
BECoTTA: Input-dependent Online Blending of Experts
for Continual Test-time Adaptation

Daeun Lee * 1 Jaehong Yoon * 2 Sung Ju Hwang 3 4

Abstract

Continual Test Time Adaptation (CTTA) is re-
quired to adapt efficiently to continuous un-
seen domains while retaining previously learned
knowledge. However, despite the progress of
CTTA, it is still challenging to deploy the model
with improved forgetting-adaptation trade-offs
and efficiency. In addition, current CTTA scenar-
ios assume only the disjoint situation, even though
real-world domains are seamlessly changed. To
address these challenges, this paper proposes BE-
CoTTA, an input-dependent and efficient modular
framework for CTTA. We propose Mixture-of-
Domain Low-rank Experts (MoDE) that contains
two core components: (i) Domain-Adaptive Rout-
ing, which helps to selectively capture the domain-
adaptive knowledge with multiple domain routers,
and (ii) Domain-Expert Synergy Loss to maxi-
mize the dependency between each domain and
expert. We validate that our method outperforms
multiple CTTA scenarios, including disjoint and
gradual domain shits, while only requiring ∼98%
fewer trainable parameters. We also provide anal-
yses of our method, including the construction
of experts, the effect of domain-adaptive experts,
and visualizations. Project Page: https://becotta-
ctta.github.io/ .

1. Introduction
Test-Time Adaptation (TTA) (Wang et al., 2020; Niu et al.,
2023; Wang et al., 2022a; Lim et al., 2023; Lee et al., 2023a)
is a challenging task that aims to adapt the pre-trained model
to new, unseen data at the time of inference, where the
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Figure 1: BECoTTA and BECoTTA+ achieve superior 10-
round average IoU and parameter/memory efficiency against
strong CTTA baselines on the CDS-hard scenario.

data distribution significantly differs from that of the source
dataset. TTA approaches have become popular since they
address the critical challenge of model robustness and flexi-
bility in the face of new data.

Beyond the isolated transferability of traditional TTA ap-
proaches on the stationary target domain, Continual Test-
Time Adaptation (CTTA) (Niu et al., 2023; Song et al., 2023;
Lee et al., 2023a) has been increasingly investigated in re-
cent years, whose goal is to continuously adapt to multiple
unseen domains arriving in sequence. Solving the problem
of CTTA is crucial because it is closely related to real-world
scenarios. For example, let us assume that a vision model in
an autonomous vehicle is designed to understand road con-
ditions and objects, including pedestrians, vehicles, traffic
signs, etc. The agent will encounter different environments
over time, depending on changes in weather, time of day,
and location. Then, the model should rapidly and continu-
ously adapt to these unseen environments while retaining
the domain knowledge learned during adaptation as it may
re-encounter prior domains in the future.

Therefore, continual TTA approaches need to address the
following key challenges: (i) forgetting-adaptation trade-
off : retaining previous domain knowledge while learning
new domains often limits the model’s plasticity, hindering
its ability to learn and adapt to new data, and (ii) computa-
tional efficiency: since CTTA models are often assumed to
be embedded in edge devices, efficient adaptation is signif-
icant. However, existing CTTA methods overlook compu-
tational efficiency by updating heavy teacher and student

1

https://becotta-ctta.github.io/
https://becotta-ctta.github.io/


BECoTTA: Input-dependent Online Blending of Experts for Continual Test-time Adaptation

Updated block 𝑳𝒄 : Consistency Loss: Target Dataset

BN

Pseudo Pred

Teacher Student

BECoTTA

𝑋" 𝑋"

𝐿#

𝑋"

CoTTA

… 

DD

Pseudo Pred
𝐿#

TENT EcoTTA
Pseudo Pred

𝐿#

𝑋"

BN MoDE

Conv

… 

… 

Pseudo Pred
𝐿#

Frozen block 𝑿𝒕

Figure 2: Comparison of TTA process with other SoTA models. We compare the existing models (Wang et al.,
2020; 2022a; Song et al., 2023) and denote activated modules as yellow during CTTA process. In particular, CoTTA
adopts the mean-teacher architecture and updates the entire model. TENT (Wang et al., 2020) and EcoTTA (Song et al.,
2023) update only a few parameter-efficient modules in the model. However, they achieve suboptimal performance with
forgetting. Meanwhile, our BECoTTA updates only MoDE layers for efficient and rapid adaptation while preserving
previous knowledge.

models (Wang et al., 2022a) or achieved suboptimal conver-
gence due to updating only a few parts of modules (Wang
et al., 2020; Niu et al., 2023; Gan et al., 2023; Gao et al.,
2022).

To tackle these critical issues, this paper proposes Input-
dependent Online Blending of Experts for Continual Test-
Time Adaptation (BECoTTA) by introducing a surprisingly
efficient yet effective module, named Mixture-of-Domain
Low-rank Experts (MoDE), atop each backbone block. Our
BECoTTA method consists of two key components: (i)
Domain Adaptive Routing and (ii) Domain-Expert Synergy
Loss. We first propose Domain Adaptive Routing that aims
to cluster lightweight low-rank experts (i.e., MoDE mod-
ules) with relevant domain knowledge. Next, based on the
assignment of domain adaptive routers, we propose Domain-
Expert Synergy Loss to maximize mutual information be-
tween each domain and its corresponding expert. In the end,
we facilitate cooperation and specialization among domain
experts by ensuring strong dependencies. Our modular de-
sign allows for selective updates of multiple domain experts,
ensuring the transfer of knowledge for each specific domain
while preserving previously acquired knowledge. This ap-
proach also significantly improves memory and parameter
efficiency through sparse updates.

Furthermore, existing CTTA scenarios assume a disjoint
change of test domains, where the model encounters a static
domain per time step, but do not consider a gradual shift
of domains, which is more common in the real world (e.g.,
seamless weather change like cloudy→ rainy or afternoon
→ night). To further consider this realistic scenario, we
additionally propose Continual Gradual Shifts (CGS) bench-
mark for CTTA, where the domain gradually shifts over time
based on the domain-dependent sampling distribution, as

illustrated in Fig. 3 top left. This scenario is more advanced
than an existing CTTA problem as it demands the model
to appropriately adapt each of the input instances, without
relying on any implicit guidance from the dominant domain
over a given time interval.

We compare our proposed method with strong baselines,
including SAR (Niu et al., 2023), DePT (Gao et al., 2022),
VDP (Gan et al., 2023), and EcoTTA (Song et al., 2023),
on multiple CTTA scenarios and our suggested CGS bench-
mark. Our BECoTTA achieves +2.1%p and +1.7%p IoU
enhancement respectively on CDS-Hard and CDS-Easy
scenarios, by utilizing 95% and 98% fewer parameters
used by CoTTA (Wang et al., 2022a). Furthermore, we pro-
pose BECoTTA+, which is initialized by the source augmen-
tation dataset. BECoTTA+ shows increased performance
by +16.8%p compared to EcoTTA (initialized fairly), uti-
lizing a similar number of parameters on the CDS-Hard
scenario.

We summarize our contributions as threefold:

• We propose an efficient yet powerful CTTA method,
named BECoTTA, which adapts to new domains ef-
fectively with minimal forgetting of the past domain
knowledge, by transferring only beneficial representa-
tions from relevant experts.

• We introduce a new realistic CTTA benchmark, Contin-
ual Gradual Shifts (CGS) where the domain gradually
shifts over time based on domain-dependent continu-
ous sampling probabilities.

• We validate our BECoTTA on various driving scenar-
ios, including three CTTA and one domain generaliza-
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tion, demonstrating the efficacy and efficiency against
strong baselines, including TENT, EcoTTA, and SAR.

2. Related Works
Continual Test-Time Adaptation. Continual Test-Time
Adaptation (CTTA) (Wang et al., 2022a; Gan et al., 2023;
Niu et al., 2023; Song et al., 2023) assumes that target do-
mains are not fixed but change continuously in an online
manner. TENT (Wang et al., 2020) is one of the pioneering
works, which activates only BatchNorm layers to update
trainable affine transform parameters. CoTTA (Wang et al.,
2022a) introduces a teacher-student framework, generat-
ing pseudo-labels from the teacher model, and updating it
using consistency loss. EcoTTA (Song et al., 2023) uti-
lizes meta-networks and self-distilled regularization while
considering memory efficiency. DePT (Gao et al., 2022)
integrates visual prompts to efficiently adapt target domains
and bootstraps the source representation. However, existing
methods often suffer from subordinate convergence, as they
rely on a shared architecture to adapt the test data without
considering the correlation between different domains. On
the other hand, our BECoTTA introduces a modularized
MoE-based architecture where each expert captures domain-
adaptive knowledge, and the model transfers only a few
related experts for the adaptation of a new domain.

Moreover, recent works (Song et al., 2023; Niu et al., 2022;
Lim et al., 2023; Choi et al., 2022a; Liu et al., 2021a; Adachi
et al., 2022; Jung et al., 2023; Lee et al., 2023b) allow for
a slight warm-up using the source dataset before deploy-
ing the model to the CTTA scenario. In particular, TTA-
COPE (Lee et al., 2023b) performs pretraining with labeled
source datasets in a supervised manner. EcoTTA (Song
et al., 2023) also allows warm-up to initialize their meta-
network. Note that these methods still assume source-free
training during test-time adaptation, which means that this
setup adheres to the assumptions of CTTA.

Mixture-of-Experts. Mixture-of-Experts (MoE) (Shazeer
et al., 2017; Fedus et al., 2022; Zuo et al., 2021; Wang
et al., 2022b) introduces N parallel experts consisting of
the feedforward network with router modules and sparsely
activates a few experts based on their sampling policies.
Adamix (Wang et al., 2022b) introduces efficient fine-tuning
with Mixture-of-Adapters to learn multiple views from
different experts. THOR (Zuo et al., 2021) proposes a
new stochastic routing function to prevent inefficiency with
routers. Similarly, Meta DMoE (Zhong et al., 2022) adopts
the MoE architecture as a teacher model and distills their
knowledge to unlabeled target domains, but does not con-
sider continuous adaptation. In short, to the best of our
knowledge, the feasibility of MoE structures is underesti-
mated in the field of CTTA.

