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ABSTRACT

Physics-informed Neural Network (PINN) is an emerging approach for efficiently
solving partial differential equations (PDEs) using neural networks. PICNN, a
variant of PINN enhanced by convolutional neural networks (CNNs), has achieved
better results on a series of PDEs since the parameter-sharing property of CNNs
is effective to learn spatial dependencies. However, applying existing PICNN-
based methods to solve Navier-Stokes equations can generate oscillating predic-
tions, which are inconsistent with the laws of physics and the conservation prop-
erties. To address this issue, we propose a novel method that combines PICNN
with the finite volume method to obtain physically plausible and conservative so-
lutions to Navier-Stokes equations. We derive the second-order upwind differ-
ence scheme of Navier-Stokes equations using the finite volume method. Then
we use the derived scheme to calculate the partial derivatives and construct the
physics-informed loss function. The proposed method is assessed by experiments
on steady-state Navier-Stokes equations under different scenarios, including con-
vective heat transfer, lid-driven cavity flow, etc. The experimental results demon-
strate that our method can effectively improve the plausibility and the accuracy of
the predicted solutions from PICNN.

1 INTRODUCTION

Partial differential equations (PDEs) are ubiquitous in scientific fields, such as mechanics, engineer-
ing, and economics, and are often solved using numerical methods. Although numerical methods,
including the finite difference method (FDM), finite volume method (FVM), and finite element
method (FEM), have made successful progress in solving PDEs over the past few decades, their
high computational overhead still makes the simulation difficult in many scenarios. For instance,
conventional numerical solvers are computationally expensive for complex systems with multi-
scale/multiphysics features, e.g., optimization (Wang et al., 2022), inverse problem (Raissi et al.,
2019), and uncertainty quantification (Wang et al., 2021a).

In recent years, with the development of deep learning, solving partial differential equations using
neural networks has attracted researchers’ interest. Neural networks show strong competitiveness
compared with numerical methods in solving PDEs because of their generalization ability, lower
implementation cost, and lower computational cost (Meng et al., 2022). Since the actual values of
PDEs’ solution are expensive to acquire in real-world scenarios, it is not practical to train neural
network models with a large amount of labeled data. Besides, in the absence of physical constraints,
neural networks may produce predictions that violate the laws of physics and do not generalize well.
Raissi et al. (Raissi et al., 2019) proposed physics-informed neural network (PINN) for solving
PDEs. PINN uses the automatic differentiation technique (Baydin et al., 2018) to calculate par-
tial derivatives and uses the equation residuals and boundary/initial conditions as penalty terms to
construct the neural network’s loss function. By combining physical information with neural net-
works, PINN effectively reduces the amount of labeled data required for training. However, the
slow convergence of PINN limits its performance in solving PDEs. Physics-informed convolutional
neural network (PICNN), a variant of PINN, achieves better results on a series of PDEs due to bet-
ter scalability and faster convergence of CNNs. Besides, the parameter-sharing property of CNNs
makes PICNN more effective to learn spatial dependencies. PICNN computes partial derivatives
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using central difference convolutional filters, whose parameters are derived by the finite difference
method and encodes PDEs into the loss function (Geneva & Zabaras, 2020)(Winovich et al., 2019).

Although PICNN has achieved promising results in solving many PDEs, its performance is still
unsatisfactory for equations containing convection terms such as convection-diffusion equations and
Navier-Stokes equations. Navier-Stokes equations are widely used in the field of computational fluid
dynamics and numerical heat transfer. The characteristic of the Navier-Stokes equations is that the
convection terms they contain have strong directionality, which describes the directional motion of
the fluid. Under the action of convection, the disturbance at a certain point can only be transmitted
downstream but not reversely. Existing PICNN-based methods (Gao et al., 2021)(Ren et al., 2022)
discretize the equations using a central difference scheme, which in some cases leads to implausible
solutions, i.e., oscillations of the solutions. Besides, the discrete scheme derived from the FDM does
not have conservation properties, which can further lead to inaccurate predictions.

In this study, we try to properly combine numerical methods with CNNs to ensure that more ac-
curate physical information is encoded into the neural networks so that the predicted solutions of
the Navier-Stokes equations are more in line with physical laws. First, we use the FVM to derive
the discrete schemes of the conserved PDEs to ensure that the resulting discrete equations are con-
served. The use of discrete equations with conservative forms can describe physical systems more
accurately than equations with non-conservative forms, resulting in solutions that are more in line
with physical laws (Jaluria & Torrance, 2017). Second, we use the second-order upwind difference
scheme to discrete the Navier-Stokes equations for constructing the loss function. The second-order
upwind difference scheme can obtain information from the upstream properly, which avoids the in-
troduction of downstream information into the discrete equations. Third, we hard impose boundary
conditions to allow the PICNN to train and predict without any labeled data.

