
Under review as a conference paper at ICLR 2022

Causal Capsules and Tensor Autoencoders

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces a set of neural network architectures for forward and inverse
causal inference that are consistent with capsule theory and implement multilinear
(tensor) factor analysis methods. Forward causal inference is addressed with a
causal autoencoder-decoder architecture composed of a set of causal capsules that
estimate the latent variables representing the constituent factor of data formation,
and a tensor-autoencoder that governs the latent variable interaction. A recurrent
non-linear causal capsule chain that employs kernel activations computes the
optimal linearized subspace for every causal factor, and implements the kernel
multilinear principal component analysis or the kernel multilinear independent
component analysis. For distributed computation, we break the chain links and
each causal representation is computed separately, shuttling causal information
between capsules. The causal factor representations may be computed efficiently
by restructuring the input into a hierarchy of parts with a set of part-based causal
capsules that are “glommed” together to create a part-based hierarchy of causal
capsules. Inverse causal inference, the estimation of causes of effects, is addressed
with a multilinear projection architecture that inverts the estimated forward causal
model and employs a set of observations to constrain the solution set rendering the
problem well-posed.

1 INTRODUCTION
Neural networks are being employed increasingly in high-stakes application areas, such as face
recognition [Taigman et al. (2014); Huang (2012); Sun et al. (2013); Chen et al. (2015); Xiong et al.
(2016)], and medical technologies [Kermany et al. (2018); Madani et al. (2018); Topol (2019)]. De-
veloping a set of neural network architectures that are causally explainable is important in developing
a trustworthy machine learning, where "A causes B" means "the effect of A is B", a measurable and
experimentally repeatable quantity [Holland (1986)].

Forward causal inference models the mechanism of data formation, and estimates the effects of
interventions [Pearl (2000); Imbens & Rubin (2015); Spirtes et al. (2000); Vasilescu et al. (2021);
Vasilescu & Terzopoulos (2002a; 2005; 2004)]. Unlike, conventional statistics and conventional
machine learning that model the observed data distribution, and make predictions about a variable
that has been co-observed with another. Inverse causal inference estimates the causes of effects given
an estimated forward causal model that is inverted subject to a set of observations that constrain the
solution set [Vasilescu (2011); Vasilescu & Terzopoulos (2007)].

There are two conceptual frameworks for causal inference: DAGs or path analysis and potential-
outcome. Donald Rubin and his collaborators have advocated the potential outcome approach which
framed causal inference as a missing data problem [Imbens (2020)]. Judea Pearl has been advocating
do-calculus – a directed acyclic graph approach as a mathematical language that he has unified with
structural equations and counterfactuals [Bollen & Pearl (2013)]. Judea Pearl’s causation ladder
[Pearl (2000)] provides a way of thinking about causal discovery, causal reasoning, and decision
making. Pearl & Bareinboim (2014); Bareinboim & Pearl (2016) have parameterized the differences
between experimental and observational studies based on possible sources of error.

Tensor data analysis is a type of structural equation modeling that has been employed to perform
dimensionality reduction, to develop regression models, and to model cause-and-effect, Fig. 1. Tensor
factor analysis has been employed in psychometrics [Tucker (1966); Harshman (1970); Carroll &
Chang (1970); Bentler & Lee (1979); Kroonenberg & de Leeuw (1980)], econometrics [Kapteyn
et al. (1986); Magnus & Neudecker (1988)], chemometrics [Bro (1997); Acar et al. (2014)], signal
processing [de Lathauwer (1997; 2008); Cichocki et al. (2009)], computer vision [Vasilescu &
Terzopoulos (2002b); Wang & Ahuja (2003)], computer graphics [Vasilescu (2002); Davis & Gao
(2003); Vasilescu & Terzopoulos (2004); Vlasic et al. (2005); Hsu et al. (2005)], and machine learning
[Vasilescu (2009); Vasilescu & Terzopoulos (2005)]. In machine learning, tensor methods have been
effectively employed to reparameterize neural networks. Neural network weights have been organized
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(a)

(b)

Figure 1: (a) M -mode SVD estimates the param-
eters of tensor factor model from a collection of
vectorized images that have been acquired com-
binatorially. (b) M -mode SVD computes a re-
gression model and computes the column and row
space from a collection of images where each
image is a grid of numbers, a "data matrix" or a
2-way array. (All images in this paper have been
vectorized, except in this sub-figure.)

Figure 2: Naive neural network implementation
of the M -mode SVD, alg. 1. Depiction of the
TensorFaces model estimation, Fig.1(a). Comput-
ing each mode matrix, Um, naively with a single
autoencoder-decoder. The core tensor, T , is com-
puted by an autoencoder that is initialized with
the vectorized multilinear (tensor) codes formed
from the product of factor representations.

into “data tensors” and dimensionally reduced in order to achieve greater computational efficiency
[Lebedev et al. (2014); Novikov et al. (2015); Kim et al. (2015); Khrulkov (2020); Onu et al. (2020);
Iwen et al. (2021)]. Tensor methods have also been applied in regression analysis [Kolda et al. (2005);
Chu & Ghahramani (2009); Tang et al. (2013); Anandkumar et al. (2014); Kossaifi et al. (2017);
Wang et al. (2017); Benesty et al. (2021); Vendrow et al. (2021)].

This paper introduces a set of causal capsule architectures for forward and inverse causal inference
that implement tensor factor analysis operations. These architectures are consistent with capsule
theory proposed by Geoffrey Hinton and his collaborators [Hinton et al. (2011); Sabour et al. (2017);
Hinton (2021)].

