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Abstract: Lifelong learning offers a promising paradigm of building a generalist1

agent that learns and adapts over its lifespan. Unlike traditional lifelong learning2

problems in image and text domains, which primarily involve the transfer of declar-3

ative knowledge of entities and concepts, lifelong learning in decision-making4

(LLDM) also necessitates the transfer of procedural knowledge, such as actions5

and behaviors. To advance research in LLDM, we introduce LIBERO, a novel6

benchmark of lifelong learning for robot manipulation. Specifically, LIBERO7

highlights five key research topics in LLDM: 1) how to efficiently transfer declara-8

tive knowledge, procedural knowledge, or the mixture of both; 2) how to design9

effective policy architectures and 3) effective algorithms for LLDM; 4) the ro-10

bustness of a lifelong learner with respect to task ordering; and 5) the effect of11

model pretraining for LLDM. We develop an extendible procedural generation12

pipeline that can in principle generate infinitely many tasks. For benchmarking13

purpose, we create four task suites (130 tasks in total) that we use to investigate the14

above-mentioned research topics. To support sample-efficient learning, we provide15

high-quality human-teleoperated demonstration data for all tasks. Our extensive16

experiments present several insightful or even unexpected discoveries: sequential17

finetuning outperforms existing lifelong learning methods in forward transfer, no18

single visual encoder architecture excels at all types of knowledge transfer, and19

naive supervised pretraining can hinder agents’ performance in the subsequent20

LLDM.21

1 Introduction22

A longstanding goal in machine learning is to develop a generalist agent that can perform a wide23

range of tasks. While multitask learning [1] is one approach, it is computationally demanding and24

not adaptable to ongoing changes. Lifelong learning [2], however, offers a practical solution by25

amortizing the learning process over the agent’s lifespan. Its goal is to leverage prior knowledge to26

facilitate learning new tasks (forward transfer) and use the newly acquired knowledge to enhance27

performance on prior tasks (backward transfer).28

The main body of the lifelong learning literature has focused on how agents transfer declarative29

knowledge in visual or language tasks, which pertains to declarative knowledge about entities and30

concepts [3, 4]. Yet it is understudied how agents transfer knowledge in decision-making tasks,31

which involves a mixture of both declarative and procedural knowledge (knowledge about how to do32

something). Consider a scenario where a robot, initially trained to retrieve juice from a fridge, fails33

after learning new tasks. This could be due to forgetting the juice or fridge’s location (declarative34

knowledge) or how to open the fridge or grasp the juice (procedural knowledge). So far, we lack35

methods to systematically and quantitatively analyze this complex knowledge transfer.36

To bridge this research gap, this paper introduces a new simulation benchmark, LIfelong learning37

BEchmark on RObot manipulation tasks, LIBERO, to facilitate the systematic study of lifelong38

learning in decision making (LLDM). An ideal LLDM testbed should enable continuous learning39

across an expanding set of diverse tasks that share concepts and actions. LIBERO supports this40
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Figure 1: Top: LIBERO has four procedurally-generated task suites: LIBERO-SPATIAL, LIBERO-
OBJECT, and LIBERO-GOAL have 10 tasks each and require transferring knowledge about spatial
relationships, objects, and task goals; LIBERO-100 has 100 tasks and requires the transfer of
entangled knowledge. Bottom: we investigate five key research topics in LLDM on LIBERO.

through a procedural generation pipeline for endless task creation, based on robot manipulation tasks41

with shared visual concepts (declarative knowledge) and interactions (procedural knowledge).42

For benchmarking purpose, LIBERO generates 130 language-conditioned robot manipulation tasks43

inspired by human activities [5] and, grouped into four suites. The four task suites are designed to44

examine distribution shifts in the object types, the spatial arrangement of objects, the task goals,45

or the mixture of the previous three (top row of Figure 1). LIBERO is scalable, extendable, and46

designed explicitly for studying lifelong learning in robot manipulation. To support efficient learning,47

we provide high-quality, human-teleoperated demonstration data for all 130 tasks.48

We present an initial study using LIBERO to investigate five major research topics in LLDM49

(Figure 1): 1) knowledge transfer with different types of distribution shift; 2) neural architecture50

design; 3) lifelong learning algorithm design; 4) robustness of the learner to task ordering; and 5)51

how to leverage pre-trained models in LLDM (bottom row of Figure 1). We perform extensive52

experiments across different policy architectures and different lifelong learning algorithms. Based on53

our experiments, we make several insightful or even unexpected observations: (1) Policy architecture54

design is as crucial as lifelong learning algorithms. The transformer architecture is better at abstracting55

temporal information than a recurrent neural network. Vision transformers work well on tasks with56

rich visual information (e.g., a variety of objects). Convolution networks work well when tasks57

primarily need procedural knowledge. (2) While the lifelong learning algorithms we evaluated58

are effective at preventing forgetting, they generally perform worse than sequential finetuning in59

terms of forward transfer. (3) Our experiment shows that using pretrained language embeddings of60

semantically-rich task descriptions yields performance no better than using those of the task IDs.61

(4) Basic supervised pretraining on a large-scale offline dataset can have a negative impact on the62

learner’s downstream performance in LLDM.63

2 Research Topics in LLDM64

We outline five major research topics in LLDM that motivate the design of LIBERO and our study.65

(T1) Transfer of Different Types of Knowledge In order to accomplish a task such as put the66

ketchup next to the plate in the basket, a robot must understand the concept ketchup, the location67

of the plate/basket, and how to put the ketchup in the basket. Indeed, robot manipulation tasks in68

general necessitate different types of knowledge, making it hard to determine the cause of failure.69

We present four task suites in Section 3.2: three task suites for studying the transfer of knowledge70
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about spatial relationships, object concepts, and task goals in a disentangled manner, and one suite71

for studying the transfer of mixed types of knowledge.72

(T2) Neural Architecture Design An important research question in LLDM is how to design73

effective neural architectures to abstract the multi-modal observations (images, language descriptions,74

and robot states) and transfer only relevant knowledge when learning new tasks.75

(T3) Lifelong Learning Algorithm Design Given a policy architecture, it is crucial to determine76

what learning algorithms to apply for LLDM. Specifically, the sequential nature of LLDM suggests77

that even minor forgetting over successive steps can potentially lead to a total failure in execution. As78

such, we consider the design of lifelong learning algorithms to be an open area of research in LLDM.79

(T4) Robustness to Task Ordering It is well-known that task curriculum influences policy80

learning [6, 7]. A robot in the real world, however, often cannot choose which task to encounter first.81

Therefore, a good lifelong learning algorithm should be robust to different task orderings.82

