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Abstract

The initial purpose of topic models was to001
identify latent topical clusters within unstruc-002
tured text. Meanwhile, the focus of advanced003
studies has changed primarily to estimating004
the relationship between the discovered topi-005
cal structure and theoretically relevant meta-006
data. Methods used to estimate such relation-007
ships must take into account that the topical008
structure is not directly observed, but instead009
being estimated itself in an unsupervised fash-010
ion. In the Structural Topic Model (STM;011
Roberts et al., 2016), for instance, multiple re-012
peated linear regressions of sampled topic pro-013
portions on metadata covariates are performed.014
This is done by using a Monte Carlo sampling015
technique known as the method of composi-016
tion. In this paper, we propose two modifica-017
tions of this approach: First, we implement a018
substantial correction to the model by replac-019
ing linear regression with the more appropriate020
Beta regression. Second, we provide a funda-021
mental enhancement of the entire estimation022
framework by substituting the current blend-023
ing of frequentist and Bayesian methods with024
a fully Bayesian approach instead. This allows025
for a more appropriate quantification of un-026
certainty. We illustrate our improved method-027
ology by investigating relationships between028
Twitter posts by German parliamentarians and029
different metadata covariates related to their030
electoral districts.031

1 Introduction032

The rise in popularity of social media has led to an033

unprecedented increase in the supply of publicly034

available unstructured text data. Researchers of-035

ten wish to examine relationships between observ-036

able metadata (e.g., characteristics of a document’s037

author) and in-text patterns (Farrell, 2016; Kim,038

2017). Probabilistic topic models identify such in-039

text patterns by producing a posterior distribution040

over different topics. Estimating relationships with 041

observed metadata, however, is not trivial as the 042

target variable is latent and itself being estimated 043

from the text data itself. 044

Due to its popularity in the social sciences, in this 045

work we focus on exploring and estimating topic- 046

metadata relationships with the Structural Topic 047

Model (STM; Roberts et al., 2016). The estimation 048

of topic-metadata relationships in the stm pack- 049

age (Roberts et al., 2019), which implements the 050

STM in R, combines Monte Carlo sampling with a 051

frequentist linear regression. Even though this esti- 052

mation technique is prone to producing predictions 053

incompatible with standard definitions of proba- 054

bility, it is frequently applied in the literature (cf. 055

Appendix A). This leads to implausibilities of two 056

different forms: On the one hand, authors some- 057

times report negative expected topic proportions 058

(e.g. Farrell, 2016; Moschella and Pinto, 2019), 059

on the other hand, there are multiple cases where 060

"only" the confidence bands are partly in negative 061

ranges (e.g. Cho et al., 2017; Chandelier et al., 062

2018; Bohr and Dunlap, 2018; Heberling et al., 063

2019). In both cases, it is ignored that sampled 064

topic proportions are confined to (0, 1) by defini- 065

tion, which severely harms the interpretability of 066

the model’s results. 067

In this paper, we suggest two key modifications 068

to the stm implementation (Roberts et al., 2019): 069

First, our Beta regression approach is a natural 070

correction of the linear regression approach, ac- 071

counting for topic proportions being restricted to 072

the interval (0, 1). Second, we propose the use of a 073

Bayesian estimation design within the method of 074

composition to allow for a more coherent estima- 075

tion and interpretation of topic-metadata relation- 076

ships; in particular, we obtain a posterior predictive 077

distribution of topic proportions at different values 078

of metadata covariates. 079
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We demonstrate the added value of our model080

