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Abstract
Hierarchical classification offers an approach
to incorporate the concept of mistake severity
by leveraging a structured, labeled hierarchy.
However, decoding in such settings frequently
relies on heuristic decision rules, which may not
align with task-specific evaluation metrics. In this
work, we propose a framework for the optimal
decoding of an output probability distribution
with respect to a target metric. We derive optimal
decision rules for increasingly complex prediction
settings, providing universal algorithms when
candidates are limited to the set of nodes. In the
most general case of predicting a subset of nodes,
we focus on rules dedicated to the hierarchical
hFβ scores, tailored to hierarchical settings. To
demonstrate the practical utility of our approach,
we conduct extensive empirical evaluations,
showcasing the superiority of our proposed opti-
mal strategies, particularly in underdetermined
scenarios. These results highlight the potential
of our methods to enhance the performance
and reliability of hierarchical classifiers in
real-world applications. The code is available
at https://github.com/RomanPlaud/
hierarchical decision rules

1. Introduction
In many real-world classification tasks, the costs associated
with misclassification are not uniform (Domingos, 1999;
Elkan, 2001). In autonomous driving for instance, mistak-
ing a lamppost for a tree is less critical than mistaking a
pedestrian for a tree. One way to model the severity of mis-
classifications is by organizing classes into a hierarchical
tree structure, where classes are grouped into progressively
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Figure 1: Underdetermination amplifies decision-making dis-
parities between decoding strategies. Predictions of three decod-
ing strategies based on the probability estimates of a pretrained
VGG11 model, for images with blur levels σ ∈ {0, 3, 6, 9}. Cor-
rect predictions are highlighted in green, incorrect in red.

broader superclasses (Deng et al., 2009; Chang et al., 2021).
The severity of a misclassification error is then related to the
distance between the predicted class and the true class in
this hierarchy: the larger the distance, the more severe the
error. For any given hierarchy, one can define misclassifica-
tion costs not only between the leaf nodes (corresponding
to the initial classes), but across all nodes of the tree, includ-
ing internal nodes. It may then be interesting to allow the
prediction of internal nodes of the hierarchy. For example,
it can be difficult to distinguish between two specific types
of cancer that require different treatments. In such a case,
the best decision would probably be to predict a more gen-
eral category – such as simply indicating that the patient
has cancer – allowing for a general treatment, effective for
different types of cancer.
Given a conditional probability distribution over the hierar-

chy, the optimal prediction can be theoretically defined as
the one minimizing the expected misclassification cost. This
principle has long been established: the optimal decision
corresponds to minimizing the conditional risk (Duda &
Hart, 1973; Berger, 1985; Smith, 2005). In the context of
hierarchical classification, misclassification costs are often
embedded in evaluation metrics that inherently reflect the
hierarchical structure and therefore encode the severity of
errors. Numerous works in the literature propose such hi-
erarchical evaluation measures (Kosmopoulos et al., 2014;
Amigo & Delgado, 2022). However, the task of optimally
decoding from a posterior probability distribution, given a
target hierarchical metric, has received comparatively little
attention. Some optimal strategies exist for specific met-
rics (Bi & Kwok, 2012; Ramaswamy et al., 2015) but, in
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practice, the decoding strategy often relies on straightfor-
ward heuristics, such as selecting the leaf class with the
highest posterior probability (by applying argmax over the
leaf nodes) or applying a threshold on the probability dis-
tribution (e.g., by summing probabilities bottom-up until a
threshold is met).

As pre-trained models are ubiquitous in classification tasks,
and misclassification costs are not necessarily known during
training, our work solely focuses on post-hoc decoding,
independently of the task of estimating a predictive model.

Contributions. We propose a framework for deriving op-
timal decoding strategies in hierarchical classification by
adapting the cost-sensitive decoding framework, originally
designed for flat classification (Section 3). Building on
this characterization, and assuming access to the true oracle
probability distribution, we develop tractable algorithms that
yield the optimal prediction for a given hierarchical metric,
including metrics such as the hFβ scores, which general-
ize the well-known Fβ scores to hierarchical classification
(Section 4). Finally, we validate our theoretical findings in
practical situations (Section 5) by demonstrating the superi-
ority of our decoding strategies on probability distributions
estimated by a diverse set of models, across a wide range of
metrics. We further demonstrate that the more underdeter-
mined a classification task is—i.e., the more stochastic the
relationship between features and labels—the more crucial
it becomes to use our newly introduced decoding algorithms;
principle which we illustrate in Figure 1.

2. Related work
Determining the action that minimizes the expected cost
given a probability distribution over classes has been stud-
ied extensively since its introduction in early works (Duda
& Hart, 1973; Berger, 1985; Smith, 2005). In practice, and
even when misclassification costs are not uniform, this prob-
lem is often straightforward to address. For example, in
the binary classification case, the optimal decision rule re-
duces to a simple threshold (Elkan, 2001). In the multiclass
setting, a straightforward brute-force approach that com-
putes the expected cost for each possible action remains
practical as long as the number of classes is moderate. As
a result, cost-sensitive classification (Petrides & Verbeke,
2022) has primarily focused on designing learning algo-
rithms that account for cost non-uniformity during training,
either through resampling techniques (Elkan, 2001; Chawla
et al., 2002) or developing reweighted losses (Viola & Jones,
2001; Zadrozny & Elkan, 2001; Lin et al., 2017). This is
because the challenge often lies in learning a model that
produces accurate probability estimates, which can then
be used for optimal decision-making. However, there are
classification problems where identifying the optimal action
is computationally prohibitive, even with access to the or-

acle probability distribution. For example, in multi-label
classification, the exponential number of possible predic-
tions makes exhaustive search impractical. Consequently,
a significant body of work has emerged that aims to design
optimal decoding strategies tailored to specific metrics—i.e.,
specific definitions of misclassification costs (Lewis, 1995;
Dembczynski et al., 2010; Quevedo et al., 2011) and in par-
ticular for F-scores (Jansche, 2007; del Coz et al., 2009;
Waegeman et al., 2014).
This topic has attracted reasonable interest in the context
of hierarchical classification. As the candidate prediction
set grows in cardinality, optimal decision-making becomes
gradually more difficult. In practice, the literature often
considers a specific hierarchical metric and proposes opti-
mal strategies to decode probabilities: for example, Bi &
Kwok (2012) develop decoding strategies for family of eval-
uation measures called HMC-loss, while Ramaswamy et al.
(2015) and Cao et al. (2024) address the tree distance loss
and its generalized version. Similarly, Karthik et al. (2021)
introduce an optimal-decoding framework, restricting to
leaf decoding only. However, most of the time, no clear
connection is made between the decision-making process
from trained classifiers and the actual evaluation measure
we aim to optimize. Instead, heuristics strategies are widely
used. Selecting the maximum probability over leaf nodes is
a common practice but various rules exist, listed in Valmadre
(2022). Also, Wang et al. (2017) propose a top-down stop-
ping algorithm, Deng et al. (2012) find a trade-off between
specificity and correctness while Jain et al. (2023) propose
a strategy that reweigh each leaf probability based on its
parent’s. While some works advocate for a more systematic
evaluation methodology, through bypasssing the decoding
step (Plaud et al., 2024), efforts have largely focused on op-
timizing common metrics (Wu & Palmer, 1994; Zhao et al.,
2017) coupled with a generic heuristic strategy. Therefore,
our work bridges the gap between decoding and evaluation,
two interdependent concepts, by proposing strategies to
identify optimal predictions for a given hierarchical metric.