2 RELATED WORK

In many scientific computing scenarios, it is difficult to obtain labeled data (e.g., coordinates and
corresponding physical quantities). Using purely data-driven deep learning methods to solve scien-
tific computing problems is neither cost-effective nor able to obtain solutions that obey the laws of
physics. By combining prior knowledge with neural networks, solutions can be learned with less
data (Raissi et al., 2019)(Zhang et al., 2020)(Sun & Wang, 2020)(Wang et al., 2021b) or even with-
out any data (Zhu et al., 2019)(Sun et al., 2020)(Geneva & Zabaras, 2020). Based on PINN (Raissi
et al., 2019), a series of PINN variants have been proposed to deal with more challenging problems,
such as UQPINN (Yang & Perdikaris, 2019), PPINN (Meng et al., 2020), fPINN (Pang et al., 2019),
vPINN (Kharazmi et al., 2019), and B-PINNs (Sun & Wang, 2020)(Yang et al., 2021).

Recent studies have shown that CNNs are suitable for solving large-scale, high-dimensional spa-
tiotemporal problems due to their parameter-sharing features (Rao & Liu, 2020). For steady-state
PDEs, Zhu et al. design a physics-informed convolutional encoder-decoder structure to learn solu-
tions without using any labeled data (Zhu et al., 2019)(Zhu & Zabaras, 2018). Gao et al. design a
geometric adaptation strategy (Gao et al., 2021), which transforms the irregular geometric domain
into a regular rectangular domain through a coordinate transformation so that the irregular domain
can be processed by CNN. Geneva et al. propose the AR-DenseED method (Geneva & Zabaras,
2020), which uses a PICNN-based deep autoregressive model to predict dynamical PDEs. Ren et
al. design a surrogate model (Ren et al., 2022) based on the AR-DenseED method to learn the time
evolution of dynamical partial differential equations.

Existing studies have achieved promising results in solving fluid and heat transfer problems using
PICNN (Kim et al., 2019)(Sharma et al., 2018)(Fukui et al., 2019)(Subramaniam et al., 2020)(Mo-
han et al., 2020). Most of these methods use the FDM-based central difference scheme to discretize
the convection term. Bar-Sinai et al. (Bar-Sinai et al., 2019) introduces the FVM to CNN, enabling
the model to generate coefficients for approximating spatial derivatives. However, the method pro-
posed in (Bar-Sinai et al., 2019) is data-driven and does not work in scenarios where labeled data is
expensive and scarce.
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3 METHODOLOGY

3.1 NAVIER-STOKES EQUATIONS

Equation (1) represents the steady-state Navier-Stokes equations in a two-dimensional Cartesian
coordinate system, where ρ is the fluid density, u and v are the flow velocity in the x-axis and y-axis
directions, respectively, µ is the viscosity and p is the pressure. The terms ∂(ρuu)

∂x , ∂(ρvu)
∂y , ∂(ρuv)

∂x ,

and ∂(ρvv)
∂y in the first two rows of (1) are convection terms, which have strong directionality and

describe the directional motion of the fluid. The terms ∂
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∂x ) +
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In equation (1), the first two rows represent the momentum conservation equations and the third
row represents the mass conservation equation. In order to use CNN to solve the Navier-Stokes
equations, we first need to divide the domain into grids and use the coordinates of the grid points
as the input to the CNN. The output of the CNN is set to the values of the unknown function at the
corresponding coordinates. And then, we need to embed the equations into the loss function, which
is why we call it physics-informed CNN (PICNN). More details will be introduced in the following
subsections.

3.2 SECOND-ORDER UPWIND DIFFERENCE SCHEME

In order to embed the Navier-Stokes equations into the loss function of PICNN, we first need to
discretize the equations. This subsection presents the procedure for discretizing the Navier-Stokes
equations using the second-order upwind difference scheme derived by FVM. It is worth mentioning
that equation (1) is the conserved form of the Navier-Stokes equations and FVM is more suitable
than FDM for discretizing equations in conserved form. Detailed analysis of the limitations of
existing FDM-based methods and central difference scheme is presented in the appendix A.1 and
A.2.

First, we discretize the momentum equation in the horizontal direction (i.e., the first equation in (1)).
As shown in Fig. 1, the upper, lower, left, and right boundaries of the control volume of point P are
n, s, w, and e, respectively. By integrating the equation over the control volume of P , we can obtain
(2). Further expanding (2), we can get (3).∫ n

s

∫ e

w

[
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]dxdy

=

∫ n

s

∫ e

w

[−∂p

∂x
+

∂

∂x
(µ

∂u

∂x
) +

∂

∂y
(µ

∂u

∂y
)]dxdy

(2)

(ρu)e∆yue − (ρu)w∆yuw + (ρv)n∆xun − (ρv)s∆xus

=−∆y(p|ew) + µ∆y(
∂u

∂x
|ew) + µ∆x(

∂u

∂y
|ns )

(3)