Forward causal inference, the estimation of effects of causes, is performed with a causal autoencoder
architecture that consists of several causal capsules that compute the causal factor representations,
and a tensor-autoencoder that governs the causal factor interaction, Fig 2. A causal capsule is formed
from a set of constrained “cluster”-based autoencoders1that transform the basis vectors spanning the
“cluster” subspace, such that a causal factor representation is invariant of the “cluster” membership,
i.e., invariant to all the other causal factors [Vasilescu (2009)]. A tensor autoencoder is an autoencoder
with a vectorized tensor code formed from the multilinear (tensor) product of factor representations.

A recurrent non-linear causal capsule chain that employs kernel activations computes the optimal
linearized subspace for every causal factor, and implements the kernel multilinear principal component
analysis or the kernel multilinear independent component analysis, Fig 3. For distributed computation,
we break the chain links andeach causal representation is computed separately, shuttling causal
information between capsules.

For a scalable architecture, causal representations for an object whole can be computed efficiently by
parts, Fig 4. As Hinton (2021) has also indicated, a part-based causal capsule architectures may also
be “glommed” together to analyze a hierarchy of data columns [Vasilescu et al. (2021); Vasilescu &
Kim (2019); de Lathauwer (2008)]. The hierarchical neural network architecture is a compositional

1In the context of multifactor data analysis, a cluster is a set of observations for which all factors are fixed
except one. Data belonging to the same cluster may not form a cluster in Euclidean space and not easily
identifiable by an EM algorithm [ Dempster et al. (1977)].
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hierarchical computation of causal factor representation and implements the Incremental M -mode
Block SVD algorithm. 2

Algorithm 1 M -mode SVD algorithm.
Input the data tensor D ∈ CI0×···×IM .

1. For m := 0, . . . ,M ,
Let Um be the left orthonormal matrix
of [UmSmV

T
m] := svd(D[m])

a

2. Set Z := D ×0 U0
T ×1 U1

T · · · ×m

Um
T · · · ×M UM

T.
Output mode matrices U0,U1 . . . ,UM and the
core tensor Z .

aThe computation of Um in the SVD D[m] =

UmΣVm
T can be performed efficiently, depend-

ing on which dimension of D[m] is smaller, by de-
composing either D[m]D[m]

T = UmΣ2Um
T (note

that Vm
T = Σ+Um

TD[m]) or by decomposing
D[m]

TD[m] = VmΣ2Vm
T and then computing

Um = D[m]VmΣ+.

Inverse causal inference is performed with a mul-
tilinear projection architecture [Vasilescu & Ter-
zopoulos (2007); Vasilescu (2009)] that is per-
formed by inverting an estimated forward model
subject to data constraints. Fig. 5.

The architectures are derived based on two
mathematical principles: (i)linear autoencoders-
decoders weights are the principal component
analysis basis vectors, sec. 2, (ii) the object-whole
representation can be derived bottom-up in closed
form from a part-based hierarchical causal factor
representation, sec 3.2.

After reviewing the mathematical foundations of
our work in the next section, we discuss forward
causal models and depict their neural network arci-
tectures in Section 3 and discuss inverse causal
inference and depict the multilinear projection
neural network architectures in Section 4. Section
5 concludes the paper.

2 LINEAR AUTOENCODER AND LINEAR PCA
An autoencoder-decoder that minimizes the reconstruction loss function,

l =

I∑
i=1

‖di −Bci‖+ λ‖BTB− I‖ (1)

and has a linear decoder learns a set of weights, br that are identical to the PCA basis vectors when
the weights of each neuron, cr are computed sequentially. An autoencoder is implemented with a
cascade of Hebb neurons [Hebb (1949)]. The contribution of each neuron, c1, . . . , cr, are the PCA
sequentially computed and subtracted from a centered training data set, and the difference is driven
through the next Hebb neuron, cr+1 [Sejnowski et al. (1989); Sanger (1989); Rumelhart et al. (1986);
Ackley et al. (1985); Oja (1982)]. The weights of a Hebb neuron, cr, are updated by

∆br(t+ 1) = η

(
d−

r∑
ir=1

bir(t)cir(t)

)
cr(t) = η

(
d−

r∑
ir=1

bir(t)b
T
ir(t)d

)
dTbr(t),

br(t+ 1) =
(br(t) + ∆br(t+ 1))

‖br(t) + ∆br(t+ 1)‖
where d ∈ CI0 is a vectorized centered observation with I0 measurements, η is the learning rate, br
are the autoencoder weights of the r neuron, cr is the activation, and t is the time iteration. Back-
propagation [LeCun et al. (1988; 2012)] is equivalent to performing PCA gradient descent [Jolliffe
(1986)].

3 CAUSAL INFERENCE

Throughout this article, we will denote scalars by lower case italic letters (a, b, ...), vectors by bold
lower case letters (a,b, ...), matrices by bold uppercase letters (A,B, ...), and higher-order tensors
by bold uppercase calligraphic letters (A,B, ...). Index upper bounds are denoted by italic uppercase
letters (i.e., 1 ≤ a ≤ A or 1 ≤ i ≤ I). The zero matrix is denoted by 0, and the identity matrix is
denoted by I. The TensorFaces paper [Vasilescu & Terzopoulos (2002a) is a gentle introduction to
tensor factor analysis, Kolda and Bader [Kolda & Bader (2009) is a nice survey of tensor methods
and references [Vasilescu (2009); de Lathauwer (1997); Bro (1997) provide an in depth treatment of
tensor factor analysis.