3. Problem formulation
Consider a standard single-label classification problem, with
x ∈ X the input and y ∈ {l1, . . . , lK} the label, out of K
distinct classes. We denote P the probability measure gov-
erning the joint distribution of the input-label pairs (x,y).
Hierarchy. Additionally, we assume that there exists a
directed tree T , referred to as the hierarchy, defined as a
set of nodes N and edges E , such that the leaf nodes of T
correspond to the set of classes L = {l1, . . . , lK} in our
single-label classification problem. An edge e ∈ E defines
a parent-child relation. The unique root node of the tree is
denoted by r and P(N ) is the power set of N .
Remark. This design implicitly assumes an exhaustive hi-
erarchy i.e. every instance’s most specific class is a leaf in
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T . However, by adding beforehand a “stopping” children
node at any internal position, we could also accommodate
datasets whose instance’s most specific label lies at an in-
ternal node, thereby preserving the full generality of our
framework.
Model. When designing a hierarchical classifier, one typ-
ically uses a probabilistic model f : X → ∆(L) where
∆(L) is the set of probability distributions over L and for
each x ∈ X , f(x) = p̂x is an estimate of the posterior
distribution P(y|x = x) over the leaf nodes L.
Remark. This model formulation may seem restrictive,
but it includes the more general hierarchy-aware models
capable of predicting probabilities over internal nodes of the
hierarchy—not just the leaves—since the leaf distribution
can be derived from them.
In this work, we assume that f is given (e.g., a trained neu-
ral network), and we have access to the predicted distribu-
tions p̂x1

, . . . , p̂xN
over some test samples x1, . . . , xN ∈ X .

From these estimations, our objective is to make predictions
h1, . . . , hN that are as close as possible to the ground-truth
labels y1, . . . , yN , in the sense that it minimizes the misclas-
sification cost for each sample. This cost is defined through
an evaluation metric (Definition 3.1). Before introducing it
formally, we clarify the nature of the prediction set, denoted
H, which play a central role in our framework:

• Leaf node prediction: The metric is simply able to
compare a leaf h ∈ L to the ground-truth leaf label.

• Internal node prediction : The metric can compare
any node of the hierarchy h ∈ N to the ground-truth
leaf label.

• Set of nodes prediction: The metric can compare a
set of nodes h ∈ P(N ) to the ground-truth leaf label.

Definition 3.1. Evaluation metric. An evaluation metric
for a set H of candidate predictions is a function that
quantifies the misclassification costs :

C : H×L → R
(h, y) 7→ C(h, y)

where h is the prediction and y the ground-truth leaf label.

We list in Appendix C.1 examples of metrics with differ-
ent candidate sets. To perform the evaluation, a decision
rule ξ (Definition 3.2) is required. A decision rule maps a
probability distribution to a prediction h, as defined below.

Definition 3.2. Decision rule. A decision rule for a setH
of candidate predictions is a function ξ : ∆(L)→ H.

Importantly, we highlight that even if probabilities are es-
timated for leaf nodes only, one may want to make a pre-
diction that is not necessarily a leaf. Equipped with the
decision rule, the cost of a prediction for the input-label pair
(x, y) can be computed as C(ξ(p̂x), y). The decoding cost

of ξ for a given metric C and model f can then be defined
as follows:

Definition 3.3. Decoding cost. Given a model f , the cost
of a decision rule ξ for the metric C is:

E[C(ξ(f(x)),y)]

where the expectation is taken with respect to the joint
distribution of (x,y) with probability P.

In practice, the decoding cost is estimated by computing
the empirical mean 1

N

∑N
i=1 C(ξ(p̂xi

), yi) on a test set of
N samples. Our focus in this work is on the performance
analysis of decision rules with respect to specific evalua-
tion measures. In particular, we examine Bayes-optimal
decodings that minimize the decoding cost by design.

3.1. Bayes-optimal decoding

Unless stated otherwise, we now assume that we know the
true posterior probability distribution: f∗(x) = P(y | x =
x) := (px(l))l∈L ∈ ∆(L), ∀x ∈ X .

We formalize the task of deriving optimal predictions from
an oracle posterior probability distribution for a given evalu-
ation metric c. The goal is to identify a decoding function
ξ∗C : ∆(L)→ H that minimizes the decoding cost:

ξ∗C ∈ argmin
ξ:∆(L)→H

E[C(ξ(f∗(x)),y)].

For any x ∈ X , this objective can be reformulated point-
wise as:

ξ∗C(px) ∈ argmin
h∈H

E[C(h,y) | x = x]

Then, using the definition of expectation, we can define the
optimal decision rule as follows:

Definition 3.4. Optimal decision rule. An optimal de-
cision rule for metric C : H × L → R is given by
ξ∗C : ∆(L)→ H where

ξ∗C(p) = argmin
h∈H

∑
l∈L

p(l)C(h, l) (1)

We assume that the optimization problem has a unique so-
lution; further details on this assumption are provided in
Appendix C.2. This decision rule minimizes the expected
evaluation metric C, ensuring that any alternative decoding
is suboptimal and results in a higher expected cost. However,
even if the misclassification cost matrix (C(h, l))(h,l)∈H×L
is precomputed and can be accessed in constant time, com-
puting the risk

∑
l∈L p(l)C(h, l) for all h ∈ H via brute-

force search has a time complexity of O(|H| · |L|). As a
result, when |H| grows exponentially (for instance, when
H = P(N )), brute-force search quickly becomes infeasi-
ble. Even when restricting predictions to internal nodes (i.e.,
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H = N ), the computational cost can still be prohibitive for
large hierarchies. Alternative strategies are hence necessary.

4. Optimal decoding strategies for hierarchical
evaluation measures

For certain metrics C, it is possible to derive a closed-form
solution for ξ∗C(px), which can be analytically defined us-
ing only px. In other cases, an algorithm is needed that
computes the optimal prediction ξ∗C(px) with better time
complexity than brute-force search. To derive closed-form
solutions or algorithms, it is often necessary to compute
px(n), defined as the bottom-up sum of the probabilities of
the leaf descendants of n.

Definition 4.1. Let L(n) be the leaf descendants of node
n (if n ∈ L, L(n) = {n}). Then we define

px(n) := P(y ∈ L(n)|x = x) =
∑

l∈L(n)

px(l)

We refer to this quantity simply as the probability of n. For
the sake of readability, we omit the px notation and use p
instead.
We organize our approach by distinguishing between differ-
ent types of candidate setsH, proposing adapted strategies
for each type of frameworks and metrics.

4.1. Leaf candidate set

When H = L, the evaluation metric compares only the
predicted leaf h with the ground-truth leaf y. This setup
closely resembles a standard cost-sensitive classification
problem, with the key difference being that hierarchical
information is incorporated into the metric’s definition. In
this case, the optimal decision rule from Definition 1 is
expressed as:

ξ∗C(p) = argmin
h∈L

∑
l∈L

p(l)C(h, l).

Karthik et al. (2021) introduced this exact framework for
the metric C = ηLCA where ηLCA(h, l) is the height in
T of the lowest common ancestor (LCA) between h and
l. They proved that, if maxl∈L p(l) > 0.5, then the opti-
mal decision rule is the argmax over leaf nodes. In other
cases, they perform a brute-force algorithm which results in
a O(|L|2) time complexity, assuming that the cost matrix
(ηLCA(h, l))(h,l)∈L×L is computed beforehand.
Additionally, for the Top1 error metric defined as
Top1(h, y) = 1(h ̸= y), the optimal decision rule is the
argmax over leaf nodes. We highlight this seemingly triv-
ial result because this decoding strategy is frequently used
to evaluate models with metrics beyond Top1, despite not
being the optimal decision rule.

4.2. Node candidate set

When H = N , a brute-force algorithm remains feasible:
assuming that the cost matrix (C(h, l))(h,l)∈N×L is pre-
computed, the overall complexity of the brute-force ap-
proach is O(|N | · |L|). However, hierarchies can often
contain more than 10, 000 nodes (Ashburner et al., 2000;
He & McAuley, 2016), and this algorithm must be applied
for each individual data point, significantly impacting time
efficiency.
To reduce the time complexity of a standard brute-force
search, we focus on a category of metrics that are hierar-
chically reasonable1 (Definition 4.2). For n ̸= r, let π(n)
denote the unique parent of n in the hierarchy tree T , and
recall that L(n) represents the set of leaf-node descendants
of n. We then aim to derive constraints on p(n) to determine
when a node n or its parent π(n) can be ruled out as sub-
optimal. Specifically, the intuition is that if n is sufficiently
unlikely, it cannot be the optimal prediction. Conversely, if
n is too likely, its parent π(n) cannot be the optimal pre-
diction either. Using these constraints, we efficiently filter
out a large portion of nodes and apply a simple brute-force
algorithm to the remaining candidate set, which overall,
drastically reduces time complexity.

