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ABSTRACT

Retrieval-Augmented Generation (RAG) systems often rely on information re-
trieved from heterogeneous sources to support generation tasks. However, existing
approaches typically either aggregate all sources uniformly or statically select a
single source, neglecting semantic complementarity. Moreover, they commonly
employ re-ranking models to obtain Top-k documents, without accounting for
actual contribution to generation objective. In this paper, we propose GRO-RAG,
a training-free, gradient-aware re-ranking framework for multi-source RAG. Our
method performs Top-k document selection by reading gradients from the language
model, estimating each document’s contribution to the generation loss through
a single backward pass. This enables re-ranking not by heuristic relevance, but
by direct feedback from LLM’s generation objective. At the source level, we
incorporate inter-source redundancy and query relevance to select source combi-
nation prior to re-ranking. Theoretically, we prove that this gradient-based Top-k
selection approximates the optimal subset minimizing the generation loss, and
aligns with minimizing the leave-one-out loss upper bound. Experiments across
multi-source QA and open-domain generation tasks demonstrate consistent im-
provements in generation quality, highlighting the importance of generation-aware
retrieval selection in multi-source RAG.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) has emerged as a powerful paradigm
for enhancing large language models (LLMs) by grounding their outputs in external knowledge. A
typical RAG pipeline (Chen et al., 2017; Das et al., 2019) first retrieves a set of supporting documents
from a corpus, and then conditions the generation process on both the query and the retrieved context.
In practice, especially in open-domain and multi-hop settings, information is often distributed across
multiple heterogeneous sources such as encyclopedias, web documents (Komeili et al., 2022; Dinan
et al., 2019), or community forums. This gives rise to the challenge of multi-source retrieval, where
the system must identify not only relevant documents, but also determine which sources to trust,
combine, or ignore (Yan et al., 2024; Yao et al., 2023; Wang et al., 2024; Zhao et al., 2024a).

By integrating multiple retrieval sources, Multi-Source RAG mitigates the capability ceiling limitation
inherent in Single-Source RAG. Recent studies (Yan et al., 2024; Yao et al., 2023; Wang et al., 2024;
Zhao et al., 2024a) demonstrate that leveraging multiple retrieval sources dynamically and controllably
can improve retrieval accuracy, thereby enabling the generation of more comprehensive and high-
quality knowledge-grounded responses. For instance, ReAct (Yao et al., 2023) introduces an iterative
multi-source retrieval approach, whereas UniMS-RAG (Wang et al., 2024) uniquely integrates source
selection, retrieval, and generation into a unified model enhanced with action and evaluation tokens,
enabling the language model to dynamically invoke and filter sources based on real-time demands.
Additionally, PrefRAG (Zhao et al., 2024a) advances RAG further by employing a preference-
driven adaptive retrieval mechanism coupled with self-reflection, supporting in-depth and controlled
exploration across diverse retrieval sources. Despite these advances, most existing RAGs treat
source-level retrieval in a simplistic manner—either aggregating all sources uniformly or statically
selecting a single source—thereby neglecting the semantic diversity and redundancy inherent across
sources. Furthermore, even after document retrieval, many systems (e.g., BM25 (Robertson et al.,
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Figure 1: Comparison between vanilla RAG and our proposed GRO-RAG. Vanilla RAG pipelines
retrieve documents from certain source and rank them based on query-document relevance. GRO-
RAG selects a subset of sources that jointly balance query relevance and semantic diversity. And it
re-ranks retrieved documents using a single backward pass over the generation loss, estimating each
document’s contribution via the alignment between its representation and the loss gradient.

2009)) rely on re-ranking models that score documents solely based on retrieval-level signals such
as query-document similarity, without considering their actual utility to the downstream generation
objective. This creates a mismatch between what is retrieved and what is ultimately needed for
high-quality generation.

To address these limitations, we propose GRO-RAG, a training-free optimization framework tailored
for Multi-source Retrieval-Augmented Generation (MS-RAG) (Yan et al., 2024; Yao et al., 2023;
Wang et al., 2024; Zhao et al., 2024a). GRO-RAG introduces a principled mechanism to dynamically
select both "which source combinations to retrieve from" and "which documents to use as context".
Firstly, we select source combinations by optimizing a relevance-redundancy tradeoff that jointly
considers query relevance and inter-source semantic overlap, rather than uniformly aggregating or
statically selecting sources. This allows GRO-RAG to identify a diverse yet relevant set of sources that
provide complementary information, improving both recall and retrieval quality at the source level.
Subsequently, we introduce a gradient-aware document re-ranking strategy that directly leverages
the feedback from large language model. Specifically, after retrieving candidate documents from
the selected sources, we perform a forward pass to compute the generation loss and then a single
backward pass to obtain the gradient of this loss with respect to the input representations. For each
document, we compute an importance score as the inner product between its hidden representation and
the loss gradient. This score reflects how much the document contributes to reducing the generation
loss. Selecting the Top-k documents based on these scores enables a posterior-aware re-ranking
process that is tightly aligned with the final generation objective, rather than heuristic query-document
similarity. GRO-RAG is fully training-free and compatible with frozen language models. It introduces
no additional model parameters or training phases, and requires only one forward-backward pass per
query. Theoretically, we show that the gradient-based Top-k selection approximates the solution to
an underlying utility maximization problem and aligns with minimizing a leave-one-out loss upper
bound.