Blurry Scenario in Continual Learning. Recently, a
few continual learning appraoches (Koh et al., 2021; Bang
et al., 2021; 2022; Aljundi et al., 2019) have discussed
Blurry Continual Learning (Blurry-CL) to better reflect real-
world scenarios, beyond the standard CL setting. Blurry-CL
assumes that for each sequential task, a majority class exists,
and other classes outside the majority class may also overlap
and appear. The most renowned scenario setup is a Blurry-
M (Aljundi et al., 2019), where the majority class occupies
100-M%, and the remaining classes are randomly composed
of M%. Although this benchmark handles an overlapping
situation, it may not cover practical situations where the
domain evolves gradually in CTTA. Therefore, we propose
a new benchmark that simulates real-world continual TTA
scenarios with a gradual change of domains over time.

3. Input-dependent Online Blending of
Experts for Continual Test-time Adaptation

We first define the problem statement for Continual Test-
Time Adaptation (CTTA) in Sec. 3.1. Next, we introduce
our proposed CTTA method, BeCoTTA, containing Mixture
of Domain low-rank Experts (MoDE) and domain-expert
synergy loss in Secs. 3.2 and 3.3. Then, we describe the
overall optimization process during CTTA in Sec. 3.4.

3.1. Problem Statement

Continual Test-time Adaptation (CTTA) aims to adapt
the pre-trained source model fs to continuously chang-
ing target domains, formulated as a task sequence Xt =
{X1

t , X
2
t , ..X

c
t , · · · }. The main assumption of CTTA in-

cludes that (i) we should not access the source dataset after
deploying the model to the test time, and (ii) adaptation
needs to be done online and in an unsupervised manner.
For semantic segmentation tasks, CTTA aims to predict the
softmax output ŷc = fc(x

c
t) in the target domain c. xc

t is
sampled from Xc

t , which will be represented by x in the
following sections for brevity.

3.2. Domain-Augmented Initialization.

Source Domain Augmentation (SDA). Most CTTA meth-
ods use a pre-trained frozen backbone, which contains do-
main bias from the source domain. Due to the predominance
of the source domain, this bias impedes the effective transfer
of domain-adaptive knowledge in continuous scenarios. To
mitigate this limitation, we define D proxy domains (e.g.,
brightness, darkness, blur, etc.) and augment the source
dataset to proxy domains, similar to EcoTTA (Song et al.,
2023). For this Source Domain Augmentation (SDA), we
utilize pre-trained style-transfer (Jiang et al., 2020) or sim-
ple transformations (Buslaev et al., 2020). Through SDA,
we acquire domain-specific knowledge before deploying
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Figure 3: The overview of BECoTTA. We propose a novel CTTA framework for dynamic real-world scenarios, including
disjoint and gradual shifts of domains. When the model receives a target domain input xt at timestep t, the Domain
Discriminator (DD) first estimates a pseudo-domain label d. Based on estimated pseudo-labels, the domain router Gd

processes the input to specific experts containing domain-specific information by minimizing Domain-Expert Synergy Loss
Θ(D;A). Finally, we obtain a domain-adaptive representation hd(x), addressing downstream tasks in test-time.

TTA. This process is done only once when constructing the
source dataset.

Robustness to SDA. We emphasize that these pre-defined
domains do not need to match CTTA target domains. The
primary role of SDA is to differentiate routers so that the
model can aggregate different visual features during the
continual TTA phases. Our BECoTTA+ is able to update
relevant MoDE modules with respect to the inputs and con-
sistently achieves competitive performance even when the
SDA and target domains are disjoint. (Please refer to Tab. 20
and Appendix (Sec. D) for more details.) For a fair compar-
ison with other CTTA methods, we also verify that random
and source-domain-only initializations work well with BE-
CoTTA. More details are provided in Appendix (Tab. 17).

3.3. Mixture-of-Domain Low-rank Experts (MoDE)

We now introduce our new CTTA approach to efficiently
capture the domain-adaptive representation via coopera-
tion and specialization of multiple experts, dubbed Input-
dependent Online Blending of Experts for Continual Test-
Time Adaptation (BECoTTA). Our proposed BECoTTA
employs Mixture of Domain low-rank Experts (MoDE) lay-
ers at the top of each block in the pre-trained ViT backbone.

The design of Low-rank Experts. For the efficient pro-
cess during CTTA, we adopt the Sparse Mixture-of-Experts
(SMoE) module with a top-k routing policy (Shazeer et al.,
2017). Each MoE layer consists of the router G and a set
of N lightweight experts, A1, A2, ..., AN , where each Ai is
parameterized by W down

i ∈ Rdim×r and W up
i ∈ Rr×dim.

Here, r denotes the rank, and dim denotes the embedding
dimension of each ViT block. If Ai is activated, it maps

the input x into the low-dimensional space through the pro-
jection operation with W down

i . Next, after regularizing
the features with a non-linear activation function σ(·), it
recovers the features to the original dimension using W up

i :

Ai = σ(xW down
i )W up

i . (1)

Domain-Adaptive Routing. Since each domain contains
different key features, transferring them to other domains
is not always advantageous. However, recent CTTA ap-
proaches, such as TENT (Wang et al., 2020), SAR (Niu
et al., 2023), and EcoTTA (Song et al., 2023), continuously
adapt to new domains by updating trainable parameters in a
domain-agnostic manner. This means that they update the
equivalent set of parameters for adapting a variety of differ-
ent domains over time, which restricts the ability to learn
fine-grained features for each domain due to the negative
interference from irrelevant domain knowledge. In addition,
adjusting all parameters for new domains causes the model
to forget the past domain information, struggling to retain
domain representations learned before when encountering
the same or similar domains again.

Therefore, as shown in Fig. 3, we introduce D independent
domain-wise routers G1, G2..GD to loosely cluster experts
of the model with similar domain knowledge by selecting
K experts per layer. We note that our modular architecture
containing multiple parameter-efficient experts allows the
model to efficiently yet effectively capture domain-adaptive
representations while avoiding negative interference from
less relevant features and preventing unintentional shifts of
previously learned domains. Each router Gd for domain d is
parameterized by W g

d ∈ Rdim×N and W noise
d ∈ Rdim×N ,
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and operates as follows:

Pd(x) = xW g
d +N (0, 1) · Softplus

(
xW noise

d

)
, (2)

Gd(x) = Softmax (TopK (Pd(x))) . (3)

Based on the Gd(x), we selectively update the activated ex-
perts associated with the specific domain, inherently isolat-
ing them from irrelevant domain knowledge while adapting
new ones. In the end, the output of the MoDE layer hd(x)
aggregates the domain-adaptive features as follows:

hd(x) =

N∑
i=1

Gi
d(x) ·Ai. (4)

This trainable clustering approach allows the model to acti-
vate its own set of experts, who are specialized in specific
domain knowledge. Moreover, our multi-router-based de-
sign accelerates adaptation to the current domain, avoiding
interference from knowledge transfer of unrelated domain
features. Finally, we perform the skip connection operation
with the original input x: x← x+ hd(x).

Maximizing Domain-Expert Synergy. In cases where
some domains share similar visual contexts (e.g., snow and
fog), collaboration between domain experts can be ben-
eficial. On the other hand, for unique scenes like night,
it is advantageous to isolate domain features from others.
That is, ensuring strong interdependence among various
domains and experts is essential. To this end, we pro-
pose Domain-Expert Synergy loss based on the output from
domain-adaptive routers. Let us consider Gi

d(x) as the as-
signment weight with specific domain d of the i-th expert
Ai, then P (Ai|d) is obtained from all the experts and do-
mains in each MoDE layer. Then, we calculate P (Ai, d)
using Bayes’ theorem:

P (Ai, d) = P (Ai|d) · P (d), (5)

where P (d) represents the frequency of occurrence in do-
main d. Since it is infeasible to define P (d) in most real-
world scenarios, we assume the uniform distribution over
P (d). Next, to measure and maximize the mutual depen-
dency among domains and experts, we adopt the probability
modeling as a double sum:

Θ(D;A) =

D∑
d

N∑
i

P (Ai, d) · log
P (Ai, d)

P (Ai)P (d)
. (6)

Maximizing P (Ai, d) logP (Ai, d) leads the model to ob-
tain a sharper conditional distribution of P (Ai|d), facilitat-
ing the dependency between domains and experts. That is,
our domain-adaptive experts can be further specialized in
their respective domains and collaborate with others who
share their domain knowledge.

3.4. Continual Test-time Adaptation Process

Model Initialization. Following recent trends in
CTTA (Song et al., 2023; Niu et al., 2022; Lim et al., 2023;
Choi et al., 2022a; Liu et al., 2021a; Adachi et al., 2022;
Jung et al., 2023) and for a fair comparison, we perform
a short pre-training for trainable parameters in models be-
fore deploying them to the CTTA problems. We initialize
our BECoTTA with three different manners: (i) random,
(ii) source-domain-only (w/o SDA, BECoTTA), and (iii)
domain-augmented (w/ SDA, BECoTTA+) initialization.
For (i) random initialization, we randomly initialize MoDE
layer weights. For (ii) source-domain-only initialization,
following EcoTTA (Song et al., 2023), we initialize MoDE
layer weights using the source domain. Note that this ini-
tialization strategy regards the fair comparison in the CTTA
literature. For (iii) domain-augmented initialization, we
first build D domains using SDA. Next, we introduce a Do-
main Discriminator (DD) as the auxiliary head. It consists
of lightweight CNN layers and is trained to classify the
pre-defined D domains. This helps the model distinguish
between different domains and classify each test-time image
input accordingly during test-time adaptation on a sequence
of unseen domains. Then, we update MoDE layers and DD
for only a small number of epochs. The total initialization
loss Linit is formulated below. Except for the original cross-
entropy loss Lseg for semantic segmentation, we include
the cross-entropy loss Ldisc for DD, and the domain-expert
synergy loss Θ(D;A):

Linit = Lseg + λdiscLdisc − λsΘ(D;A) (7)

where λdisc, λs denotes the balance term for each loss.

Source-free CTTA with MoDE. Building upon the ini-
tialized MoDE, we deploy our BECoTTA to the continual
target domains Xt. Note that we do not access any source
dataset after deployment, maintaining the source-free man-
ner in the test time as other prior works. In the source-free
TTA, we only activated MoDE layers to transfer the tar-
get domain knowledge efficiently. Utilizing the frozen DD
trained at initialization, we obtain the pseudo-domain label
d for each domain-agnostic target image xc

t . Afterward, ac-
cording to d, we initially assign the domain-wise router and
proceed with the aggregation of domain-adaptive experts.
This approach ensures that our BECoTTA+ maintains input
dependency, even within unseen test-time domains.