corrections by analyzing Twitter posts of German081

politicians, gathered from September 2017 through082

April 2020. Politics has been particularly impacted083

by the rise of social media as evidenced by the084

Brexit vote and US presidential elections, with085

Twitter being extensively used for direct communi-086

cation by politicians. We investigate relationships087

between latent topics in the tweets of German mem-088

bers of parliament (MPs) and corresponding meta-089

data, such as tweet date or unemployment rate in090

the respective MP’s electoral district. In doing so,091

we attempt to link the topics discussed to specific092

events as well as to socioeconomic characteristics093

of the MP’s electoral districts.094

2 Background095

Topic models seek to discover latent thematic clus-096

ters, called topics, within a collection of discrete097

data, usually text. Besides identifying such clusters,098

topic models estimate the proportions of the dis-099

covered topics within each document. Many topic100

models build upon the well-known Latent Dirich-101

let Allocation (LDA; Blei et al., 2003), which is102

a generative probabilistic three-level hierarchical103

Bayesian mixture model that assumes a Dirichlet104

distribution for topic proportions. The Correlated105

Topic Model (CTM; Blei et al., 2007), for instance,106

builds on the LDA, but replaces the Dirichlet dis-107

tribution with a logistic normal distribution to cap-108

ture inter-topic correlations. The STM adopts this109

approach, but additionally incorporates document-110

level metadata into the estimation of topics:1111

• For document d ∈ {1, . . . , D} and topic k ∈112

{1, . . . ,K}, a topic proportion θd,k is drawn113

from a logistic normal distribution.2114

• The parameters of the logistic normal distri-115

bution depend on document-level metadata116

covariates xd.117

For parameter estimation, the STM employs a vari-118

ational EM algorithm, where in the E-step the vari-119

ational posteriors are updated using a Laplace ap-120

proximation (Wang and Blei, 2013; Roberts et al.,121

2016). In the M-step, the approximated Kullback-122

Leibler divergence is minimized with respect to the123

model parameters.124

1Within the STM, document-level covariates can also be
used to fine-tune topic-word distributions (Roberts et al.,
2016), but we do not further discuss this here.

2The stm package provides several metrics to choose the
hyperparameter K, as will be discussed in Section 5.2.

3 Estimating Topic-Metadata 125

Relationships in the STM 126

The STM produces an approximate posterior distri- 127

bution of topic proportions. A point estimate can 128

be obtained for example as the mode of this dis- 129

tribution. Topic proportions are often used in sub- 130

sequent analysis, for instance in order to estimate 131

their relationship with metadata. We argue that the 132

usual practice of simply regressing point estimates 133

of topic proportions on document-level covariates 134

is not adequate for estimating topic-metadata re- 135

lationships. This approach ignores that topic pro- 136

portions are themselves estimates, neglecting much 137

of the information contained in their posterior dis- 138

tribution. In this section, we propose a method to 139

adequately explore the relationship between topic 140

proportions and metadata covariates. 141

One way to account for the uncertainty in topic 142

proportions is the "method of composition" (Tan- 143

ner, 2012, p. 52), which is a simple Monte Carlo 144

sampling technique. Let y be a random variable 145

with unknown distribution p(y) from which we 146

would like to sample and let z be another random 147

variable with known distribution p(z). If p(y|z) is 148

known, we can sample from 149

p(y) =

∫
p(y|z)p(z)dz, 150

using the following procedure: 151

1. Draw z∗ ∼ p(z). 152

2. Draw y∗ ∼ p(y|z∗). 153

Discarding z∗, the resulting y∗ are samples from 154

p(y).3 155

In Roberts et al. (2016), the authors employ 156

a variant of the method of composition estab- 157

lished by Treier and Jackman (2008), which uses 158

linear regression to obtain the conditional distri- 159

bution p(y|z). To demonstrate this variant, let 160

θ•k = (θ1,k, . . . , θD,k)T ∈ (0, 1)D denote the pro- 161

portions of topic k and let X := [x1| . . . |xD]T be 162

the covariates for all D documents. Let further 163

q(θ•k) be the approximate posterior distribution of 164

topic proportions given observed documents and 165

metadata, as produced by the STM. The idea now 166

is to repeatedly draw samples θ∗
•k from q(θ•k) and 167

subsequently perform a regression of each sam- 168

ple θ∗
•k on covariates X to obtain coefficient es- 169

timates ξ̂. Treier and Jackman (2008) view the 170

asymptotic distribution of ξ̂ as posterior density 171

3Note that this method is an exact sampling method.
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Algorithm 1: Method of composition with frequentist regression

1 repeat procedure m times:
2 Draw θ∗

•k ∼ q(θ•k), where q is the approximate posterior of θ•k.
3 Regress θ∗

•k on X; store estimated regression coefficients ξ̂ and corresponding covariance matrix.
4 Draw ξ∗ from the (asymptotic) distribution of ξ̂.
5 Predict topic proportions θ∗pred,k = g(xT

predξ
∗) at new covariate values xpred.