Our main contributions are summarized as follows:

• We introduce a novel, training-free approach that estimates each document’s contribution to
the generation loss using a single backward pass, enabling posterior-aware Top-k selection
based on model feedback.

• We formulate source selection as a relevance-redundancy tradeoff over source subsets, en-
abling dynamic source combination and improving retrieval diversity and complementarity.

• We theoretically show that our gradient-based selection approximates an underlying utility
maximization objective and aligns with minimizing a leave-one-out loss upper bound. Exten-
sive experiments on multi-source QA and open-domain generation benchmarks demonstrate
consistent improvements over strong retrieval and re-ranking baselines.
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2 RELATED WORKS

2.1 RETRIEVAL-AUGMENTED GENERATION

Retrieval-augmented generation (RAG) is increasingly recognized as an effective method to mitigate
several limitations of large language models (LLMs), notably hallucinations (Shuster et al., 2021),
factuality issues (Wang et al., 2023), and the lack of long-term memory (Xu et al., 2022). Following
the established "Retriever-and-Reader" paradigm (Chen et al., 2017; Das et al., 2019), RAG first
employs an external retriever to select relevant textual information from knowledge sources(e.g.,
Wikipedia). These retrieved passages subsequently serve as external context for a reader/generator,
enabling the model to generate knowledge grounded response (Lewis et al., 2020). Initial retrieval
methods (e.g., BM25 (Robertson et al., 2009)) used sparse retriever for relevance scoring, but often
fail to capture deeper semantic information (Guo et al., 2022). To overcome this limitation, language-
model-based dense retrieval approaches have been developed, encoding documents and queries
into dense vectors to effectively represent the semantic feature of text content (Karpukhin et al.,
2020; Li et al., 2023; Bruch et al., 2023). Recently, researchers have explored leveraging LLMs as
retrievers (Wang et al., 2024; Asai et al., 2023; Jiang et al., 2023; Yu et al., 2024; Zhao et al., 2024a).
For instance, Self-RAG introduces reflection tokens, enabling the model to dynamically retrieve
supporting passages and self-correct its outputs (Asai et al., 2023).

2.2 MULTI-SOURCE RAG

Based on the retrieval sources, recent advances in retrieval-augmented generation (RAG) can be
categorized into Single-Source RAG (SS-RAG) (Asai et al., 2023; Jiang et al., 2023; Yu et al., 2024)
and Multi-Source RAG (MS-RAG). SS-RAG methods inherently limit RAG system performance
due to reliance on a single knowledge source. MS-RAG addresses this limitation by integrating
heterogeneous knowledge sources, including specialized databases, structured archives, and the open
web (Yan et al., 2024). Common MS-RAG implementations perform sequential or parallel retrieval
across multiple indices. For example, CRAG treats the web as a fallback source (Yan et al., 2024),
while ReAct coordinates retrieval and reasoning within an agent-based framework (Yao et al., 2023).
However, naively concatenating evidence from diverse sources can enlarge context windows and
introduce noise or conflicting information, thus necessitating adaptive source selection (Wang et al.,
2024; Zhao et al., 2024a). UniMS-RAG (Wang et al., 2024) addresses these issues by unifying source
selection, retrieval, and generation into a single sequence-to-sequence model. It introduces specific
action and evaluation tokens, allowing the LLM to dynamically invoke and filter sources as needed.
PrefRAG (Zhao et al., 2024a) further advances MS-RAG with a preference-driven adaptive retrieval
approach that employs self-reflection, enabling more in-depth and controllable exploration across
multiple retrieval sources.

3 METHOD

3.1 TASK DEFINITION AND NOTATION

Let Q be the space of user queries and A∗ the space of target answers. We are given a query q ∈ Q
and seek to generate an answer a∗ with the assistance of external evidence. Evidence is organized in
a set of heterogeneous sources S = {s1, . . . , s|S|}. Each source s ∈ S exposes a (possibly dynamic)
document collection Ds = {ds,1, . . . , ds,|Ds|}, where a document d is a sequence of tokens from the
vocabulary V . Our goal is to choose both (i) a subset of sources A⋆ ⊆ S and (ii) a size-k document
set D⋆(q)⊆

⋃
s∈A⋆ Ds that minimizes the generation loss. A frozen Transformer (Vaswani et al.,

2017) language model Mθ receives the query q together with a small context set D∗ and produces a
best answer a∗. Because enumerating all subsets is infeasible, the following two subsections describe
a tractable, training-free procedure—first selecting sources, then ranking documents with gradient
feedback—that approximates the optimum of generation objective.