We define the flow rate on interface e as Fe = (ρu)e∆y, and similarly the flow rate on interface
w, n, and s are defined as Fw = (ρu)w∆y, Fn = (ρv)n∆x, and Fs = (ρv)s∆x, respectively.
And we define the diffusion conductance on interface e, w, n, and s as De = µ∆y

(δx)e
, Dw = µ∆y

(δx)w
,

Dn = µ∆x
(δy)n

, and Ds = µ∆x
(δy)s

, respectively (Tao, 2001). In this work, we divide the domain equally
so that (δx)e = (δx)w = (δy)n = (δy)s = ∆x = ∆y. Thus we can get De = Dw = Dn = Ds,
which we write as D for brevity. We discretize the ∂u

∂x and ∂u
∂y at the interface using linear profile,
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Figure 1: Domain meshing of two-
dimensional equations.
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Figure 2: Hard-imposition of boundary conditions (BC).
The left side represents the Dirichlet boundary conditions,
the right side represents the Neumann boundary conditions.

i.e., discretize them using central difference. And we use the mean value of the pressure of the
adjacent grid points to the left and right to represent the pressure value pe and pw on the interface.
By processing (3) as described above, we can obtain (4).

Feue − Fwuw + Fnun − Fsus

=∆y(
pW − pE

2
) +D(uE + uW + uN + uS − 4uP )

(4)

The value of velocity ue at the interface e in (4) is shown as (5). The value of uw, un, and us are
similar to ue, that is, take two points in the upwind direction and combine them according to the
coefficients in (5). This is where the second-order upwind difference scheme comes in.

ue =

{
1.5uP − 0.5uW , ue > 0

1.5uE − 0.5uEE , ue < 0
(5)

By bringing (5) into (4), we can replace all the velocities at boundaries in (4) with the velocities at
the grid points, which are the predicted values of PICNN. Note that the velocity at boundary in (5)
vary with its sign. To simplify the equation, we use a compact form as shown in (6).

Feue = (1.5uP − 0.5uW )M(Fe)− (1.5uE − 0.5uEE)M(−Fe)

define : M(F ) = max(F, 0)
(6)

By using the compact form given by (6), we can expand (4) to (7).

(1.5uP − 0.5uW )M(Fe)− (1.5uE − 0.5uEE)M(−Fe)

−(1.5uW − 0.5uWW )M(Fw) + (1.5uP − 0.5uE)M(−Fw)

+(1.5uP − 0.5uS)M(Fn)− (1.5uN − 0.5uNN )M(−Fn)

−(1.5uS − 0.5uSS)M(Fs) + (1.5uP − 0.5uN )M(−Fs)

=∆y(
pW − pE

2
) +D(uE + uW + uN + uS − 4uP )

(7)

Move all terms of (7) to one side and divide it by D, we can obtain the 2nd-order upwind scheme
of the momentum equation in the horizontal direction, as shown in (8), where P∆ = F/D and
δx represents the grid size. P∆ is the Peclet number (Tao, 2001), which represents the relative
magnitude of convection and diffusion. Peclet number can help us analyze the performance of
different discrete schemes.

(1 + 0.5M(P∆e
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0.5(M(P∆w

)uWW +M(−P∆e
)uEE +M(P∆s
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(8)
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The 2nd-order upwind scheme of the momentum equation in the vertical direction (i.e., the second
equation in (1)) is similar to the equation in the horizontal direction and is detailed in A.4. We
discretize the mass equation (i.e., the third equation in (1)) using the central difference scheme
because it does not contain convection terms. The derivation of the discrete scheme of the mass
equation is presented in A.3. And we give the derivation of the central difference scheme in A.5 for
comparison.

3.3 CONSTRUCTION OF LOSS FUNCTION

Equation (8) gives the discrete scheme of the Navier-Stokes equations at grid point P , which is
formed by combining the predicted values at point P and its neighbors. When the predicted value of
PICNN at point P is close to its real value, the value calculated by the left side of (8) should be close
to 0. We set the left side of (8) as the function Fu, and Fu(P ) represents the value of the function
Fu at point P , that is, the degree to which the predicted value of PICNN satisfies the first equation
in the Navier-Stokes equations. Similarly, we set the left side of the discrete scheme of the vertical
direction equation (See equation (20)) to be the function Fv , and the left side of the discrete scheme
of the mass equation (See equation (19)) to be the function Fmass.

Lu =
1

n

∑
Pi∈Ω

Fu(Pi)
2, Lv =

1

n

∑
Pi∈Ω

Fv(Pi)
2, Lmass =

1

n

∑
Pi∈Ω

Fmass(Pi)
2

L = Lu + Lv + Lmass

(9)

The loss function consists of three parts, which respectively represent the degree of satisfaction of
the predicted value to the three equations in the Navier-Stokes equations. For each part, we compute
the F values at all grid points and compute the MSE value, as shown in the first row of (9), where
Pi represents the grid point, Ω represents the definition domain, and n represents the number of grid
points. Because the F(Pi) is compared with 0, we abbreviate (F(Pi)− 0)2 as F(Pi)

2. Finally, we
set the total loss function L to be the sum of the three partial loss functions, as shown in the second
row of (9).