Definition 4.2. Let n ∈ N\{r} and l ∈ L. We call a
metric C : N × L → R hierarchically reasonable a
metric satisfying the following properties:

C(n, l) > C(π(n), l) if l ∈ L\L(n) (2)

C(n, l) < C(π(n), l) if l ∈ L(n) (3)

Equation (2) encodes the intuition that when the ground
truth is Guitar, predicting Musical Instrument is better than
predicting Piano. Similarly, Equation (3) implies that when
the ground truth is Guitar, predicting Musical Instrument
is better than predicting Object. Given p ∈ ∆(L) and a
metric L satisfying Equations (2) and (3), our objective is
to find ξ∗C(p) ∈ N , the optimal decoding strategy for p. As
explained, for n ∈ N , we derive conditions on p(n) for n
or π(n) to be sub-optimal:

Lemma 4.3. Let C : N × L → R be hierarchically
reasonable. For n ∈ N \ {r}, define δCnl = C(n, l) −
C(π(n), l) the node-parent loss difference for label l and

• Mn = max
l∈L\L(n)

δnl > 0 mn = − max
l∈L(n)

δnl > 0

• Mn = − min
l∈L(n)

δnl > 0 mn = min
l∈L\L(n)

δnl > 0

Then, for p ∈ ∆(L), we have:
• p(n) >

Mn

Mn+mn
:= qCmax(n) =⇒ ξ∗C(p) ̸= π(n)

• p(n) <
mn

mn+Mn
:= qCmin(n) =⇒ ξ∗C(p) ̸= n

1We name these conditions after the concept of reasonableness
introduced by Elkan (2001)
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Proofs are provided in Appendix E.1.1. It naturally follows
that ∀n ∈ N , qCmin(n) ≤ qCmax(n). Here, qCmin(n) and
qCmax(n) act as thresholds for p(n), allowing to remove
portions of the hierarchy from the search space. Hence,
Lemma 4.3 will be at the core of our general algorithm.
However, it also allows us to derive closed-form solutions
for specific metrics: we recover two known results, which
we detail below.

4.2.1. APPLICATIONS TO SPECIFIC METRICS

Tree distance loss. This metric denoted DL(h, y) is defined
as the length of the shortest path between h and y in T . Here,
Lemma 4.3 gives that the optimal decoding corresponds
to the deepest node with p(n) > 0.5 (Ramaswamy et al.,
2015), referred to as Majority decoding (Valmadre, 2022).
Generalized tree distance loss. This metric is defined as
DLc(h, y) = DL(h, y) + c · d(h), where d(h) denotes the
depth of node h and c ≥ 0. Here, Lemma 4.3 shows that
the optimal decoding corresponds to the deepest node with
p(n) > 1+c

2 (Cao et al., 2024).
Proofs are detailed in Appendix E.1.2.

4.2.2. GENERAL ALGORITHM

In the general case, where C is defined via a cost matrix
(C(h, l))(h,l)∈N×L that is hierarchically reasonable, we
propose an algorithm that improves upon the O(|N | · |L|)
brute-force search. The algorithm filters nodes using
Lemma 4.3, followed by a brute-force search on the re-
maining candidates. The size of the candidate set is
O(dmax) (⋆), where dmax is the depth of T , and in practice,
dmax ≈ log(|N |).2 This leads to the following theorem:

Theorem 4.4. Let C be hierarchically reasonable and
p ∈ ∆(L), then the optimal decision rule ξ∗C(p) can be
computed with an algorithm of O(dmax · |L|+ |N |) time
complexity.

Sketch of the proof.
Key elements of the decoding strategy are displayed in Al-
gorithm 1. We give here some general insights on how the
algorithm is derived.

1. We begin with computing the probability distribution
over the whole hierarchy, by bottom-up summation
of leaf probabilities as in Definition 4.1. This can be
performed by a single tree traversal whose complexity
is O(|N |).

2. We compute a candidate set by pruning nodes that do
not fulfill conditions enunciated in Lemma 4.3. This
results in a candidate set whose cardinality is O(dmax).

3. We perform a brute-force search on the remaining can-
didate set, whose complexity O(dmax · O(|L|)).

2For a complete binary tree, dmax = log2(|N |+ 1)− 1.

Algorithm 1 Theorem 4.4

1: function FINDOPTIMAL(pleaves, qmax, qmin)
2: p← PROBANODES(pleaves) ▷ Definition 4.1
3: S ← FINDCANDSET(p, qmax, qmin) ▷ Lemma 4.3
4: nopt ← BRUTEFORCE(S, p) ▷ (⋆)
5: return nopt
6: end function

This leads to an overall complexity of O(dmax · |L|+ |N |).
The detailed proof is provided in Appendix E.1.1.

There exist certain metrics that do not fully satisfy Equa-
tion (2): it in fact implies that when the ground truth label
is Piano, predicting a Cat is less severe than predicting a
Persian Cat; however, some metrics treat these two incorrect
predictions as equally severe. As a result, the condition (2)
can be transformed to:

C(n, l) > C(π(n), l) if l ∈ L\L(n) and LCA(l, n) ̸= r,

C(n, l) = C(π(n), l) if l ∈ L\L(n) and LCA(l, n) = r.
(4)

We recall that LCA(n, l) denotes the lowest common ances-
tor of nodes n and l. Under constraints (3) and (4), Theo-
rem 4.4 is still valid. The proof is detailed in Appendix E.1.3.
This transformation accommodates metrics commonly used
in practice, such as the Wu-Palmer metric (Wu & Palmer,
1994) and its information-theoretic extension (Zhao et al.,
2017).

4.3. Subset of nodes decoding

The most general candidate prediction set, P(N ), includes
all subsets of nodes in N , with cardinality 2|N |, represent-
ing a flexible framework, where one is allowed to decode
one or more nodes. This is particularly useful in scenarios
involving hesitation between two or more nodes. However,
this generality comes at a significant computational cost:
the exponential growth of the space makes a brute-force ap-
proach infeasible, with a time complexity of O(2|N | · |L|).
From a decoding strategy perspective, one might argue that
P(N ) contains redundancy. For example, both {Piano}
and {Piano,Musical Instrument} belong to P(N ), yet they
represent inherently the same prediction because Piano is
included in Musical Instrument and therefore more specific.
To address this, predictions can be restricted to those that
contain mutually exclusive nodes. That is, predictions
h ⊆ N such that:

∀(n1, n2) ∈ h, n1 ̸= n2 ⇒ n1 /∈ A(n2) and n2 /∈ A(n1)

Here, A(n) denotes the set of ancestors of n in T (it is
defined inclusively, with n ∈ A(n)). We denote this re-
stricted set asMT (N ). However, despite this restriction,
the cardinality ofMT (N ) remains exponential:

5



To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers

Proposition 4.5. For T = (N , E), where each non-leaf
node has at least two children, the cardinality ofMT (N )

satisfies |MT (N )| ≥ 2
|N|
2 − 1.

The proof is detailed in Appendix E.2.1.
Remark. As shown in Aho & Sloane (1973), for a complete
binary tree of depth d, the cardinality ofMT (N ) is given by
|MT (N )| = ⌊q⌋2d+1

= ⌊q⌋|N |+1, where q ≃ 1.502873.