3.2 SOURCE COMBINATION SELECTION

Suppose a geography query asks “Which European river flows through both Vienna and Bratislava?”.
A news feed, Wikipedia, and a travel blog may each contain statements answering the question. If we
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Figure 2: Model architecture of GRO-RAG

indiscriminately merge all three sources the model will read many redundant sentences about the
Danube, wasting context budget. Conversely, if we keep only Wikipedia, we indeed cover the Danube,
but we throw away the travel-blog anecdote that might help the model answer follow-up questions
(e.g. travel time, boat service). Our goal is therefore to retain sources that bring new information
while discarding those that merely repeat what has already been covered.

Selecting which source combinations to retrieve from is crucial in multi-source RAG (Wang et al.,
2024; Zhao et al., 2024a): querying too many sources balloons the candidate pool with near-duplicates,
whereas restricting to a single source squanders complementary evidence that may be indispensable
for multi-hop reasoning. We formalize this decision as a small yet expressive relevance–redundancy
optimization and solve it with a greedy algorithm that enjoys a provable approximation ratio.

Our first step is to choose a subset of sources A ⊆ S with the given query q. For each source s∈S we
invoke a fixed recall engine1 and obtain the top-m candidates Cs(q) = {ds,1, . . . , ds,m}. q = genc(q)
is the query embedding of q. A source representation s ∈ Rd is formed by averaging the frozen
document embeddings2 of its candidates:

s =
1

m

m∑
j=1

ds,j , ds,j = genc(ds,j). (1)

We define a scoring function f : 2S → R over subsets of sources for a candidate subset A⊆S as:

f(A;λ) =
∑
s∈A

cos
(
q, s

)
− λ ∗

∑
s,s′∈A,s<s′

cos
(
s, s′

)
, (2)

where the first term measures query relevance and the second quantifies inter-source redundancy,
and λ∈ (0, 1) trades off relevance and redundancy. The relevance term favors sources containing
content aligned with the query semantics; the redundancy term penalizes sources whose content
is highly similar to one another. It can be read as reward the marginally informative, punish the
already-covered.

We now turn to the sub-modularity of equation equation 2. The first term is modular by construction,
as it is a sum of independent contributions. The redundancy term is pairwise and symmetric, and under
cosine similarity, it induces a sub-modular structure due to increasing overlap with more sources.
Since the sum of a modular and a sub-modular function remains sub-modular, the full objective f is
submodular (Carbonell & Goldstein, 1998) when λ is small. This structure allows us to employ a
greedy algorithm for subset selection with a provable approximation guarantee. We initialize A0 = ∅.
For t = 0, . . . , |S| − 1 we compute the marginal gain ∆t(s) = f(At∪{s};λ)− f(At;λ) for every

1Any sparse or dense retriever is admissible; the choice does not affect downstream optimization.
2We use sentence-BERT; other encoders yield similar behavior.
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s∈S\At and set At+1 = At∪{argmaxs ∆t(s)}. The loop stops once |At+1| = |S| or no positive
gain exists.

We denote the final set by Agreedy, classical results on submodular (Carbonell & Goldstein, 1998)
maximization imply the following guarantee:

f
(
Agreedy;λ

)
≥ (1− 1/e) max

A⊆S, |A|≤|S|
f(A;λ). (3)

The union of their candidate sets C⋆(q) =
⋃

s∈Agreedy
Cs(q) serves as the input to the gradient-aware

re-ranking stage. This two-level selection retains complementary evidence while sharply reducing
cross-source redundancy.

3.3 GRADIENT-AWARE RE-RANKING

Our source selection stage has already removed most irrelevant or duplicated corpora, leaving a mixed
candidate pool C⋆(q) =

⋃
s∈A⋆ Cs(q) = {d1, ..., dn}. The final bottleneck is the frozen language

model’s context limit: it can absorb at most k passages. The usual remedy is to train a cross-encoder
or to reuse query–document similarity scores, but both approaches ignore how the generator itself
reacts to each passage. GRO-RAG therefore lets the LLM “vote”: we ask, “If I boost passage i, will
my loss decrease?”—and we obtain the answer from a single forward–backward pass.