3.4 BOUNDARY ENCODING

The solutions of the steady-state PDEs are determined by both the equations and the boundary
conditions. A Dirichlet boundary condition gives the value of the solution at the boundary, and a
Neumann boundary condition gives the derivative or partial derivative of the solution at the bound-
ary. In this work, we adopt the encoding method of boundary conditions proposed by Gao et al (Gao
et al., 2021). As shown in Fig. 2 (left), Dirichlet boundary conditions can be imposed by applying
constant padding, which is independent of the internal field and does not vary during each iteration.
For Neumann boundary conditions, we can use the finite difference method to calculate the values at
the boundary points from the predicted value of the interior points adjacent to the boundary points.
Because the Neumann boundary conditions depend on the internal field, the padding values are dif-
ferent at each iteration. By hard imposing the boundary conditions, we can guarantee that they are
enforced during training. Therefore, the PICNN model can be trained without any labeled data when
the boundary conditions are determined.

∂v

∂y
= 0

vboundary − vinternal
∆y

= 0

(10)

The first row of (10) is the commonly used fluid boundary condition at the outlet, which is a Neu-
mann boundary condition. By using the FDM, we can obtain the numerical relationship of the
boundary point and its adjacent interior point, as shown in the second row of (10). Further, we can
obtain vboundary = vinternal, which we can use for boundary padding.

3.5 MODEL TRAINING AND PREDICTING

Fig. 3 illustrates our PICNN architecture for solving Navier-Stokes equations. The input of the
model is image-like data of 2 channels, which are composed of x-coordinates and y-coordinates
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respectively. Considering the order of magnitude difference in the values of different variables
predicted by the model (e.g., streamwise velocity component can be orders of magnitude greater
than spanwise velocity component), we use sub-CNNs to predict them separately. We use three
sub-CNNs to predict velocity components and pressure (u, v, and p), each with the same four-layer
convolutional network structure. Each layer of the sub-CNN has trainable filters with the kernel size
of 5× 5, and 2D convolutional operations with padding of 2 and stride of 1.

For the first three convolutional layers, each layer is followed by a Relu activation function and a
batch normalization layer. The last convolutional layer is followed by an upsampling layer to expand
the final output to the desired size. The variables predicted by the sub-CNNs are used to calculate
the loss function after boundary encoding. After minimizing the PDE residuals, the prediction from
the PICNN can approximate the true values.

The predicting process is similar to the training process, taking the coordinate values and passing
them through the already trained sub-CNNs. And the final predictions can be obtained after bound-
ary encoding the outputs of the sub-CNNs.

CNN

CNN

CNN
Input: x,y

u

v

p

Boundary 
Encoding

Loss 
Function

PDE Residuals

Figure 3: The PICNN architecture for Navier-Stokes equations.

4 EXPERIMENTS

We evaluate the accuracy and physical plausibility of our proposed methods on steady-state Navier-
Stokes equations under different scenarios. We use the numerical solutions calculated by COMSOL,
a commercial numerical calculation software, as the groundtruth for comparison. The relative error
metric is defined as Error = ||ũ − u||L2/||ũ||L2, where ũ is the numerical solution and u is the
predicted solution.

Methods. The proposed method (we abbreviate it as SUS-FVM) is compared to the CD-FVM
method, which is a PICNN model with a central difference scheme derived from FVM to build
the loss function. We also compare our proposed method with existing convolutional filter-based
PICNN methods (Gao et al., 2021), including methods based on FDM-derived central difference
scheme (CD-FDM) and second-order upwind difference scheme (SUS-FDM), to demonstrate that
our method achieves higher prediction accuracy by using FVM. In addition, we also compare the
PINN method, which is a MLP model based on automatic differentiation.

Flow through a cavity. We choose the spatial domain size as [0, 1]× [0, 1] and divide it into 50×50
(δx = 0.02) grids evenly. We set the inlet on the left side of the domain and the outlet on the
upper side. The lengths of inlet and outlet are both set to d = 0.3. The remaining boundaries are
set as no-slip walls on which the velocity is 0. The fluid at the inlet is set to a constant velocity
of init u = 1 and the pressure at the outlet is 0. The velocity at the outlet meets the Neumann
boundary condition ∂v

∂y = 0. We select Navier-Stokes equations with Reynolds numbers (Re) of 30,
150, and 300 for evaluation. The Reynolds number is used to describe the flow of fluids, defined
by Re = ρ(init u)d/µ, where ρ = 1, init u = 1, d = 3, and µ = 0.01, 0.002, 0.001 for Re =
30, 150, 300, respectively. We change the Reynolds number by adjusting the viscosity µ of the fluid.
As the Reynolds number increases, the convection becomes stronger.
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Table 1: Relative errors of predicted solutions for the flow through a cavity.
CD-FVM SUS-FVM

Re = 30
pressure 0.0478 0.0675
velocity 0.0318 0.0393

Re = 150
pressure 0.0456 0.0855
velocity 0.0404 0.0389

Re = 300
pressure 0.0967 0.0839
velocity 0.1280 0.0486

Table. 1 shows the relative error of predicted pressure and velocity (
√
u2 + v2) for the Navier-

Stokes equations. We can find that as the Reynolds number increases from Re = 150 to Re = 300,
the relative error of prediction for the CD-FVM increases dramatically, while the relative error of
prediction for the SUS-FVM increases slightly. When the Re is low (Re = 30), CD-FVM has a
higher prediction accuracy. And when the Re is high (Re = 300), the SUS-FVM scheme we use
shows higher accuracy in the prediction of velocity and pressure.

