 315 | (120, 0, 320) | Gesture
| SMD | 38 | 100 | (566724, 141681, 708420) | Server Machine

Anomaly | MSL | 55 | 100 | (44653, 11664, 73729) | Spacecraft
Detection | SMAP | 25 | 100 | (108146, 27037,427617) | Spacecraft
| SWaT | 51 | 100 | (396000, 99000, 449919) | Infrastructure
| PSM | 25 | 100 | (105984, 26497, 87841) |  Server Machine
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Table 5: Standard deviation and statistical tests for our LETO method and the strongest baseline ModernTCN on the M4
dataset (short-term forecasting). Lower is better. Confidence is derived from a paired two-tailed ¢-test over five runs.

LETO (Ours) \ ModernTCN (2024)

| |
Frequency | —qnrapR MASE OWA | SMAPE MASE owa | Confidence
Yearly | 13183 £0.115 2941+ 0028 0754 £0.022 | 13226 £ 0.118 2957 £0.031 07770025 |  99%
Quarterly | 9.953+0.101 1.150 £0.015 0851 £0015 | 9971 £0.105 1.167+£0.017 08780018 |  95%
Monthly | 12517 £0.115 0.935+ 0014 0853 £0.014 | 12.556 £ 0.120 0917 £0015 0.866 0016 |  95%
Others 4583 £0.084 2797 +0027 090040021 | 47154009 3.107 £0028 0986+ 0024 |  99%

Averaged ‘ 11.658 £0.112  1.541 £0.022 0.832 £ 0.018 ‘ 11.698 £ 0.120  1.556 £ 0.024  0.838 £ 0.020 ‘ 95%

Table 6: Full results for the short-term forecasting task in the M4 dataset. *. in the Transformers indicates the name of
«xformer. Stationary means the Non-stationary Transformer. A lower SMAPE, MASE, and OWA indicate a better prediction.
As a convention for all experimental results, best performance is highlighted in red, and the second-best is underlined. We
take the average of 5 separate runs for each prediction frequency.

LETO ModernTCN PatchTST TimesNet N-HiTS N-BEATS* ETS+ LightTS DLinear FEDx* Stationary Autox Pyrax Inx  Rex
(Ours)  (2024) (2023)  (2023) (2023) (2022) (2019) (2022) (2022a) (2023a) (2022b) (2022b) (2021) (2021) (2021)

Models

SMAPE|13.183  13.226 13.258 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.53014.727 16.169
MASE | 2.941 2.957 2.985 2996 3.045 3.043 4487 3.109 4.283 3.048 3.078 3.134 3.711 3.418 3.800
OWA |0.754 0.777 0.781 0.786  0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 0.973

Yearly

SMAPE| 9.953 9.971 10.179  10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.44911.360 13.313
MASE |1.150 1.167 0.803 1.182  1.194 1.169 1906 1.328 1.520 1.283 1.325 1.365 2.350 1.401 1.775
OWA |0.851 0.878 0.803 0.890 0.899 0.886 1302 1.000 1.106 0958 0981 1.012 1.558 1.027 1.252

SMAPE|12.517  12.556 12.641 12.670 12.791 12.677 14.588 14.014 13.514 14260 13.917 13.958 17.642 14.062 20.128
MASE | 0.935 0.917 0.930 0933 0969 0937 1368 1.053 1.037 1.102 1.097 1.103 1913 1.141 2.614
OWA | 0.853 0.866 0.876 0.878 0.899 0.880 1.149 0.981 0956 1.012 0998 1.002 1.511 1.024 1.927

Monthly | Quarterly

SMAPE| 4.583 4715 4.946 4891 5.061 4925 7.267 15880 6.709 4954 6302 5485 24.78624.46032.491
MASE |2.797 3.107 2.985 3302 3216 3.391 5240 11434 4953 3.264 4.064 3.865 18.58120.96033.355
OWA (0.9001  0.986 1.044 1.035 1.040 1.053 1.591 3.474 1487 1.036 1304 1.187 5.538 5.013 8.679

Others

SMAPE|11.658  11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200
MASE | 1.541 1.556 1.590 1.585 1.613 1599 2408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223
OWA | 0.832 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0918 0930 0.939 1.480 1.230 1.775

Weighted
Average

F. Limitations and Future Work

We note LETO has a few limitations worth acknowledging. First, the use of gradient-based meta in-context updates at test
time, while powerful, introduces additional computational overhead compared to traditional non-adaptive sequence models.
Although our dual-form implementation and parallel training strategies mitigate some of this cost, the memory and compute
requirements may still be prohibitive in resource-constrained settings, particularly for long-horizon forecasting tasks.