For each candidate document di ∈ C⋆(q) we already possess the frozen contextual embedding hi.
Selecting exactly k passages is combinatorial. We relax the binary choice (keep / drop) to a soft
non-negative weight vector π ∈∆n (πi ∈ [0, 1], ∥π∥1 = 1), we write the mixture representation
h̄(π) =

∑n
i=1 πihi. Next, we construct a soft prompt ⟨q, h̄(π)⟩, and compute the generation loss

L(π) = L(a∗|q, h̄(π)) with respect to the reference answer a∗. Although this relaxation converts
the discrete Top-k selection into a continuous problem, the resulting loss function L(·) remains
non-convex and analytically intractable due to the non-linear behavior of the generator. To obtain
a tractable approximation, we apply a first-order Taylor expansion around the uniform mixture
π̄ = (1/n, . . . , 1/n). This yields:

L(π) ≈ L(π̄) + ⟨∇h̄L, h̄(π)− h̄(π̄)⟩ (4)

Considering h̄(π) =
∑n

i=1 πihi and h̄(π̄) = 1
n

∑n
i=1 hi, we obtain:

L(π) ≈ L(π̄) +
n∑

i=1

πi⟨∇h̄L,hi⟩ (5)

Minimizing the loss is therefore approximately equivalent to minimizing a linear weighted sum over
document scores. Since π is constrained to lie in a k-sparse simplex, the approximate optimal solution
is obtained by selecting the k documents with the largest negative inner products ⟨hi,−∇h̄L⟩. We
define the ranking score of document di accordingly:

ϕi = ⟨hi, −∇h̄L⟩ . (6)

This value estimates the sensitivity of the generation loss to the presence of di in the prompt, and
serves as a posterior-aware signal for document selection. The larger ϕi, the more sharply the loss
would drop if document i received additional weight. We keep the k documents with the highest ϕi,
set all other weights to zero, and re-normalize. The selected passages D⋆(q) are finally pre-pended to
the query. In practice we simply concatenate their raw text, but one could alternatively keep the mixed
vector h̄ to save context tokens. That is, we only need one forward-backward pass to sort the candidate
documents. This strategy requires no additional training, and leverages LLM-internal gradients to
estimate document utility with respect to the actual generation objective, not just similarity.

A natural way to measure how much a single document di actually helps the generator is to remove
it from the context, run the model again, and observe how much the loss increases. We call this
leave-one-out (LOO) loss. Formally, starting from the uniform mixture π̄ = ( 1n , . . . ,

1
n ) over all n

candidates, we define
Lloo(di) = L(π̄)︸ ︷︷ ︸

all documents

− L
(
π̄ − 1

nei
)︸ ︷︷ ︸

document i removed

, (7)

where ei is the i-th basis vector. Computing this quantity for every passage would require n+1
forward passes—prohibitively slow. Below we show that a single backward pass yields a gradient
score ϕi that upper-bounds LOO loss, thereby providing a safe ranking surrogate.
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Proposition 3.1 (Gradient inner product upper-bounds leave-one-out) Let g = ∇h̄L(π̄) and
ϕi = ⟨hi,−g⟩. If the one-dimensional function ℓi(t) = L

(
π̄ + t ei

)
is convex on the interval

t ∈ [− 1
n , ε] for some ε > 0, then for every documents di

Lloo(di) ≤ −ϕi.

Thus ϕi upper-bounds the true marginal utility, so ranking by ϕ is guaranteed to prioritize passages
whose absence would hurt the loss the most.

The gradient-based scoring described above is a single-step forward-backward pass: we linearize the
loss landscape around a uniform mixture π̄ = ( 1n , ...,

1
n ) and select the top-k documents accordingly.

Moreover, we can extend this process into a multi-step optimization routine. At each iteration t,
we maintain a soft weight vector πt, use it to form the context h̄(πt) =

∑
i π

t
ihi, and compute

the generation loss and its gradient via a forward–backward pass. This yields the descent direction
gt = ∇h̄L(h̄(πt)), which we use to update πt via gradient descent. The updated weights are then
projected back onto the k-sparse simplex to maintain feasibility. In effect, this defines an iterative
refinement process over document mixtures, allowing the model itself to guide the selection toward
increasingly informative subsets. Each iteration re-evaluates the loss under the current document
mixture and refines the weights accordingly—no new model parameters are introduced, and the only
computation is an additional forward-backward pass of the frozen LLM.

Proposition 3.2 (Linear convergence of the iterative loop) Let L(π) = L
(
a∗ | q, h̄(π)

)
denote

the generation loss evaluated at h̄(π) =
∑n

i=1 πihi. Assume µ-strong convexity and L-smoothness
of L in the sub-space span{h1, . . . ,hn}. Starting from the uniform vector π̄ = (1/n, . . . , 1/n),
repeat

π̃ t+1 = πt − η∇πL(πt), πt+1 = Π∆n−1

(
π̃ t+1

)
, 0 < η ≤ 1/L,

where Π∆n−1 projects onto the probability simplex ∆n−1 = {π≥0, ∥π∥1 = 1}. Then for all t ≥ 0:
L
(
πt+1

)
− L⋆ ≤ (1− ηµ)

[
L
(
πt
)
− L⋆

]
,

with optimal L⋆ = minπ∈∆n−1 L(π). Hence each additional iteration contracts the sub-optimality
by the factor (1 − ηµ) and therefore never worsens the one-step solution. A proof is provided in
Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset Following previous works (Yao et al., 2023; Trivedi et al., 2022a; Zhao et al., 2024b), We
evaluate our method on four widely used question answering benchmarks that span both open-domain
and multi-hop reasoning settings: HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al.,
2020), and MuSiQue (Trivedi et al., 2022b). These datasets each provide a set of ground-truth
documents (typically 10-20) for each question as well as ground-truth answers.