Fig. 4 shows the comparison of solutions between CD-FVM and SUS-FVM for the flow through
a cavity. The fluid velocity is close to 0 in most areas of the domain, and only close to 1 on the
way from the inlet to the outlet. SUS-FVM predicts the velocities well and has a higher prediction
accuracy and better physical plausibility in the regions we care about (inlet, outlet, and pathways
between them). In order to better illustrate the good prediction performance of SUS-FVM in local
areas, we select a section parallel to the outlet (y = 0.96) and a section perpendicular to the outlet
(x = 0.50) to observe the velocity distribution on them, as shown in Fig. 5. From Fig. 5, we
can find that the predicted solutions obtained using SUS-FVM can perfectly capture the changes at
locations with large velocity gradients. Compared to SUS-FVM, the solutions obtained using CD-
FVM exhibit strong oscillations near the outlet, which extend vertically up to the position of y = 0.5
(Fig. 5 (b)). The predicted solutions from x = 0.45 to x = 0.65 in Fig. 5 (a) more clearly show
the difference between the solutions obtained using CD-FVM and the real values. In practice, we
cannot tolerate the oscillating solutions, and the SUS-FVM scheme we use effectively reduces the
oscillation of the predicted solutions, making PICNN’s prediction of the Navier-Stokes equations
reliable.
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Figure 4: Comparison of solutions between CD-
FVM and SUS-FVM for flow through a cavity. (Re
= 300)
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Figure 5: Comparison of velocity accuracy
on section y = 0.96 and section x = 0.50.
(Re = 300)

Advantage of conservative schemes. Both CD-FDM and SUS-FDM use discrete schemes derived
from non-conservative equations. And PINN also use the non-conservative equations to construct
the loss function. The method we proposed and the CD-FVM use the discrete schemes derived from
conservative equations. All the schemes are tested on dataset Re = 30 and Re = 300. From Table.
2 we can find that the scheme derived from the conservative equations gives better predictions on
both pressure and velocity than those derived from or using the non-conservative equations. When
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Re = 30, the relative errors for CD-FDM and SUS-FDM are an order of magnitude larger than
those for CD-FVM and SUS-FVM, respectively. When Re = 300, the CD-FDM and SUS-FDM
methods even diverse. And in both cases, the prediction accuracy of PINN is lower than SUS-FVM.
The experimental results illustrate the advantages of deriving discrete schemes with conservation
properties in prediction accuracy.

Table 2: Relative errors of predicted solutions for conservative and non-conservative schemes of the
Navier-Stokes equations. Dash “-” means divergence and error cannot be calculated.

CD-FVM CD-FDM SUS-FVM SUS-FDM PINN

Re = 30
pressure 0.0478 0.1392 0.0675 0.7760 0.1178
velocity 0.0318 0.1078 0.0393 0.3281 0.2734

Re = 300
pressure 0.0967 - 0.0839 - 0.2021
velocity 0.1280 - 0.0486 - 0.3084

Convective heat transfer. Compared with the Navier-Stokes equations, the convective heat transfer
problems add a temperature equation, as shown in (11), where T represents the temperature, Cp rep-
resents the heat capacity at constant pressure, k represents the thermal conductivity and ρ represents
the density of the medium. We set the inlet of the fluid to the left side of the domain and the outlet
to the right side. The velocities u and v are calculated by commercial software on the Navier-Stokes
equations with Re = 500. By varying the value of thermal conductivity k, we obtain different
datasets. For temperature, we choose the Dirichlet boundary conditions and set the temperature of
the left wall to 293.15 and the temperature of the remaining walls to 333.15.

∂(ρCpuT )

∂x
+

∂(ρCpvT )

∂y
=

∂

∂x
(k

∂T

∂x
) +

∂

∂y
(k

∂T

∂y
) (11)

Table. 3 shows the relative errors of predicted temperature for the convective heat transfer prob-
lems. Since the maximum velocity, in this case, is around 1, we can infer that when k = 10 (Data1),
the grid Peclet number P∆ = 2. As k gradually decreases to 0.1 (Data2 to Data4), P∆ gradually
increases to 200. As P∆ increases, the relative error of the prediction of the CD-FVM increases
dramatically, while the relative error of the SUS-FVM increases slowly, which is an order of mag-
nitude smaller than that of the CD-FVM. Using Data3 as an example, as shown in Fig. 6, we can
see that using CD-FVM for prediction yields solutions with strong oscillations near the outlet. We
select a section perpendicular to the outlet (y = 0.64) in Fig. 6 to further observe the temperature
distribution on it, as shown in Fig. 7. The strongly oscillating solutions obtained using CD-FVM
completely lose the physical plausibility, while the solutions obtained using SUS-FVM fit the real
solutions precisely.