(T5) Usage of Pretrained Models In practice, robots will be most likely pretrained on large83

datasets in factories before deployment [8]. However, it is not well-understood whether or how84

pretraining could benefit subsequent LLDM.85

3 LIBERO86

3.1 Procedural Generation of Tasks87

Research in LLDM requires a systematic way to create new tasks while maintaining task diversity88

and relevance to existing tasks. LIBERO procedurally generates new tasks in three steps: 1) extract89

behavioral templates from language annotations of human activities and generate sampled tasks90

described in natural language based on such templates; 2) specify an initial object distribution given a91

task description; and 3) specify task goals using a propositional formula that aligns with the language92

instructions. Our generation pipeline is built on top of Robosuite [9], a modular manipulation93

simulator that offers seamless integration. Figure 2 illustrates an example of task creation using this94

pipeline, and each component is expanded upon below.95

Behavioral Templates and Instruction Generation Human activities serve as a fertile source of96

tasks that can inspire and generate a vast number of manipulation tasks. We choose a large-scale97

activity dataset, Ego4D [5], which includes a large variety of everyday activities with language98

annotations. We pre-process the dataset by extracting the language descriptions and then summarize99

them into a large set of commonly used language templates. After this pre-processing step, we use100

the templates and select objects available in the simulator to generate a set of task descriptions in the101

form of language instructions. For example, we can generate an instruction “Open the drawer of the102

cabinet” from the template “Open ...”.103

Initial State Distribution (µ0) To specify µ0, we first sample a scene layout that matches the104

objects/behaviors in a provided instruction. For instance, a kitchen scene is selected for an instruction105

Open the top drawer of the cabinet and put the bowl in it. Then, the details about µ0 are generated in106

the PDDL language [10, 11]. Concretely, µ0 contains information about object categories and their107

placement (Figure 2-(A)), and their initial status (Figure 2-(B)).108

Goal Specifications (g) Based on µ0 and the language instruction, we specify the task goal using109

a conjunction of predicates. Predicates include unary predicates that describe the properties of an110

object, such as Open(X) or TurnOff(X), and binary predicates that describe spatial relations between111

objects, such as On(A, B) or In(A, B). An example of the goal specification using PDDL language112

can be found in Figure 2-(C). The simulation terminates when all predicates are verified true.113

3.2 Task Suites114

While the pipeline in Section 3.1 supports the generation of an unlimited number of tasks, we offer115

fixed sets of tasks for benchmarking purposes. LIBERO has four task suites: LIBERO-SPATIAL,116

LIBERO-OBJECT, LIBERO-GOAL, and LIBERO-100. The first three task suites are curated to117

disentangle the transfer of declarative and procedural knowledge (as mentioned in (T1)), while118

LIBERO-100 is a suite of 100 tasks with entangled knowledge transfer.119
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LIBERO-X LIBERO-SPATIAL, LIBERO-OBJECT, and LIBERO-GOAL all have 10 tasks1120

and are designed to investigate the controlled transfer of knowledge about spatial information121

(declarative), objects (declarative), and task goals (procedural). Specifically, all tasks in LIBERO-122

SPATIAL request the robot to place a bowl, among the same set of objects, on a plate. But there are123

two identical bowls that differ only in their location or spatial relationship to other objects. Hence, to124

successfully complete LIBERO-SPATIAL, the robot needs to continually learn and memorize new125

spatial relationships. All tasks in LIBERO-OBJECT request the robot to pick-place a unique object.126

Hence, to accomplish LIBERO-OBJECT, the robot needs to continually learn and memorize new127

object types. All tasks in LIBERO-GOAL share the same objects with fixed spatial relationships but128

differ only in the task goal. Hence, to accomplish LIBERO-GOAL, the robot needs to continually129

learn new knowledge about motions and behaviors. More details are in Appendix G.130

LIBERO-100 LIBERO-100 contains 100 tasks that entail diverse object interactions and versatile131

motor skills. In this paper, we split LIBERO-100 into 90 short-horizon tasks (LIBERO-90) and 10132

long-horizon tasks (LIBERO-LONG). LIBERO-90 serves as the data source for pretraining (T5)133

and LIBERO-LONG for downstream evaluation of lifelong learning algorithms.134

3.3 Lifelong Learning Algorithms135

We implement three representative lifelong learning algorithms to facilitate research in algorith-136

mic design for LLDM. Specifically, we implement Experience Replay (ER) [12], Elastic Weight137

Consolidation (EWC) [13], and PACKNET [14]. We pick ER, EWC, and PACKNET because they138

correspond to the memory-based, regularization-based, and dynamic-architecture-based methods for139

lifelong learning. In addition, prior research [15] has discovered that they are state-of-the-art methods.140

Besides these three methods, we also implement sequential finetuning (SEQL) and multitask learning141

(MTL), which serve as a lower bound and upper bound for lifelong learning algorithms, respectively.142

More details about the algorithms are in Appendix F.1.143

4 Experiments144

Experiments are conducted as an initial study for the five research topics mentioned in Section 2.145

Specifically, we focus on addressing the following research questions: Q1: How do different146

architectures/LL algorithms perform under specific distribution shifts? Q2: To what extent does147

neural architecture impact knowledge transfer in LLDM, and are there any discernible patterns in148

the specialized capabilities of each architecture? Q3: How do existing algorithms from lifelong149

supervised learning perform on LLDM tasks? Q4: To what extent does language embedding affect150

knowledge transfer in LLDM? Q5: How robust are different LL algorithms to task ordering in151

LLDM? Q6: Can supervised pretraining improve downstream lifelong learning performance in152

LLDM? The detailed results/findings are in Appendix A.153

5 Conclusion and Limitations154

This paper introduces LIBERO, a new benchmark in the robot manipulation domain for supporting155

research in LLDM. LIBERO includes a procedural generation pipeline that can create an infinite156

number of manipulation tasks in the simulator. We use this pipeline to create 130 standardized tasks157

and conduct a comprehensive set of experiments on policy and algorithm designs. The empirical158

results suggest several future research directions: 1) how to design a better neural architecture to better159

process spatial information or temporal information; 2) how to design a better algorithm to improve160

forward transfer ability; and 3) how to use pretraining to help improve lifelong learning performance.161

In the short term, we do not envision any negative societal impacts triggered by LIBERO. But162

as the lifelong learner mainly learns from humans, studying how to preserve user privacy within163

LLDM [16] is crucial in the long run.164

1A suite of 10 tasks is enough to observe catastrophic forgetting while maintaining computation efficiency.
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Figure 2: LIBERO’s procedural generation pipeline: Extracting behavioral templates from a large-
scale human activity dataset (1), Ego4D, for generating task instructions (2); Based on the task
description, selecting the scene and generating the PDDL description file (3) that specifies the objects
and layouts (A), the initial object configurations (B), and the task goal (C).

A Experiments358

Experiments are conducted as an initial study for the five research topics mentioned in Section 2. We359

first introduce the evaluation metric used in experiments, and present analysis of empirical results in360

LIBERO. The detailed experimental setup is in Appendix H and the study on Q5 is in Appendix I.2.361

Our experiments focus on addressing the following research questions:362

Q1: How do different architectures/LL algorithms perform under specific distribution shifts?363

Q2: To what extent does neural architecture impact knowledge transfer in LLDM, and are there any364

discernible patterns in the specialized capabilities of each architecture?365

Q3: How do existing algorithms from lifelong supervised learning perform on LLDM tasks?366

Q4: To what extent does language embedding affect knowledge transfer in LLDM?367

Q5: How robust are different LL algorithms to task ordering in LLDM?368

Q6: Can supervised pretraining improve downstream lifelong learning performance in LLDM?369

A.1 Evaluation Metrics370

We report three metrics: FWT (forward transfer) [17], NBT (negative backward transfer), and371

AUC (area under the success rate curve). All metrics are computed in terms of success rate, as372

previous literature has shown that the success rate is a more reliable metric than training loss for373

manipulation policies [18] (Detailed explanation in Appendix I.3). Lower NBT means a policy374

has better performance in the previously seen tasks, higher FWT means a policy learns faster on a375

new task, and higher AUC means an overall better performance considering both NBT and FWT.376