Second, while LETO is designed to model both cross-time and cross-variate dependencies, its reliance on Taylor ap-
proximations for the variate attention mechanism may limit its capacity to fully capture complex, high-order variate
interactions in some datasets. More expressive non-parametric approximators or learned kernel functions could offer
improved generalization and efficiency.

Finally, our current formulation assumes access to reasonably stationary statistics at test time for the meta-memorization
process to be effective. In highly non-stationary environments or under strong distribution shifts, the learned test-time
updates may generalize poorly, leading to suboptimal performance.
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Table 7: Complete experiments on long term forecasting tasks over four prediction lengths: {96, 192, 336, 720}. A lower MAE and MSE
indicates a better prediction. As a convention for all experimental results, best performance is highlighted in red, and the second-best is
underlined. We take the average of 5 separate runs for each prediction length.

LEto  TimeMixer  Simba TCN  iTransformer RLinear PatchTST Crossformer  TiDE TimesNet ~ DLinear SCINet  FEDformer Stationary Autoformer
(ours) (2024) (2024) (2024) (2024a) (2023) (2023) (2023) (2023) (2023)  (2023c)  (2022a)  (2022b)  (2022¢)  (2021)

MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

96 0.312 0.343|0.320 0.357|0.342 0.360|0.292 0.346(0.334 0.368 |0.355 0.376(0.329 0.367(0.404 0.426 |0.364 0.387(0.338 0.375|0.345 0.372|0.418 0.438|0.379 0.419|0.386 0.398|0.505 0.475
19210.330 0.365|0.361 0.381|0.363 0.382(0.332 0.368|0.377 0.391 |0.391 0.392/0.367 0.385|0.450 0.451 [0.398 0.404|0.374 0.387|0.380 0.389|0.439 0.4500.426 0.441|0.459 0.444|0.553 0.496
336(0.355 0.384(0.390 0.404]0.395 0.405|0.365 0.391(0.426 0.420 [0.424 0.415/0.399 0.410(0.532 0.515|0.428 0.425(0.410 0.411{0.413 0.413]0.490 0.485|0.445 0.459/0.495 0.464|0.621 0.537
72010.391 0.408|0.454 0.441|0.451 0.437(0.416 0.417]|0.491 0.459 |0.487 0.450|0.454 0.439(0.666 0.589 |0.487 0.461|0.478 0.450|0.474 0.453]0.595 0.550(0.543 0.490(0.585 0.516|0.671 0.561

ETTml
S

‘Avg‘0.347 0.375]0.381 0.395|0.383 0.396|0.351 0.381|0.407 0.410 (0.414 0.407|0.387 0.400(0.513 0.496 |0.419 0.419(0.400 0.406/0.403 0.407|0.485 0.481{0.448 0.452{0.481 0.456|0.588 0.517

96 10.164 0.248|0.175 0.258|0.177 0.263|0.166 0.256(0.180 0.264 |0.182 0.265(0.175 0.259[0.287 0.366 [0.207 0.305|0.187 0.267|0.193 0.292|0.286 0.377|0.203 0.287|0.192 0.274|0.255 0.339
19210.217 0.284/0.237 0.299|0.245 0.306(0.222 0.293]0.250 0.309 |0.246 0.304/0.241 0.302|0.414 0.49210.290 0.364|0.249 0.309|0.284 0.362|0.399 0.445|0.269 0.328]0.280 0.339|0.281 0.340
336(0.266 0.312]0.298 0.340|0.304 0.343|0.272 0.324(0.311 0.348 [0.307 0.342/0.305 0.343(0.597 0.542|0.377 0.422(0.321 0.351{0.369 0.427|0.637 0.591{0.325 0.366|0.334 0.361|0.339 0.372
720(0.349 0.363|0.391 0.396|0.400 0.399(0.351 0.381]0.412 0.407 |0.407 0.398|0.402 0.400(1.730 1.042]0.558 0.524|0.408 0.403|0.554 0.522|0.960 0.735|0.421 0.415|0.417 0.413]|0.433 0.432