2By comparison, a hierarchical Tucker is a resource efficient hierarchical computational scheme that employs
a hierarchical re-balancing of the modes trick in which one flattens a data tensor in multiple modes at the same
time to avoid computing SVDs of skinny matrices [Hackbusch & Kühn (2009); Grasedyck (2010); Perros et al.
(2015)].
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Algorithm 2 Kernel Multilinear PCA/ICA (K-MPCA/MICA) algorithm.
Input the data tensor D ∈ CI0×···×IM , where mode m = 0 is the measurement mode, and the desired
ranks R̃1, . . . , R̃M .

1. For m := 1, . . . ,M ,
Compute the elements of the mode-m covariance matrix, for j, k := 1, . . . , Im, as
follows:
[D[m]D[m]

T]jk :=

I1∑
i1=1

...

Im−1∑
im-1=1

Im+1∑
im+1=1

...

IM∑
iM=1

K(di1...im-1 j im+1...iM ,di1...im-1 k im+1...iM).


For K-MPCA: Set Um to the left matrix of the SVD of D[m]D[m]

T = UmΣ2Um
T

Truncate to R̃m columns Um ∈ CIm×R̃m .

For K-MICA: Compute Um := Cm ∈ CIm×R̃m based on
[Vasilescu & Terzopoulos (2005)]. The initial SVD truncates to R̃m.

2. Set T := D ×1 U
+
1 · · · ×m U+

m · · · ×M U+
M .

3. Local optimization via alternating least squares:
Iterate for n := 1, . . . , N

For m := 1, . . . ,M ,
Set Xm := D ×1 U

+
1 · · · ×m−1 U

+
m−1 ×m+1 U

+
m+1 · · · ×M U+

M .
Set Um to the R̃m leading left-singular vectors of the SVD of Xm,[m]

a.
Set T := XM ×M U+

M .
until convergence.

Output the converged extended core tensor T ∈ CI0×R̃1×···×R̃M and causal factor mode matrices
U1, . . . ,UM .

aSee Alg. 1, footnote a

Linear kernel: K(u,v) = uTv = u · v
Polynomial kernel of degree d: K(u,v) = (uTv)d

Polynomial kernel up to degree d: K(u,v) = (uTv + 1)d

Sigmoidal kernel: K(u,v) = tanh(αuTv + β)

Gaussian (radial basis function (RBF)) kernel: K(u,v) = exp
(
− ‖u−v‖2

2σ2

)
Table 1: Common kernel functions. Kernel functions are symmetric, positive semi-definite func-
tions(corresponding to symmetric, positive semi-definite Gram matrices). The linear kernel does not
modify or warp the feature space.

3.1 FORWARD CAUSAL INFERENCE
Forward causal inference frames questions in terms of interventions. What if the causal factor c were
changed by one unit, how much would the observed measurements, d, be expected to change?

For modeling individual level-effects rather than the average effects of causes, observations are
acquired by systematically varying each causal factor while holding the rest of the causal factors
fixed.

Within the tensor mathematical framework, a M -way array or “data-tensor”, D ∈ CI0×I1···×Im···×IM

contains a collection of vectorized and centered observations,3 di1...im...iM ∈ RI0 that are the result
of M causal factors. The m causal factor (1 ≤ m ≤ M ) takes one of Im values that are indexed by
im, 1 ≤ im ≤ Im. An observation that is result of the confluence M causal factors is modeled by a
multilinear tensor equation with multimode latent variables,

di1,...,iM = T ×1 (r
T
i1
+ εT

i1
) · · · ×M (rT

iM
+ εT

iM
) + εi1,...,iM

where T = Z×0U0 is the extended core which modulates the interaction between the latent variables,
ri1 . . . rim . . . riM , that represent the causal factors, and εim ∈ N (0,Σm) is an IID Gaussian noise.

3Reference [(Vasilescu, 2009, Appendix A)] evaluates some of the arguments found in highly cited publica-
tions in favor of treating an image as a matrix (tensor) rather than a vector. While technically speaking, it is not
incorrect to treat an image as a matrix in linear/tensor algebra, most arguments do not stand up to analytical
scrutiny, and it is preferable to vectorize an image and treat it as a single observation rather than a collection of
independent column/row observations.
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The M -mode SVD, Alg. 1 and Alg. 2, and their neural network architecture counterparts, Fig. 2, Fig. 3
may be employed to represent data in terms of their causal factors by minimizing the reconstruction
loss function,

l = ‖D − T ×1 U1 · · · ×m Um · · · ×M UM‖+
M∑

m=1

λm‖UmU
T
m − I‖, (2)

where T is the extended core and the mode matrices, Um, spans the m causal factor representation.
Each mode matrix, Um is computed using alternating least squares where a set of M least squares
are computed by moving the mode matrices U1, . . . ,Um-1,Um+1, . . . ,UM to the knowns side of the
equation, setting Xm := D ×1 · · · ×m-1 U

T
m-1 ×m+1 U

T
m+1 · · · ×M UT

M for distributed computation or
setting Xm := (Xm-1 ×m-1 U

T
m-1)×m Um) for sequential computation, and optimizing the loss function

l = ‖Xm − T ×m Um‖+ λ‖UmU
T
m − I‖ = ‖Xm[m] −UmT[m]‖+ λ‖UmU

T
m − I‖, (3)

where Xm := D ×1 · · · ×m-1 U
T
m-1 ×m+1 U

T
m+1 · · · ×M UT

M - distributed computation (4)
= (Xm-1 ×m-1 U

T
m-1)×m Um = T ×m Um - sequential computation (5)

The mode matrix Um is set to the subspace of the matrixized Xm, UmSmV
T
m := svd(Xm[m])

4.
Figure 3(e) displays a recurrent causal chain that unrolls the for-loop from step 3, Alg 2 and
sequentially computes the mode matrices by performing an SVD on the a matrixized Xm computed
from eq.( 5). For a distributed computation, M different Xm are computed according to eq.( 4), where
mode matrices are shuttled between the different threads.