Specifically, denote ci,j,e as the agent’s success rate on task j when it learned over i−1 previous tasks377

and has just learned e epochs (e ∈ {0, 5, . . . , 50}) on task i. Let ci,i be the best success rate over all378

evaluated epochs e for the current task i (i.e., ci,i = maxe ci,i,e). Then, we find the earliest epoch e∗i379

in which the agent achieves the best performance on task i (i.e., e∗i = argmine ci,i,ei = ci,i), and380

assume for all e ≥ e∗i , ci,i,e = ci,i.2 Given a different task j ̸= i, we define ci,j = ci,j,e∗i . Then381

the three metrics are defined: FWT =
∑

k∈[K]
FWTk

K , FWTk = 1
11

∑
e∈{0...50} ck,k,e, NBT =382 ∑

k∈[K]
NBTk

K , NBTk = 1
K−k

∑K
τ=k+1

(
ck,k − cτ,k

)
, and AUC =

∑
k∈[K]

AUCk

K , AUCk =383

1
K−k+1

(
FWTk +

∑K
τ=k+1 cτ,k

)
. A visualization of these metrics is provided in Figure 4.384

A.2 Experimental Results385

We present empirical results to address the research questions. Please refer to Appendix I.1 for the386

full results across all algorithms, policy architectures, and task suites.387

2In practice, it’s possible that the agent’s performance on task i is not monotonically increasing due to the
variance of learning. But we keep the best checkpoint among those saved at epochs {e} as if the agent stops
learning after e∗i .
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Study on the Policy’s Neural Architectures (Q1, Q2) Table 1 reports the agent’s lifelong learning388

performance using the three different neural architectures on the four task suites. Results are reported389

when ER and PACKNET are used as they demonstrate the best lifelong learning performance across390

all task suites.

Policy Arch. ER PACKNET

FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG

RESNET-RNN 0.16 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 0.13 ± 0.00 0.21 ± 0.01 0.03 ± 0.00
RESNET-T 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00
VIT-T 0.38 ± 0.05 0.29 ± 0.06 0.25 ± 0.02 0.36 ± 0.01 0.14 ± 0.01 0.34 ± 0.01

LIBERO-SPATIAL

RESNET-RNN 0.40 ± 0.02 0.29 ± 0.02 0.29 ± 0.01 0.27 ± 0.03 0.38 ± 0.03 0.06 ± 0.01
RESNET-T 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
VIT-T 0.63 ± 0.01 0.29 ± 0.02 0.50 ± 0.02 0.57 ± 0.04 0.15 ± 0.00 0.59 ± 0.03

LIBERO-OBJECT

RESNET-RNN 0.30 ± 0.01 0.27 ± 0.05 0.17 ± 0.05 0.29 ± 0.02 0.35 ± 0.02 0.13 ± 0.01
RESNET-T 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05
VIT-T 0.70 ± 0.02 0.28 ± 0.01 0.57 ± 0.01 0.58 ± 0.03 0.18 ± 0.02 0.56 ± 0.04

LIBERO-GOAL

RESNET-RNN 0.41 ± 0.00 0.35 ± 0.01 0.26 ± 0.01 0.32 ± 0.03 0.37 ± 0.04 0.11 ± 0.01
RESNET-T 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
VIT-T 0.57 ± 0.00 0.40 ± 0.02 0.38 ± 0.01 0.69 ± 0.02 0.08 ± 0.01 0.76 ± 0.02

Table 1: Performance of the three neural architectures using ER and PACKNET on the four task
suites. Results are averaged over three seeds and we report the mean and standard error. The best
performance is bolded, and colored in purple if the improvement is statistically significant over
other neural architectures, when a two-tailed, Student’s t-test under equal sample sizes and unequal
variance is applied with a p-value of 0.05.391

Findings: First, we observe that RESNET-T and VIT-T work much better than RESNET-RNN on392

average, indicating that using a transformer on the “temporal" level could be a better option than393

using an RNN model. Second, the performance difference among different architectures depends394

on the underlying lifelong learning algorithm. If PACKNET (a dynamic architecture approach) is395

used, we observe no significant performance difference between RESNET-T and VIT-T except on396

the LIBERO-LONG task suite where VIT-T performs much better than RESNET-T. In contrast,397

if ER is used, we observe that RESNET-T performs better than VIT-T on all task suites except398

LIBERO-OBJECT. This potentially indicates that the ViT architecture is better at processing visual399

information with more object varieties than the ResNet architecture when the network capacity is400

sufficiently large (See the MTL results in Table 8 on LIBERO-OBJECT as the supporting evidence).401

The above findings shed light on how one can improve architecture design for better processing of402

spatial and temporal information in LLDM.403

Study on Lifelong Learning Algorithms (Q1, Q3) Table 2 reports the lifelong learning per-404

formance of the three lifelong learning algorithms, together with the SEQL and MTL baselines.405

All experiments use the same RESNET-T architecture as it performs the best across all policy406

architectures.407

Findings: We observed a series of interesting findings that could potentially benefit future research408

on algorithm design for LLDM: 1) SEQL shows the best FWT over all task suites. This is surprising409

since it indicates all lifelong learning algorithms we consider actually hurt forward transfer; 2)410

PACKNET outperforms other lifelong learning algorithms on LIBERO-X but is outperformed by411

ER significantly on LIBERO-LONG, mainly because of low forward transfer. This confirms that412

the dynamic architecture approach is good at preventing forgetting. But since PACKNET splits the413

network into different sub-networks, the essential capacity of the network for learning any individual414

task is smaller. Therefore, we conjecture that PACKNET is not rich enough to learn on LIBERO-415
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Lifelong Algo. FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG LIBERO-SPATIAL

SEQL 0.54 ± 0.01 0.63 ± 0.01 0.15 ± 0.00 0.72 ± 0.01 0.81 ± 0.01 0.20 ± 0.01
ER 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01
EWC 0.13 ± 0.02 0.22 ± 0.03 0.02 ± 0.00 0.23 ± 0.01 0.33 ± 0.01 0.06 ± 0.01
PACKNET 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
MTL 0.48 ± 0.01 0.83 ± 0.00

LIBERO-OBJECT LIBERO-GOAL

SEQL 0.78 ± 0.04 0.76 ± 0.04 0.26 ± 0.02 0.77 ± 0.01 0.82 ± 0.01 0.22 ± 0.00
ER 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02
EWC 0.56 ± 0.03 0.69 ± 0.02 0.16 ± 0.02 0.32 ± 0.02 0.48 ± 0.03 0.06 ± 0.00
PACKNET 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
MTL 0.54 ± 0.02 0.80 ± 0.01

Table 2: Performance of three lifelong algorithms and the SEQL and MTL baselines on the four
task suites, where the policy is fixed to be RESNET-T. Results are averaged over three seeds and
we report the mean and standard error. The best performance is bolded, and colored in purple if
the improvement is statistically significant over other algorithms, when a two-tailed, Student’s t-test
under equal sample sizes and unequal variance is applied with a p-value of 0.05.