6 end procedure

for ξ, i.e., as p(ξ|θ∗
•k,X). Using samples ξ∗ from172

this distribution, we can "predict" topic propor-173

tions θ∗pred,k = g(xT
predξ

∗) at new covariate values174

xpred. (g is the regression response function: Iden-175

tity function for linear regression; Logistic function176

for Beta regression.) Algorithm 1 summarizes the177

method. Note that sampling from the posterior178

of topic proportions in the first step of Algorithm179

1 accounts for the uncertainty in θ•k, while the180

uncertainty of the regression estimation itself is181

addressed by sampling from the (asymptotic) dis-182

tribution of the regression coefficient estimator.183

To visualize topic-metadata relationships,184

Roberts et al. (2016) generate multiple "predic-185

tions" θ∗pred,k and calculate empirical quantities186

such as the mean and quantiles. Calculating187

mean and credible intervals in such a Bayesian188

fashion implicitly assumes a (posterior predictive)189

distribution for θ∗pred,k. This distribution, however,190

directly depends on the regression - which is191

frequentist as implemented in the stm package.192

We address this point in detail in Section 4.2.193

4 Methodological Improvements194

While we agree with performing Monte Carlo sam-195

pling of topic proportions in order to integrate over196

latent variables, we aim to address two flaws:197

• Inadequate modeling of proportions: The198

method of composition is implemented in the199

R package stm via the estimateEffect200

function, which employs a linear regression201

in the second step of Algorithm 1 (implying202

g = id in the last step). This implementation203

ignores that topic proportions are naturally204

restricted to the interval (0, 1). As a conse-205

quence, when using the estimateEffect206

function, we frequently observed predicted207

topic proportions outside of (0, 1), as is exem-208

plarily shown for one specific topic-covariate209

combination in Figure 1.210

• Mixing Bayesian and frequentist methods: 211

The method of composition used by Treier 212

and Jackman (2008) and Roberts et al. (2016) 213

mixes Bayesian and frequentist methods. As 214

described in Section 3, a frequentist regres- 215

sion is used inside the method of composi- 216

tion, yet estimates are obtained in a Bayesian 217

manner via calculation of empirical mean and 218

quantiles. Recall that according to Treier and 219

Jackman (2008), ξ∗ can be considered a sam- 220

ple from the posterior of regression coeffi- 221

cients. However, the coefficients resulting 222

from a frequentist regression do not have any 223

distribution because the frequentist framework 224

assumes them to be fixed parameters. As a 225

consequence, one cannot sample from the dis- 226

tribution of regression coefficients, which is 227

why Treier and Jackman (2008) sample ξ∗ 228

from the distribution of coefficient estimators. 229

This distribution, however, only exists by mak- 230

ing frequentist assumptions. 231

In Sections 4.1 and 4.2 below we further discuss 232

these problems and present corrections and alter- 233

natives, all of which are implemented in the R 234

package stmprevalence. 4 235

4.1 Frequentist Beta Regression 236

As noted above, the linear regression approach is 237

often used carelessly in the literature, neglecting 238

that topic proportions are non-negative by defi- 239

nition. Farrell (2016) and Moschella and Pinto 240

(2019), for instance, produce figures containing 241

negative expected topic proportions, while Cho 242

et al. (2017), Chandelier et al. (2018), Bohr and 243

Dunlap (2018), and Heberling et al. (2019) display 244

confidence bands partly covering negative values. 245

We correct the approach employed within the 246

stm package by replacing the linear regression 247

with a regression model that assumes a dependent 248

4Source code in supplementary material; will be made
available on GitHub upon publication.
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Algorithm 2: Method of composition with Bayesian Beta regression