Metrics We assess model performance from both retrieval and generation perspectives. For retrieval
evaluation, we use nDCG@k (Normalized Discounted Cumulative Gain) (Burges et al., 2005),
which measures the ranking quality of selected documents based on graded relevance and position. A
higher nDCG indicates that relevant documents are ranked closer to the top. Ground-truth relevance
annotations—where available—are used as supervision. For generation evaluation, we adopt two
standard QA metrics (Gao et al., 2023): Exact Match (EM), which measures the proportion of
generated answers that match ground-truth strings exactly, and F1 score, which captures the overlap
between predicted and reference answers based on precision and recall. Retrieval metrics are
computed over the Top-k ranked documents, while generation metrics are reported over answers
produced by the language model conditioned on the selected document set. Here, we set k = 10.

Retrieval settings To support multi-source retrieval, we leverage both local corpora and web
sources. Specifically, for web search, we employ the DuckDuckGo API—a publicly available
interface—to access large-scale online information. We compare with three representative retrievers:
BM25 (Robertson et al., 2009), a sparse keyword-based method; E5-base (Wang et al., 2022), a dense
dual-encoder trained via contrastive learning; and BGE-M3 (Chen et al., 2024), a dense multilingual
and multitask-aligned retriever.
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Table 1: Results (%) of GRO-RAG and baselines on three datasets. "Bold" and "Underlined" denote
the highest absolute values and second highest values, respectively.

LLM RAG methods HotpotQA 2WikimQA MuSiQue
F1 EM F1 EM F1 EM

Llama3.1-8B

w/o Retrieval - 27.8 23.1 19.7 13.9 8.4 3.5

Vanilla RAG
Local 34.2 28.2 24.1 19.4 13.1 8.4
Web 31.5 24.8 20.4 15.3 10.5 5.1
Both 36.0 29.7 27.3 21.8 15.9 9.2

Single-Source RAG
Self-RAG 32.3 26.4 21.1 17.4 14.8 8.9
FLARE 34.5 28.6 28.5 23.0 17.3 10.7

RankRAG 31.9 24.3 25.7 20.8 13.6 7.9

Multi-Source RAG CRAG 34.2 25.5 22.6 17.9 16.2 9.2
GRO-RAG 39.1 30.9 28.9 22.8 18.6 10.3

GLM-4

w/o Retrieval - 29.4 23.6 18.6 13.5 10.3 4.1

Vanilla RAG
Local 36.8 29.8 25.3 20.1 13.0 8.2
Web 30.4 23.9 19.5 14.8 9.4 4.3
Both 39.3 31.5 28.2 22.4 16.5 9.6

Single-Source RAG
Self-RAG 34.4 28.3 22.8 18.3 17.8 10.5
FLARE 38.6 30.7 29.7 23.8 20.2 11.6

RankRAG 33.2 27.3 27.4 21.6 15.8 8.8

Multi-Source RAG CRAG 38.1 30.3 24.8 20.4 17.4 9.6
GRO-RAG 42.8 33.6 30.3 23.7 21.1 12.4

Table 2: Comparison of NDCG@10 for different re-ranking methods on three QA datasets using
only local corpus. GRO-RAG uses gradient-based re-ranking from frozen LLMs (LLaMA3-8B and
GLM-4), while BM25, BGE-M3, and E5-base serve as heuristic or dense retrieval baselines.

Different rerankers HotpotQA 2WikimQA MuSiQue Average
BM25 0.6237 0.5760 0.3453 0.5150
BGE-M3 0.6892 0.6273 0.3922 0.5696
E5-base 0.7013 0.6749 0.4180 0.5981
GRO-RAG with Llama3.1-8B 0.6442 0.6345 0.4039 0.5609
GRO-RAG with GLM-4 0.6538 0.6382 0.4156 0.5692

Generation settings We compare GRO-RAG against four categories of baselines. (1) w/o-Retrieval:
LLM directly answers questions without access to any external documents. (2) Vanilla RAG:
Standard RAG methods that retrieve documents from either a local corpus, a web corpus, or both,
and concatenate them with query as input to the LLM. (3) Single-source RAG: Methods such as
Self-RAG (Asai et al., 2023), FLARE (Jiang et al., 2023), and RankRAG (Yu et al., 2024), which rely
on a single retrieval source (e.g., local corpus only). (4) Multi-source RAG includes CRAG (Yan et al.,
2024) conduct one-time retrieval from the primary source, followed by a one-time supplementary
retrieval from a secondary source. For all methods, we conduct experiments based on two built-in
LLMs, including Llama3.1-8B (Grattafiori et al., 2024; Meta AI, 2024) and GLM4 (GLM et al.,
2024).