3.2 DERIVATION: INVARIANCE AND HIERARCHY OF CAUSAL CAPSULES

In this section, takes advantages of the principle that an SVD can be computed from its parts. On that
basis, we derive a causal factor representation that is statistical invariant to “cluster” membership (i.e.,
all other causal factors). On that basis, we provide a scalable architecture by deriving a compositional
bottom-up computation of an object whole representation. Thus, the naive and direct implementation
of the M-mode SVD is replaced with a compositional hierachical part-based distributed architecture.

Computing the mode matrices, Um, may be viewed as equivalent to computing a set of mutually
constrained, cluster-based PCAs. When dealing with data that can be separated into clusters, the
standard machine learning approach is to compute a separate PCA. When data from different clusters
are generated by the same underlying process (e.g., facial images of the same people under different
viewing conditions), the underlying data can be concatenated in the measurement mode and the
common causal factor can be modeled by one PCA.5

Thus, we define a constrained, cluster-based PCA as the computation of a set of PCA basis vectors
that are rotated such that the latent representation is constrained to be the invariant of the cluster.

MPCA performs M constrained, cluster-based PCAs, since the computation of the mode-m matrix
Um, which involves a mode-m data tensor flattening and subsequent SVD, is equivalent to performing
a constrained, cluster-based PCA; i.e., data cluster concatenation followed by an SVD. This is self
evident when employing our modified datum-centric flattening operator, Fig. 7.

In the context of our multifactor data analysis, we define a cluster as a set of observations for which
all factors are fixed except one, the m factor. Note that there are Nm = I1I2 . . . Im−1Im+1 . . . IM
possible clusters and the data in each cluster varies with the same causal mode.6 Thus, the data across
different clusters share one of the underlying causal factors. The constrained, cluster-based PCA
concatenates the clusters in the measurement mode and analyzes the data with a linear model, such as
PCA or ICA [Bartlett et al. (2002); Common (1994); Lathauwer et al. (1995); De Lathauwer et al.
(1996); Anandkumar et al. (2014).

To see this, let Di1...im−1im+1...iM ∈ CI0×1×1···×1×Im×1···×1 denote a subtensor of D that is obtained
by fixing all modes except causal factor mode m and mode (the measurement mode). Matrixizing this
subtensor in the measurement mode 0, we obtain Di1...im−1im+1...iM [0]

∈ CI0×Im . This data matrix
comprises a cluster of data obtained by varying the m causal factor, to which one can traditionally

4See Alg. 1, footnote a
5The active appearance model concatenated two different measurements, facial feature locations and texture,

to compute a person representation for a particular viewpoint invariant of measurement. More generally, one can
concatenate the measurements of a person from different viewpoint clusters to compute a person representation
that is invariant of the measurement and the viewpoint [Cootes et al. (2001); Si et al. (2013)].

6Observations in the cluster may not be in Euclidean proximity in the measurement space. Consequently, a
cluster may not be easily identified through a standard EM algorithm.
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apply PCA. Since there are Nm = I1I2 . . . Im−1Im+1 . . . IM possible clusters that share the same
underlying space associated with the cmth factor, the data can be concatenated and PCA performed
in order to extract the same representation for the m factor regardless of the cluster. Now, consider
the MPCA computation of mode matrix Um, Fig. 3(a), which can be written in terms of matrixized
subtensors as

Dm
T =



D1...11...1[m]
T

...
DI1...11...1[m]

T

...
DI1...Im−1Im+1...IM [m]

T

 = VmΣmUm
T. (6)

Clearly, this is equivalent to computing a set of Nm = I1I2 . . . Im−1Im+1 . . . IM cluster-based
PCAs concurrently by combining them into a single statistical model and representing the underlying
causal factor m common to the clusters. Thus, rather than computing a separate linear PCA model
for each cluster, MPCA concatenates the clusters into a single statistical model and computes a
representation (coefficient vector) for mode m that is invariant relative to the other causal factor
modes 1, ..., (m− 1), (m+ 1), ...,M . Thus, MPCA is a multilinear, constrained, cluster-based PCA.

To clarify the relationship, let us number each of the matrices Di1...im−1im+1...iM [m]
= D

(n)
m with a

parenthetical superscript 1 ≤ n = 1 +
∑M

k=1,k 6=m(in − 1)
∏k−1

l=1,l 6=m Il ≤ Nm.

Let each of the linear SVDs be

D(n)
m = U(n)

m Σ(n)
m U

(n)
0

T (7)
(8)

D[m] =
[
U

(1)
m Σ

(1)
m . . . U

(NM )
m Σ

(Nm)
m

]
︸ ︷︷ ︸

SVD

diag([ U
(1)
0 . . . U

(Nm)
0

])T, (9)

= UmΣmWT
m diag([ U

(1)
0 . . . U

(Nm)
0

])T, (10)

= UmΣm[ U
(1)
0 W(1)

m . . . U(Nm)
m W(Nm)

m
]T (11)

where diag(·) denotes a diagonal matrix whose elements are each of the elements of its vector
argument. The mode matrix U

(nm)
0 is the measurement matrix that contains the eigenvectors that

span the observed data in cluster nm, 1 ≤ nm ≤ Nm. MPCA can be thought as computing a rotation
matrix, Wm, that contains a set of blocks W(n)

m along the diagonal that transform the PCA cluster
eigenvectors, U(nm)

0 , such that the mode matrix Um is the same regardless of cluster membership,
eqs.(9-11). The constrained “cluster”-based PCAs may also be implemented with a set of concurrent
“cluster”-based PCAs.