1 repeat procedure m times:
2 Draw θ∗

•k ∼ q(θ•k), where q is the approximate posterior of θ•k.
3 Perform a Bayesian Beta regression of θ∗

•k on X using normal priors centered around zero.
4 Draw θ∗pred,k ∼ p(θpred,k|θ∗

•k,X,xpred), i.e., conditional on sample θ∗
•k.

5 end procedure
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Figure 1: Mean prediction and 95% confidence inter-
vals of topic "Climate Protection" over time, generated
using estimateEffect from the R package stm.

variable in the interval (0, 1). As shown by Atchi-249

son and Shen (1980), the Dirichlet distribution is250

well suited to approximate a logistic normal dis-251

tribution, though inducing less interdependence252

among the different topics. When employing a253

Dirichlet distribution, the univariate marginal dis-254

tributions are Beta distributions. We thus perform a255

separate Beta regression for each topic proportion256

on X, using a logit-link.5 This approach now again257

corresponds to Algorithm 1, but with g being the258

logistic sigmoid function in this case.6259

4.2 Bayesian Beta Regression260

Treier and Jackman (2008) and the authors of the261

STM consider ξ∗ to be samples from the posterior262

of regression coefficients. While it is possible to263

view frequentist regression from a Bayesian per-264

spective, it implies assuming a uniform prior dis-265

tribution for regression coefficients ξ - which is266

5Note that the distribution of regression coefficient estima-
tors is asymptotically normal for Beta regression (Ferrari and
Cribari-Neto, 2004, p. 17).

6While runtime for estimating Beta regressions is consider-
ably longer in relative terms, it is still short in absolute terms,
which is why runtime concerns can be disregarded for the
practical use of our approach.

rather implausible. More generally, the mixing of 267

Bayesian and frequentist frameworks within the 268

method of composition lacks theoretical founda- 269

tion, especially when employing an asymptotic dis- 270

tribution of regression coefficient estimators. This 271

applies to the model of Treier and Jackman (2008) 272

as well as to the Beta regression presented in Sec- 273

tion 4.1. Furthermore, note that when using a 274

frequentist regression, the estimated uncertainty 275

is with respect to the prediction of the mean of 276

topic proportions. However, when exploring topic- 277

metadata relationships it might be preferable to ex- 278

amine the variation of individual topic proportions 279

among documents at different values of metadata 280

covariates. 281

Therefore, we propose to replace the frequentist 282

regression in Algorithm 1 by a Bayesian Beta re- 283

gression with normal priors centered around zero. 284

This enables modeling topic-metadata relationships 285

in a fully Bayesian manner while preserving the 286

methodological improvements from Section 4.1. 287

Algorithm 2 summarizes this approach. By draw- 288

ing θ∗pred,k at covariate values xpred, we obtain sam- 289

ples from the posterior predictive distribution 290

p(θpred,k|θ∗
•k,X,xpred) = 291∫
p(θpred,k|xpred, ξ)p(ξ|θ∗

•k,X)dξ, 292

where p(ξ|θ∗
•k,X) denotes the posterior distribu- 293

tion of regression coefficients. This allows display- 294

ing the (predicted) variation of topic proportions 295

at different covariate levels. As before, quantities 296

of interest, such as the mean and quantiles, are ob- 297

tained by averaging across samples; now, however, 298

these samples are generated within a fully Bayesian 299

framework. 300

5 Application 7 301

In this section, we first apply the STM to Ger- 302

man parliamentarians’ Twitter data and subse- 303

quently demonstrate both the built-in (stm) and 304

7Source code in supplementary material; Will be made
available on GitHub upon publication.
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Figure 2: Left: Model evaluation metrics for hyperparameter K (number of topics). Right: Word cloud for the
topic labeled as "Climate Protection".