ETTm2

‘Avg‘0.249 0.302{0.275 0.323]0.271 0.327]0.253 0.3140.288 0.332 (0.286 0.327|0.281 0.326(0.757 0.610 |0.358 0.404(0.291 0.333]0.350 0.401]0.571 0.537|0.305 0.349|0.306 0.347|0.327 0.371

96 10.365 0.383]0.375 0.400|0.379 0.395|0.368 0.394(0.386 0.405 |0.386 0.395(0.414 0.419]0.423 0.448 [0.479 0.464|0.384 0.402|0.386 0.400|0.654 0.599|0.376 0.419|0.513 0.491|0.449 0.459
19210.396 0.400{0.429 0.421{0.432 0.424|0.405 0.413|0.441 0.436 (0.437 0.424|0.460 0.445|0.471 0.4740.525 0.492(0.436 0.429(0.437 0.432/0.719 0.631]0.420 0.448]0.534 0.504|0.500 0.482
336(0.461 0.462|0.484 0.458|0.473 0.443|0.391 0.412(0.487 0.458 [0.479 0.446/0.501 0.466(0.570 0.546 |0.565 0.515(0.491 0.469[0.481 0.459|0.778 0.659(0.459 0.465|0.588 0.535|0.521 0.496
720]0.427 0.428)0.498 0.482|0.483 0.469|0.450 0.461]|0.503 0.491 |0.481 0.470|0.500 0.488(0.653 0.621 [0.594 0.5580.521 0.500{0.519 0.516/0.836 0.699|0.506 0.507|0.643 0.616|0.514 0.512

ETThl

‘Avg‘(}.393 0.401{0.447 0.440(0.441 0.432|0.404 0.420|0.454 0.447 |0.446 0.434/0.469 0.454|0.529 0.522|0.541 0.507|0.458 0.450|0.456 0.452|0.747 0.647|0.440 0.460|0.570 0.537|0.496 0.487

96 |0.258 0.337|0.289 0.341(0.290 0.339|0.263 0.332]0.297 0.349 |0.288 0.338/0.302 0.348|0.745 0.584 |0.400 0.440|0.340 0.374/0.333 0.387|0.707 0.621]0.358 0.397|0.476 0.458]0.346 0.388
19210.316 0.379]0.372 0.392|0.373 0.390(0.320 0.374[0.380 0.400 |0.374 0.390/0.388 0.400(0.877 0.656 [0.528 0.509|0.402 0.414|0.477 0.476|0.860 0.6890.429 0.439]0.512 0.493|0.456 0.452
336(0.309 0.379{0.386 0.414]0.376 0.406|0.313 0.376(0.428 0.432 [0.415 0.426/0.426 0.433(1.043 0.731|0.643 0.571(0.452 0.452{0.594 0.541|1.000 0.744{0.496 0.487|0.552 0.551{0.482 0.486
72010.389 0.430(0.412 0.434(0.407 0.431]0.392 0.433]0.427 0.445 |0.420 0.440(0.431 0.446(1.104 0.763 |0.874 0.679|0.462 0.468|0.831 0.657|1.249 0.838|0.463 0.474|0.562 0.560(0.515 0.511