Following preliminary works (Wang et al., 2020; Song et al.,
2023; Niu et al., 2022), we adopt the entropy minimization
using H(ŷc) = −

∑
p(ŷc) · log p(ŷc). To avoid forget-

ting and error accumulation, we perform entropy filtering
based on the confidence of the pseudo-labels. Therefore, the
entropy-based loss Ltta is as follows:

Ltta = 1{H(ŷc)<κ} ·H(ŷc), (8)
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Table 1: Results on CDS-Hard (imbalanced weather & area shifts). We devise a novel scenario encompassing imbalanced
weather and area shifts. We present performance results for both w/o SDA and w/ SDA across the overall baselines. We
report S, M , and L versions for our BECoTTA based on the number of parameters.

Round 1 10
∆

Parameter
Init Method Activated B-Clear A-Fog A-Night A-Snow B-Overcast Mean B-clear A-Fog A-Night A-Snow B-Overcast Mean

Source only - 41.0 64.4 33.4 54.3 46.3 47.9 41.0 64.4 33.4 54.3 46.3 47.9 +0.0 -
CoTTA (Wang et al., 2022a) - 43.3 67.3 34.8 56.9 48.8 50.2 43.3 67.3 34.8 56.9 48.8 50.2 +0.0 54.72M
TENT (Wang et al., 2020) - 41.1 64.9 33.2 54.3 46.3 47.9 30.9 51.5 20.4 37.0 33.0 34.6 -13.3 0.02M

w/o SDA SAR (Niu et al., 2023) - 41.0 64.5 33.4 54.5 46.6 48.0 41.3 64.3 31.6 54.2 46.6 47.6 -0.4 0.02M
EcoTTA (Song et al., 2023) MetaNet 44.1 69.6 35.3 58.2 49.6 51.3 41.9 66.1 31.5 55.3 46.2 48.2 -3.1 3.46M
BECoTTA (S) MoDE 42.9 68.5 35.0 57.2 47.8 50.5 43.0 68.5 35.1 57.3 48.8 50.7 +0.1 0.09M
BECoTTA (M) MoDE 43.8 68.8 34.9 57.9 49.2 50.9 43.7 68.8 34.5 57.9 49.2 50.9 +0.0 0.63M
BECoTTA (L) MoDE 43.9 69.1 35.0 58.3 50.2 51.3 44.0 69.1 35.1 58.3 50.2 51.3 +0.0 3.16M

Source only Full 43.6 68.7 44.5 59.0 48.7 52.9 43.6 68.7 44.5 59.0 48.7 52.9 +0.0 -
CoTTA (Wang et al., 2022a) Full 46.4 70.6 45.7 61.2 51.3 55.0 46.1 70.5 45.6 61.1 51.2 54.9 -0.1 54.72M
TENT (Wang et al., 2020) Full 43.7 68.5 44.6 59.0 48.3 52.8 35.8 57.6 33.6 44.3 38.8 42.0 -10.8 0.02M

w/ SDA SAR (Niu et al., 2023) Full 43.6 68.6 44.5 59.1 48.7 52.9 43.4 67.4 42.2 58.1 47.6 51.9 -1.0 0.02M
EcoTTA (Song et al., 2023) MetaNet 44.6 70.2 41.6 58.0 49.9 52.9 41.1 65.6 27.0 53.2 45.3 46.4 -6.5 3.46M
BECoTTA+ (S) MoDE 44.1 69.5 40.1 56.8 49.1 51.9 44.0 69.4 40.1 56.9 49.1 51.9 +0.0 0.12M
BECoTTA+ (M) MoDE 45.6 70.8 42.6 59.6 50.8 53.9 45.6 70.7 42.5 59.5 50.8 53.9 +0.0 0.77M
BECoTTA+ (L) MoDE 45.7 71.4 43.7 59.6 50.5 54.2 45.7 71.3 43.7 59.6 50.6 54.2 +0.0 3.32M

where ŷc is the output prediction in the current target domain
stage c, κ is the pre-defined entropy threshold, and 1{·}
denotes an indicator function.

4. Experiments
We first introduce the datasets in Sec. 4.1, used for three
continual segmentations, two classifications, and a domain
generalization benchmark. Next, we describe the experimen-
tal setup in Sec. 4.2. Then, we provide our main results and
analysis in Secs. 4.3 and 4.4, respectively. More detailed
results are in the Appendix.

4.1. Datasets

Continual Disjoint Shifts (CDS) benchmark. To re-
flect various domain shifts, we adopt balanced weather
shifts (CDS-Easy) and imbalanced weather & area shifts
(CDS-Hard) scenarios. For the CDS-Easy, we utilize the
Cityscapes-ACDC setting used in previous work (Wang
et al., 2022a): Cityscapes (Cordts et al., 2016) is used as
the source domain, and ACDC (Sakaridis et al., 2021) as
the target domain, consisting of four different weather types
(fog, night, rain, snow). For the CDS-Hard, we propose
a new imbalanced scenario considering both weather and
geographical domain shifts. We also add clear and overcast
weather from BDD-100k (Yu et al., 2020) to the existing
target domain to mimic the real-world variety.

Continual Gradual Shifts (CGS) benchmark. To con-
struct gradually changing weather scenarios with blurry
boundaries, we define sampling distributions per weather
and perform uniform sampling. Next, we introduce four

tasks containing blurred boundaries of weather, as illustrated
in Fig. 3. The detailed process is in Appendix (Sec. D).

Classification benchmark. We additionally evaluate classi-
fication scenarios on CIFAR10-CIFAR10C (Hendrycks &
Dietterich, 2019) and CIFAR100-CIFAR100C (Krizhevsky
et al., 2009) with a non-ViT backbone.

Domain Generalization (DG) benchmark. To demon-
strate the versatility of BECoTTA, we conduct additional
zero-shot experiments using the DG benchmark (Choi et al.,
2021). This benchmark includes two large-scale real-world
datasets (BDD-100k (Yu et al., 2020), Mapillary (Neuhold
et al., 2017)) and two simulated datasets (GTAV (Richter
et al., 2016), Synthia (Ros et al., 2016)).

4.2. Experimental Setting

Baselines. We compare our model with strong contin-
ual test-time adaptation methods including TENT (Wang
et al., 2020), CoTTA (Wang et al., 2022a), SAR (Niu et al.,
2023), EcoTTA (Song et al., 2023), VDP (Gan et al., 2023),
DePT (Gao et al., 2022), TTN (Lim et al., 2023). More
details are found in Appendix (Sec. A).

Evaluation metric. All of the semantic segmentation results
are reported mIoU in %. For the overall scenarios, we
repeat each task in 10 rounds (a few rounds are reported
for visibility). Please refer to the Appendix (Sec. C) for
the whole results. For the classification tasks, we report the
classification error rate (%) following other baselines.

Implementation details. BECoTTA has a flexible archi-
tecture design, so it provides multiple variants according
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Table 2: Results on CDS-Easy (balanced weather shifts). We use the Cityscapes-to-ACDC benchmark, containing balanced
weather shifts for target domains. For a fair comparison, we report both w/o WAD and w/ WAD performance of our method.
The number of the parameters for DePT and VDP are not available as they do not provide the official codes.

Round 1 2 3

Method Venue Fog Night Rain Snow Fog Night Rain Snow Fog Night Rain Snow Mean Parameter

Source only NIPS’21 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 56.7 -

BN Stats Adapt (Nado et al., 2020a) - 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 52.0 0.09M

TENT (Wang et al., 2020) ICLR’21 69.0 40.2 60.1 57.3 68.3 39.0 60.1 56.3 67.5 37.8 59.6 55.0 55.8 0.09M

CoTTA (Wang et al., 2022a) CVPR’22 70.9 41.2 62.4 59.7 70.9 41.1 62.6 59.7 70.9 41.0 62.7 59.7 58.5 84.61M
SAR (Niu et al., 2023) ICLR’23 69.0 40.2 60.1 57.3 69.0 40.3 60.0 67.8 67.5 37.8 59.6 55.0 55.8 0.09M

DePT (Gao et al., 2022) ICLR’23 71.0 40.8 58.2 56.8 68.2 40.0 55.4 53.7 66.4 38.0 47.3 47.2 53.5 N/A

VDP (Gan et al., 2023) AAAI’23 70.5 41.1 62.1 59.5 70.4 41.1 62.2 59.4 70.4 41.0 62.2 59.4 58.2 N/A

EcoTTA (Song et al., 2023) CVPR’23 68.5 35.8 62.1 57.4 68.3 35.5 62.3 57.4 68.1 35.3 62.3 57.3 55.8 3.46M

BECoTTA (S) 71.3 41.1 62.4 59.8 71.3 41.1 62.4 59.8 71.4 41.1 62.4 59.8 58.6 0.09M

+ SDA 72.0 45.4 63.7 60.0 71.7 45.2 63.6 60.1 71.7 45.4 63.6 60.1 60.2 0.12M

BECoTTA (M) 72.3 42.0 63.5 60.1 72.4 41.9 63.5 60.2 72.3 41.9 63.6 60.2 59.5 2.15M

+ SDA 71.8 48.0 66.3 62.0 71.7 47.7 66.3 61.7 71.8 47.7 66.3 61.9 61.9 2.70M

BECoTTA (L) 71.5 42.6 63.2 59.1 71.5 42.6 63.2 59.1 71.5 42.5 63.2 59.1 59.1 11.31M

+ SDA 72.7 49.5 66.3 63.1 72.6 49.4 66.3 62.8 72.5 49.7 66.2 63.1 63.0 11.86M

Table 3: Results on Continual Gradual Shifts (CGS). We
construct the novel gradual shifts scenario using CDS-Easy
target domains.