our (stmprevalence) methods to explore topic-305

metadata relationships.306

5.1 Data8307

For all German MPs during the 19th election period308

(starting on September 24, 2017), we gathered per-309

sonal information such as name, party affiliation,310

and electoral district from the official parliament311

website as well as Twitter profiles from the official312

party websites, using BeautifulSoup (Richardson,313

2007). Next, after excluding MPs without a public314

Twitter profile, we used tweepy (Roesslein, 2020)315

to scrape all tweets by German MPs from Septem-316

ber 24, 2017 through April 24, 2020. We also gath-317

ered socioeconomic data, such as GDP per capita318

and unemployment rate, as well as 2017 election319

results on an electoral-district level. Text prepro-320

cessing, such as transcription of German umlauts,321

removal of stopwords, and word-stemming, was322

performed with quanteda (Benoit et al., 2018).9323

We define a document d as the concatenation of324

an individual MP’s tweets during a single calendar325

month to achieve a sufficient document length. Our326

final data set includes 10,998 monthly MP-level327

documents, each one associated with 90 covariates.328

5.2 Model Fitting and Global-level Analysis329

Before fitting the STM, we need to decide on the330

number of topics, K. To do so, we use the follow-331

ing four model evaluation metrics: held-out likeli-332

8Raw data: https://figshare.com/s/7a728fcb6d67a67fc3d6.
9An in-depth discussion of topic model preprocessing and

its application to Twitter data can be found in Lucas et al.
(2015).

hood, semantic coherence, exclusivity, and resid- 333

uals. The held-out likelihood approach is based 334

on document completion. The higher the held-out 335

likelihood, the more predictive power the model 336

has on average (Wallach et al., 2009). Semantic co- 337

herence means that words characterizing a specific 338

topic also appear together in the same documents 339

(Mimno et al., 2011). Exclusivity, on the other 340

hand, indicates to which degree words characteriz- 341

ing a given topic only occur in that topic. Finally, 342

the residuals metric, which is based on residual 343

dispersion, indicates a (potentially) insufficiently 344

small value of K whenever the residual dispersion 345

is larger than one (Taddy, 2012). 346

0.03

0.04

0.05

0.06

2017−09 2018−09 2019−09
date

to
pi

c 
pr

op
or

tio
n

0.025

0.050

0.075

0.100

0.125

0 10 20 30
immigrants (%)

to
pi

c 
pr

op
or

tio
n

0.02

0.04

0.06

0.08

20,000 40,000 60,000 80,000 100,000
GDP per capita (EUR)

to
pi

c 
pr

op
or

tio
n

0.04

0.06

0.08

5.0 10.0
unemployement rate (%)

to
pi

c 
pr

op
or

tio
n

Figure 3: Mean prediction and 95% confidence
intervals of topic "Climate Protection" for differ-
ent document-level covariates, obtained using a
frequentist Beta regression from the R package
stmprevalence.
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Figure 4: Left: Mean prediction of topic "Climate Protection" for different document-level covariates, obtained
using a Bayesian Beta regression from the R package stmprevalence. Right: 95% (light grey), 90% (grey),
and 85% (dark grey) quantiles of the posterior predictive distribution of topic "Climate Protection".