Lid-driven cavity flow. Lid-driven cavity flow is a common benchmarking case in computational
fluid dynamics. We use it to show the performance of our proposed method at high Reynolds num-
bers. We set the horizontal movement speed of the lip (upper boundary of the domain) to 1, and
set the other walls to be no-slip walls. By adjusting the viscosity µ, we obtained three datasets with
Reynolds numbers of 100, 500, and 1000, respectively.

As shown in Table. 4, SUS-FVM outperforms CD-FVM in prediction on all three datasets. When
the Reynolds number is low (Re = 100), the vortex in the cavity is not obvious, which is shown in
Fig. 8, and both CD-FVM and SUS-FVM perform well in velocity prediction. When the Reynolds
number is high (Re = 500, 1000), the vortex in the cavity is obvious, which makes the prediction

Table 3: Relative errors of predicted solutions (T ) for the convective heat transfer problems.
(Re = 500, ρ = 1, Cp = 1000)

CD-FVM SUS-FVM

Data1: k = 10 0.0023 0.0027
Data2: k = 1 0.0196 0.0042
Data3: k = 0.5 0.0338 0.0076
Data4: k = 0.1 0.0922 0.0293
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Figure 6: Comparison of solution accuracy between
SUS-FVM and CD-FVM schemes for the convective
heat transfer problems. (Data3)
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Figure 7: Comparison of solution accu-
racy on section y = 0.64 between SUS-
FVM and CD-FVM schemes. (Data3)

Table 4: Relative errors of predicted solutions for the lid-driven cavity flow.
CD-FVM SUS-FVM

Re = 100
pressure 0.4277 0.3986
velocity 0.1082 0.1074

Re = 500
pressure 0.2873 0.2125
velocity 0.1644 0.1317

Re = 1000
pressure 0.3737 0.3395
velocity 0.2936 0.2768

performance of CD-FVM and SUS-FVM for velocity decrease. But it can be found that the predic-
tion accuracy of SUS-FVM decreases more slowly than CD-FVM. The results show that our pro-
posed method is still effective in predicting the Navier-Stokes equations in the case of high Reynolds
numbers and outperforms the existing central difference based methods.
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Figure 8: Comparison of predicted and true velocities for the lid-driven cavity flow.

5 CONCLUSION

In this study, we focus on solving Navier-Stokes equations using PICNN. Aiming at the problem that
PICNN will generate oscillating predictions when solving the Navier-Stokes equations, we propose
to use the FVM-based second order upwind difference scheme to construct the loss function. We
give formulation derivations and conduct experiments on the Navier-Stokes equations under differ-
ent scenarios to demonstrate that our proposed method effectively improves the physical plausibility
and accuracy of the predictions.
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A APPENDIX

A.1 LIMITATIONS OF CENTRAL DIFFERENCE SCHEME

When using the central difference scheme to discretize the convection-diffusion equation, an oscil-
lating solution may arise due to an excessively large space step or an excessively large flow velocity.
This phenomenon is also called the instability of the discretization scheme. Instability is an inherent
property of a discrete scheme, and it is affected by multiple factors, including fluid properties, flow
velocity, and grid size. We use a one-dimensional steady-state convection-diffusion equation (12)
with no source to illustrate the cause of the instability and its negative effects.

d(ρuϕ)

dx
=

d

dx
(Γ

dϕ

dx
), x ∈ [0, L] (12)

We divide the domain [0, L] into grids, which are actually line segments. Then we use the central
difference scheme to discretize the convection term and the diffusion term, respectively, as shown in
(14). For simplicity, we integrate various factors that affect stability as the grid Peclet number P∆

(Tao, 2001), as shown in (13), where δx represents the grid size. By combining (14) and (12), we
can obtain a central difference based discrete equation (15), where i− 1 and i+ 1 represent the left
and right neighbors of i, respectively.

P∆ =
ρuδx

Γ
(13)

dϕ

dx
=

ϕi+1 − ϕi−1

2δx
d

dx
(
dϕ

dx
) =

ϕi+1 + ϕi−1 − 2ϕi

(δx)2

(14)

ϕi =
(1− 0.5P∆)ϕi+1 + (1 + 0.5P∆)ϕi−1

2
(15)

From (15) we can prove that ϕi is less than the values of its two neighbors if 0 < ϕi−1 < ϕi+1

and P∆ > 2, which is not possible for the case without source. The coefficients of ϕi−1 and ϕi+1

represent the influence of the ϕ at the adjacent point on the point i through convection and diffusion.
When P∆ > 2, the coefficient of ϕi+1 is less than zero, causing the influence of ϕi+1 to ϕi as
negative, which is physically meaningless.