Task 1 Task 2 Task 3 Task 4 Mean Parameter

Source 57.93 44.15 55.54 54.73 53.09 -

TENT (Wang et al., 2020) 58.12 44.67 56.35 55.26 53.60 0.02M

SAR (Niu et al., 2023) 57.95 44.23 55.67 54.92 53.19 0.02M

EcoTTA (Song et al., 2023) 62.15 47.60 59.70 58.70 57.04 3.46M

BECoTTA (S) 61.85 46.95 57.64 56.96 55.85 0.09M

+ SDA 62.09 51.08 59.90 57.72 57.69 0.12M

BECoTTA (M) 60.49 46.20 58.24 57.45 55.60 0.63M

+ SDA 64.04 53.25 60.66 58.55 59.13 0.77M

BECoTTA (L) 62.55 47.72 59.30 59.02 57.13 3.16M

+ SDA 64.62 53.54 62.59 60.17 60.23 3.31M

to the selection of the expert rank (dim), the location of
MoDE, the number of experts (N ), and domain routers (D).
Regarding D, we adopt D=1 for BECoTTA and D=4 for
BECoTTA+. Regarding dim and N , we categorize the re-
sults into three groups: S, M, and L. More specifically, we
set four experts for S, and only inject MoDE into the last
block of the encoder. Both M and L utilize six experts and
inject MoDE into every block of the encoder. The differ-
ence between M and L is the dim setting. More variants are
found in Tab. 21.

For the CDS-Easy scenario, we leverage the pre-
trained Segformer-B5 as our source model, aligning with
CoTTA (Wang et al., 2022a). For other scenarios, we opt
for Segformer-B2. Note that there is a difference between
the two setups due to the size of Segformer, but we unify
the Ours-S, M, and L architecture settings for all scenar-
ios. To implement the initialization process, we warm up
our architecture for 10 epochs like previous works (Song
et al., 2023; Lim et al., 2023). For the classification

task, we adopt the non-ViT backbones, WideResNet-28 for
CIFAR10-CIFAR10C and WideResNet-40 for CIFAR100-
CIFAR100C, for a fair comparison with other baselines.
We provide further implementation details in Appendix
(Sec. B).

Fairness with other baselines. We report both w/o SDA
(i.e., BECoTTA) and w/ SDA (i.e., BECoTTA+) results for
all experiments. In w/ SDA setup, we perform a slight initial-
ization while activating full model parameters for the base-
lines (Wang et al., 2022a; 2020; Niu et al., 2023) that update
full parameters or normalization layers only during CTTA.
On the other hand, CTTA methods with parameter-efficient
modules, such as EcoTTA and ours, perform initialization
using SDA by updating these trainable modules only while
freezing the pre-trained backbone weights.

4.3. Main Results

CDS-Hard (imbalanced weather & area shifts). As shown
in Tab. 1 and Fig. 1, all of our BECoTTA-S/M/L outper-
forms strong CTTA baselines with fewer parameters. In the
case of w/o SDA, although TENT and SAR utilize fewer
parameters, they suffer from severe forgetting at 10 rounds.
Otherwise, our BECoTTA achieves +48.2%p, +7.7%p im-
provement than TENT and SAR respectively at the last
round. In addition, our BECoTTA(S) demonstrates 1.81%p
gain using only ∼98% fewer parameters (0.09M) than
EcoTTA, while preserving the previous domain knowledge.
Over CoTTA, all of our BECoTTA(S), (M), and (L) achieve
+1%p, +1.4%p and +2.1%p increased performance using
608×, 86× and 17× reduced parameter, respectively. In
the case of w/ SDA, our method surpasses other baselines
that utilize fully updated source models even only updating
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Table 4: Classification error rate (%) for CIFAR100-to-CIFAR100C with severity level 5. Results are evaluated on
WideResNet-40.

Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg Avg. err

Source 80.1 77.0 76.4 59.9 77.6 64.2 59.3 64.8 71.3 78.3 48.1 83.4 65.8 80.4 59.2 69.7
tBN (Nado et al., 2020b) 45.9 45.6 48.2 33.6 47.9 34.5 34.1 40.3 40.4 47.1 31.7 39.7 42.7 39.2 45.6 41.1
Single do. TENT (Wang et al., 2020) 41.2 40.6 42.2 30.9 43.4 31.8 30.6 35.3 36.2 40.1 28.5 35.5 39.1 33.9 41.7 36.7
Continual TENT (Wang et al., 2020) 41.2 38.2 41.0 32.9 43.9 34.9 33.2 37.7 37.2 41.5 33.2 37.2 41.1 35.9 45.1 38.3
TTT++ (Liu et al., 2021b) 46.0 45.4 48.2 33.5 47.7 34.4 33.8 39.9 40.2 47.1 31.8 39.7 42.5 38.9 45.5 41.0
SWRNSP (Choi et al., 2022b) 42.4 40.9 42.7 30.6 43.9 31.7 31.3 36.1 36.2 41.5 28.7 34.1 39.2 33.6 41.3 36.6
NOTE (Gong et al., 2022) 50.9 47.4 49.0 37.3 49.6 37.3 37.0 41.3 39.9 47.0 35.2 34.7 45.2 40.9 49.9 42.8
EATA (Niu et al., 2022) 41.6 39.9 41.2 31.7 44.0 32.4 31.9 36.2 36.8 39.7 29.1 34.4 39.9 34.2 42.2 37.1
CoTTA (Wang et al., 2022a) 43.5 41.7 43.7 32.2 43.7 32.8 32.2 38.5 37.6 45.9 29.0 38.1 39.2 33.8 39.4 38.1
EcoTTA (Song et al., 2023) 42.7 39.6 42.4 31.4 42.9 31.9 30.8 35.1 34.8 40.7 28.1 35.0 37.5 32.1 40.5 36.4
BECoTTA (w/o SDA) 42.1 38.0 42.2 30.2 42.9 31.7 29.8 35.1 33.9 38.5 27.9 32.0 36.7 31.6 39.9 35.5

MoDE layers. In particular, our BECoTTA+(L) shows a
16.8%p improvement over w/ SDA EcoTTA, which simi-
larly updates only MetaNet as ours.

CDS-Easy (balanced weather shifts). As demonstrated in
Sec. 4.1, BECoTTA achieves superior performance over
other strong baselines. Compared within w/o SDA only, our
BECoTTA(S) outperforms EcoTTA (+5%p) and CoTTA
(+0.1%p) by using only 2% and 0.1% number of param-
eters they used. Additionally, while BECoTTA(S) uses a
similar level of parameters (0.09M) as TENT and SAR,
we demonstrate a +5%p performance increase compared
to them. Ultimately, our BECoTTA succeeds in achieving
+11.1%p higher performance than the source-only.

Continual Gradual Shifts (CGS). As shown in Tab. 3, we
display the first round CGS scenario including four tasks.
Even though the target domain is the same setting as CDS-
Easy, the overall performances are measured higher since
the accessibility of previous domains. Our BECoTTA(L)
achieves +5.5%p higher performance than EcoTTA with
a similar number of parameters (3.16M). In this case, the
input-dependent process of BECoTTA performs well in
these blurry scenarios and ultimately shows +13.4%p im-
provement over the source model.

Classification. In addition to evaluating our method on
segmentation tasks, we provide results of CIFAR100-to-
CICAR100C classifications to further demonstrate the gen-
eralizability of BECoTTA. As shown in Tab. 4, BECoTTA
(w/o SDA) consistently outperforms strong baselines, show-
ing -6.82%p and -2.47%p reduction of the average error
rate over CoTTA and EcoTTA, respectively. In particular,
there are significant improvements over EcoTTA in Contrast
(-8.57%p) and Fog (-5.41%p) which have similar attributes
to the weather domain. See further results and analyses
including computational efficiency in Tab. 12 and Tab. 13.

Zero-shot Domain Generalization (DG). We further demon-
strate the versatility of our method through the zero-shot
evaluation on four well-known driving datasets: BDD100k,

Table 5: Results on Zero-shot Domain Generalization.
We compare the zero-shot performance of our method with
strong TTA methods on four unseen domains.

Source model Method BDD100k Mapillary GTAV Synthia Avg

Source 43.50 54.37 43.71 22.78 41.09

BN Adapt (Nado et al., 2020a) 43.60 47.66 43.22 25.72 40.05

TBN 43.12 47.61 42.51 25.71 39.74

TENT (Wang et al., 2020) 43.30 47.80 43.57 25.92 40.15

SWR (Choi et al., 2022b) 43.40 47.95 42.88 25.97 40.05

Deeplab v3+

TTN (Lim et al., 2023) 48.85 59.09 46.71 29.16 45.95

Source 47.33 58.59 49.65 27.59 45.79

TENT (Wang et al., 2020) 46.23 58.13 49.69 27.53 45.40

SAR (Niu et al., 2023) 47.41 58.59 49.73 27.63 45.84

BECoTTA (M) 50.79 61.48 52.42 29.27 48.49

Segformer-B2

+ SDA 52.37 61.84 52.62 29.65 49.12

Mapillary, CTAV, and Synthia. We compare the zero-
shot performance of models with two different backbones,
Deeplab v3+ and Segformer-B2. As shown in Tab. 5, our
proposed method continuously outperforms strong base-
lines, demonstrating the competitive potential of the gener-
alization ability over unseen domains.

4.4. Analyses and Ablations

Experts analysis. We represent an in-depth analysis of
domain experts. In Fig. 6 (a), we visualize the frequency at
which the domain expert is selected. It is noteworthy that
the weather scenes with similar visual contexts share similar
experts. For instance, in the case of Clear and Overcast
scene, domain experts #1 and #5 are commonly selected.
Also, in the case of the night scene, the distinct experts are
selected compared to other scenes. This faithfully represents
our BECoTTA facilitates the cooperation and specialization
among each domain expert. As illustrated in Fig. 6 (b), we
also derive the similarity between domains based on the
selected experts. It is seen that {Clear, Night, Overcast}
and {Fog, Snow} share visual context according to our ten
domain experts.

Ablation for each element. We observe the variation of the
main components: Domain Discriminator (DD), MoDE, and
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TENT (Wang et al. 2021) BECoTTA (Ours)EcoTTA (Song et al. 2023)

Car Vegetation Sidewalk Sky Traffic Sign

Figure 4: Pseudo label Visualization. Our BECoTTA gen-
erates more fine-grained and accurate labels than baselines.
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(a) Domain Relation

DD MoDE Θ(D;A) Avg IoU
51.14

✔ 51.18
✔ ✔ 53.87
✔ ✔ ✔ 54.27

(b) Ablation of BECoTTA+

Figure 5: Domain Relation and Ablation study. (a): The
domain relation between pre-defined SDA dataset and target
domains.(b): The ablation study for each element of BE-
CoTTA+. AvgIoU is measured among 10 rounds.

domain-expert synergy loss Θ(D;A). As shown in Fig. 5
right, relying solely on DD results in only +0.04%p im-
provement compared with the source only. However, when
incorporating the MoDE and Θ(D;A), there are +5.36%p
and +6.12%p improvement respectively, comparing with
the source model.