LONG; 3) EWC works worse than SEQL, showing that the regularization on the loss term can actually416

impede the agent’s performance on LLDM problems (See Appendix I.3); and 4) ER, the rehearsal417

method, is robust across all task suites.418

Study on Language Embeddings as the Task Identifier (Q4) To investigate to what extent419

language embedding play a role in LLDM, we compare the performance of the same lifelong learner420

using four different pretrained language embeddings. Namely, we choose BERT [19], CLIP [20],421

GPT-2 [21] and the Task-ID embedding. Task-ID embeddings are produced by feeding a string such422

as “Task 5” into a pretrained BERT model.423

Embedding Type Dimension FWT(↑) NBT(↓) AUC(↑)

BERT 768 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01
CLIP 512 0.52 ± 0.00 0.34 ± 0.01 0.35 ± 0.01
GPT-2 768 0.46 ± 0.01 0.34 ± 0.02 0.30 ± 0.01
Task-ID 768 0.50 ± 0.01 0.37 ± 0.01 0.33 ± 0.01

Table 3: Performance of a lifelong learner using four different language embeddings on LIBERO-
LONG, where we fix the policy architecture to RESNET-T and the lifelong learning algorithm to ER.
The Task-ID embeddings are retrieved by feeding “Task + ID" into a pretrained BERT model. Results
are averaged over three seeds and we report the mean and standard error. The best performance is
bolded. No statistically significant difference is observed among the different language embeddings.

Findings: From Table 3, we observe no statistically significant difference among various language424

embeddings, including the Task-ID embedding. This, we believe, is due to sentence embeddings425

functioning as bag-of-words that differentiates different tasks. This insight calls for better language426

encoding to harness the semantic information in task descriptions. Despite the similar performance,427

we opt for BERT embeddings as our default task embedding.428

Study on How Pretraining Affects Downstream LLDM (Q6) Fig 3 reports the results on429

LIBERO-LONG of five combinations of algorithms and policy architectures, when the underlying430

model is pretrained on the 90 short-horizion tasks in LIBERO-100 or learned from scratch. For431

pretraining, we apply behavioral cloning on the 90 tasks using the three policy architectures for 50432

epochs. We save a checkpoint every 5 epochs of training and then pick the checkpoint for each433

architecture that has the best performance as the pretrained model for downstream LLDM.434

Findings: We observe that the basic supervised pretraining can hurt the model’s downstream lifelong435

learning performance. This, together with the results seen in Table 2 (e.g., naive sequential fine-tuning436
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Figure 3: Performance of different combinations of algorithms and architectures without pretraining
or with pretraining. The multi-task learning performance is also included for reference.

has better forward transfer than when lifelong learning algorithms are applied), indicates that better437

pretraining techniques are needed.438

Attention Visualization: To better understand what type of knowledge the agent forgets during the439

lifelong learning process, we visualize the agent’s attention map on each observed image input. The440

visualized saliency maps and the discussion can be found in Appendix I.4.441

B Related Work442

This section provides an overview of existing benchmarks for lifelong learning and robot learning.443

We refer the reader to Appendix F.1 for a detailed review of lifelong learning algorithms.444

Lifelong Learning Benchmarks Pioneering work has adapted standard vision or language445

datasets for studying LL. This line of work includes image classification datasets like MNIST [22],446

CIFAR [23], and ImageNet [24]; segmentation datasets like Core50 [25]; and natural language447

understanding datasets like GLUE [26] and SuperGLUE [27]. Besides supervised learning datasets,448

video game benchmarks (e.g., Atari [28], XLand [29], and VisDoom [30]) in reinforcement learning449

(RL) have also been used for studying LL. However, LL in standard supervised learning does not450

involve procedural knowledge transfer, while RL problems in games do not represent human activities.451

ContinualWorld [15] modifies the 50 manipulation tasks in MetaWorld for LL. CORA [31] builds452

four lifelong RL benchmarks based on Atari, Procgen [32], MiniHack [33], and ALFRED [34].453

F-SIOL-310 [35] and OpenLORIS [36] are challenging real-world lifelong object learning datasets454

that are captured from robotic vision systems. Prior works have also analyzed different components455

in a LL agent [37–39], but they do not focus on robot manipulation problems.456

Robot Learning Benchmarks A variety of robot learning benchmarks have been proposed457

to address challenges in meta learning (MetaWorld [40]), causality learning (CausalWorld [41]),458

multi-task learning [42, 43], policy generalization to unseen objects [44, 45], and compositional459

learning [46]. Compared to existing benchmarks in lifelong learning and robot learning, the task460

suites in LIBERO are curated to address the research topics of LLDM. The benchmark includes a461

large number of tasks based on everyday human activities that feature rich interactive behaviors with462

a diverse range of objects. Additionally, the tasks in LIBERO are procedurally generated, making463

the benchmark scalable and adaptable. Moreover, the provided high-quality human demonstration464

dataset in LIBERO supports and encourages learning efficiency.465

C Background466

This section introduces the problem formulation and defines key terms used throughout the paper.467

C.1 Markov Decision Process for Robot Learning468

A robot learning problem can be formulated as a finite-horizon Markov Decision Process: M =469

(S,A, T , H, µ0, R). Here, S and A are the state and action spaces of the robot. µ0 is the initial470

state distribution, R : S × A → R is the reward function, and T : S × A → S is the transition471

function. In this work, we assume a sparse-reward setting and replace R with a goal predicate472
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g : S → {0, 1}. The robot’s objective is to learn a policy π that maximizes the expected return:473

maxπ J(π) = Est,at∼π,µ0
[
∑H

t=1 g(st)].474

C.2 Lifelong Robot Learning Problem475

In a lifelong robot learning problem, a robot sequentially learns over K tasks {T 1, . . . , TK} with a476

single policy π. We assume π is conditioned on the task, i.e., π(· | s;T ). For each task, T k ≡ (µk
0 , g

k)477

is defined by the initial state distribution µk
0 and the goal predicate gk.3 We assume S,A, T , H are478

the same for all tasks. Up to the k-th task T k, the robot aims to optimize479

max
π

JLRL(π) =
1

k

k∑
p=1

[
E

spt ,a
p
t∼π(·;Tp), µp

0

[ L∑
t=1

gp(spt )

]]
. (1)

An important feature of the lifelong setting is that the agent loses access to the previous k − 1 tasks480

when it learns on task T k.481

Lifelong Imitation Learning Due to the challenge of sparse-reward reinforcement learning, we482

consider a practical alternative setting where a user would provide a small demonstration dataset483

for each task in the sequence. Denote Dk = {τki }Ni=1 as N demonstrations for task T k. Each484

τki = (o0, a0, o1, a1, . . . , olk) where lk ≤ H . Here, ot is the robot’s sensory input, including the485

perceptual observation and the information about the robot’s joints and gripper. In practice, the486

observation ot is often non-Markovian. Therefore, following works in partially observable MDPs [47],487

we represent st by the aggregated history of observations, i.e. st ≡ o≤t ≜ (o0, o1, . . . , ot). This488

results in the lifelong imitation learning problem with the same objective as in Eq. (1). But during489

training, we perform behavioral cloning [48] with the following surrogate objective function:490

min
π

JBC(π) =
1

k

k∑
p=1

E
ot,at∼Dp

[ lp∑
t=0

L
(
π(o≤t;T

p), apt
)]

, (2)

where L is a supervised learning loss, e.g., the negative log-likelihood loss, and π is a Gaussian491

mixture model. Similarly, we assume {Dp : p < k} are not fully available when learning T k.492

D Metrics Visualization493

We provide a visualization of the three metrics we compute in Figure 4. For completeness, we also

Figure 4: Metrics for LLDM

494

provide the formulas for the metrics here:495

3Throughout the paper, a superscript/subscript is used to index the task/time step.
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FWT =
∑

k∈[K]

FWTk

K
, FWTk =

1

11

∑
e∈{0...50}

ck,k,e

NBT =
∑

k∈[K]

NBTk

K
, NBTk =

1

K − k

K∑
τ=k+1

(
ck,k − cτ,k

)
AUC =

∑
k∈[K]

AUCk

K
, AUCk =

1

K − k + 1

(
FWTk +

K∑
τ=k+1

cτ,k
)
.