Object wholes appear to have have a hierarchy of perceptual parts. Part-based causal capsule
architectures may be “glommed” together to create a hierarchy of part-based causal capsules that
analyze a hierarchy of data columns [Vasilescu et al. (2021); Vasilescu & Kim (2019); de Lathauwer
(2008)]. This hierarchical architecture implements the incremental hierarchical multilinear (tensor)
block decomposition algorithm.

Causal factors of object wholes may be computed efficiently from their parts, Fig 4. The matrixized
data tensor may be organized into part “clusters” by applying a permutation

D ×T
m P ⇔ PD[m]

T (12)

where P is a permutation matrix. The resulting hierarchical architecture implements the Incremental
M-mode Block SVD algorithm. The Incremental M-mode Block SVD is a generalized hierarchical
part-based decomposition that computes an exact global decomposition and is suitable for streaming
data [Vasilescu et al. (2021).

3.3 NONLINEAR CAUSAL CAPSULES AND KERNEL MPCA/KERNEL MICA
An autoencoder with a non-linear activation function represents an observation with

di = fd(Bd fe(Bedi + ae)︸ ︷︷ ︸
ci

+ad), (13)
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(a)

(b) (c) (d) (e)

(f)
Figure 3: Face recognition example. (a) An ensemble of vectorized images is organized into
D ∈ CIx×IP×IV×IL×IE is matrixized into a data matrix, DP from which one can compute the mode
matrix, UP, that spans the person representation. This depicts how a single SVD(D[P ] can be written
in terms of (i) constrained cluster-based autoencoder (PCA) and (ii) concurrent autoencoder. This is
depicted as a neural network architecture in (b), (c) and (d), respectively. (b) Mode matrix computation
using a single autoencoder-decoder. (c) Mode matrix computation using a constrained cluster-based
autoencoder-decoder based on the derivation in part (a). (d) Concurrent-autoencoder. (e) The neural
network architecture consists of a chain of constrained autoencoders-decoders where the weights of
one constrained autoencoder-decoder are the inputs of the next one. This constrained recurrent causal
chain is the unrolled for-loop that computes the mode matrices by employing alternating least squares.
When the autoencoders employ kernels then the architecture implements K-MPCA/ K-MICA, Alg. 2.

where fe, fd are the encoder, decoder activation functions, and Be,Bd are the encoder, decoder
weights respectively. Kernel PCA (KPCA) is often given as an example of a “true” nonlinear model.
KPCA first applies a nonlinear transformation to the data and then it performs a linear decomposition.
Thus, KPCA derives its nonlinearity from its preprocessing step. Other nonlinear methods include
nonlinear PCA (NLPCA) [Kramer (1991), as well as kernel PCA (KPCA) [Schölkoph et al. (1998)
and kernel LDA (KLDA) [Yang (2002) methods in which kernel functions that satisfy Mercer’s
theorem correspond to inner products in infinite-dimensional space. An alternative approach is to
apply linear models to nonlinear problems through the “kernel trick”, specifically the kernel PCA
[Schölkoph et al. (1998) and kernel ICA [Yang et al. (2005) techniques.7 Kernel PCA/ICA are

7The so-called “kernel trick” maps the original non-linear measurements into a higher-dimensional space,
where a linear classifier is subsequently used; this makes a linear classification in the new space equivalent
to non-linear classification in the original space. This is done using Mercer’s theorem, which states that any
continuous, symmetric, positive semi-definite kernel K(u,v) can be expressed as an inner product in a high-
dimensional space. Wherever an inner product between two vectors is used, it is replaced with a kernel of the

7
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a

b

cFigure 4: (a) Learning levels of abstractions bottom-up with a hierarchy causal part-based capsules.
Each causal capsule in Fig 3 (f) can be replaced with a hierarchy of parts and wholes. The constrained
cluster-based PCA (b), may be computed with a hierarchy of autoencoders, as derived in eq. (6)-(10),
and depicted in Fig 3.

nonlinear versions of their conventional linear counterparts, but of course they are not multimodal
factor models.

The kernel trick can also be applied to our multilinear, multifactor PCA/ICA models to further
nonlinearize them, thus enabling them to deal with arbitrarily nonlinear data, Alg. 2.

To accomplish this, recall that the computation of the mode-m covariance matrix D[m]D[m]
T involves

inner products dT
i1...im-1 j im+1...iM

di2...im-1 k im+1...iM between pairs of images in the image data tensor
D associated with causal factor mode m, for m = 1, . . . ,M . We replace the inner products
with a generalized distance measure between images, K(di1...im−1 j im+1...iM ,di2...im−1 k im+1...iM ),
where K(·, ·) is a suitable kernel function (Table 1), which corresponds to an inner product in some
expanded feature space. This generalization naturally leads us to a Kernel Multilinear PCA (K-MPCA)
Algorithm, where the covariance step computation in in Algorithm 1 is replaced by

[D[m]D[m]
T]
jk

:=

I1∑
i1=1

· · ·
Im−1∑

im−1=1

Im+1∑
im+1=1

· · ·
IM∑

iM=1

K(di1...im−1 j im+1...iM ,di1...im−1 k im+1...iM ).