Dependency on SDA. To validate the independence of BE-
CoTTA on SDA, we perform an ablation with various com-
binations of augmented source domains. For example, D=2
(Source, Night) indicates SDA where the source domain
and Night style augmented data (brightness adjusted to be
darker), are included. As Tab. 6 represents, our MoDE layer
allows a domain-specific adaptation regardless of the rel-
evancy between SDA and target (test-time) domains. For
instance, even if SDA only constitutes (Source, Bright) do-
mains, BECoTTA+ responds to the Night target domain
effectively, resulting in 8.5%p higher IoU in the night do-
main than w/o SDA.

Relation between SDA and Xt. During the CTTA, we gen-
erate pseudo domain labels d for each Xt (target domains)
through DD. These labels are used for initial domain-router
assignment to facilitate domain-adaptive routing. Therefore,
the relevance between the SDA and the target domain is
crucial. In Fig. 5 left, we represent the relationship between

Table 6: Ablation study for the number of SDA domains.

B-Clear A-Fog A-Night A-Snow B-Overcast Avg

CoTTA (Wang et al., 2022a) 43.3 67.3 34.8 56.9 48.8 50.2

EcoTTA (Song et al., 2023) 41.9 66.1 31.5 55.3 46.2 48.2

BECoTTA (w/o SDA) 43.0 69.5 35.1 57.3 48.8 50.7

D=2 (Source, Night) 44.2 68.9 39.5 56.8 49.4 51.7

D=2 (Source, Bright) 43.9 69.2 38.1 57.7 49.3 51.6

D=3 (Source, Night, Bright) 44.1 69.3 40.4 57.1 49.1 52.0

Expert assignments per domains Domain relation from experts

B-Clear

A-Fog

A-Night

A-Snow

B-Over

B-Clear A-FogA-Night A-SnowB-Over
Expert number

0 1 2 3 4 5 6 7 8 9

A-Fog

A-Snow

B-Clear

A-Night

B-Over

Target domains

Figure 6: Expert Analysis. Left: We visualize the fre-
quency of ten expert selections for each domain during
CTTA. Our frequency map shows co-selected and isolated
experts in different domains. Right: We interpret the simi-
larity between target domains by visualizing the assignment
weights from each domain-adaptive router.

pre-defined SDA and Xt, and our DD faithfully reflects this
connection.

Pseudo label analysis. In Fig. 4, we compare the generated
pseudo labels after finishing the ten rounds. Our method
exhibits robustness to forgetting in pseudo-label generation
compared to other models. For other baselines, there is an
erosion of minor labels by the effect of dominant labels (e.g.,
sky). However, our BECoTTA prevents such occurrences
and effectively preserves pseudo labels as each round goes
by, and it demonstrates significant efficacy in preserving
fine-grained labels.

5. Conclusion
We propose BECoTTA, an efficient yet powerful approach
for CTTA, mainly consisting of Mixture-of-Domain Low-
rank Experts (MoDE). Our MoDE has two key components:
(i) domain-adaptive routing, and (ii) domain-expert syn-
ergy loss to maximize the dependency between each do-
main and expert. We show that our BECoTTA outperforms
other SoTA continual TTA models and exhibits significant
efficiency with fewer parameters and memory. Besides,
ours shows strong potential for zero-shot domain generaliza-
tion tasks. To facilitate the understanding of our proposed
method, we extensively provide various analyses, includ-
ing ablations of each component of BECoTTA and WAD
strategies, and visualize the obtained pseudo labels and the
relationships between domains and experts.
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Impact Statement
In this work, we suggest BECoTTA and verify the supe-
riority of performance and effectiveness. Due to its effi-
ciency, our BECoTTA is highly effective when deployed on
real-world embodied devices. This is particularly true in au-
tonomous driving environments, where efficient adaptation
is crucial. Moreover, it is freely applied to various real-
world application branches, including health care and the
medical field, which require continual adaptation. Therefore,
we are confident that BECoTTA will have a significant im-
pact on the practical application. We hope that our research
focusing on efficiency contributes to the field of CTTA.
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In this Appendix, we present the detailed material for a better understanding:

First, we provide additional information about CTTA baselines Sec. A and implementation details Sec. B. The additional
experiment results in up to 10 rounds, including CDS-Easy, CDS-Hard, CGS scenarios are provided at Sec. C. Moreover,
we evaluate the adaptation performance of BECoTTA in CIFAR10-CIFAR10C and CIFAR100-CIFAR100C classification
scenarios. We also provide various ablation studies with diverse combinations of our architectures. At the end, more detail
about the data construction process is provided in Sec. D.

A. Baselines
In this section, we provide the details of the TTA baselines we use in our main paper. We illustrate the details of other CTTA
baselines in Fig. 2.

CoTTA (Wang et al., 2022a) is a landmark work that proposed weight, augmentation averaged predictions, and stochastic
restoration based on the mean-teacher framework. We utilize the official codes based on mmsegmentation that CoTTA
author provided.1

TENT (Wang et al., 2020) stands out as the pioneering approach to entropy minimization during testing, aiming to adapt to
data shifts without the need for additional losses or data. We follow the above implementation from CoTTA authors.

SAR (Niu et al., 2023) point out a sharpness-aware entropy minimization that mitigates the impact of specific noisy test
samples characterized by substantial gradients. As SAR has not been specifically validated in segmentation scenarios, we
refer to their code base 2 and reimplement it in the mmsegmentation framework.

EcoTTA (Song et al., 2023) propose memory-efficient architecture using meta networks. We believe there are similarities
between our model and EcoTTA, particularly in emphasizing efficiency through the activation of small parts of the source
model. To ensure a fair comparison, we align EcoTTA’s source model with our ViT-based Segformer. Behind each stage of
Segformer, we insert their meta networks only four times in the source model (K=4).

B. Experiment Details
B.1. Implementation Details

We provide the implementation details utilized in our experiments in Tabs. 7 and 8.

Table 7: Baseline method hyperparameters.

EcoTTA (Song et al., 2023) K=4, λ=0.5, H0=0.4
Ours λd=0.1, λm=0.0005, κ=0.4

Table 8: Our method hyperparameters.

Warm-up TTA
Dataset SDA Target domains
Optimizer AdamW Adam
Optimizer momentum (β1, β2) = (0.9, 0.999)

Epoch 10 Online
Batch size 1
Learning rate 0.00006 0.00006/100
Label accessibility Yes No

1https://github.com/qinenergy/cotta/issues/6
2https://github.com/mr-eggplant/SAR
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B.2. The details of BECoTTA

The size of BECoTTA. Our BECoTTA has a flexible architecture design, which means we adjust the number of TTA
parameters freely in various ways, depending on factors such as rank r, the insertion position of MoDE, and the number of
experts N in each MoDE. (All of the ‘parameters’ in our main paper mean the number of updated parameters in the TTA
process.) For the main experiments, we adopt four experts for S, and only injected MoDE into the last block. Both M and L
utilize six experts for MoDE, with the only difference being the rank.

Details of w/ & w/o SDA. To ensure a fair comparison, we conduct all experiments in w/ & w/o SDA settings. In the
case w/o SDA, it is impossible to collect priors for domain candidates, therefore we adopt a single router G, similar to the
conventional stochastic routing (Zuo et al., 2021). In settings w/ SDA, as described in the paper, we employ domain-adaptive
routing and a domain-experts synergy loss. This approach maximizes the effectiveness of BECoTTA.

B.3. Algorithm of BECoTTA

To clarify our whole CTTA process, we provide the whole pipeline of BECoTTA at Algo. 1. According to the different
initialization steps (Line 1 9), BECoTTA can be initialized in various ways including SDA or not.

Algorithm 1 Continual Test-time Adaptation Pipeline
Input: Source domain Xs, a sequence of target domains Xt = {X1

t , X
2
t , . . .},

source model f , trainable parts of MoDE W d
g , W d

noise, W
down, W up, number of

experts N , number of domain routers D.
1: # Initialization
2: if SDA init then
3: SDA = DomainAugment(Xs)
4: Update W d

g , W d
noise, W

down, W up, Domain Discriminator DD using SDA with
Linit

5: else if Source init then
6: Update W d

g , W d
noise, W

down, W up using Source domain Xs with Lseg
7: else
8: Randomly initialize W d

g , W d
noise, W

down, W up

9: end if
10: # CTTA
11: for target domain index c = 1, 2, . . . do
12: for minibatch x ∼ Xc

t do
13: if SDA init then
14: d = DD(x)
15: else
16: d = Uniform(0, D)
17: end if
18: for ViT block B ∼ f do
19: x = B(x)
20: hd(x)← Gd(x),W

down,W up

21: x← x+ hd(x)
22: end for
23: Update f with Ltta
24: end for
25: end for

C. Additional Results
C.1. Results up to round 10

Following the previous works, such as CoTTA (Wang et al., 2022a), we repeat ten rounds to simulate long-term continual
domain shifts. Therefore, as shown in Tab. 9, Tab. 10, and Tab. 11, we provide the whole performance up to 10 rounds for
each CDS-Easy, CDS-Hard, and Continual Gradual Shifts (CGS) scenarios. We also illustrate more qualitative results in
Fig. 8.
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Table 9: Quantitative results of CDS-Easy (balanced weather shifts). We conduct experiments with Cityscapes-to-ACDC
benchmarks which contain the weather shifts in the target domains. For a fair comparison, we report both w/o SDA and w/
SDA performance of our models.