E Implemented Neural Architectures and Lifelong Learning Algorithms496

Neural Policy Arch.
RESNET-RNN
RESNET-T
VIT-T

Lifelong Learning Algo.

SEQL
EWC [13]
ER [12]
PACKNET [14]
MTL

Table 4: The implemented neural policy architectures and the lifelong learning algorithms in
LIBERO.

E.1 Neural Network Architectures497

We implement three vision-language policy networks, RESNET-RNN, RESNET-T, and VIT-T, that498

integrate visual, temporal, and linguistic information for LLDM. Language instructions of tasks499

are encoded using pretrained BERT embeddings [19]. The RESNET-RNN [18] uses a ResNet as the500

visual backbone that encodes per-step visual observations and an LSTM as the temporal backbone to501

process a sequence of encoded visual information. The language instruction is incorporated into the502

ResNet features using the FiLM method [49] and added to the LSTM inputs, respectively. RESNET-T503

architecture [50] uses a similar ResNet-based visual backbone, but a transformer decoder [51] as504

the temporal backbone to process outputs from ResNet, which are a temporal sequence of visual505

tokens. The language embedding is treated as a separate token in inputs to the transformer alongside506

the visual tokens. The VIT-T architecture [52], which is widely used in visual-language tasks, uses a507

Vision Transformer (ViT) as the visual backbone and a transformer decoder as the temporal backbone.508

The language embedding is treated as a separate token in inputs of both ViT and the transformer509

decoder. All the temporal backbones output a latent vector for every decision-making step. We510

compute the multi-modal distribution over manipulation actions using a Gaussian-Mixture-Model511

(GMM) based output head [53, 18, 54]. In the end, a robot executes a policy by sampling a continuous512

value for end-effector action from the output distribution. Figure 5 visualizes the three architectures.513

For all the lifelong learning algorithms and neural architectures, we use behavioral cloning (BC) [48]514

to train policies for individual tasks (See (2)). BC allows for efficient policy learning such that we515

can study lifelong learning algorithms with limited computational resources. To train BC, we provide516

50 trajectories of high-quality demonstrations for every single task in the generated task suites. The517

demonstrations are collected by human experts through teleoperation with 3Dconnexion Spacemouse.518

In Section E.1, we outlined the neural network architectures utilized in our experiments, namely519

RESNET-RNN, RESNET-T, and VIT-T. The specifics of each architecture are illustrated in Figure 5.520

Furthermore, Table 5, 6, and 7 display the hyperparameters for the architectures used throughout all521

of our experiments.522
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Figure 5: We provide visualizations of the architectures for RESNET-RNN, RESNET-T, and VIT-T,
respectively. It is worth noting that each model architecture incorporates language embedding in
distinct ways.

Figure 6: The image encoders: ResNet-based encoder and the vision transformer-based encoder.

F Computation523

For all experiments, we use a single Nvidia A100 GPU or a single Nvidia A40 GPU (CUDA 11.7)524

with 8 16 CPUs for training and evaluation.525
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Variable Value

resnet_image_embed_size 64
text_embed_size 32
rnn_hidden_size 1024
rnn_layer_num 2

rnn_dropout 0.0

Table 5: Hyper parameters of RESNET-RNN.

Variable Value

extra_info_hidden_size 128
img_embed_size 64

transformer_num_layers 4
transformer_num_heads 6

transformer_head_output_size 64
transformer_mlp_hidden_size 256

transformer_dropout 0.1
transformer_max_seq_len 10

Table 6: Hyper parameters of RESNET-T.

526

Variable Value

extra_info_hidden_size 128
img_embed_size 128

spatial_transformer_num_layers 7
spatial_transformer_num_heads 8

spatial_transformer_head_output_size 120
spatial_transformer_mlp_hidden_size 256

spatial_transformer_dropout 0.1
spatial_down_sample_embed_size 64
temporal_transformer_input_size null

temporal_transformer_num_layers 4
temporal_transformer_num_heads 6

temporal_transformer_head_output_size 64
temporal_transformer_mlp_hidden_size 256

temporal_transformer_dropout 0.1
temporal_transformer_max_seq_len 10

Table 7: Hyper parameters of VIT-T.

F.1 Lifelong Learning Algorithms527

Lifelong learning (LL) is a field of study that aims to understand how an agent can continually528

acquire and retain knowledge over an infinite sequence of tasks without catastrophically forgetting529

previous knowledge. Recent literature proposes three main approaches to address the problem of530

catastrophic forgetting in deep learning: Dynamic Architecture approaches, Regularization-Based531

approaches, and Rehearsal approaches. Although some recent works explore the combination of532

different approaches [55–57] or new strategies [58–60], our benchmark aims to provide an in-depth533

analysis of these three basic lifelong learning directions to reveal their pros and cons on robot learning534

tasks.535

The dynamic architecture approach gradually expands the learning model to incorporate new knowl-536

edge [61, 62, 14, 63–65]. Regularization-based methods, on the other hand, regularize the learner to537

a previous checkpoint when it learns a new task [13, 66–68]. Rehearsal methods save exemplar data538

from prior tasks and replay them with new data to consolidate the agent’s memory [12, 69–71]. For a539

comprehensive review of LL methods, we refer readers to surveys [72, 73].540

The following paragraphs provide details on the three lifelong learning algorithms that we have541

implemented.542

ER Experience Replay (ER) [12] is a rehearsal-based approach that maintains a memory buffer543

of samples from previous tasks and leverages it to learn new tasks. After the completion of policy544

learning for a task, ER stores a portion of the data into a storage memory. When training a new545

task, ER samples data from the memory and combines it with the training data from the current task546

so that the training data approximately represents the empirical distribution of all-task data. In our547
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implementation, we use a replay buffer to store a portion of the training data (up to 1000 trajectories)548

after training each task. For every training iteration during the training of a new task, we uniformly549

sample a fixed number of replay data from the memory (32 trajectories) along with each batch of550

training data from the new task.551

EWC Elastic Weight Consolidation(EWC) [13] is a regularization-based approach that add a
regularization term that constraints neural network update to the original single-task learning objective.
Specifically, EWC uses the Fisher information matrix that quantify the importance of every neural
netwrk parameter. The loss function for task k is:

LEWC
k (θ) = LBC

K (θ) +
∑
i

λ

2
Fi

(
θi − θ∗k−1,i

)2
,

where λ is a penalty hyperparameter, and the coefficient Fi is the diagonal of the Fisher information552

matrix: Fk = Es∼Dk
Ea∼pθ(·|s) (∇θk log pθk(a|s))

2. In this work, we use the online update version553

of EWC that updates the Fisher information matrix using exponential moving average along the554

lifelong learning process, and use the empirical estimation of above Fisher information matrix to555

stabilize the estimation. Formally, the actually used estimation of Fisher Information Matrix is556

F̃k = γFk−1+(1− γ)Fk, where Fk = E(s,a)∼Dk
(∇θk log pθk(a|s))