ETTh2

‘Avg‘0.318 0.381]0.364 0.395/0.361 0.377|0.322 0.379|0.383 0.407 |0.374 0.398|0.387 0.407|0.942 0.684 |0.611 0.550|0.414 0.427]0.559 0.515|0.954 0.723|0.437 0.449|0.526 0.516|0.450 0.459

o | 96 |0.079 0.208(0.090 0.235| - - 10.080 0.196/0.086 0.206 |0.093 0.217(0.088 0.205|0.256 0.367 |0.094 0.218|0.107 0.234/0.088 0.218|0.267 0.396|0.148 0.278|0.111 0.237]0.197 0.323
2011920.164 0.298(0.187 0.343| - - 10.166 0.288(0.177 0.299 |0.184 0.307|0.176 0.299{0.470 0.509 [0.184 0.307|0.226 0.344/0.176 0.315]0.351 0.459|0.271 0.315]0.219 0.335|0.300 0.369
% 336(0.308 0.329|0.353 0.473| - - 10.307 0.398(0.331 0.417 |0.351 0.432/0.301 0.397{1.268 0.883 |0.349 0.431]0.367 0.448|0.313 0.427|1.324 0.853|0.460 0.427|0.421 0.476|0.509 0.524
[}3 72010.637 0.621(0.934 0.761| - - 10.656 0.582/0.847 0.691 |0.886 0.714]0.901 0.714]1.767 1.068 [0.852 0.698|0.964 0.746|0.839 0.695|1.058 0.7971.195 0.695|1.092 0.769|1.447 0.941

‘Avg‘0.297 0.364]0.391 0.453| - - 10.302 0.366(0.360 0.403 |0.378 0.417(0.367 0.404|0.940 0.707 |0.370 0.413|0.416 0.443|0.354 0.414|0.750 0.626|0.519 0.429|0.461 0.454|0.613 0.539

96 0.380 0.247|0.462 0.285]|0.468 0.268|0.368 0.253(0.395 0.268 [0.649 0.389(0.462 0.295[0.522 0.290 [0.805 0.493|0.593 0.321{0.650 0.396|0.788 0.499|0.587 0.366(0.612 0.338/|0.613 0.388
192(0.391 0.258]0.473 0.296|0.413 0.317|0.379 0.261]0.417 0.276 [0.601 0.366|0.466 0.296(0.530 0.293 |0.756 0.474|0.617 0.336|0.598 0.370(0.789 0.505|0.604 0.373|0.613 0.340|0.616 0.382
336(0.409 0.266|0.498 0.296|0.529 0.284|0.397 0.270(0.433 0.283 [0.609 0.369/0.482 0.304(0.558 0.305 |0.762 0.477(0.629 0.336{0.605 0.373]0.797 0.508|0.621 0.383/0.618 0.328|0.622 0.337
720]0.452 0.297|0.506 0.313(0.564 0.297]0.440 0.296|0.467 0.302 |0.647 0.387|0.514 0.322]0.589 0.328 |0.719 0.449|0.640 0.350|0.645 0.394|0.841 0.523(0.626 0.382(0.653 0.355(0.660 0.408

Traffic

‘Avg‘0.408 0.267]0.484 0.297|0.493 0.291]0.398 0.270|0.428 0.282 (0.626 0.378|0.481 0.304/0.550 0.304 |0.760 0.473|0.620 0.336/0.625 0.383]0.804 0.509{0.610 0.376{0.624 0.340|0.628 0.379

96 10.155 0.203{0.163 0.209|0.176 0.219(0.149 0.200{0.174 0.214 ]0.192 0.232(0.177 0.218]0.158 0.230 {0.202 0.261{0.172 0.220{0.196 0.255|0.221 0.306|0.217 0.296|0.173 0.223]|0.266 0.336
1920.173 0.240]0.222 0.260{0.222 0.260(0.196 0.245|0.221 0.254 (0.240 0.271]0.225 0.259(0.206 0.277 [0.242 0.298|0.219 0.261{0.237 0.296(0.261 0.340|0.276 0.336|0.245 0.285|0.307 0.367
33610.232 0.260(0.251 0.287|0.275 0.297|0.238 0.277(0.278 0.296 0.292 0.307|0.278 0.297(0.272 0.335 |0.287 0.335(0.280 0.306{0.283 0.335|0.309 0.378|0.339 0.380(0.321 0.338|0.359 0.395
72010.307 0.309(0.350 0.349(0.350 0.349{0.314 0.334|0.358 0.347 |0.364 0.353|0.354 0.348|0.398 0.418|0.351 0.366|0.365 0.359|0.345 0.381|0.377 0.427(0.403 0.428|0.414 0.410(0.419 0.428