Round 1 3 7 10
Method Venue Fog Night Rain Snow Fog Night Rain Snow Fog Night Rain Snow Fog Night Rain Snow Mean

Source only NIPS’21 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 56.7

BN Stats Adapt (Nado et al., 2020a) - 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 52.0

Continual TENT (Wang et al., 2020) ICLR’21 69.0 40.2 60.1 57.3 68.3 39.0 60.1 56.3 64.2 32.8 55.3 50.9 61.8 29.8 51.9 47.8 52.3

CoTTA (Wang et al., 2022a) CVPR’22 70.9 41.2 62.4 59.7 70.9 41.0 62.7 59.7 70.9 41.0 62.8 59.7 70.8 41.0 62.8 59.7 58.6

SAR (Niu et al., 2023) ICLR’23 69.0 40.2 60.1 57.3 69.1 40.3 60.0 57.8 69.1 40.2 60.3 57.9 69.1 40.1 60.5 57.9 56.8

EcoTTA (Song et al., 2023) CVPR’23 68.5 35.8 62.1 57.4 68.1 35.3 62.3 57.3 67.2 34.2 62.0 56.9 66.4 33.2 61.3 56.3 55.2

BECoTTA (Ours)-S 71.3 41.1 62.4 59.8 71.4 41.1 62.4 59.8 71.3 41.1 62.4 59.8 71.3 41.2 62.3 59.8 58.6

+ SDA 72.0 45.4 63.7 60.0 71.7 45.4 63.6 60.1 71.8 45.4 63.7 60.1 71.7 45.3 63.6 60.0 60.2

BECoTTA (Ours)-M 72.3 42.0 63.5 60.1 72.3 41.9 63.6 60.2 72.3 41.9 63.6 60.3 72.3 41.9 63.5 60.2 59.4

+ SDA 71.8 48.0 66.3 62.0 71.8 47.7 66.3 61.9 71.8 47.8 66.4 61.9 71.8 47.9 66.3 62.6 62.0

BECoTTA (Ours)-L 71.5 42.6 63.2 59.1 71.5 42.5 63.2 59.1 71.5 42.5 63.2 59.1 71.6 42.5 63.1 59.1 59.1

+ SDA 72.7 49.5 66.3 63.1 72.5 49.7 66.2 63.1 72.3 49.5 66.2 63.1 72.1 49.2 66.2 63.2 63.0

C.2. Results on Classification Tasks

To validate the versatility of BECoTTA, we conduct additional experiments on classification task scenarios in Tab. 12 and
Tab. 4. We also provide the computational inference time/memory efficiency in Tab. 13. All of our BECoTTA are initialized
without SDA, which means it ensures a fair comparison with other CTTA baselines. For other baselines’ performances, we
borrow performances from Table 19 of the EcoTTA paper.

For the CIFAR10-CIFAR10C task, we adopt the WideResNet-28 backbone. As shown in Tab. 12, our BECoTTA achieves a
lower error rate by 4.2%p while reducing inference time by 86.8%p compared to CoTTA, demonstrating that BECoTTA
without SDA initialization consistently shows improved performance with remarkable parameter efficiency compared
to strong CTTA baselines. Here, we additionally measure the performance of EcoTTA based on the community re-
implementation version3 since the official code and checkpoints are not public.

For the CIFAR100-CIFAR100C task, we adopt the WideResNet-40 backbone. While CIFAR100 is a larger scale dataset
than CIFAR10, as shown in Tab. 4, BECoTTA outperforms all of the other CTTA baselines in most of the sections.

C.3. Additional Ablations

More about the loss weights. To assess the impact of warm-up loss weight λs and λm, we conduct an ablation study in
which λs is the segmentation loss weight and λm is the mutual loss weight in Tab. 14. We fix the domain discriminator
loss weight λd while doing ablations. To precisely measure the effects, we evaluate the zero-shot performance for each
domain, excluding the TTA process. The results indicate that as the weight of the mutual loss decreases, the performance
of night scenes increases as it relatively diminishes consideration for mutual information. Furthermore, similar trends
in performance are observed for adjusting the loss weight of similar images, such as {BDD-Clear, BDD-Overcast} and
{ACDC-Fog, ACDC-Snow}.

More about the routing policy. We also conduct ablation studies on the routing policy for selecting experts within the
MoDE layer. We measure the impact of the routing policy in the CDS-Hard scenario under the w/ SDA setting, where [2, 4,
10, 16] hidden dimensions and six experts with k=3. The multi-task performance refers to using a fixed assignment per
domain, and stochastic routing (Zuo et al., 2021; Wang et al., 2022b) involves random-wise selection. According to Tab. 15,
our chosen top-k routing demonstrates the best performance. This is because the domain-specific router allows for routing
that takes input-wise information into consideration.

More about hidden dimension. We include results considering higher hidden dimensions and the number of experts in
Tab. 21, along with the consumption of parameters and memory. The hidden dimension refers to the rank r for each encoder
stage block for Segformer (Xie et al., 2021). For instance, [2,4,10,16] means each r=2,4,10,16 used at the MoDE layer for

3https://github.com/Lily-Le/EcoTTA
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Table 10: Results on CDS-Hard (imbalanced weather & area shifts). We devise a novel scenario encompassing imbalanced
weather and area shifts. We present performance results for both w/o WAD and w/ WAD across the overall baselines. We
report S, M , and L versions for our BECoTTA based on the number of parameters.

Round 1 4
∆

Parameter
Init Method Init update B-Clear A-Fog A-Night A-Snow B-Overcast Mean B-clear A-Fog A-Night A-Snow B-Overcast Mean

Source only - 41.0 64.4 33.4 54.3 46.3 47.9 41.0 64.4 33.4 54.3 46.3 47.9 +0.0 -
CoTTA (Wang et al., 2022a) - 43.3 67.3 34.8 56.9 48.8 50.2 43.3 67.3 34.8 56.9 48.8 50.2 +0.0 54.72M
TENT (Wang et al., 2020) - 41.1 64.9 33.2 54.3 46.3 47.9 38.6 62.0 28.3 49.1 41.6 43.9 -4.0 0.02M

w/o SDA SAR (Niu et al., 2023) - 41.0 64.5 33.4 54.5 46.6 48.0 41.4 64.8 33.1 54.8 46.9 48.2 +0.2 0.02M
EcoTTA (Song et al., 2023) MetaNet 44.1 69.6 35.3 58.2 49.6 51.3 44.0 69.2 34.7 57.9 49.1 50.9 -0.4 3.46M
BECoTTA (S) MoDE 42.9 68.5 35.0 57.2 47.8 50.5 43.0 69.5 35.1 57.2 47.8 50.7 +0.1 0.09M
BECoTTA (M) MoDE 43.8 68.8 34.9 57.9 49.2 50.9 43.7 68.9 34.8 57.9 49.3 50.9 +0.0 0.63M
BECoTTA (L) MoDE 43.9 69.1 35.0 58.3 50.2 51.3 44.0 69.1 35.1 58.3 50.2 51.3 +0.0 3.16M

Source only Full 43.6 68.7 44.5 59.0 48.7 52.9 43.6 68.7 44.5 59.0 48.7 52.9 +0.0 -
CoTTA (Wang et al., 2022a) Full 46.4 70.6 45.7 61.2 51.3 55.0 46.1 70.5 45.6 61.1 51.2 54.9 -0.1 54.72M
TENT (Wang et al., 2020) Full 43.7 68.5 44.6 59.0 48.3 52.8 41.4 64.6 40.7 53.5 44.8 49.0 -3.8 0.02M

w/ SDA SAR (Niu et al., 2023) Full 43.6 68.6 44.5 59.1 48.7 52.9 43.7 69.1 36.4 56.8 48.3 50.8 -2.1 0.02M
EcoTTA (Song et al., 2023) MetaNet 44.6 70.2 41.6 58.0 49.9 52.9 43.7 69.1 36.4 56.8 48.3 50.8 -2.1 3.46M
BECoTTA+ (S) MoDE 44.1 69.5 40.1 56.8 49.1 51.9 44.0 69.4 40.2 56.9 49.2 51.8 +0.0 0.12M
BECoTTA+ (M) MoDE 45.6 70.8 42.6 59.6 50.8 53.9 45.6 70.8 42.6 59.5 50.8 53.9 +0.0 0.77M
BECoTTA+ (L) MoDE 45.7 71.4 43.7 59.6 50.5 54.2 45.7 71.3 43.7 59.6 50.6 54.2 +0.0 3.32M

Round 7 10
∆

Parameter
Init Method Init update B-Clear A-Fog A-Night A-Snow B-Overcast Mean B-clear A-Fog A-Night A-Snow B-Overcast Mean

Source only - 41.0 64.4 33.4 54.3 46.3 47.9 41.0 64.4 33.4 54.3 46.3 47.9 +0.0 -
CoTTA (Wang et al., 2022a) - 43.3 67.3 34.8 56.9 48.8 50.2 43.3 67.3 34.8 56.9 48.8 50.2 +0.0 54.72M
TENT (Wang et al., 2020) - 34.4 56.4 23.5 42.2 36.7 38.6 30.9 51.5 20.4 37.0 33.0 34.6 -13.3 0.02M

w/o SDA SAR (Niu et al., 2023) - 41.4 64.7 32.4 54.6 46.8 47.9 41.3 64.3 31.6 54.2 46.6 47.6 -0.4 0.02M
EcoTTA (Song et al., 2023) MetaNet 43.2 67.9 33.4 56.8 47.9 49.8 41.9 66.1 31.5 55.3 46.2 48.2 -3.1 3.46M
BECoTTA (S) MoDE 42.9 69.5 35.1 57.3 47.8 50.5 43.0 69.5 35.1 57.3 48.8 50.7 +0.1 0.09M
BECoTTA (M) MoDE 43.7 68.8 34.8 57.9 49.1 50.8 43.7 68.8 34.5 57.9 49.2 50.9 +0.0 0.63M
BECoTTA (L) MoDE 43.9 69.0 35.0 58.2 50.1 51.3 44.0 69.1 35.0 58.2 50.2 51.3 +0.0 3.16M

Source only Full 43.6 68.7 44.5 59.0 48.7 52.9 43.6 68.7 44.5 59.0 48.7 52.9 +0.0 -
CoTTA (Wang et al., 2022a) Full 46.1 70.5 45.6 61.1 51.2 54.9 46.1 70.5 45.6 61.1 51.2 54.9 -0.1 54.72M
TENT (Wang et al., 2020) Full 38.3 60.9 36.6 48.3 41.3 45.0 35.8 57.6 33.6 44.3 38.8 42.0 -10.8 0.02M

w/ SDA SAR (Niu et al., 2023) Full 43.6 67.9 43.1 58.6 48.5 52.3 43.4 67.4 42.2 58.1 47.6 51.9 -1.0 0.02M
EcoTTA (Song et al., 2023) MetaNet 42.3 67.3 32.1 55.8 46.7 48.8 41.1 65.6 27.0 53.2 45.3 46.4 -6.5 3.46M
BECoTTA+ (S) MoDE 44.0 69.4 40.2 56.8 49.2 51.9 44.0 69.4 40.1 56.9 49.1 51.9 +0.0 0.12M
BECoTTA+ (M) MoDE 45.6 70.6 42.6 59.6 50.8 53.8 45.6 70.7 42.5 59.5 50.8 53.9 +0.0 0.77M
BECoTTA+ (L) MoDE 45.6 71.3 43.7 59.5 50.5 54.2 45.7 71.3 43.7 59.6 50.6 54.2 +0.0 3.32M

four stages Segformer (Xie et al., 2021). [0,0,0,16] denotes that the MoDE layer is used only in the last stage of the encoder.
In particular, we predominantly opt for relatively low hidden dimensions and fewer experts, considering the trade-off with
efficiency, even though setting a higher hidden dimension generally ensures better performance with more parameters.