We hence focus on designing algorithms that address this
issue without relying on brute-force approaches. In such
scenarios, it becomes notably harder to design general al-
gorithms that are agnostic to the choice of the metric. For
example, Bi & Kwok (2012) derived optimal decoding al-
gorithms for a family of losses called HMC-loss. Here,
we focus on the hFβ-score, a family of metrics that bal-
ances precision and recall through the parameter β, which
controls the level of emphasis on either metric. It is a natu-
ral extension of the Fβ-score in the context of hierarchical
classification (Kiritchenko et al., 2006; Kosmopoulos et al.,
2014), and it has been shown to exhibit desirable proper-
ties (Amigo & Delgado, 2022). This set-based metric is
computed by considering the cardinalities of overlap be-
tween the predicted set and the ground truth label. Specifi-
cally, the predictions and ground truth are augmented with
their ancestors as follows:

haug = ∪
n∈h
A(n) and yaug = A(y)

Then, the hFβ-score is defined as follows:

hPr(h, y) =
|haug ∩ yaug|
|haug|

hRe(h, y) =
|haug ∩ yaug|
|yaug|

hFβ(h, y) =
1 + β2

β2

hRe(h,y) +
1

hPr(h,y)

As hFβ only uses haug, we get the intuition that various
predictions may be redundant; in fact, the search space
can be restricted toMT (N ) (see Appendix E.2.3 for full
explanations). The task, therefore, is to find the optimal
decision rule for the metric hFβ , which is given by ξ∗hFβ

:

∆(L)→MT (N ), where:

ξ∗hFβ
(p) = argmax

h∈MT (N )

∑
l∈L

p(l) · hFβ(h, l) (5)

Remark. This time, our objective is to maximize expected
utility, whereas we previously focused on minimizing ex-
pected cost.
Similarly to Lemma 4.3 we first derive a condition on node

probability. The intuition is the same: if p(n) is too small,
n cannot be an element of ξ∗hFβ

(p).

Lemma 4.6. Let p ∈ ∆(L) and n ∈ N\{r} and
dmax(n) = maxl∈L(n) d(l) the leaf nodes maximum depth
among leaf descendants of n. Then,
p(n) < 1

1+β2(dmax(n)+1) := q
hFβ

min (n) =⇒ n /∈ ξ∗hFβ
(p)

We denote Q(p) = {n ∈ N , p(n) ≥ 1
1+β2(dmax(n)+1)}.

This condition alone is not sufficient to exhibit a polynomial-
time algorithm. Following the approach in Waegeman
et al. (2014), we decompose the problem into an outer
and inner maximization based on the cardinality of haug.
Combined with Lemma 4.6, this decomposition enables the
formulation of a tractable algorithm for computing ξ∗hFβ

(p).

Theorem 4.7. Let dmax = maxl∈L d(l) be the leaf nodes
maximum depth. Let p ∈ ∆(L), then the optimal deci-
sion rule ξ∗hFβ

(p) can be computed with an algorithm of
O(d2max · |N |) time complexity.

Sketch of the proof.
The algorithm is based on the following result:

ξ∗hFβ
(p) = argmax

1≤k≤|Q(p)|
argmax
h∈MT (N )

|haug|=k, h⊂Q(p)

∑
n∈N

1(n ∈ h)∆β
k(n)

where:
|Q(p)| = O(d2max), ∆β

k(n) =
∑

l∈L(n) p(l)
1+β2

k+β2(d(l)+1)

The idea is straightforward: for each k ∈ {1, . . . , |Q(p)|},
select the k nodes belonging to Q(p) with the highest
∆β

k(n). The algorithm is thus a for-loop with at most
O(d2max) iterations. Each iteration involves:

• Computing
(
∆β

k(n)
)
n∈Q(p)

, which can be done via a

single tree traversal, i.e., in O(|N |).
• Selecting the top-k nodes with highest ∆β

k(n) which
is also O(|N |).

Hence, the total complexity is O(d2max · |N |).
Detailed proofs are given in Appendix E.2.4.

Summary of Contributions. In the case where the can-
didate set is H = N , we derived an O(dmax · |L| + |N |)
algorithm, significantly faster than the O(|N | · |L|) brute-
force search, applicable to any hierarchically reasonable
metric (a condition generally met in practice). In the most
general case, where H = P(N ), the brute-force search
becomes exponential, and we derived an algorithm with
time complexity O(d2max · |N |), finding the optimal predic-
tion with respect to the hFβ scores. Equipped with these
algorithms, we now evaluate their practical efficiency.

5. Experiments
5.1. Evaluation methodology

Although our proposed decoding strategies are proven to
be optimal for the oracle probability distribution, trained
models only approximate it. We therefore empirically
assess the performance of our strategies against existing
decodings. To evaluate the effectiveness of our approach,
we first select hierarchical datasets, and define the evalua-
tion metrics to optimize. Using trained models, we infer
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Figure 2: Relative Gain (in %) of Decoding Strategies. Each dot represents the relative gain of the optimal strategy vs. the average
over all other strategies for a specific metric and model on the test set of a given dataset, with symbols indicating the dataset: ▲ for
models pretrained on ImageNet, ⋆ for models fine-tuned on ImageNet-H, and • for models fine-tuned on iNat19. Boxplots summarize
the distribution of relative gains for each decoding strategy. The higher the gain, the better the decoding strategy. Results are reported for
six metrics across various model architectures trained on three datasets.

probability distributions for each input instance in the test
set. We then apply our optimal decoding strategy alongside
commonly used heuristic strategies for comparison. Finally,
we assess and compare the average performance of all
decoding strategies across the test set. We list below the
datasets, models, metrics and heuristics used. The detailed
experimental setup can be found in Appendix D.1.

Datasets. While our approach can be applied to any kind
of data, we solely rely in this work on computer vision
datasets, due to the complexity of their label hierarchy
and the availability of appropriate models. Specifically,
we utilize TieredImageNet-H and iNat19. Introduced by
Bertinetto et al. (2020) together with properly defined hi-
erarchy trees, these datasets, summarized in Table 1, are
respectively subsets of ImageNet-1k (Deng et al., 2009) and
iNaturalist-19 (Van Horn et al., 2018).
Models. Given that TieredImageNet-H is a subset of
ImageNet-1K, existing pre-trained models can be directly
used. We select 10 models from the PyTorch library, which
are listed in Appendix D.1.2. Following the recommenda-

Table 1: Key statistics of the selected datasets.

Dataset Nb. of leaves Nb. of nodes dmax Test set size
TieredImageNet-H 608 843 12 15,200
Inat-19-H 1010 1190 7 40,737

tions of Bertinetto et al. (2020), we also fine-tune a ResNet-
18 architecture on both datasets using different loss func-
tions. Specifically, we employ the hierarchical cross-entropy
loss and soft label methods proposed by Bertinetto et al.
(2020), a YOLO-v2 conditional softmax cross-entropy loss
(Redmon & Farhadi, 2017), embedding methods from Barz
& Denzler (2019), and a standard cross-entropy loss.
Metrics. We use several widely adopted metrics in hierarchi-
cal contexts. These include Tree Distance Loss, for which an
optimal decoding is available in closed form (Ramaswamy
et al., 2015), the Wu-Palmer metric (Wu & Palmer, 1994)
and its information-theoretic extension (Zhao et al., 2017),
for which we apply Theorem 4.4, and hFβ for β ∈ 0.5, 1, 2,
for which we leverage Theorem 4.7. All definitions of met-
rics are available in Appendix C.1.
Decoding Heuristics. A variety of decoding heuristics
have been proposed, often using the node information

7
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Figure 3: Agreement map on the simplex of R3 for two decoding
strategies. For a hierarchy with three leaf nodes displayed in the
top-left corner, this figure shows the agreement map between hF1

and Majority decoding : each point p in the simplex is color-coded,
a green dot indicates equality of the two predictions, while a red
dot indicates a disagreement.

I(n) = log( |L|
|L(n)| ) to define these strategies. These can

be categorized into leaf-node decoding and any-node decod-
ing strategies. Leaf-node decoding strategies include:

1. argmax i.e. ξ(p) = argmaxl∈L p(l), which selects
the leaf node with the highest probability

2. Leaf optimal decoding for ηLCA (Karthik et al., 2021)
3. HiE-self, ξ(p) = argmaxl∈L p(π(l))·p(l), combining

parent probabilities p(π(l)) with leaf probabilities p(l)
(Jain et al., 2023)

4. top-down, which selects a leaf node by performing a
top-down traversal of the hierarchy, choosing the most
likely nodes from the root to the leaf level.