Weather

‘Avg‘O.Zlﬁ 0.253]0.240 0.271]0.255 0.280|0.224 0.264|0.258 0.278 (0.272 0.291/|0.259 0.281(0.259 0.3150.271 0.320(0.259 0.287/0.265 0.317]0.292 0.363|0.309 0.360{0.288 0.314|0.338 0.382

96 10.136 0.233]0.153 0.247|0.165 0.253|0.129 0.226(0.148 0.240 {0.201 0.281(0.181 0.270{0.219 0.314 [0.237 0.329]0.168 0.272|0.197 0.282|0.247 0.345|0.193 0.308|0.169 0.273|0.201 0.317
192(0.144 0.221]0.166 0.256{0.173 0.262|0.143 0.239|0.162 0.253 (0.201 0.283]0.188 0.274(0.231 0.322]0.236 0.330|0.184 0.289|0.196 0.285(0.257 0.355|0.201 0.315/0.182 0.286|0.222 0.334
336(0.154 0.253|0.185 0.277(0.188 0.277]|0.161 0.259]0.178 0.269 |0.215 0.298(0.204 0.293]|0.246 0.337 |0.249 0.344{0.198 0.300{0.209 0.301|0.269 0.369|0.214 0.329]0.200 0.304|0.231 0.338
720)0.162 0.261|0.225 0.310(0.214 0.305{0.191 0.286]0.225 0.317 |0.257 0.331]0.246 0.324]0.280 0.363 |0.284 0.373|0.220 0.320|0.245 0.333|0.299 0.390(0.246 0.355|0.222 0.321|0.254 0.361

ECL

‘Avg‘0.149 0.247]0.182 0.272{0.185 0.274]0.156 0.253|0.178 0.270 (0.219 0.298|0.205 0.290(0.244 0.334|0.251 0.344(0.192 0.295/0.212 0.300{0.268 0.365{0.214 0.327]0.193 0.296|0.227 0.338
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Table 8: Standard deviation and statistical tests for LETO vs. the strongest baseline ModernTCN on long-term forecasting

(lower is better). Confidence levels derive from a paired two-tailed ¢-test over five seeds.

LETO

(Ours)

ModernTCN (2024)

Dataset MSE MAE MSE MAE Confidence
ETTml 0.347 £0.010 0.375 +£0.012 | 0.351 &0.011 0.381 £ 0.013 99%
ETTm?2 0.249 £0.009 0.302 +0.011 | 0.253 = 0.010 0.314 £ 0.013 95%
ETThl 0.393 £0.012 0.401 +0.014 | 0.404 +0.013 0.420 + 0.015 99%
ETTh2 0.318 £0.010 0.381 = 0.012 | 0.322 +=0.011 0.379 £ 0.013 95%
Exchange | 0.297 £ 0.016 0.364 + 0.018 | 0.302 £ 0.017 0.366 + 0.019 95%
Traffic 0.408 £ 0.020 0.267 = 0.012 | 0.398 +0.019 0.270 £ 0.013 90%
Weather 0.216 £0.009 0.253 +0.011 | 0.224 +0.010 0.264 4+ 0.012 95%
ECL 0.149 £ 0.007 0.247 +=0.009 | 0.156 & 0.008 0.253 £ 0.010 99%

Table 9: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall and F1-score in percentage
respectively. A higher value of P, R and F1 indicates a better performance. Best performance is highlighted in red, and the