The left part of Figure 2 shows these four metrics347

for a grid of K between five and 40 with step size348

five. Both K = 15 and K = 20 seem to be good349

choices. Given the better interpretability for models350

with fewer topics, we choose K = 15.351

After fitting the model we label all topics man-352

ually with human interpretable labels, using, i.a.,353

a word cloud as displayed in the right part of Fig-354

ure 2. To obtain an overview of the model out-355

put, we can conduct different global-level analy-356

ses, such as inspecting global topic proportions357

θ̄k = 1
D

∑D
d=1 θd,k or creating a network graph.358

5.3 Topic-Metadata Relationships359

Moving from global- to document-level, we now vi-360

sualize relationships between document-level topic361

proportions θd,k and covariates xd. Specifically,362

we examine the extent to which German MPs dis-363

cussed the topic "Climate Protection" over time364

and in relation to several socioeconomic variables365

regarding their respective electoral districts.366

To demonstrate the shortcomings of the ap-367

proach implemented in the stm package, we first368

apply the estimateEffect function to produce369

"naïve" estimates for the relationship between esti-370

mated topic proportions and document-level covari-371

ates. Figure 1 shows the estimated proportion of cli-372

mate protection over time, peaking during the UN373

Climate Action Summit 2019 held in September374

2019. As can be observed, estimateEffect375

produces predicted topic proportions outside of376

(0, 1). This is due to using a linear regression,377

which places no restrictions on the range of the378

dependent variable. 379

Next, we evaluate the results when replacing the 380

linear regression by a Beta regression, which re- 381

stricts the dependent variable to the (0, 1)-interval. 382

The top left plot of Figure 3 shows that the overall 383

trend over time is similar to the one in Figure 1, 384

yet the range is shifted and no negative values are 385

observed. In addition, Figure 3 depicts the rela- 386

tionship of the climate protection topic with three 387

socioeconomic covariates, for all of which we only 388

obtain non-negative values. On average, the higher 389

the share of immigrants in an electoral district, the 390

less frequently MPs associated with this district 391

tend to discuss climate-related subjects. For GDP 392

per capita, we notice an increase until around EUR 393

70k, but for very high incomes this trend is reversed. 394

The unemployment rate shows an ambiguous rela- 395

tionship, with rather large fluctuations. 396

Finally, we display the results from the fully 397

Bayesian approach discussed in Section 4.2. As 398

can be seen in the left plot of Figure 4, the predicted 399

progressions of mean topic proportions at different 400

covariate values are mostly similar to those ob- 401

tained with the frequentist Beta regression, yet the 402

range is compressed and shifted downwards. In ad- 403

dition to the empirical mean, the right plot of Figure 404

4 depicts different empirical quantiles of the pos- 405

terior predictive distribution of topic proportions. 406

Here we can see that topic proportions at different 407

covariate values vary starkly for different MPs. In 408

general, we find that a fully Bayesian approach 409

enables a much more comprehensive analysis of 410

topic-metadata relationships because it allows for 411
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displaying the variation of individual topic propor-412

tions observed in the data.413

6 Conclusion and Outlook414

To explore topic-metadata relationships while ac-415

counting for the probabilistic nature of topic pro-416

portions, the R package stm implements repeated417

linear regressions of sampled topic proportions on418

metadata covariates by using the method of com-419

position. In this paper, we identified shortcomings420

of and proposed improvements upon this original421

implementation, applying latter ones to a dataset422

containing Twitter posts by German MPs. Our423

methods are equally applicable to other topic mod-424

els and beyond.425

Several possibilities exist to build upon our ex-426

plorative methods. For instance, to make inference427

in a Bayesian setting, our approach could be used428

in combination with MCMC-based methods. If429

the goal is to make causal inference beyond explo-430

rative purposes, one must take into account that431

the estimation of topic proportions induces addi-432

tional dependence across documents. Developing433

methods to identify underlying causal mechanisms434

is the subject of current research (see e.g. Egami435

et al., 2018).436
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Appendix529

A Exemplary figures with implausible530

predictions531

To demonstrate the importance of our proposed cor-532

rections of the STM, we collected figures from a533

selection of research papers where using the origi-534

nal implementation led to implausible estimates.535

Figure 5: Example of negative confidence bands for
covariate effects (Cho et al., 2017).

Figure 6: Example of negative confidence bands and
negative covariate effects (Bohr and Dunlap, 2018).

Figure 7: Example of negative confidence bands for
covariate effects (Chandelier et al., 2018).

Figure 8: Example of negative covariate effects (Heber-
ling et al., 2019).

Figure 9: Example of negative confidence bands and
negative covariate effects (Moschella and Pinto, 2019).
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