Any-node decoding strategies include:

5. Majority Rule: ξτ (p) = argmaxn∈N I(n) s.t p(n) >
0.5, selecting the most informative node with p(n) >
0.5 (Valmadre, 2022)

6. Plurality Rule, ξ(p) = argmaxn∈N I(n) s.t. ∀z ∈
N\A(n), p(n) > p(z), selecting the most informative
label more likely than any non-ancestor (Valmadre,
2022)

7. Darts Algorithm, ξλ(p) = argmaxn∈N (I(n) +
λ)p(n), balancing information I(n) and confidence
p(n) with a parameter λ (Deng et al., 2012)

8. Expected Information, maximizing expected infor-
mation by setting λ = 0 in the Darts Algorithm

Heuristic (7.) requires an held-out set to tune its parameter.
Currently, no heuristic explicitly addresses decoding sets of
nodes, and our attempt based on Lemma 4.6 yielded poor
results.

5.2. Analysis

Each plot in Figure 2 illustrates the performance of various
decoding algorithms across different datasets and models.
A clear takeaway is the consistent superiority of optimal
decoding algorithms across all evaluation metrics. It means
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Figure 4: Impact of blurring on the sub-optimality of heuristic
decodings. This figure shows the relative performance decrease
(in %) of heuristics compared to the optimal decoding for the
hFβ-score, with β ∈ {1, 0.5, 2}, as a function of the blur level.
Results are averaged across multiple models and datasets, with a
95% confidence interval displayed for each decoding strategy.

that, regardless of the dataset, model, or training algorithm
used, applying the optimal decoding strategy is always ad-
vantageous. Appendix D.2, demonstrates the near-universal
superiority of optimal decoding algorithms. Moreover, our
decoding algorithms exhibit reasonable time complexity (a
few µs per sample). More details can be found on this
topic in Appendix D.3. For the selected hierarchies, when
H = N , our algorithms are, on average, 60× faster than a
brute-force approach. Furthermore, whenH = P(N ), our
algorithms efficiently solve problems that are intractable
using brute-force methods.
Another noteworthy aspect is the behavior of the non-
optimal heuristics. We differentiate between leaf-node
heuristics, which always predict a leaf node, and node heuris-
tics, which can predict both internal and leaf nodes. Leaf-
node heuristics are more recall-oriented, i.e., they predict
leaves which increases their ability to capture the correct
leaf label but also leads to more errors. In contrast, node
heuristics are more conservative and precision-oriented, cap-
turing the most specific class less often but with fewer errors.
This trade-off is quantified by the β-score, where β = 2
gives twice as much importance to recall as to precision. As
a result, leaf-node heuristics, such as argmax, top-down,
Karthik et al. (2021), and Jain et al. (2023), are more com-
petitive among non-optimal decoding strategies under this
setting. However, when precision becomes more impor-
tant (β = 0.5), node heuristics, such as Deng et al. (2012),
Expected Information, and Majority, perform better.

Nonetheless, the relative gains of the optimal strategy re-
main modest: from 1% to 5% for all metrics except Mistake
Severity, which achieves a relative gain of 10%. In practice,
we observe that, for a given data point, optimal predictions
often align with heuristic predictions. This is expected:
when the model is nearly 100% confident that the label is
Piano, any reasonably designed heuristic will predict Piano.
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Disagreements arise when the entropy of the predicted prob-
ability distribution increases.
We provide an intuition for this phenomenon in Figure 3.
For a simple hierarchy with five nodes, including three leaf
nodes, the figure displays the agreement map between the
optimal decoding strategy and the Majority Rule heuristic.
We observe that when the probability distribution is skewed
towards one of the leaf nodes, both strategies tend to agree.
However, as the distribution approaches the center of the
simplex, disagreements become more frequent. This sug-
gests that the more underdetermined the problem becomes,
the greater the overall relative performance gain from using
optimal decoding strategies. While some domains exhibit
greater intrinsic randomness (e.g., medicine), we propose an
experiment in which we artificially introduce randomness
into a computer vision task by progressively blurring the in-
put images. As the images become increasingly blurred, the
image features become less predictive, causing the posterior
probability distribution to approach the center of the sim-
plex. We expect to find more disagreements, thus increasing
performance gap between optimal decoding and heuristics.

5.3. Blurring the images

We propose an experimental setting in which we keep the
exact same models introduced in Section 5.1, trained on
the same datasets. However, these models are evaluated on
modified test sets in which inputs images are progressively
blurred. In Figure 1, we illustrate the effect of gradually
blurring an input image on the decision-making process.
The model used is VGG11 (Simonyan & Zisserman, 2014),
and the input image is labeled as a golden retriever. Under
the hF1-score optimal decision rule, the prediction transi-
tions from golden retriever to hunting dog, which remains
correct but less specific. A similar pattern is observed for
majority decoding; however, at the highest level of blurring,
the prediction becomes carnivore reflecting an even coarser
classification. In contrast, argmax decoding consistently
produces highly specific predictions but fails on the last two
levels of blurring, yielding incorrect results. As decodings
tend to disagree more, we expect that relative performance
of heuristic decodings will gradually decrease with the level
of blur, relatively to optimal one. Figure 4 illustrates the
relative drop in performance compared to the optimal de-
coding strategies for hFβ-scores, averaged across datasets
and models. As expected, the blurrier the image, the greater
the relative decrease in performance. This confirms our intu-
ition: for an underdetermined problem, it is important to use
appropriate decoding strategies when aiming at optimizing
a target hierarchical metric.

6. Conclusion
In this work, we addressed the challenge of optimal decod-
ing in hierarchical classification tasks. Given a predefined
hierarchical evaluation metric and a posterior probability
distribution over leaf nodes, our goal was to identify the best
possible prediction. To this end, we developed universal
algorithms for hierarchically reasonable metrics when the
prediction set is restricted to the nodes of the hierarchy. Ad-
ditionally, we introduced a decoding algorithm specifically
tailored to hFβ-scores . Our empirical results demonstrated
the effectiveness of these optimal decoding strategies, specif-
ically in underdetermined classification tasks.
Future work could explore extending our framework to non-
tree hierarchies. Additionally, this study does not tackle the
challenge of accurately predicting the posterior probability
distribution. A promising direction would be to incorpo-
rate cost-sensitive learning during training, as suggested
in prior work (Ramaswamy et al., 2015; Cao et al., 2024),
or to develop post-hoc recalibration methods that provide
guarantees on the estimated probability estimation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendices
A. Notations
We display in Table A.1, the list of notations we use throughout the manuscript.

Math Symbol Domain Description
N Set of nodes in the hierarchy
L Set of leaf nodes in the hierarchy
E N ×N Set of edges

T = (N , E) Hierarchy Tree
P(N ) Power set of N
X Input domain
x X Random variable representing the input features
y L Random variable representing the label
P X × L → [0, 1] Joint probability distribution.
n N A node
l L A leaf node
r N The root node

π(n) N unique parent of n in T
C(n) P(N ) Set of children of n in T
A(n) P(N ) Set of ancestors of n in T (defined inclusively)
L(n) P(N ) Set of leaf descendants of n
I(n) R =log( |L|

|L(n)| ) Information of node n

d(n) N Depth of node n in T
Defined as the length of the shortest path between n and r in T

dmax(n) N = max
l∈L(n)

d(l). Max depth of leaf descendants of n

dmax N =max
l∈L

d(l). Max depth of leaf nodes

dmin N =min
l∈L

d(l). Min depth of leaf nodes

LCA N 2 → N Lowest common ancestor of two nodes.
∆(L) Simplex over L
H {L,N ,P(N )} Set of candidate prediction
h H A prediction.
C H×L → R An evaluation metric that compare a prediction h to a ground truth l.
ξ ∆(L)→ H A decision rule

ξ∗C ∆(L)→ H
=argmin

h∈H

∑
l∈L

p(l)C(h, l)

Optimal decision rule for metric C and proba p

px(l) [0,1]
= P(l|x = x)

Posterior probability of class l for input x

px(n) [0,1]
=

∑
l∈L(n) P(l|x = x)

Posterior probability of class n for input x
haug P(N ) = ∪

n∈h
A(n)

MT (N ) P(P(N )) = {h ∈ P(N ), n1, n2 ∈ h =⇒ LCA(n1, n2) = r}
UT (N ) P(P(N )) = {haug, h ∈MT (N )}

Table A.1: Notations used in the manuscript
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B. Limitations
While our algorithms demonstrate significant improvements over straightforward heuristics in specific contexts, it is natural
to ask whether these empirical findings extend to other types of data. In this work, we focus on image datasets due to the
abundance of pretrained models and well-established benchmarks in the vision domain. Exploring other modalities -such as
text data- remains an important direction for future work, but falls outside the scope of this work.
Another important aspect we did not address is the accurate estimation of the posterior probability distribution. As discussed
in the conclusion, a promising direction for future work is to incorporate hierarchical cost-sensitive learning during training
or to develop post-hoc hierarchical recalibration methods that could offer theoretical guarantees on the quality of the
estimated probabilities.