4.2 MAIN RESULTS

Performance of Generation Table 1 presents a comprehensive comparison across three represen-
tative QA benchmarks—HotpotQA, 2WikiMQA, and MuSiQue—under both LLaMA3.1-8B and
GLM-4 language models. We begin by observing the general trend that retrieval substantially boosts
performance over generation-only settings. Across all datasets and models, methods with access to
external documents consistently outperform the No-Retrieval baseline, confirming the necessity of
knowledge augmentation for multi-hop reasoning tasks. Among vanilla strategies, retrieving from
the local corpus tends to be more effective than the web corpus alone, likely due to better domain
alignment and lower noise. Concatenating both further improves accuracy, suggesting local and web
sources offer complementary coverage. However, simply merging top documents from multiple
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Table 3: Ablation study of GRO-RAG. Removing source selection (w/o SCS) or gradient re-ranking
(w/o GR) leads to performance degradation across models and datasets.

LLM Methods HotpotQA 2WikimQA MuSiQue
F1 EM F1 EM F1 EM

Llama3.1-8B
GRO-RAG 39.1 30.9 28.9 22.8 18.6 10.3
w/o SCS 38.0 30.6 26.4 21.3 17.0 10.2
w/o GR 37.5 30.2 23.3 19.6 16.2 9.3

GLM-4
GRO-RAG 42.8 33.6 30.3 23.7 21.1 12.4
w/o SCS 40.1 31.4 28.6 22.5 20.0 11.5
w/o GR 37.6 28.7 25.3 20.9 16.8 9.4

sources is suboptimal. Vanilla RAG (Both) and CRAG, while better than single-source retrieval,
rely on static combination rules and lack an understanding of which sources are truly informative.
GRO-RAG addresses this through a source combination module that jointly considers query rele-
vance and semantic redundancy, selecting a subset of sources that are diverse and non-overlapping.
This leads to improved retrieval precision while avoiding wasted context on near-duplicate content.
Compared to adaptive single-source methods such as FLARE and Self-RAG, GRO-RAG consistently
achieves stronger performance across all datasets. These methods typically depend on fallback
heuristics or self-generated queries, which may help in certain cases but do not explicitly model
the final generation objective. In contrast, GRO-RAG performs gradient-based re-ranking directly
using the LLM’s generation loss, enabling the model to "vote" on which passages are most useful
via a single backward pass. This strategy aligns document selection tightly with the downstream
objective and proves especially effective under tight context budgets. On more challenging datasets
such as MuSiQue, which feature higher document entropy and require more subtle reasoning, the
advantage of generation-aware selection becomes even more evident. GRO-RAG not only main-
tains high accuracy but also demonstrates greater stability across LLMs of varying capacities. For
instance, while many baselines suffer performance drops when moving from GLM-4 to the smaller
LLaMA3.1-8B, GRO-RAG’s relative improvements remain consistent, highlighting its robustness
and model-agnostic nature. Lastly, we emphasize that GRO-RAG achieves these gains without any
fine-tuning or additional model parameters. All retrieval and scoring steps are conducted with frozen
models, making GRO-RAG readily deployable in practical settings.

Performance of Retrieval To ensure fair comparison and isolate the impact of re-ranking, we
constrain retrieval to a single local corpus and use identical candidate pools for all methods in a
single source setting. The results are shown in Tab 2. We compare GRO-RAG against three common
baselines: BM25, a sparse term-matching method; BGE-M3, a modern dense retriever trained
with contrastive supervision; and E5-base, a strong general-purpose embedding model. GRO-RAG
uses a training-free re-ranking approach that computes gradient-based importance scores from the
frozen language model. Despite not using any retrieval supervision or document–query similarity
learning, GRO-RAG consistently improves over BM25 and performs on par with or close to strong
dense retrievers. In particular, on the most difficult dataset (MuSiQue), GRO-RAG achieves higher
nDCG than BGE-M3, suggesting that gradient signals from the generation objective can capture
nuanced relevance signals beyond static embeddings. These results demonstrate that even without
additional training, GRO-RAG can effectively identify useful documents for the LLM, narrowing the
gap to supervised retrievers and providing a principled, efficient alternative for ranking in retrieval-
augmented generation. We emphasize that GRO-RAG is not designed to be a standalone retriever; its
goal is not to maximize retrieval metrics, but to identify documents most useful for generation. In
subsequent experiments, we will show that this strategy leads to consistent improvements in final
answer accuracy with minimal computational overhead.