The stability of the central difference scheme is affected by P∆ so it is called conditional stability.
The conditional stability, as an inherent property of the scheme, can lead to oscillations of the so-
lutions in specific cases in both numerical and deep learning methods. The cause of the conditional
stability is the introduction of downstream information when discretizing the convection term using
central difference, which introduces a negative term in the coefficient of ϕi+1. The Navier-Stokes
equations are a special form of the convection-diffusion equation, so oscillations also occur when it
is discretized using the central difference scheme.

A.2 LIMITATIONS OF EXISTING FDM-BASED SCHEME

Conservativeness is the guarantee of obtaining physically meaningful solutions, which is described
as follows (Tao, 2001):

If a discrete equation is summed in any finite space of the definition domain, and the obtained
expression satisfies the relation of conservation of physical quantities in this region, then the discrete
scheme has conservativeness property.

Discrete equations with conservativeness can produce more accurate and more physically plausible
solutions (Jaluria & Torrance, 2017). To ensure the conservativeness of discrete equations, the
following two conditions need to be satisfied. 1) The governing equations from which discrete
equations are derived are conservative. 2) Each physical quantity (ϕ and physical properties) and
the first derivative of ϕ are continuous on the same interface.

The existing FDM-based scheme violates the first condition to ensure conservativeness. For in-
stance, the first equation in (16) is a conservative governing equation for the one-dimensional con-
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vection problem, while the second is a non-conservative governing equation. The FDM-based dis-
crete schemes derived from the second equation in (16) are widely used in the PICNN models to
calculate the parameters of the convolutional filters. However, the existing FDM-based method can-
not deal with the first equation in (16), and thus cannot obtain discrete equations with conservation
properties.

∂ϕ

∂t
+

∂(uϕ)

∂x
= 0

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0

(16)

A.3 MASS EQUATION DISCRETIZATION

For the third equation in (1), we integrate it over the control volume of P and obtain (17).∫ n

s

∫ e

w

[
∂(ρu)

∂x
+

∂(ρv)

∂y
]dxdy = 0 (17)

We use the mean value of the u of the adjacent grid points to the left and right to represent ue and
uw. And we use the mean value of the v of the adjacent grid points to the up and down to represent
vn and vs. Finally, we can obtain the discrete scheme (18) of the third equation in Navier-Stokes
equations.

ρ∆y(
uE − uW

2
) + ρ∆x(

vN − vS
2

) = 0 (18)

To keep the calculated value on the left side of (18) on the same order of magnitude as (8), we divide
(18) by D and get (19).

ρδx

µ
(
uE − uW

2
+

vN − vS
2

) = 0 (19)

A.4 2ND-ORDER UPWIND SCHEME OF THE MOMENTUM EQUATION IN THE VERTICAL
DIRECTION

Replace the horizontal velocity u in (8) to the vertical velocity v and we can get the 2nd-order upwind
scheme of the momentum equation in the vertical direction, as shown in (20). The derivation process
is exactly the same as shown in 3.2.

(1 + 0.5M(P∆e
) + 1.5M(P∆w

))vW + (1 + 1.5M(−P∆e
) + 0.5M(−P∆w

))vE+

(1 + 0.5M(P∆n
) + 1.5M(P∆s

))vS + (1 + 1.5M(−P∆n
) + 0.5M(−P∆s

))vN−
0.5(M(P∆w)vWW +M(−P∆e)vEE +M(P∆s)vSS +M(−P∆n)vNN )−

(1.5(M(P∆e
) +M(−P∆w

) +M(P∆n
) +M(−P∆s

)) + 4)vP +
(pS − pN )δx

2µ
= 0

(20)

A.5 DERIVATION OF CENTRAL DIFFERENCE SCHEME

The difference between the central difference scheme and the second-order upwind difference
scheme lies in the value of the velocity at the boundary. The central difference, as the name im-
plies, takes the velocity at the boundary as the average value of the velocity of its adjacent grid
points. Equation (21) shows the values of the velocities at the four boundaries of the control volume
at point P . Bringing (21) into (4) and dividing it by D, we can organize the equation as shown in
(22), where A(|P∆|) is given by (23). 

ue =
uP + uE

2

uw =
uP + uW

2

un =
uP + uN

2

us =
uP + uS

2

(21)

13



Under review as a conference paper at ICLR 2023

aPuP = aEuE + aWuW + aNuN + aSuS +
(pW − pE)δx

2µ

aE = A(|P∆e
|) +M(−P∆e

)

aW = A(|P∆w |) +M(P∆w)

aN = A(|P∆n
|) +M(−P∆n

)

aS = A(|P∆s
|) +M(P∆s

)

aP = aE + aW + aN + aS + (P∆e − P∆w) + (P∆n − P∆s)