C. Additional Content
C.1. Metric Defintion

We recall that an evaluation measure for a setH of candidate predictions is a function that quantifies the misclassification
costs as follows.

Definition C.1. Evaluation Measure. An evaluation metric for a set H of candidate predictions is a function that
quantifies the misclassification costs :

C : H×L → R
(h, y) 7→ C(h, y)

where h is the prediction and y the ground-truth leaf label.

C.1.1. H = L

Here, we provide examples of metrics for the case whenHe = L:

• Lowest Common Ancestor (LCA) Height:

ηLCA(h, y) = Height of the lowest common ancestor between h and y in T .

• Top-1 Error:
Top1(h, y) = 1(h ̸= y),

where 1(·) is the indicator function.

C.1.2. H = N

ForH = N , we list example of used metrics:

• Tree Distance Loss (Ramaswamy et al., 2015):

DL(h, y) = Length of the shortest path between h and y in T .

• Generalized Tree Distance Loss (Cao et al., 2024):

DLc(h, y) = DL(h, y) + c · d(h)

where d(h) is the depth of node h in T .
• Wu-Palmer Similarity (Wu & Palmer, 1994):

WP(h, y) =
2 · d(LCA(h, y))

d(h) + d(y)

• Zhao Similarity (Zhao et al., 2017):

ZS(h, y) =
2 · I(LCA(h, y))

I(h) + I(y)

where I(·) represents the information content of a node.
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C.1.3. H = P(N )

ForHe = P(N ), we list below example of such metrics:

• Hierarchical F-score (hFβ):

hFβ(h, y) =
1 + β2

β2

hRe(h,y) +
1

hPr(h,y)

,

where

hPr(h, y) =
|haug ∩ yaug|
|haug|

, hRe(h, y) =
|haug ∩ yaug|
|yaug|

.

• Hamming Loss:

HL(h, y) =
|(haug ∪ yaug) \ (haug ∩ yaug)|

|yaug|
.

• Jaccard Similarity:

Jacc(h, y) =
|haug ∩ yaug|
|haug ∪ yaug|

.

C.2. On the Uniqueness of ξ∗C(p)

In the main manuscript, we defined the optimal decision rule for p ∈ ∆(L) and an evaluation measure C as follows:

Definition C.2. Optimal Decision Rule. The optimal decision rule for the metric C : H × L → R is given by
ξ∗C : ∆(L)→ H, where

ξ∗C(p) = argmin
h∈H

∑
l∈L

p(l)C(h, l). (6)

First, note that the argmin is well-defined, asH is non-empty and finite, ensuring the existence of at least one minimizer.
However, we have no theoretical guarantee that ξ∗C(p) is uniquely defined, since multiple elements h ∈ H may attain the
minimum. In practice, this ambiguity is not problematic. If multiple optimal predictions exist, one can simply select one
at random, as they all yield the same expected risk. When dealing with expected probabilities this random can influence
the estimation of the performance, however, such cases are rare in real-world scenarios. When working with estimated
probabilities, ties between optimal predictions never occur.
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D. Detailed Experiments
D.1. Experiment setup

D.1.1. DATASETS

We give here additional details on how datasets were constructed.

tieredImageNet-H. Original tieredImageNet, was introduced by Ren et al. (2018) for few-shot classification. Original
version features disjoint class splits based on the WordNet hierarchy and was designed to assess few-shot classifiers. Then
Bertinetto et al. (2020) adapted it for standard image classification, resampling it to include all classes across train, validation,
and test splits. They chose this dataset because it covered a large part of the 1, 000 classes of ImageNet. Additionally, they
slightly modified the WordNet graph to turn it into a tree. This resulted in a tree of 843 nodes, including 608 leaf nodes and
a depth of 12. This version is referred to as tieredImageNet-H.

iNat19. iNaturalist-19 (Van Horn et al., 2018) is a dataset of organism images primarily used for evaluating fine-grained
visual categorization methods. It was introduced with hierarchical species relationships, providing an 8-level complete
tree spanning 1010 leaf node classes which was directly usable. Since test set labels are not public, Bertinetto et al. (2020)
re-sampled it into three splits (70% training, 15% validation, 15% test) from the original train and validation sets.

D.1.2. MODELS

Pretrained Models. We leverage 10 pretrained models from the PyTorch library, including Swin Transformer V2 (Liu
et al., 2022a), VGG-11 (Simonyan & Zisserman, 2014), AlexNet (Krizhevsky et al., 2012), EfficientNet V2-S (Tan &
Le, 2021), ConvNeXt-Tiny (Liu et al., 2022b), ResNet-18 (He et al., 2016), DenseNet-121 (Huang et al., 2017), Vision
Transformer (ViT-B/16) (Dosovitskiy et al., 2021), and Inception V3 (Szegedy et al., 2016). While these models could be
directly evaluated on ImageNet-1k using the original WordNet hierarchy, we opted to evaluate them on tieredImageNet-H,
the aformentionned subset of ImageNet-1k. Unlike ImageNet-1k, tieredImageNet-H spans 608 classes instead of the original
1, 000. To generate probability distributions over the 608 leaf nodes of the tieredImageNet-H hierarchy, we adopted a
straightforward approach: for each model and input, we extracted the logits corresponding to the 608 leaf nodes and applied
a softmax function. This process yields a valid probability distribution over the leaf nodes.

Finetuned Models. As explained in the core of the manuscript we follow the recommendations of Bertinetto et al. (2020)
and follow-up works (Karthik et al., 2021; Jain et al., 2023; Garg et al., 2022; Valmadre, 2022) by finetuning a Resnet-18
architecture with various learning strategies. We detail them here. Bertinetto et al. (2020) propose two hierarchy-aware loss
modifications: Hierarchical Cross-Entropy weights misclassifications based on their distance in the class hierarchy (it has an
hyperparameter α > 0), while Hierarchical Smoothing assigns non-zero probabilities to related classes to smooth the target
distribution. We also use the YOLO-v2 conditional softmax cross-entropy loss (Redmon & Farhadi, 2017), which computes
localized softmax. Additionally, we utilize embedding methods from Barz & Denzler (2019), which map class labels into a
embedding space to capture semantic relationships between classes. Finally, we use also a standard cross-entropy loss.

D.1.3. METRICS

As briefly explained in the core of the text. We use 6 different widely used metrics. We list them below together with their
optimal decoding strategy.

• Tree Distance Loss:
DL(h, y) = Length of the shortest path between h and y in T .

Optimal Decoding Strategy: Majority Decoding :

ξDL(p) = argmax
n∈N

I(n) s.t p(n) ≥ 0.5 (Ramaswamy et al., 2015)

• Wu-Palmer Similarity (WP):

WP(h, y) =
2 · d(LCA(h, y))

d(h) + d(y)
,

Optimal Decoding Strategy: Use Theorem 4.4.
• Zhao Similarity (ZS):

ZS(h, y) =
2 · I(LCA(h, y))

I(h) + I(y)
.
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Optimal Decoding Strategy: Use Theorem 4.4.
• Hierarchical F-Score for β ∈ {0.5, 1, 2}

hFβ(h, y) =
1 + β2

β2

hRe(h,y) +
1

hPr(h,y)

,

Optimal Decoding Strategy: Use Theorem 4.7.