4.3 IN-DEPTH ANALYSIS

Ablation study To examine the contribution of each component in GRO-RAG, we conduct an
ablation study by removing (1) the Source Combination Selection (SCS) module and (2) the Gradient-
aware Re-ranking (GR) module. The results are summarized in Table 3. Removing SCS means
retrieving documents independently from all sources without optimizing for relevance–redundancy

8
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Figure 3: (a)(b) show the effect of optimization steps on retrieval performance (NDCG@10); (c)(d)
show the effect of Top-k values on generation performance (F1 score).

tradeoff. While this variant still benefits from having access to multiple corpora, it introduces
redundant or semantically overlapping documents into the context, leading to a modest but consistent
performance drop across datasets. This suggests that carefully selecting a compact and complementary
set of sources helps improve information coverage while minimizing wasteful input. On the other
hand, removing GR has a more pronounced effect. This variant replaces gradient-based scoring
with a naive per-document loss, ignoring how documents interact when presented jointly. As a
result, the model is more likely to prioritize individually informative but contextually redundant
documents. Performance declines most noticeably on complex datasets like MuSiQue, indicating
that gradient-informed scores better reflect generation utility under constrained context windows.

Multi-step optimization Figures 3a and 3b illustrate the NDCG@10 of GRO-RAG under multi-
step optimization on three QA datasets using LLaMA3.1 and GLM-4 as backbone LLMs, respectively.
In both settings, the curves show consistent and steady improvements with an increasing number of
optimization steps. Importantly, the gain in each step diminishes at a near-constant rate, forming
a clear linear improvement pattern. This trend empirically supports the theoretical expectation of
linear convergence, where the optimization error decreases proportionally across iterations. The
convergence behavior is stable across datasets and model scales, with the total gain around (3-5%),
validating the efficiency and robustness of GRO-RAG’s gradient-based refinement process.

Impact of different k We investigate how varying the number of retrieved documents (k) affects
the final answer quality. As shown in Figures 3c and 3d, increasing k does not always lead to better
performance. While a larger k provides more information, it may also introduce irrelevant or noisy
content, which can interfere with the generation process. We observe that F1 scores generally improve
from k = 3 to k = 5, but further increases sometimes yield diminishing or even negative returns.
This highlights importance of carefully selecting k to balance completeness and relevance in RAG.

Computation times Computing a single-step gradient using LLaMA3.1-8B takes 882ms on aver-
age, while dense retrievers like BGE-M3 complete retrieval in just 39ms. Compared to traditional
retrievers, gradient-based retrieval with GRO-RAG introduces significantly higher latency—typically
1 to 2 orders of magnitude slower. This motivates our design choice of using GRO-RAG as a re-ranker,
where the initial retrieval already provides a strong prior. In such cases, one gradient step is needed
to refine the document selection, making the additional computation cost manageable while still
improving answer quality.

5 CONCLUSION

In this paper, we introduced GRO-RAG, a training-free and gradient-aware framework for document
re-ranking in multi-source Retrieval-Augmented Generation. By directly leveraging generation loss
gradients, GRO-RAG identifies Top-k documents that most effectively contribute to the model’s
output, moving beyond traditional query-based relevance scoring. At the source level, our approach
selects complementary sources by jointly modeling query relevance and inter-source redundancy.
Theoretically, we show that our re-ranking objective approximates the solution to a loss-minimizing
subset selection problem and aligns with minimizing a leave-one-out upper bound.

9
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A PROOF FOR PROPOSITION 3.1

Proposition A.1 (Gradient inner product upper-bounds leave-one-out) Let g = ∇h̄L(π̄) and
ϕi = ⟨hi,−g⟩. If the one-dimensional function ℓi(t) = L

(
π̄ + t ei

)
is convex on the interval

t ∈ [− 1
n , ε] for some ε > 0, then for every documents di

Lloo(di) ≤ −ϕi.

Express LOO as a directional difference. From the definition of h̄(π) =
∑

j πjhj :

h̄
(
π̄ − 1

nei
)

= h̄(π̄) − 1
nhi.

Hence Lloo(di) = ℓi(0)− ℓi(− 1
n ).

Apply convexity of ℓi. For a convex function f , f(y) ≥ f(x)+f ′(x)(y−x). Setting x = 0, y = − 1
n

gives
ℓi
(
− 1

n

)
≥ ℓi(0) + ℓ′i(0)

(
− 1

n

)
.

Rearrange. Subtract the right-hand side from ℓi(0):

ℓi(0)− ℓi
(
− 1

n

)
≤ 1

n ℓ′i(0).

Convert the directional derivative. Chain rule yields ℓ′i(0) =
〈
hi,∇h̄L(π̄)

〉
= ⟨hi, g⟩.