(22)

A(|P∆|) =
{
1, FUS

1− 0.5|P∆|, CD
(23)

Equation (22) is actually a general discrete scheme controlled by A(|P∆|). By modifying the value
of A(|P∆|), we can get the central difference scheme (CD), the first-order upwind difference scheme
(FUS), the power-law scheme (PLS), etc. In this work, we use the central difference scheme as the
benchmark, that is, bring A(|P∆|) = 1 − 0.5|P∆| into (22) to obtain the central difference discrete
scheme.

aP vP = aEvE + aW vW + aNvN + aSvS +
(pS − pN )δx

2µ
(24)

The central difference scheme of the momentum equation in the vertical direction (i.e., the second
equation in (1)) is the same as the equation in the horizontal direction and is shown in (24), where
the coefficients are the same as those in (22). And the central difference scheme of the mass equation
is the same as (19).

A.6 EXPERIMENT ON 1D CONVECTION-DIFFUSION EQUATION

In A.1 and A.2, we analyzed the limitations of central difference scheme using (12) as an example.
We use experimental results to verify the results of the analysis. We select the domain interval as
[0, 2], and specify the boundary conditions ϕ0 = 50 and ϕ2 = 55. We divide the domain into 20
points evenly and set P∆ = 5 to better demonstrate the difference between the central difference
scheme (CD) and the 1st-order upwind difference scheme (FUS).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

48

49

50

51

52

53

54

55 Truth
CD
FUS

Figure 9: Comparison of solution accuracy between FUS-FVM and CD-FVM schemes for the one-
dimensional steady-state convection-diffusion equation.
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Table 5: Parameter settings for the 2D convection-diffusion equations. P∆u = ρuδx
Γ ,P∆v = ρvδx

Γ .
Dirichlet boundaries: ϕ = 10, 7, 5, 1 for up, down, left, and right boundary, respectively.

ρu
Γ

ρv
Γ δx P∆u P∆v

Data1 100 200 0.01 1 2
Data2 100 200 0.02 2 4
Data3 1000 2000 0.01 10 20
Data4 10000 20000 0.01 100 200

Table 6: Relative errors of predicted solutions (ϕ) for the 2D convection-diffusion equations.
CD-FVM FUS-FVM

Data1 0.0156 0.0240
Data2 0.0435 0.0363
Data3 0.1737 0.0368
Data4 0.3445 0.0318

As shown in Fig. 9, near the right boundary of the domain, the predicted solutions using the central
difference scheme exhibit strong oscillations, which are physically unreasonable when the velocity u
is greater than zero. Although the predicted solutions using the 1st-order upwind difference scheme
have large prediction errors near the right boundary, they still conform to the laws of physics. The
experimental results show the necessity of using the upwind scheme with higher-order truncation
errors when solving equations with convection terms (i.e., second-order upwind difference scheme).
That is, to improve the prediction accuracy while ensuring the physical plausibility.

A.7 EXPERIMENT ON 2D CONVECTION-DIFFUSION EQUATIONS

We evaluate our proposed method on the steady-state two-dimensional convection-diffusion equa-
tions without source, whose conserved form is defined as (25). We choose the spatial domain size
as [0, 1]× [0, 1] and divide it into 50× 50 (δx = 0.02) or 100× 100 (δx = 0.01) grids evenly. We
set the velocity components in the horizontal and vertical directions as constants, and combine them
with physical properties to obtain ρu

Γ and ρv
Γ , as shown in Table. 5. By adjusting the size of the grids

and ρu
Γ /ρv

Γ , we can get different values of P∆u and P∆v . We choose Dirichlet boundary conditions
and give different values of ϕ at each of the four boundaries. The central difference scheme and the
first-order upwind scheme derived using FVM are used for comparison with the numerical results.

∂(ρuϕ)

∂x
+

∂(ρvϕ)

∂y
=

∂

∂x
(Γ

∂ϕ

∂x
) +

∂

∂y
(Γ

∂ϕ

∂y
) (25)

From the Table. 6, we can find that when the value of P∆ in the horizontal and vertical directions
is less than or equal to 2 (Data1), the prediction accuracy of the central difference scheme is higher
than that of the first-order upwind scheme. Compared with Data1, Data2 doubles the grid size,
making P∆v > 2, which leads to an increase in the prediction error of the central difference scheme.
By changing the value of ρu

Γ and ρv
Γ , the value of P∆ is further increased, which is much larger

than 2 (Data3 and Data4). We can see that the prediction error of the central difference scheme
increases significantly as P∆ increases, while the error of the first-order upwind difference scheme
remains basically the same. Fig. 10 visually shows the predictions of the model within the domain
of definition. As P∆ increases, the central difference scheme gives completely wrong predictions,
while the first-order upwind scheme gives accurate predictions.
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Figure 10: Comparison of solution accuracy between FUS-FVM and CD-FVM schemes for the
two-dimensional steady-state convection-diffusion equations.
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