C.4. Metrics for Continual Learning

Both CTTA and continual learning share the common objective of preventing forgetting to retain information encountered
in the online stream. Therefore, we adopt the continual learning metrics (AvgIoU, BWT) for evaluating the forgetting
phenomenon as represented in Tab. 16.

AvgIoU denotes the overall performance while doing the learning process, and BWT evaluates the average influence of the
current N th round on all of the previous tasks. These two metrics at the kth round are commonly defined as below. We
measure the AvgIoU and BWT in the CTTA process after each round is finished.

AvgIoUk =
1

D

D∑
j=1

akj (9)
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Table 11: Quantitative results of Continual Gradual Shifts (CGS) scenarios. We present the results of up to ten rounds.
Our CGS exhibits relatively higher performance across all models compared to the disjoint scenario, as neighboring domains
are exposed within the scenario, unlike the conventional disjoint scenario.

Round 1 3 7 10
Method Parameter Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 Mean

Source only - 57.9 44.1 55.5 54.7 57.9 44.1 55.5 54.7 57.9 44.1 55.5 54.7 57.9 44.1 55.5 54.7 54.7
TENT (Wang et al., 2020) 0.02M 58.1 44.6 56.3 55.2 58.5 45.1 56.8 54.9 56.8 43.3 54.3 52.0 55.1 41.4 51.5 49.2 52.0
SAR (Niu et al., 2023) 0.02M 57.9 44.2 55.6 54.9 58.2 44.4 56.0 55.2 58.3 44.7 56.4 55.5 58.4 44.7 56.5 55.5 53.5
EcoTTA (Song et al., 2023) 3.46M 62.1 47.6 59.7 58.7 61.8 47.6 59.8 58.6 60.9 47.1 59.1 57.9 59.8 46.1 58.2 57.2 56.3
BECoTTA (Ours)-S 0.09M 61.8 46.9 57.6 56.9 61.8 46.9 57.6 56.9 61.6 49.8 57.7 57.0 61.7 49.7 57.5 57.1 55.8

+ SDA 0.12M 62.0 51.0 59.9 57.7 62.0 51.0 59.8 57.6 62.0 51.0 59.8 57.6 62.2 51.0 59.6 57.8 55.9
BECoTTA (Ours)-M 0.63M 60.4 46.2 58.2 57.4 60.5 46.2 58.2 57.4 60.5 46.2 58.2 57.5 60.5 46.2 58.2 57.4 55.5

+ SDA 0.77M 64.0 53.2 60.6 58.5 63.9 53.3 60.6 58.6 63.9 53.3 60.7 58.5 64.0 53.3 60.7 58.5 59.0
BECoTTA (Ours)-L 3.16M 62.5 47.7 59.3 59.0 62.5 47.7 59.3 59.0 62.4 47.8 59.2 58.8 62.5 47.7 59.1 58.8 57.1

+ SDA 3.31M 64.6 53.5 62.5 60.1 64.7 53.6 62.5 60.1 64.6 53.5 62.4 60.2 64.5 53.4 62.3 60.1 60.2

Table 12: Classification error rate (%) for CIFAR10-to-CIFAR10C with severity level 5. Results are evaluated on
WideResNet-28. * indicates our implemented version performances.

Method Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg Avg. err

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
tBN (Nado et al., 2020b) 28.6 26.8 37.0 13.2 35.4 14.4 12.6 18.0 18.2 16.0 8.6 13.3 24.0 20.3 27.8 20.9
Single do. TENT (Wang et al., 2020) 25.2 23.8 33.5 12.8 32.3 14.1 11.7 16.4 17.0 14.4 8.4 12.2 22.8 18.0 24.8 19.2
Continual TENT (Wang et al., 2020) 25.2 20.8 29.4 14.4 31.5 15.4 14.2 18.8 17.5 17.3 10.9 14.9 23.6 20.2 25.6 20.0
TTT++ (Liu et al., 2021b) 27.9 25.8 35.8 13.0 34.3 14.2 12.2 17.4 17.6 15.5 8.6 13.1 23.1 19.6 26.6 20.3
SWRNSP (Choi et al., 2022b) 24.6 20.5 29.3 12.4 31.1 13.0 11.3 15.3 14.7 11.7 7.8 9.3 21.5 15.6 20.3 17.2
NOTE (Gong et al., 2022) 30.4 26.7 34.6 13.6 36.3 13.7 13.9 17.2 15.8 15.2 9.1 7.5 24.1 18.4 25.9 20.2
EATA (Niu et al., 2022) 23.8 18.8 27.3 13.9 29.7 16.0 13.3 18.0 16.9 15.7 10.5 12.2 22.9 17.1 23.0 18.6
CoTTA (Wang et al., 2022a) 24.3 21.6 26.6 11.6 27.6 12.2 10.3 14.8 14.1 12.4 7.5 10.6 18.3 13.4 17.3 16.2
CoTTA* 24.6 21.6 26.5 12.1 28.0 13.0 10.9 15.3 14.6 13.6 8.1 12.2 20.0 14.9 19.5 17.0
EcoTTA (k=4) (Song et al., 2023) 23.5 19.0 26.6 11.5 28.1 13.1 10.9 15.2 14.5 13.1 7.8 11.4 20.9 15.4 20.8 16.9
EcoTTA (k=4)* 25.7 21.5 28.4 11.4 31.0 14.1 11.9 16.7 15.3 13.9 8.9 12.4 20.4 16.1 20.7 17.9

BECoTTA (w/o SDA) 22.9 19.1 26.9 10.2 27.5 12.7 10.4 14.7 14.3 12.4 7.2 9.4 20.9 15.2 20.2 16.3

BWTk =
1

D

D∑
j=1

akj − ãj (10)

where D is the number of domains in each round, akj denotes IoU evaluated by the model trained k round for the jth
domain, and ãj represents IoU evaluated in the jth domain by the model trained up to the jth domain within the k rounds.

In the case of TENT (Wang et al., 2020), both AvgIoU and BWT show a gradual decline as the round continues because of
the severe effects of forgetting. However, our method addresses this forgetting effectively and shows the highest AvgIoU
and BWT, especially when the effectiveness of domain-wise learning is maximized in w/SDA settings. In particular, the
BWT improves as the round progresses, so it is interpreted that current learning has a positive effect on the past domains as
learning continues.

C.5. Initialization of BECoTTA

We demonstrate that BECoTTA outperforms baselines under all three initialization policies, that is, even though w/o source
domain data warm-up. In Tab. 17, we compare (i) random and (ii) source domain initialization with other baselines on the
CDS-Hard scenario.

For (i) Random initialization, we compare non-warm-up BECoTTA with TENT and CoTTA. We randomly initialize all
weights of MoDE. BECoTTA, without any initialization, surpasses the performance of both CoTTA and TENT.

For (ii) Source domain initialization, we compare source-initialized (w/o SDA) BECoTTA with EcoTTA. We note that, in
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Table 13: Classification error rate (%) for standard CIFAR10-to-CIFAR10C with inference time and memory
consumption (MB).

Method Avg. Err. Time (s) Memory (MB)
TENT (Wang et al., 2020) 20.0 1222 118.2
CoTTA (Wang et al., 2022a) 17.0 18877 537.0
EcoTTA* (Song et al., 2023) 17.9 4429 328.3
Ours (Exp10, k4) 16.3 2475 211.6

Table 14: Ablation study about warm-up loss weights. While doing this ablation, we set the hidden dimension as
[8,8,16,32] and utilize six experts with k=3.

λs λm B-Clear A-Fog A-Night A-Snow B-Over Avg
0.5 0.5 45.35 70.92 43.17 59.59 50.56 53.92
0.5 0.01 45.2 70.61 43.58 59.31 50.48 53.84
1 0.5 45.47 69.84 43.29 59.28 50.82 53.74
1 0.001 45.38 70.26 42.66 58.79 50.51 53.52
5 0.01 45.02 70.24 42.57 59.07 50.42 53.46

the current CTTA field, such quick warmup is entirely permissible, and many works [1-6] directly compare their methods
with CoTTA & TENT in a fair manner. We clarify it again to fully address the concern of the reviewer. It is evident that
BECoTTA consistently outperforms the best-performing CTTA baseline, EcoTTA, in both terms of IoU and efficiency (Table
1 of our submission), improving average accuracy by +2.5%p (50.7% vs. 48.2%) while using fewer trainable parameters
(0.09M vs. 3.46M).

C.6. Comparison of Standard Deviation

We provide the average performance over five independent runs to investigate performance fluctuation. In Tab. 18, BECoTTA
shows the smallest standard deviation, ensuring stable performance over other baselines.

C.7. Comparison of Inference Speed

We additionally measure the inference time while deploying each CDS-Hard target domain during CTTA. For transparency
and reliability, we evaluate the inference time per each small section of CDS-Hard. (The time difference across each domain
is due to the varying number of data within each domain.) Our BECoTTA implements the without SDA version for a fair
comparison with other baselines. As shown in Tab. 19, Ours-S achieves 80.4%p decreased inference time, but 1.0%p
increased performance than CoTTA. In addition, we conducted classification experiments on the CIFAR10 - CIFAR10C
dataset based on the WideResNet-28 backbone. As shown in Tab. 13, BECoTTA achieves a lower error rate by 4.2%p while
reducing inference time by 86.8%p compared to CoTTA.

C.8. Quality of SDA.

We adopt different augmentation methods to build realistic SDA. We utilize TSIT (Jiang et al., 2020) for style-transfer and
PyTorch transformation (e.g., ColorJitter, RandomGrayscale), same as EcoTTA (Song et al., 2023). As shown in Tab. 20,
we verify that the quality of SDA is a less important factor to have an effect on our domain-adaptive architecture. This
demonstrates that our BECoTTA is implemented with various augmentations, showing its potential for expansion in diverse
situations.