second-best is underlined. We take the average of 5 separate runs for each dataset.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 ‘ (%)
LSTM (1997) |78.52 65.47 71.41|78.04 86.22 81.93(91.06 57.49 70.48|78.06 91.72 84.34169.24 99.53 81.67| 77.97
Transformer (2017) |83.58 76.13 79.56(71.57 87.37 78.68|89.37 57.12 69.70{68.84 96.53 80.37|62.75 96.56 76.07| 76.88
LogTrans (2019) |83.46 70.13 76.21|73.05 87.37 79.57|89.15 57.59 69.97|68.67 97.32 80.52|63.06 98.00 76.74| 76.60
TCN (2019) |84.06 79.07 81.49|75.11 82.44 78.60(86.90 59.23 70.45|76.59 95.71 85.09(54.59 99.77 70.57| 77.24
Reformer (2020) |82.58 69.24 75.32|85.51 83.31 84.40(90.91 57.44 70.40|72.50 96.53 82.80{59.93 95.38 73.61| 77.31
Informer (2021) |86.60 77.23 81.65|81.77 86.48 84.06(90.11 57.13 69.92|70.29 96.75 81.4364.27 96.33 77.10| 78.83
Anomaly™ (2021) |88.91 82.23 85.49(79.61 87.37 83.31(91.85 58.11 71.18|72.51 97.32 83.10{68.35 94.72 79.40| 80.50
Pyraformer  (2021) |85.61 80.61 83.04|83.81 85.93 84.86|92.54 57.71 71.09|87.92 96.00 91.78|71.67 96.02 82.08| 82.57
Autoformer  (2021) [88.06 82.35 85.11(77.27 80.92 79.05|90.40 58.62 71.12{89.85 95.81 92.74|99.08 88.15 93.29| 84.26
LSSL (2021) |78.51 65.32 71.31|77.55 88.18 82.53(89.43 53.43 66.90|79.05 93.72 85.76{66.02 92.93 77.20| 76.74
Stationary (2022b)[88.33 81.21 84.62|68.55 89.14 77.50(89.37 59.02 71.09{68.03 96.75 79.88|97.82 96.76 97.29| 82.08
DLinear (2023a)[83.62 71.52 77.10|84.34 85.42 84.88(92.32 55.41 69.26(80.91 95.30 87.52|98.28 89.26 93.55| 82.46
ETSformer  (2022) |87.44 79.23 83.13|85.13 84.93 85.03|92.25 55.75 69.50(90.02 80.36 84.91(99.31 85.28 91.76| 82.87
LightTS (2022a)[87.10 78.42 82.53|82.40 75.78 78.95(92.58 55.27 69.21|91.98 94.72 93.33|98.37 95.97 97.15| 84.23
FEDformer (2022b)|87.95 82.39 85.08|77.14 80.07 78.57|90.47 58.10 70.76|90.17 96.42 93.19(97.31 97.16 97.23| 84.97
TimesNet (I) (2023) |87.76 82.63 85.12(82.97 85.42 84.18|91.50 57.80 70.85[88.31 96.24 92.10|98.22 92.21 95.21| 85.49
TimesNet (R) (2023) |88.66 83.14 85.81(83.92 86.42 85.15|92.52 58.29 71.52{86.76 97.32 91.74|98.19 96.76 97.47| 86.34
CrossFormer (2023) | 83.6 76.61 79.70(84.68 83.71 84.19|92.04 55.37 69.14|88.49 93.48 90.92|97.16 89.73 93.30| 83.45
PatchTST (2023) |87.42 81.65 84.44|84.07 86.23 85.14(92.43 57.51 70.91|80.70 94.93 87.24{98.87 93.99 96.37| 84.82
ModernTCN  (2024) |87.86 83.85 85.81(83.94 85.93 84.92(93.17 57.69 71.26|91.83 95.98 93.86|98.09 96.38 97.23| 86.62
LETO (ours) [88.20 85.52 86.84[83.50 89.27 86.29(93.20 57.10 70.81(92.00 96.73 94.31(99.20 94.61 96.85| 87.02

G. Broader Impact

LETO has demonstrated strong performance as a general-purpose model for time series pattern recognition, achieving
competitive results across a wide range of tasks including forecasting, classification, and anomaly detection. Its versatility
makes it well-suited for deployment in diverse real-world scenarios, such as energy and power demand forecasting with
pronounced seasonal trends, weather prediction under complex and dynamic conditions, financial market modeling in rapidly
shifting environments, and demand forecasting within supply chains. Furthermore, LETO has shown particular promise in
industrial anomaly detection tasks, which often require robustness to noise and structural variability. These capabilities
highlight LETO’s potential as a foundational model for advancing time series analysis across multiple applied domains.

H. Compute Resources

For experiments, we utilized up to 4 NVIDIA A6000 and A6000 ADA GPUs.
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Table 10: Full results for the classification task (accuracy %). We omit “former” from the names of Transformer-based
methods. For all methods, the standard deviation is less than 0.1%. A higher average accuracy indicates a better prediction.
Best performance is highlighted in red, and the second-best is underlined. We take the average of 5 separate runs for each
dataset.