D.1.4. DECODING HEURISTICS

A variety of decoding heuristics have been proposed to leverage class hierarchy information during decoding. These
heuristics can be categorized into strategies for decoding leaf nodes and those for decoding any node.

Leaf-Node Decoding Strategies: These heuristics focus on selecting a leaf node from the hierarchy:

• Leaf Argmax:
ξ(p) = argmax

l∈L
p(l),

• Karthik et al. (2021). This method optimally decode for the ηLCA metric.
• HiE-self (Jain et al., 2023):

ξ(p) = argmax
l∈L

p(π(l)) · p(l),

Any-Node Decoding Strategies: These heuristics allow for selecting nodes at any level of the hierarchy:

• Confidence Threshold (Valmadre, 2022):

ξτ (p) = argmax
n∈N

I(n) s.t. p(n) > τ

• Majority Rule:
Confidence Threshold with τ = 0.5

• Plurality Rule (Valmadre, 2022):

ξ(p) = argmax
n∈N

I(n) s.t. ∀z ∈ N \ A(n), p(n) > p(z),

• Darts Algorithm (Deng et al., 2012):

ξλ(p) = argmax
n∈N

(I(n) + λ) · p(n),

• Expected Information:
Darts Algorithm with λ = 0

D.2. Detailed results of decoding performance

In this section we provide detailed results about the performance of all decoding strategies for all models, datasets and
metrics. We display it Table D.1 the performance of each decoding and for each model and dataset for the Mistake Severity
metric, in Table D.2 for the Wu-Palmer similarity metric, in Table D.3 for the Zhao similarity metric and in Tables D.4,
D.5 and D.6 the results for hFβ-score for β ∈ {0.5, 1, 2}

D.3. Time Computation Analysis

In Table D.7, we provide insights into the time taken by different decoding strategies, with a particular focus on the time
required for optimal decoding strategies introduced by our newly proposed algorithms. As mentioned in the main text, all
optimal decoding strategies exhibit reasonable inference times. The worst-case scenario is observed for the optimal decoding
of the Zhao similarity metric on the iNat19 dataset, with an average decoding time of approximately 13 milliseconds per
sample. Beyond this, we note that for all hFβ scores, the inference time is around 1 millisecond per input sample.
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Optimal
(ours) Deng et al. Expected Info

Valmadre
Plurality
Valmadre Karthik et al. Jain et al. Argmax Top-Down

tie
re

dI
m

ag
eN

et
-H

Barz & Denzler 4.18 4.54 5.13 4.23 4.54 5.65 5.66 6.47
Cross-entropy 1.61 1.71 1.74 1.69 1.77 1.82 1.83 1.88
Hxe (α = 0.1) 1.62 1.71 1.73 1.71 1.78 1.82 1.85 1.89
Hxe (α = 0.6) 1.96 2.14 2.14 2.04 2.22 2.26 2.3 2.42

Soft-labels 1.59 1.71 1.73 1.68 1.75 1.82 1.84 1.86
Yolo-V2 1.79 1.84 1.86 1.92 1.99 1.99 1.98 2.14

iN
at

19

Cross-entropy 1.63 1.84 1.85 1.79 1.91 1.92 1.95 1.93
Hxe (α = 0.1) 1.58 1.80 1.81 1.74 1.87 1.87 1.88 1.88
Hxe (α = 0.6) 1.96 2.33 2.33 2.2 2.41 2.41 2.42 2.42

Soft-labels 1.68 1.99 1.99 1.8 1.95 1.94 1.94 1.95
Yolo-V2 1.68 1.86 1.86 1.86 1.99 1.97 1.96 2.02

tie
re

dI
m

ag
eN

et
-H

Alexnet 2.12 2.29 2.34 2.26 2.4 2.51 2.54 2.59
Convnext Tiny 0.83 0.80 0.80 0.79 0.83 0.81 0.81 0.86
Densenet121 1.19 1.27 1.28 1.24 1.27 1.32 1.32 1.34

Efficientnet v2 s 0.74 0.72 0.72 0.72 0.76 0.73 0.73 0.78
Inception v3 1.05 1.07 1.09 1.07 1.12 1.13 1.13 1.18

Resnet18 1.41 1.52 1.53 1.49 1.54 1.58 1.59 1.63
Swin v2 t 0.81 0.83 0.83 0.82 0.85 0.84 0.84 0.88

Vgg11 1.41 1.50 1.51 1.47 1.53 1.57 1.60 1.62
Vit b 16 0.87 0.88 0.89 0.88 0.92 0.92 0.92 0.94

Table D.1: Performance on Mistake Severity metric of different decoding strategy for various models trained on various
datasets

Optimal
(ours) Deng et al. Expected Info

Valmadre
Plurality
Valmadre Karthik et al. Jain et al. Argmax Top-Down Majority

tie
re

dI
m

ag
eN

et
-H

Barz & Denzler 33.71 33.15 34.09 35.17 33.19 34.85 34.83 37.7 37.59
Cross-entropy 11.77 12.30 12.30 12.07 12.45 12.27 12.29 12.43 12.36
Hxe (α = 0.1) 11.96 12.27 12.27 12.15 12.49 12.21 12.39 12.5 12.42
Hxe (α = 0.6) 13.88 15.07 15.07 14.06 14.89 14.62 14.77 15.14 14.52

Soft-labels 11.70 12.28 12.28 11.92 12.27 12.27 12.32 12.27 12.27
Yolo-V2 13.27 13.48 13.48 13.67 13.90 13.43 13.31 14.16 13.82

iN
at

19

Cross-entropy 13.14 14.47 14.47 13.59 13.68 13.72 13.9 13.79 13.70
Hxe (α = 0.1) 12.74 14.21 14.21 13.17 13.36 13.37 13.45 13.40 13.11
Hxe (α = 0.6) 16.17 19.18 19.18 16.72 17.21 17.21 17.31 17.31 16.42

Soft-labels 13.57 16.0 16.0 13.72 13.92 13.87 13.89 13.96 14.19
Yolo-V2 13.54 14.87 14.87 14.09 14.2 14.06 13.98 14.42 13.91

tie
re

dI
m

ag
eN

et
-H

Alexnet 15.81 16.59 16.59 16.2 16.91 16.72 16.84 16.89 16.58
Convnext Tiny 5.57 5.67 5.67 5.79 5.93 5.48 5.46 5.78 6.64
Densenet121 8.59 9.04 9.04 8.76 8.87 8.91 8.9 8.93 8.93

Efficientnet v2 s 5.10 5.18 5.15 5.29 5.43 4.99 4.96 5.28 5.96
Inception v3 7.56 7.74 7.74 7.71 8.0 7.69 7.64 7.87 8.16

Resnet18 10.35 10.79 10.79 10.6 10.79 10.65 10.69 10.86 10.77
Swin v2 t 5.77 5.83 5.83 5.86 6.04 5.72 5.72 5.91 6.32

Vgg11 10.24 10.77 10.77 10.45 10.73 10.59 10.75 10.74 10.87
Vit b 16 6.17 6.25 6.25 6.26 6.44 6.23 6.21 6.29 6.63

Table D.2: Performance on Wu-Palmer Similarity metric of different decoding strategy for various models trained on
various datasets
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Optimal
(ours) Deng et al. Expected Info

Valmadre
Plurality
Valmadre Karthik et al. Jain et al. Argmax Top-Down Majority

tie
re

dI
m

ag
eN

et
-H

Barz & Denzler 48.32 47.92 47.92 54.08 52.92 47.42 47.40 50.27 60.32
Cross-entropy 18.94 19.55 19.55 19.69 20.57 19.29 19.19 19.49 21.34
Hxe (α = 0.1) 19.04 19.68 19.68 19.89 20.74 19.29 19.33 19.64 21.54
Hxe (α = 0.6) 24.27 26.76 26.76 25.02 27.09 25.25 24.80 25.54 27.43