Similarly, a Kernel Multilinear ICA (K-MICA) Algorithm results from making the same generalization
in the MICA algorithm [Vasilescu & Terzopoulos (2005). Algorithm 2 specifies both K-MPCA and
K-MICA. Figure 3(d) unrolls the for-loop in step 3 of Alg. 2.

4 INVERSE CAUSAL INFERENCE:MULTILINEAR AND MULTIPLE LINEAR
PROJECTIONS

Inverse causal inference estimates the causes of effects, and addresses the why question. Inverse
problems often violate one of the conditions of a well-posed problem, and Donald Rubin has referred
to the "why" question as “cocktail party chatter” [Gelman & Imbens (2013). For a problem to be
well-posed a solution must exit, it must be unique and the solution’s behaviour ought to change
continuously with the initial conditions [Hadamard (1952). Often, there are multiple combinations of
same causal factors that have the same potential outcome. In imaging, these types of outcomes are
known as visual illusions.

Therefore, inverse causal inference is the estimation of causes of effects given an estimated forward
causal model that is inverted subject to a set of observations that constrain the solution set and render
the problem well-posed [Vasilescu et al. (2021)].Similar to reverse causal inference [Gelman &
Imbens (2013)], inverse causal inference may be employed as a model checking mechanism and
motivation for forward inference question.

vectors. Thus, a linear algorithm is easily transformed into a nonlinear algorithm. This trick has been applied to
numerous algorithms in machine learning and statistics.

8
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Figure 5: Neural network architecture
of the multilinear projection algorithm
[Vasilescu & Terzopoulos (2007) given
an estimated interaction causal model, T
(i.e.,T[x]).

Multilinear projection simultaneously projects one or
more unlabeled test images that are not part of the train-
ing data set into multiple constituent causal factor spaces
associated with data formation, in order to infer the mode
labels:

CP or M -mode SVD(T +x×T
xdtest) ≈ r1...◦rm...◦rM◦rE.

Topologically the multilinear projection architecture,
Fig. 5, is an inverted M-mode SVD architecture. When
the dimensionality of vec(R) is larger than the number
of measurements in d, then the system of equations is
under determined. There are three possible solutions –
dimensionality reduction of the mode matrices, and mod-
eling the mechanism of data formation by multiple linear
or tensor models. Instead of performing a multilinear
projection, [Vasilescu & Terzopoulos (2002b) perform a
set of linear projections.

5 CONCLUSION
This paper introduces deep causal learning architectures
that implement tensor factor analysis operations and
model the mechanism of data formation. The tensor factor analysis methods, the M -mode SVD,
the Kernel MPCA/MICA, and the associated causal capsules architectures transform the “cluster”
eigenvectors such that the constituent causal representations are invariant of the cluster membership,
i.e., invariant of other causal factors of data formation. Causal representation may be computed
efficiently by “glomming” together a hierarchy of part-based causal capsules. The hierarchical
part-based causal architecture implements the compositional hierarchical tensor factorization, the
Incremental M-mode Block SVD. Each part-based capsule analyzes a data column from a hierarchy
of data columns [Vasilescu et al. (2021). Inverse causal inference, the estimation of causes of effects,
is accomplished with a multilinear projection algorithm. The neural architecture that implements
the multilinear projection is an inverted M-mode SVD architecture. Tensor causal factor analysis
and their associates neural networks have properties consistent with the capsule theory. Tensor
causal factor analysis has been applied on real and synthetic data in many domains, including face
recognition where the approach is known as TensorFaces and computer graphics where a set of
TensorTextures are synthesized for arbitrary geometries.
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A MATHEMATICAL BACKGROUND

Throughout this article, we will denote scalars by lower case italic letters (a, b, ...), vectors by bold
lower case letters (a,b, ...), matrices by bold uppercase letters (A,B, ...), and higher-order tensors
by bold uppercase calligraphic letters (A,B, ...). Index upper bounds are denoted by italic uppercase
letters (i.e., 1 ≤ a ≤ A or 1 ≤ i ≤ I). The zero matrix is denoted by 0, and the identity matrix is
denoted by I. The TensorFaces paper [Vasilescu & Terzopoulos (2002a) is a gentle introduction to
tensor factor analysis, [Kolda & Bader (2009) is a great survey of tensor methods and references
[Vasilescu (2009); de Lathauwer (1997); Bro (1997) provide an in depth treatment of tensor factor
analysis.

A.1 PCA COMPUTATION WITH LINEAR AUTOENCODER

An autoencoder-decoder that minimizes the reconstruction loss function for a set of observations,
di ∈ CI0 ,

l =

I∑
i=1

‖di −Bci‖+ λ‖BTB− I‖, (14)

and has a linear decoder learns a set of weights, bi0,r, that are identical to the elements of the PCA
basis matrix, B ∈ CI0×R, when the weights of each neuron are computed sequentially, Fig. 6. An
autoencoder is implemented with a cascade of Hebb neurons [Hebb (1949). The contribution of each
neuron, c1, . . . , cr, is sequentially computed and subtracted from a centered training data set, and
the difference is driven through the next Hebb neuron, cr+1 [Sejnowski et al. (1989); Sanger (1989);
Rumelhart et al. (1986); Ackley et al. (1985); Oja (1982).

Figure 6: Autoencoder-decoder architec-
ture and Principal Component Analysis.
(All images have been vectorized, but they
are displayed as a grid of numbers. The
eigenvector b1 is the mean and activation
c1 is set to 1.)