2 and k is the task number. We557

set γ = 0.9 and λ = 5 · 104.558

PACKNET PACKNET [14] is a dynamic architecture-based approach that aims to prevent changes559

to parameters that are important for previous tasks in lifelong learning. To achieve this, PACKNET560

iteratively trains, prunes, fine-tunes, and freezes parts of the network. The method theoretically561

completely avoids catastrophic forgetting, but for each new task, the number of available parameters562

shrinks. The pruning process in PACKNET involves two stages. First, the network is trained, and at the563

end of the training, a fixed proportion of the most important parameters (25% in our implementation)564

are chosen, and the rest are pruned. Second, the selected part of the network is fine-tuned and then565

frozen. In our implementation, we follow the original paper [14] and do not train all biases and566

normalization layers. We perform the same number of fine-tuning epochs as for training (50 epochs567

in our implementation). Note that all evaluation metrics are calculated before the fine-tuning stage.568
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G LIBERO Task Suite Designs569

G.1 Task Suites570

We visualize all the tasks from the four task suites in Figure 7- 10. Figure 7 visualizes the initial571

states since the task goals are always the same. All the figures visualize the goal states of tasks except572

for Figure 7, which visualizes the initial states since the task goals are always the same.573

Figure 7: LIBERO-SPATIAL

Figure 8: LIBERO-OBJECT

Figure 9: LIBERO-GOAL

574

575

576

577

578

579
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Figure 10: LIBERO-100

580

581

20



G.2 PDDL-based Scene Description File582

Here we visualize the whole content of an example scene description file based on PDDL. This file583

corresponds to the task shown in Figure 2.584

Example task: Open the top drawer of the cabinet and put the bowl in it.585

( d e f i n e ( problem LIBERO_Ki tchen_Tab le top_Manipu la t ion )586

( : domain r o b o s u i t e )587

( : l a n g u a g e open t h e t o p drawer o f t h e c a b i n e t and p u t t h e bowl i n i t )588

( : r e g i o n s589

( w o o d e n _ c a b i n e t _ i n i t _ r e g i o n590

( : t a r g e t k i t c h e n _ t a b l e )591

( : r a n g e s (592

( −0 .01 −0.31 0 . 0 1 −0 .29)593

)594

)595

( : y a w _ r o t a t i o n (596

(3 .141592653589793 3 .141592653589793)597

)598

)599

)600

( a k i t a _ b l a c k _ b o w l _ i n i t _ r e g i o n601

( : t a r g e t k i t c h e n _ t a b l e )602

( : r a n g e s (603

( −0 .025 −0.025 0 .025 0 . 0 2 5 )604

)605

)606

( : y a w _ r o t a t i o n (607

( 0 . 0 0 . 0 )608

)609

)610

)611

( p l a t e _ i n i t _ r e g i o n612

( : t a r g e t k i t c h e n _ t a b l e )613

( : r a n g e s (614

( −0 .025 0 .225 0 .025 0 . 2 7 5 )615

)616

)617

( : y a w _ r o t a t i o n (618

( 0 . 0 0 . 0 )619

)620

)621

)622

( t o p _ s i d e623

( : t a r g e t wooden_cab ine t_1 )624

)625

( t o p _ r e g i o n626

( : t a r g e t wooden_cab ine t_1 )627

)628

( m i d d l e _ r e g i o n629

( : t a r g e t wooden_cab ine t_1 )630

)631

( b o t t o m _ r e g i o n632

( : t a r g e t wooden_cab ine t_1 )633

)634

)635

636

( : f i x t u r e s637
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k i t c h e n _ t a b l e − k i t c h e n _ t a b l e638

wooden_cab ine t_1 − wooden_cab ine t639

)640

641

( : o b j e c t s642

a k i t a _ b l a c k _ b o w l _ 1 − a k i t a _ b l a c k _ b o w l643

p l a t e _ 1 − p l a t e644

)645

646

( : o b j _ o f _ i n t e r e s t647

wooden_cab ine t_1648

a k i t a _ b l a c k _ b o w l _ 1649

)650

651

( : i n i t652

( On a k i t a _ b l a c k _ b o w l _ 1 k i t c h e n _ t a b l e _ a k i t a _ b l a c k _ b o w l _ i n i t _ r e g i o n )653

( On p l a t e _ 1 k i t c h e n _ t a b l e _ p l a t e _ i n i t _ r e g i o n )654

( On wooden_cab ine t_1 k i t c h e n _ t a b l e _ w o o d e n _ c a b i n e t _ i n i t _ r e g i o n )655

)656

657

( : g o a l658

( And ( Open w o o d e n _ c a b i n e t _ 1 _ t o p _ r e g i o n )659

( In a k i t a _ b l a c k _ b o w l _ 1 w o o d e n _ c a b i n e t _ 1 _ t o p _ r e g i o n )660

)661

)662

663

)664
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H Experimental Setup665

We consider five lifelong learning algorithms: SEQL the sequential learning baseline where the666

agent learns each task in the sequence directly without any further consideration, MTL the multitask667

learning baseline where the agent learns all tasks in the sequence simultaneously, the regularization-668

based method EWC [13], the replay-based method ER [12], and the dynamic architecture-based669

method PACKNET [14]. SEQL and MTL can be seen as approximations of the lower and upper670

bounds respectively for any lifelong learning algorithm. The other three methods represent the671

three primary categories of lifelong learning algorithms. For the neural architectures, we consider672

three vision-language policy architectures: RESNET-RNN, RESNET-T, VIT-T, which differ in how673

spatial or temporal information is aggregated (See Appendix E.1 for more details). For each task,674

the agent is trained over 50 epochs on the 50 demonstration trajectories. We evaluate the agent’s675

average success rate over 20 test rollout trajectories of a maximum length of 600 every 5 epochs.676

We use Adam optimizer [74] with a batch size of 32, and a cosine scheduled learning rate from677

0.0001 to 0.00001 for each task. Following the convention of Robomimic [18], we pick the model678

checkpoint that achieves the best success rate as the final policy for a given task. After 50 epochs679

of training, the agent with the best checkpoint is then evaluated on all previously learned tasks,680

with 20 test rollout trajectories for each task. All policy networks are matched in Floating Point681

Operations Per Second (FLOPS): all policy architectures have ∼13.5G FLOPS. For each combination682

of algorithm, policy architecture, and task suite, we run the lifelong learning method 3 times with683

random seeds {100, 200, 300} (180 experiments in total). See Table 4 for the implemented algorithms684

and architectures.685

I Additional Experiment Results686

I.1 Full Results687

We provide the full results across three different lifelong learning algorithms (e.g., EWC, ER,688

PACKNET) and three different policy architectures (e.g., RESNET-RNN, RESNET-T, VIT-T) on the689

four task suites in Table 8.690

To better illustrate the performance of each lifelong learning agent throughout the learning process,691

we present plots that show how the agent’s performance evolves over the stream of tasks. Firstly, we692

provide plots that compare the performance of the agent using different lifelong learning algorithms693

while fixing the policy architecture (refer to Figure 11,12, and 13). Next, we provide plots that694

compare the performance of the agent using different policy architectures while fixing the lifelong695

learning algorithm (refer to Figure14, 15, and 16)696
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Algo. Policy Arch. FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG LIBERO-SPATIAL