D. Dataset Construction
D.1. Scenario Construction Process

CDS-Easy scenario. As we mention in the main paper, we adopt the weather shift scenario in CTTA from CoTTA (Wang
et al., 2022a) for a fair comparison. We set the target domain using the training set of the ACDC dataset, so the dataset for
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Table 15: Ablation study for each routing policy. We conduct routing policy ablation using hidden dimension [2,4,10,16]
with six experts.

B-Clear A-Fog A-Night A-Snow B-Overcast Avg
Multi-task 44.56 68.99 37.66 58.59 50.14 52.00
Stochastic 45.40 69.74 42.85 58.81 50.65 53.50
Top-K(Ours) 45.54 70.77 42.62 59.66 50.76 53.87

Table 16: Quantitative results of AvgIoU and BWT. We evaluate AvgIoU and BWT among 3 rounds in the CDS-Hard
scenario.

Round 1 Round 2 Round 3 Avg

AvgIoU BWT AvgIoU BWT AvgIoU BWT AvgIoU BWT

TENT (Wang et al., 2020) 47.87 -0.15 46.63 -0.73 44.94 -0.97 46.48 -0.62

SAR (Niu et al., 2023) 48.11 0.08 48.19 0.04 48.23 0.01 48.18 0.04

BECoTTA (Ours) - M 51.29 0.15 51.33 0.17 51.33 0.16 51.32 0.16

+ SDA 54.32 0.26 54.30 0.30 54.30 0.31 54.31 0.29

Table 17: Ablation study for the initialization policy.

Model Source Warmup BC AF AN AS BO Avg Params
TENT 30.9 51.5 20.4 37.0 33.0 34.5 0.02M
CoTTA 43.3 67.3 34.8 56.9 48.8 50.2 54.72M
Ours-S 43.4 67.7 35.0 57.3 49.0 50.4 0.09M
Ours-M 43.4 67.6 35.0 57.2 49.1 50.4 0.63M
Ours-L 43.1 67.6 35.0 57.0 48.5 50.2 3.16M
EcoTTA ✔ 41.9 66.1 31.5 55.3 46.2 48.2 3.46M
Ours-S ✔ 43.0 69.5 35.1 57.3 48.8 50.7 0.09M
Ours-M ✔ 43.7 68.8 34.5 57.9 49.2 50.8 0.63M
Ours-L ✔ 44.0 69.1 35.1 58.3 50.2 51.3 3.16M

Table 18: Result on standard deviation on CDS-Hard scenario.

B-Clear A-Fog A-Night A-Snow B-Overcast Avg Parameter

TENT 41.0 ± 0.02 64.6 ± 0.19 33.3 ± 0.13 54.4 ± 0.12 46.5 ± 0.20 48.0 ± 0.04 0.02M

CoTTA 43.2 ± 0.06 67.2 ± 0.01 34.8 ± 0.06 56.9 ± 0.07 48.6 ± 0.11 50.1 ± 0.06 54.72M

Ours-S (w/o SDA) 42.9 ± 0.04 69.5 ± 0.01 35.0 ± 0.04 57.24 ± 0.03 47.8 ± 0.00 50.5 ± 0.02 0.09M

Table 19: Result of the inference time on CDS-Hard scenario.

BC AF AN AS BO Time Avg

TENT 302.7 378.3 385.3 377.5 197.3 328.2

CoTTA 2746.2 6251.6 6311.9 6239.4 1325.8 4574.9

EcoTTA 2159.2 2159.2 2187.8 2163.6 708.7 1875.7

Ours-S 638.1 1142.3 1154.4 1139.5 415.8 898.0

Ours-M 967.0 1486.4 1449.0 1441.0 636.7 1196.0

Ours-L 1229.6 1584.6 1667.7 1749.5 893.6 1425.0
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Table 20: Ablation of the quality of SDA. Our SDA has versatility with diverse augmentation methods.

SDA Augmentation
Round 1

B-Clear A-Fog A-Night A-Snow B-Over Avg
BECoTTA (Ours) - M 43.8 68.8 34.9 57.9 49.2 50.9

+ Style-transfer 45.6 70.8 42.6 59.7 50.8 53.9
+ Transformation 45.3 70 43.2 59.5 50.7 53.7

each domain consists of 400 unlabeled images, and their training order is as follows: {Fog→ Night→ Rain→ Snow}.

CDS-Hard scenario. To incorporate domain shift based on geographical factors and weather shifts from the Cityscapes-
ACDC setting, we add clear and overcast datasets from BDD-100k as mentioned in the paper. We parse the official
annotation json file4 to split the BDD-100k train dataset by weather conditions. For future reproducibility, we will
publicly share the file list of our scenario. Consequently, we obtain a scenario sequence of {BDD-Clear→ ACDC-Fog→
ACDC-Night→ ACDC-Snow→ BDD-Overcast}. Each of them consists of 500 unlabeled images. (We additionally add
the ACDC 100 validation dataset together.)

Continual Gradual Shifts (CGS) scenario. To construct gradually changing weather scenarios with blurry boundaries, we
first conduct sampling from a Gaussian distribution with CDS-Easy target domains. Given a total of 1600 (400x4) timesteps
in one round (including four tasks) at CDS-Easy, we define sampling distributions θi ∼ N (400i, 200) for each domain i,
and perform uniform sampling to represent gradual changes of weathers. In the end, we construct four tasks containing
blurry boundaries of weather as illustrated in Fig. 3.

D.2. Source Dataset Augmentation (SDA)

Generating process. We utilize the pre-trained style transformer TSIT (Jiang et al., 2020) to generate candidate domains
using the Cityscapes (Cordts et al., 2016). For the candidate domains, we set dark, bright, and foggy styles to represent
real-world weather practically as illustrated in Fig. 7. We also apply the simple PyTorch augmentation to recreate them.
Note that this process does not involve any training steps and resembles a one-time operation when setting the source domain.
During the warm-up process, it enables the initialization from pre-defined domains by updating only the domain-wise routers
and experts of the MoDE layer. Moreover, we have the flexibility to freely expand these candidate domains to others.

Fog
Original 

Cityscapes Night Overcast
Style

Transfer

Typical 
Augmentation

ColorJitter CLAHE GaussianBlur

Figure 7: The example of generating SDA with different augmentation. We apply pre-trained style transfer and PyTorch
augmentation for generating candidate domains for SDA.

E. Limitation
We verify our BECoTTA demonstrates superior performance with fewer parameters compared to other CTTA baselines.
However, it requires the user to choose from a range of hyperparameters, including the hidden dimension of experts (dim),
the number of experts (N ), and the number of selected experts (K). This variability sometimes leads to slight performance
fluctuations, but it also highlights the flexibility of BECoTTA. Through extensive empirical experiments, we have confirmed

4bdd100klabels images train.json
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Figure 8: Pseudo labels from finished training up to round 10 in the CDS-Hard (imbalanced weather & area shifts)
scenario. We visualize pseudo labels from BDD100k and ACDC datasets with other baselines. Our BECoTTA generates
more fine-grained labels than other baselines.

TENT

EcoTTA

Ours

that BECoTTA consistently outperforms all current CTTA baselines, regardless of the hyperparameter settings. Furthermore,
while BECoTTA operates effectively with random initialization, its performance is significantly enhanced when optimized
in conjunction with SAD, maximizing the benefits of domain knowledge transfer. This approach does not contradict the
assumptions of CTTA, as numerous studies have permitted initialization from the source domain. However, the necessity for
a warmup phase could be considered a drawback.
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Table 21: Further ablation study for the number of experts N , K, and hidden dimensions. We report sufficient ablation
studies about the N , K, and hidden dimensions in the MoDE layer. All experiments are conducted in w/ WAD setting. ’Last’
denotes the MoDE layer located in the last stage of the encoder, whereas ’All’ denotes those located in every four stages of
the encoder.

Round 1
Parameters Memory Mode Expert, K Hidden dim

B-Clear A-Fog A-Night A-Snow B-Over Avg

59,922 227.27MB exp3 k1 [0, 0, 0, 2] 44.10 69.46 39.13 57.24 49.13 51.81
129,096 227.80MB exp4 k1 [0, 0, 0, 6] 44.06 69.4 40.10 56.84 49.17 51.91
378,144 229.71MB exp6 k3 [0, 0, 0, 16] 44.31 69.15 40.10 57.52 49.64 52.14

1,208,448 236.46MB exp6 k3 [0, 0, 0, 64] 44.12 69.19 40.21 57.19 49.51 52.04
4,212,480 258.97MB exp20 k10 [0, 0, 0, 64] 44.21 69.10 40.20 57.30 49.50 52.06
4,074,240 242.89MB

Last

exp10 k4 [0, 0, 0, 128] 43.91 68.48 39.31 56.52 49.28 51.50

779,916 231.36MB exp6 k3 [2, 4, 10, 16] 45.45 70.77 42.62 59.66 50.76 53.85
956,976 232.71MB exp6 k3 [8, 8, 16, 16] 45.54 70.40 42.76 59.50 50.90 53.82

1,252,176 234.96MB exp6 k3 [8, 8, 16, 32] 45.21 70.53 43.26 59.32 50.69 53.80
1,299,860 236.92MB exp10 k4 [2, 4, 10, 16] 45.47 69.56 43.04 58.88 50.54 53.50
2,599,720 247.03MB

All

exp20 k10 [2, 4, 10, 16] 45.33 70.17 43.13 59.48 51.04 53.83

3,469,312 251.21MB EcoTTA + ViT (w/WAD) 44.64 70.21 41.68 58.02 49.94 52.9

4,554,528 261.60MB exp3 k1 [32, 64, 160, 256] 45.28 70.22 43.14 58.74 50.42 53.56
6,072,704 273.20MB exp4 k3 [32, 64, 160, 256] 45.16 70.41 42.91 59.65 50.39 53.70
9,109,056 296.39MB exp6 k3 [32, 64, 160, 256] 45.45 70.61 44.32 59.40 50.61 54.08

15,181,760 342.77MB

All

exp10 k4 [32, 64, 160, 256] 46.17 71.3 43.47 60.63 51.18 54.55
477,805,276 533.81MB Scratch CoTTA (w/WAD) 46.42 70.64 45.7 61.2 51.32 55.06
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