The weights of a Hebb neuron, cr, are updated by

∆br(t+ 1) = η

(
d−

r∑
ir=1

bir(t)cir(t)

)
cr(t) (15)

= η

(
d−

r∑
ir=1

bir(t)b
T
ir(t)d

)
dTbr(t),

br(t+ 1) =
(br(t) + ∆br(t+ 1))

‖br(t) + ∆br(t+ 1)‖

where d ∈ CI0 is a vectorized centered observation
with I0 measurements, η is the learning rate, br are the
autoencoder weights of the r neuron, cr is the activation,
and t is the time iteration. Back-propagation [LeCun
et al. (1988; 2012) performs PCA gradient descent [Jol-
liffe (1986).

A.2 RELEVANT TENSOR ALGEBRA

Briefly, the natural generalization of matrices (i.e., lin-
ear operators defined over a vector space), tensors define multilinear operators over a set of vector
spaces. A “data tensor” denotes an M -way data array.

Definition 1 (Tensor) Tensors are multilinear mappings over a set of vector spaces, CIm , 1 ≤ m ≤
M , to a range vector space CI0 :

A :
{
CI1 × CI2 × · · · × CIM

}
7→ CI0 . (16)

The order of tensor A ∈ CI0×I1×···×IM is M + 1. An element of A is denoted as Ai0i1...im...iM or
ai0i1...im...iM , where 1 ≤ im ≤ Im.

The mode-m vectors of an M -order tensor A ∈ CI0×I1×···×IM are the Im-dimensional vectors
obtained from A by varying index im while keeping the other indices fixed. In tensor terminology,
column vectors are the mode-0 vectors and row vectors as mode-1 vectors. The mode-m vectors of
a tensor are also known as fibers. The mode-m vectors are the column vectors of matrix A[m] that
results from matrixizing (a.k.a. flattening) the tensor A.

Definition 2 (Mode-m Matrixizing) The mode-m matrixizing of tensor A ∈ CI0×I1×...IM is de-
fined as the matrix A[m] ∈ CIm×(I0...Im−1Im+1...IM ). As the parenthetical ordering indicates, the
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Algorithm 3 M -mode SVD algorithm.
Input the data tensor D ∈ CI0×···×IM .

1. For m := 0, . . . ,M ,
Let Um be the left orthonormal matrix of [UmSmV

T
m] := svd(D[m])

a

2. Set Z := D ×0 U0
T ×1 U1

T · · · ×m Um
T...×M UM

T.
Output mode matrices U0,U1 . . . ,UM , and the core tensor Z .

aThe computation of Um in the SVD D[m] = UmΣVm
T can be performed efficiently, depending on

which dimension of D[m] is smaller, by decomposing either D[m]D[m]
T = UmΣ2Um

T (note that Vm
T =

Σ+Um
TD[m]) or by decomposing D[m]

TD[m] = VmΣ2Vm
T and then computing Um = D[m]VmΣ+.

mode-m column vectors are arranged by sweeping all the other mode indices through their ranges,
with smaller mode indexes varying more rapidly than larger ones; thus,

[A[m]]jk= ai1...im...iM , where (17)

j = im and k = 1 +

M∑
n=0
n 6=m

(in − 1)

n−1∏
l=0
l 6=m

Il.

A generalization of the product of two matrices is the product of a tensor and a matrix [de Lathauwer
(1997); Carroll et al. (1980).

Definition 3 (Mode-m Product, ×m) The mode-m product of a tensor A ∈ CI1×I2×···×Im×···×IM

and a matrix B ∈ CJm×Im , denoted by A ×m B, is a tensor of dimensionality
CI1×···×Im−1×Jm×Im+1×···×IM whose entries are computed by

[A×mB]i1...im−1jmim+1...iM=
∑
im

ai1...im−1imim+1...iM bjmim ,

C = A×m B.
matrixize

tensorize
C[m] = BA[m].

The M -mode SVD, Alg. 1 [Vasilescu & Terzopoulos (2002a) is a “generalization” of the conventional
matrix (i.e., 2-mode) SVD which may be written in tensor notation as

D = U0SU1
T ⇔ D = S×0 U0 ×1 U1

The M -mode SVD orthogonalizes the M spaces and decomposes a tensor as the mode-m product,
denoted ×m , of M -orthonormal mode matrices, and a core tensor Z

D=Z ×0 U0 · · · ×m Um · · · ×M UM . (18)
D[m] = UmZ[m] (UM · · · ⊗Um+1 ⊗m-1 U · · · ⊗U0)

T, (19)
vec(D)=(UM · · · ⊗Um+1 ⊗Um-1 · · · ⊗U0) vec(Z). (20)

The latter two equations express the decomposition in matrix form and in terms of vec operators.

A.3 COMPOSITIONAL HIERARCHICAL BLOCK TENSORFACES

Training Data: In our experiments, we employed gray-level facial training images rendered from 3D
scans of 100 subjects. The scans were recorded using a CyberwareTM 3030PS laser scanner and are
part of the 3D morphable faces database created at the University of Freiburg [Blanz & Vetter (1999).
Each subject was combinatoriall y imaged in Maya from 15 different viewpoints (θ = −60◦ to +60◦

in 10◦ steps on the horizontal plane, φ = 0◦) with 15 different illuminations ( θ = −35◦ to +35◦ in
5◦ increments on a plane inclined at φ = 45◦).