SEQL
RESNET-RNN 0.24 ± 0.02 0.28 ± 0.01 0.07 ± 0.01 0.50 ± 0.01 0.61 ± 0.01 0.14 ± 0.01
RESNET-T 0.54 ± 0.01 0.63 ± 0.01 0.15 ± 0.00 0.72 ± 0.01 0.81 ± 0.01 0.20 ± 0.01
VIT-T 0.44 ± 0.04 0.50 ± 0.05 0.13 ± 0.01 0.63 ± 0.02 0.76 ± 0.01 0.16 ± 0.01

ER
RESNET-RNN 0.16 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 0.40 ± 0.02 0.29 ± 0.02 0.29 ± 0.01
RESNET-T 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01
VIT-T 0.38 ± 0.05 0.29 ± 0.06 0.25 ± 0.02 0.63 ± 0.01 0.29 ± 0.02 0.50 ± 0.02

EWC
RESNET-RNN 0.02 ± 0.00 0.04 ± 0.01 0.00 ± 0.00 0.14 ± 0.02 0.23 ± 0.02 0.03 ± 0.00
RESNET-T 0.13 ± 0.02 0.22 ± 0.03 0.02 ± 0.00 0.23 ± 0.01 0.33 ± 0.01 0.06 ± 0.01
VIT-T 0.05 ± 0.02 0.09 ± 0.03 0.01 ± 0.00 0.32 ± 0.03 0.48 ± 0.03 0.06 ± 0.01

PACKNET
RESNET-RNN 0.13 ± 0.00 0.21 ± 0.01 0.03 ± 0.00 0.27 ± 0.03 0.38 ± 0.03 0.06 ± 0.01
RESNET-T 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
VIT-T 0.36 ± 0.01 0.14 ± 0.01 0.34 ± 0.01 0.57 ± 0.04 0.15 ± 0.00 0.59 ± 0.03

MTL
RESNET-RNN 0.20 ± 0.01 0.61 ± 0.00
RESNET-T 0.48 ± 0.01 0.83 ± 0.00
VIT-T 0.46 ± 0.00 0.79 ± 0.01

LIBERO-OBJECT LIBERO-GOAL

SEQL
RESNET-RNN 0.48 ± 0.03 0.53 ± 0.04 0.15 ± 0.01 0.61 ± 0.01 0.73 ± 0.01 0.16 ± 0.00
RESNET-T 0.78 ± 0.04 0.76 ± 0.04 0.26 ± 0.02 0.77 ± 0.01 0.82 ± 0.01 0.22 ± 0.00
VIT-T 0.76 ± 0.03 0.73 ± 0.03 0.27 ± 0.02 0.75 ± 0.01 0.85 ± 0.01 0.20 ± 0.01

ER
RESNET-RNN 0.30 ± 0.01 0.27 ± 0.05 0.17 ± 0.05 0.41 ± 0.00 0.35 ± 0.01 0.26 ± 0.01
RESNET-T 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02
VIT-T 0.70 ± 0.02 0.28 ± 0.01 0.57 ± 0.01 0.57 ± 0.00 0.40 ± 0.02 0.38 ± 0.01

EWC
RESNET-RNN 0.17 ± 0.04 0.23 ± 0.04 0.06 ± 0.01 0.16 ± 0.01 0.22 ± 0.01 0.06 ± 0.01
RESNET-T 0.56 ± 0.03 0.69 ± 0.02 0.16 ± 0.02 0.32 ± 0.02 0.48 ± 0.03 0.06 ± 0.00
VIT-T 0.57 ± 0.03 0.64 ± 0.03 0.23 ± 0.00 0.32 ± 0.04 0.45 ± 0.04 0.07 ± 0.01

PACKNET
RESNET-RNN 0.29 ± 0.02 0.35 ± 0.02 0.13 ± 0.01 0.32 ± 0.03 0.37 ± 0.04 0.11 ± 0.01
RESNET-T 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
VIT-T 0.58 ± 0.03 0.18 ± 0.02 0.56 ± 0.04 0.69 ± 0.02 0.08 ± 0.01 0.76 ± 0.02

MTL
RESNET-RNN 0.10 ± 0.03 0.59 ± 0.00
RESNET-T 0.54 ± 0.02 0.80 ± 0.01
VIT-T 0.78 ± 0.02 0.82 ± 0.01

Table 8: We present the full results of all networks and algorithms on all four task suites. For each task
suite, we highlight the top three AUC scores among the combinations of the three lifelong learning
algorithms and the three neural architectures. The best three results are highlighted in magenta (the
best), light magenta (the second best), and super light magenta (the third best), respectively.
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Figure 11: We compare the performance of different algorithms using the RESNET-RNN policy
architecture in Figure 11. The y-axis represents the success rate, and the x-axis shows the agent’s
performance on each of the 10 tasks in a specific task suite over the course of learning. For example,
the upper-left plot in the figure displays the agent’s performance on the first task as it learns the 10
tasks sequentially.

Figure 12: Comparison of different algorithms using the RESNET-T policy architecture. The y-axis
represents the success rate, while the x-axis shows the agent’s performance on each of the 10 tasks in
a given task suite during the course of learning. For example, the plot in the upper-left corner depicts
the agent’s performance on the first task as it learns the 10 tasks sequentially.
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Figure 13: Comparison of different algorithms using the VIT-T policy architecture. The success rate
is represented on the y-axis, while the x-axis shows the agent’s performance on the 10 tasks in a
given task suite over the course of learning. For instance, the plot in the upper-left corner illustrates
the agent’s performance on the first task when learning the 10 tasks sequentially.

Figure 14: Comparison of different architectures with the EWC algorithm. The y-axis is the success
rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite over the
course of learning. For instance, the upper-left plot shows the agent’s performance on the first task
when learning the 10 tasks sequentially.
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Figure 15: Comparison of different architectures with the ER algorithm. The y-axis is the success
rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite ver the
course of learning. For instance, the upper-left plot shows the agent’s performance on the first task
when learning the 10 tasks sequentially.

Figure 16: Comparison of different architectures with the PACKNET algorithm. The y-axis is the
success rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite
over the course of learning. For instance, the upper-left plot shows the agent’s performance on the
first task when learning the 10 tasks sequentially.
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I.2 Study on task ordering (Q4)697

Figure 17 shows the result of the study on Q4. For all experiments in this study, we used RESNET-698

T as the neural architecture and evaluated both ER and PACKNET. As the figure illustrates, the699

performance of both algorithms varies across different task orderings. This finding highlights an700

important direction for future research: developing algorithms or architectures that are robust to701

varying task orderings.702

Figure 17: Performance of ER and PACKNET using RESNET-T on five different task orderings. An
error bar shows the performance standard deviation for a fixed ordering.

Findings: From Figure 17, we observe that indeed different task ordering could result in very different703

performances for the same algorithm. Specifically, such difference is statistically significant for704

PACKNET.705

I.3 Loss v.s. Success Rates706

We demonstrate that behavioral cloning loss can be a misleading indicator of task success rate707

in this section. In supervised learning tasks like image classifications, lower loss often indicates708

better prediction accuracy. However, this is not, in general, true for decision-making tasks. This is709

because errors can compound until failures during executing a robot [75]. Figure 18, 12 and 13 plots710

the training loss and success rates of three lifelong learning methods (ER, EWC, and PACKNET)711

for comparison. We evaluate the three algorithms on four task suites using three different neural712

architectures.713

Findings: We observe that though sometimes EWC has the lowest loss, it did not achieve good714

success rate. ER, on the other hand, can have the highest loss but perform better than EWC. In715

conclusion, success rates, instead of behavioral cloning loss, should be the right metric to evaluate716

whether a model checkpoint is good or not.717
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Figure 18: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with RESNET-RNN policy. The first (second) row shows the loss (success rate) of the agent
on task i throughout the LLDM procedure.
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Figure 19: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with RESNET-T policy. The first (second) row shows the loss (success rate) of the agent on
task i throughout the LLDM procedure.