Substitute and flip sign. Therefore

Lloo(di) ≤ 1
n ⟨hi, g⟩ ≤ −ϕi.

The factor 1
n cancels because it is positive and identical for all passages, leaving the desired inequality.

B PROOF FOR PROPOSITION 3.2

Proposition B.1 (Linear convergence of the iterative loop) Let L(π) = L
(
a∗ | q, h̄(π)

)
denote

the generation loss evaluated at h̄(π) =
∑n

i=1 πihi. Assume µ-strong convexity and L-smoothness
of L in the sub-space H = span{h1, . . . ,hn}. Starting from the uniform vector π̄ = (1/n, . . . , 1/n),
repeat

π̃ t+1 = πt − η∇πL(πt), πt+1 = Π∆n−1

(
π̃ t+1

)
, 0 < η ≤ 1/L,

where Π∆n−1 projects onto the probability simplex ∆n−1 = {π≥0, ∥π∥1 = 1}. Then for all t ≥ 0:

L
(
πt+1

)
− L⋆ ≤ (1− ηµ)

[
L
(
πt
)
− L⋆

]
,

with optimal L⋆ = minπ∈∆n−1 L(π). Hence each additional iteration contracts the sub-optimality
by the factor (1− ηµ) and therefore never worsens the one-step solution.

Proof:

We have:

∆n−1 = {π ∈ Rn | πi ≥ 0, ∥π∥1 = 1}, Π∆n−1(v) = arg min
π∈∆n−1

∥π − v∥2. (8)
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For any iterate πt define the mixed-context hidden vector h̄(πt) =
∑

i π
t
i hi and let Gt = ∇πL(πt).

Because h̄(π) = Mπ with M = [h1, . . . ,hn], the chain rule gives
Gt = M⊤∇h̄L

(
πt
)
. (9)

L is L-smooth on H, hence for any π, v ∈ Rn:

L(v) ≤ L(π) + ⟨∇πL(π), v − π⟩+ L

2
∥v − π∥22. (10)

Apply equation 10 with π = πt and v = π̃ t+1 = πt − ηGt:

L(π̃ t+1) ≤ L(πt)− η⟨Gt, Gt⟩+ Lη2

2
∥Gt∥22 = L(πt)− η

(
1− Lη

2

)
∥Gt∥22. (11)

Let π⋆ be a minimizer of L on ∆n−1. Using the Pythagorean property of Euclidean projection,
∥πt+1 − π⋆∥22 ≤ ∥π̃ t+1 − π⋆∥22. (12)

Because L is µ-strongly convex,

L(π)− L(π⋆) ≥ µ

2
∥π − π⋆∥22, ∀π ∈ ∆n−1. (13)

Combine equation 12 and equation 13 to get
L(πt+1)− L(π⋆) ≤ L(π̃ t+1)− L(π⋆). (14)

Another consequence of strong convexity is
∥Gt∥22 ≥ 2µ

[
L(πt)− L(π⋆)

]
. (15)

Insert equation 15 into the descent lemma equation 11 and use 0 < η ≤ 1/L ⇒ 1− Lη
2 ≥ 1

2 :

L(π̃ t+1) ≤ L(πt)− ηµ
[
L(πt)− L(π⋆)

]
. (16)

Subtract L(π⋆) from both sides and combine with equation 14:

L(πt+1)− L(π⋆) ≤
(
1− ηµ

)[
L(πt)− L(π⋆)

]
. (17)

This proves the claimed inequality with L⋆ = L(π⋆). Iterating the contraction yields

L(πt)− L⋆ ≤ (1− ηµ)t
[
L(πt)− L⋆

]
, (18)

which is geometric linear convergence with rate 1− ηµ (< 1).

C LIMITATIONS

While GRO-RAG offers a lightweight and training-free alternative for improving document selection
in multi-source RAG, it also presents several limitations. First, the gradient-based re-ranking
procedure requires a backward pass through the frozen LLM, which, although computationally
modest compared to fine-tuning, still introduces latency compared to purely retrieval-side methods.
Second, GRO-RAG’s ranking relies on local linear approximations of the generation loss, which may
become inaccurate when the true loss landscape is highly non-linear or when documents exhibit strong
interaction effects. Finally, our source selection module is limited to fixed document embeddings;
future extensions could explore query-aware or adaptive source encoders to further enhance selection.

D BROADER IMPACTS

GRO-RAG contributes to the growing field of retrieval-augmented generation by proposing a more
interpretable, modular, and training-free alternative to dense scoring models. Its emphasis on gradient-
based document utility aligns document selection directly with the language model’s generation
behavior, offering greater transparency and controllability in the retrieval pipeline. By avoiding
task-specific fine-tuning, GRO-RAG lowers the resource barriers to deploying RAG systems in
practical applications, particularly in low-resource or privacy-sensitive settings.
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