Data Preprocessing: Facial images were warped to an average face template by a piecewise affine
transformation given a set of facial landmarks obtained by employing Dlib software [King (2009);
Kazemi & Sullivan (2014); Si et al. (2013); Macedo et al. (2006); Hatamizadeh et al. (2019). Illumi-
nation was normalized with an adaptive contrast histogram equalization algorithm, but rather than
performing contrast correction on the entire image, subtiles of the image were contrast normalized,
and tiling artifacts were eliminated through interpolation. Histogram clipping was employed to avoid
over-saturated regions.
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Figure 7: Matrixizing a 3rd order tensor, A.
The tensor can be matrixized in 3 ways.

Experiments: Each image, d ∈ RI0×1, was convolved
with five filters banks {Hs‖s = 1...S}. The filtered
images, d×0 Hs, resulted in five facial part hierarchies
composed of (i) independent pixel parts (ii) parts seg-
mented from different layers of a Gaussian pyramid that
were equally or (iii) unequally weighed, (iv) parts were
segmented from a Laplacian pyramid that were equally
or (v) unequally weighed. We ran five experiments with
five facial part hierarchies from which a person repre-
sentation was computed, Fig. 8. The composite person
signature was computed for every test image by em-
ploying the multilinear projection algorithm [Vasilescu
(2011); Vasilescu & Terzopoulos (2007), and signatures
were compared with a nearest neighbor classifier.

To validate the effectiveness of our system on real-world
images, we report results on “LFW” dataset (LFW)
[Huang et al. (2007). This dataset contains 13,233 facial
images of 5,749 people. The photos are unconstrained
(i.e., “in the wild”), and include variation due to pose,
illumination, expression, and occlusion. The dataset
consists of 10 train/test splits of the data. We report
the mean accuracy and standard deviation across all
splits in Table 2. Fig. 8(b-c) depicts the experimental
ROC curves. We follow the supervised “Unrestricted,
labeled outside data” paradigm.

Results: While we cannot celebrate closing the gap on human performance, our results are promising.
DeepFace, a CNN model, improved the prior art verification rates on LFW from 70% to 97.35%, by
training on 4.4M images of 200× 200 pixels from 4, 030 people, the same order of magnitude as the
number of people in the LFW database.

We trained on less than one percent (1%) of the 4.4M total images used to train DeepFace. Images
were rendered from 3D scans of 100 subjects with an the intraocular distance of approximately 20
pixels and with a facial region captured by 10, 414 pixels (image size ≈ 100× 100 pixels). We have
currently achieved verification rates just shy of 80% on LFW. When data is limited, CNN models do
not convergence or generalize.

Figure 8: Compositional hierarchical Block TensorFaces learns a hierarchy of features, and reesents
each person as a part-based compositional representation. Figure depicts the training data factorization,
D = T H×LUL×VUV×PUP, where an observation is represented as d(p,v, l) = T H×L l×Vv×Pp
and TH spans the hierarchical causal factor variance.
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Test
Dataset

PCA TensorFaces compositional hierarchical Block TensorFaces

Pixels Gaussian
Pyramid

Weighted
Gaussian
Pyramid

Laplacian
Pyramid

Weighted
Laplacian
Pyramid

Freiburg 65.23% 71.64% 90.50% 88.17% 94.17% 90.96% 93.98%

LFW 69.23%
±1.51

66.25%
±1.60

72.72%
±2.14

76.72%
±1.65

77.85%
±1.83

77.58%
±1.45

78.93%
±1.77

Table 2: Empirical results reported for LFW : PCA, TensorFaces and compositional hierarchical
Block TensorFaces. Pixels denotes independent facial part analysis Gaussian/Laplacian use a multi
resolution pyramid to analyze facial features at different scales. Weighted denotes a weighted
composite signature.
Freiburg Experiment:
Train on Freiburg: 6 views (±60◦,±30◦,±5◦); 6 illuminations (±60◦,±30◦,±5◦), 45 people
Test on Freiburg: 9 views (±50◦, ±40◦, ±20◦, ±10◦, 0◦), 9 illums (±50◦, ±40◦, ±20◦, ±10◦, 0◦),
45 different people
LFW Experiment: Models were trained on approximately half of one percent (0.5% < 1%) of the
4.4M images used to train DeepFace.
Train on Freiburg:
15 views (±60◦,±50◦, ±40◦,±30◦, ±20◦, ±10◦,±5◦, 0◦), 15 illuminations (±60◦,±50◦, ±40◦,±30◦,
±20◦, ±10◦,±5◦, 0◦), 100 people
Test on LFW: We report the mean accuracy and standard deviation across standard literature partitions
[Huang et al. (2007), following the
Unrestricted, labeled outside data supervised protocol.

Summary: This paper contributes to the tensor algebraic paradigm and models cause-and-effect as a
hierarchical block tensor interaction between intrinsic and extrinsic hierarchical causal factors of data
formation.

A data tensor expressed as a function of a hierarchical data tensor is a unified tensor model of wholes
and parts from which a new compositional hierarchical block tensor factorization was derived. The
resulting causal factor representations are interpretable, hierarchical, and statistically invariant to
all other causal factors. Our approach was demonstrated in the context of facial images by training
on a very small set of synthetic images. While we have not closed the gap on human performance,
we report encouraging face verification results on two test data sets–the Freiburg, and the Labeled
Faces in the Wild datasets. CNN verification rates improved the 70% prior art to 97.35% when
they employed 4.4M images from 4, 030 people, the same order of magnitude as the number of
people in the LFW database. We have currently achieved verification rates just shy of 80% on LFW
by employing synthetic images from 100 people for a total of less than one percent (1%) of the
total images employed by DeepFace. By comparison, when data is limited, CNN models do not
convergence, or generalize.
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