LSTM LSTNet LSSL Trans. Re. In. Pyra. Auto. Station. FED. /ETS. /Flow. /DLinear/LightTS./TimesNet/PatchTST/MTCN/LETO

Datasets / Models

(1997)(2018) (2017)(2020)(2021)(2021)(2021) (2022b) (2022b)(2022)(2022a) (2023a) (2022a) (2023)  (2023)  (2024) (ours)
EthanolConcentration 32.3 39.9 31.1 32.7 319 31.6 30.8 31.6 327 312 281 338 326 297 35.7 328 363 388
FaceDetection 577 65.7 66.7 67.3 68.6 67.0 657 684 68.0 660 663 676 68.0 67.5 68.6 683 70.8 71.3
Handwriting 152 25.8 24.6 32.0 27.4 32.8 29.4 36.7 31.6 28.0 325 338 270 26.1 32.1 29.6  30.6 329
Heartbeat 722 77.1 727 76.1 77.1 80.5 75.6 746 737 737 712 716 751 751 78.0 749 772 783
JapaneseVowels 79.7 98.1 98.4 98.7 97.8 989 984 962 992 984 959 989 962 962 98.4 97.5 988 98.5
PEMS-SF 399 86.7 86.1 82.1 827 81.5 832 82.7 873 809 860 838 751 884 89.6 893  89.1 89.6
SelfRegulationSCP1  68.9 84.0 90.8 92.2 90.4 90.1 838.1 84.0 89.4 887 89.6 925 873 898 91.8 90.7 934 944
SelfRegulationSCP2  46.6 52.8 522 53.9 56.7 53.3 53.3 50.6 572 544 550 56.1 505 51.1 572 57.8 603 61.1
SpokenArabicDigits  31.9 100.0100.0 98.4 97.0 100.0 99.6 100.0 100.0 100.0 100.0 98.8 81.4 100.0  99.0 98.3 987 98.7
UWaveGestureLibrary 41.2 87.8 85.9 85.6 85.6 85.6 834 859 875 853 850 866 821 803 853 858 867 87.1
Average Accuracy 48.6 71.8 709 719 715 72.1 70.8 71.1 727 70.7 71.0 73.0 675 704 73.6 725 742 75.07

I. Linear Recurrent Expressiveness

We show that our LETO can recover the 2D linear recurrent models that are proven to model full-rank matrices (Behrouz
et al., 2024d; Baron et al., 2024). To this end, we show that a special instance of our LETO is equivalent to these linear 2D
recurrent models. We let the chunk size to be the size of the sequence length. Therefore, for every 1 < ¢ < T', we have:

VoM ke, vi) = (MK — vk, (11

(1)
0

where M(()l) is the initial state of the memory, which we let My’ = I for the simplicity. Replacing this gradient in

Equation Variant 2, we have:

M = ar oM, =i | G = vOKT |+ BoMP = 0 (MK = vk ), (12)
—_———

u¢

where we let 9, , = 7:,, = 1. Also, for the attention module, we use polynomials with degree 1 to approximate the softmax
attention (which is the special instance and the weaker version of our design, i.e., considering only the first two terms of the
Taylor series). The resulting formula can be written as:

M) =M, = euk! + B M, =M 4 uk] (13)

which is equivalent to the 2-dimensional linear recurrence with diagonal transition matrix. Therefore, as proven by Baron
et al. (2024), the recurrence can model full-rank matrix.

On the other hand, the univariate version of this recurrence (i.e., 7y, = 0) results in linear attention formulation, which is
limited and cannot express full-rank matrices.

J. Visualizations
J.1. Long Term Forecasting

J.2. Ultra Long Term Forecasting
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Figure 3: Visualization of Traffic Long Term Forecasting results given by models under the input-96-predict-96 setting. The blue lines
stand for the ground truth and the orange lines stand for predicted values.
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Figure 4: Ultra-long-horizon forecasting examples on ETTh1. Blue=Ground Truth, Orange=Prediction.
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