30



Figure 20: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with VIT-T policy. The first (second) row shows the loss (success rate) of the agent on task i
throughout the LLDM procedure.
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I.4 Attention Visualization718

It is also important to visualize the behavior of the robot and its attention maps during the completion719

of tasks in the lifelong learning process to give us intuition and qualitative feedback on the perfor-720

mance of different algorithms and architectures. We visualize the attention maps of learned policies721

with Greydanus et al. [76] and compare them in different studies as in A.2 to see if the robot correctly722

pays attention to the right regions of interest in each task.723

Perturbation-based attention visualization: We use a perturbation-based method [76] to extract724

attention maps from agents. Given an input image I , the method applies a Gaussian filter to a pixel725

location (i, j) to blur the image partially, and produces the perturbed image Φ(I, i, j). Denote the726

learned policy as π and the inputs to the spatial module (e.g., the last latent representation of resnet727

or ViT encoder) πu(I) for image I . Then we define the saliency score as the Euclidean distance728

between the latent representations of the original and the blurred images:729

Sπ(i, j) =
1

2

∣∣∣∣∣∣∣∣πu(I)− πu(Φ(I, i, j))

∣∣∣∣∣∣∣∣2. (3)

Intuitively, Sπ(i, j) describes how much removing information from the region around location (i, j)730

changes the policy. In other words, a large Sπ(i, j) indicates that the information around pixel (i, j)731

is important for the learning agent’s decision-making. Instead of calculating the score for every732

pixel, [76] found that computing a saliency score for pixel i mod 5 and j mod 5 produced good733

saliency maps at lower computational costs for Atari games. The final saliency map P is normalized734

as P (i, j) = Sπ(i,j)∑
i,j Sπ(i,j)

.735

We provide the visualization and our analysis on the following pages.736
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Different Task Suites737

738

Figure 21: Attention map comparison among different task suites with ER and RESNET-T. Each row
corresponds to a task suite.

Findings: Figure 21 shows attention visualization for 12 tasks across 4 task suites (e.g., 3 tasks per739

suite). We observe that:740

1. policies pay more attention to the robot arm and the target placement area than the target741

object.742

2. sometimes the policy pays attention to task-irrelevant areas, such as the blank area on the743

table.744
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These observations demonstrate that the learned policy use perceptual data for decision-making745

in a very different way from how humans do. The robot policies tends to spuriously correlate746

task-irrelevant features with actions, a major reason why the policies overfit to the tasks and do not747

generalize well across tasks.748
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The Same Task over the Course of Lifelong Learning749

750

Figure 22: Attention map of the same state of the task put both the alphabet soup and the tomato
sauce in the basket from LIBERO-LONG during lifelong learning. Each row visualizes how the
attention maps change on the first task with one of the LL algorithms (ER and PACKNET) and one of
the neural architectures (RESNET-T and VIT-T). Initial policy is the policy that is trained on the first
task. And all the following attention maps correspond to policies after training on the third, fifth, and
the tenth tasks.

Findings: Figure 22 shows attention visualizations from policies trained with ER and PACKNET751

using the architectures RESNET-T and VIT-T respectively. We observe that:752

1. The ViT visual encoder’s attention is more consistent over time, while the ResNet encoder’s753

attention map gradually dilutes.754

2. PackNet, as it splits the model capacity for different tasks, shows a more consistent attention755

map over the course of learning.756
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Different Lifelong Learning Algorithms757

758

Figure 23: Comparison of attention maps of different lifelong learning algorithms with RESNET-T
on LIBERO-LONG. Each row shows the same state of a task with different neural architectures.
“Task 5” refers to the task put the white mug on the left plate and put the yellow and white mug on the
right plate. “Task 10” refers to the task put the yellow and white mug in the microwave and close it.
The second row shows the policy that is trained on task 10 and gets evaluated on task 5, showing the
attention map differences in backward transfer.

Findings: Figure 23 shows the attention visualization of three lifelong learning algorithms on759

LIBERO-LONG with RESNET-T on two tasks (task 5 and task 10). The first and third rows show the760

attention of the policy on the same task it has just learned. While the second row shows the attention761

of the policy on the task it learned in the past. We observe that:762

1. PACKNET shows more concentrated attention compared against ER and EWC (usually just763

a single mode).764

2. ER shares similar attention map with EWC, but EWC performs much worse than ER.765

Therefore, attention can only assist the analysis but cannot be treated as a criterion for766

performance prediction.767
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Different Neural Architectures768

769

Figure 24: Comparison of attention maps of different neural architectures with ER on LIBERO-
LONG. Each row shows the same state of a task with different neural architectures. “Task 5” refers
to the task put the white mug on the left plate and put the yellow and white mug on the right plate.
“Task 10” refers to the task put the yellow and white mug in the microwave and close it. The second
row shows the policy that is trained on task 10 and gets evaluated on task 5, showing the attention
map differences in backward transfer.

Findings: Figure 24 shows attention map comparisons of the three neural architectures on LIBERO-770

LONG with ER on two tasks (task 5 and task 10). We observe that:771

1. ViT has more concentrated attention than policies using ResNet.772

2. When ResNet forgets, the attention is changing smoothly (more diluted). But for ViT, when773

it forgets, the attention can completely shift to a different location.774

3. When ResNet is combined with LSTM or a temporal transformer, the attention hints at the775

"course of future trajectory". But we do not observe that when ViT is used as the encoder.776
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Different Task Ordering777

778

Figure 25: Attention map comparison among different orderings with ER and RESNET-T on three
selected tasks from LIBERO-LONG: put both the alphabet soup and the tomato sauce in the basket,
put the white mug on the left plate and put the yellow and white mug on the right plate, and put the
yellow and white mug in the microwave and close it. Each row corresponds to a specific sequence of
task ordering, and the caption of each attention map indicates the order of the task in that sequence.

Findings: Figure 25 shows attention map comparisons of three different task orderings. We show two779

immediately learned tasks from LIBERO-LONG trained with ER and RESNET-T. We observe that:780

1. As expected, learning the same task at different positions in the task stream results in781

different attention visualization.782

2. There seems to be a trend that the policy has a more spread-out attention when it learns on783

tasks that are later in the sequence.784
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With or Without Pretraining785

786

Figure 26: Attention map comparison between models without/with pretrained models using RESNET-
T and different lifelong learning algorithms on three selected tasks from LIBERO-LONG.
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Findings: Figure 26 shows attention map comparisons between models with/without pretrained787

models on LIBERO-LONG with RESNET-T and all three LL algorithms. We observe that:788

1. With pretraining, the policies attend to task-irrelevant regions more easily than those without789

pretraining.790

2. Some of the policies with pretraining have better attention to the task-relevant features than791

their counterparts without pertaining, but their performance remains lower (the last in the792

second row and the second in the fourth row). This observation, again, shows that there is793

no positive correlation between semantically meaningful attention maps and the policy’s794

performance.795
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