Soft-labels 18.81 19.45 19.45 19.43 20.29 19.2 19.13 19.23 21.20
Yolo-V2 21.14 21.72 21.72 22.17 22.83 21.18 20.8 22.07 23.76

iN
at

19

Cross-entropy 22.71 23.3 23.3 23.52 23.4 23.39 23.53 23.57 24.92
Hxe (α = 0.1) 22.46 23.03 23.03 23.14 23.18 23.13 23.18 23.26 24.17
Hxe (α = 0.6) 29.67 31.59 31.59 31.02 31.43 31.34 31.4 31.6 32.65

Soft-labels 23.58 25.96 25.96 24.05 23.95 23.79 23.71 24.05 27.06
Yolo-V2 23.51 24.17 24.17 24.44 24.39 24.15 23.99 24.67 25.41

tie
re

dI
m

ag
eN

et
-H

Alexnet 25.5 26.28 26.28 26.58 28.38 26.08 26.04 26.36 28.99
Convnext Tiny 8.60 9.04 9.04 9.42 9.86 8.70 8.60 9.03 11.67
Densenet121 13.69 14.23 14.23 14.09 14.35 13.89 13.81 13.97 15.08

Efficientnet v2 s 7.89 8.18 8.18 8.63 8.99 7.87 7.81 8.23 10.4
Inception v3 11.88 12.22 12.22 12.54 13.23 12.07 11.97 12.29 14.04

Resnet18 16.61 17.12 17.10 17.29 17.72 16.77 16.74 17.11 18.49
Swin v2 t 9.02 9.30 9.30 9.64 10.06 9.06 9.05 9.32 11.05

Vgg11 16.46 17.07 17.07 17.11 17.75 16.63 16.74 16.86 18.81
Vit b 16 9.69 9.92 9.92 10.15 10.54 9.78 9.69 9.84 11.36

Table D.3: Performance on Zhao Similarity metric of different decoding strategy for various models trained on various
datasets

Optimal
(ours) Deng et al. Expected Info

Valmadre
Plurality
Valmadre Karthik et al. Jain et al. Argmax Top-Down Majority

tie
re

dI
m

ag
eN

et
-H

Barz & Denzler 79.0 74.75 71.25 75.81 74.26 68.92 68.92 65.49 78.21
Cross-entropy 92.32 90.93 90.54 90.3 89.68 89.37 89.29 89.03 91.6
Hxe (α = 0.1) 92.27 91.08 90.71 90.22 89.65 89.42 89.2 88.95 91.6
Hxe (α = 0.6) 91.29 90.38 90.09 89.13 87.76 87.43 87.08 86.42 90.90

Soft-labels 92.30 90.99 90.63 90.43 89.87 89.39 89.25 89.15 91.72
Yolo-V2 91.35 90.37 90.04 88.95 88.43 88.38 88.39 87.48 90.56

iN
at

19

Cross-entropy 91.76 89.97 89.73 88.88 88.03 87.99 87.84 87.94 90.93
Hxe (α = 0.1) 92.03 90.34 90.09 89.17 88.31 88.30 88.23 88.27 91.24
Hxe (α = 0.6) 90.67 88.82 88.63 86.49 84.94 84.94 84.85 84.85 90.24

Soft-labels 91.40 89.96 89.82 88.85 87.82 87.87 87.84 87.78 91.22
Yolo-V2 91.48 90.09 89.88 88.42 87.57 87.70 87.77 87.38 90.66

tie
re

dI
m

ag
eN

et
-H

Alexnet 89.98 88.00 87.3 87.23 86.19 85.48 85.28 84.99 89.21
Convnext Tiny 95.63 95.76 95.67 95.38 95.11 95.26 95.24 94.90 95.82
Densenet121 94.14 93.2 92.97 92.79 92.51 92.26 92.23 92.12 93.56

Efficientnet v2 s 96.16 96.13 96.04 95.8 95.54 95.68 95.69 95.33 96.16
Inception v3 94.71 94.19 93.92 93.77 93.38 93.32 93.32 93.04 94.46

Resnet18 93.16 91.94 91.67 91.4 90.99 90.76 90.67 90.42 92.53
Swin v2 t 95.92 95.58 95.45 95.26 95.00 95.05 95.03 94.79 95.77

Vgg11 93.15 92.10 91.83 91.59 91.09 90.81 90.60 90.5 92.61
Vit b 16 95.63 95.21 95.07 94.92 94.64 94.60 94.60 94.46 95.40

Table D.4: Performance on hF0.5 metric of different decoding strategy for various models trained on various datasets
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Optimal
(ours) Deng et al. Expected Info

Valmadre
Plurality
Valmadre Karthik et al. Jain et al. Argmax Top-Down Majority

tie
re

dI
m

ag
eN

et
-H

Barz & Denzler 73.98 71.28 70.03 70.01 71.13 69.04 69.04 66.29 68.36
Cross-entropy 89.88 89.32 89.3 89.51 89.15 89.24 89.21 89.08 89.39
Hxe (α = 0.1) 89.82 89.32 89.32 89.43 89.1 89.29 89.13 89.01 89.33
Hxe (α = 0.6) 87.97 86.86 86.86 87.72 86.95 87.11 86.98 86.61 87.45

Soft-labels 89.91 89.33 89.33 89.64 89.3 89.24 89.19 89.21 89.47
Yolo-V2 88.59 88.32 88.32 88.11 87.88 88.22 88.32 87.55 88.13

iN
at

19

Cross-entropy 88.83 87.51 87.51 88.22 88.03 87.99 87.84 87.94 88.3
Hxe (α = 0.1) 89.18 87.73 87.73 88.58 88.31 88.3 88.23 88.27 88.79
Hxe (α = 0.6) 86.48 83.55 83.55 85.5 84.94 84.94 84.85 84.85 85.96

Soft-labels 88.56 86.23 86.23 88.11 87.82 87.87 87.84 87.78 87.88
Yolo-V2 88.49 87.19 87.19 87.78 87.57 87.7 87.77 87.38 88.1

tie
re

dI
m

ag
eN

et
-H

Alexnet 86.41 85.57 85.57 85.92 85.25 85.31 85.2 85.13 85.78
Convnext Tiny 95.13 95.07 95.07 95.01 94.84 95.2 95.22 94.93 94.34
Densenet121 92.62 92.13 92.13 92.38 92.26 92.19 92.2 92.16 92.31

Efficientnet v2 s 95.57 95.51 95.53 95.44 95.29 95.63 95.66 95.37 94.93
Inception v3 93.49 93.27 93.27 93.32 93.03 93.26 93.3 93.09 93.01

Resnet18 91.08 90.61 90.61 90.78 90.59 90.66 90.62 90.46 90.74
Swin v2 t 95.03 94.93 94.93 94.92 94.74 94.99 94.99 94.81 94.59

Vgg11 91.07 90.64 90.64 90.92 90.64 90.71 90.57 90.56 90.66
Vit b 16 94.64 94.55 94.55 94.56 94.39 94.54 94.56 94.48 94.31

Table D.5: Performance on hF1 metric of different decoding strategy for various models trained on various datasets

Optimal
(ours) Deng et al. Expected Info

Valmadre
Plurality
Valmadre Karthik et al. Jain et al. Argmax Top-Down Majority

tie
re

dI
m

ag
eN

et
-H

Barz & Denzler 74.72 69.26 69.2 66.05 68.71 69.31 69.32 67.37 62.14
Cross-entropy 90.81 88.31 88.31 88.96 88.76 89.2 89.22 89.2 87.76
Hxe (α = 0.1) 90.93 88.21 88.21 88.88 88.71 89.24 89.14 89.15 87.64
Hxe (α = 0.6) 88.67 84.18 84.18 86.6 86.32 86.9 86.97 86.9 84.71

Soft-labels 90.92 88.3 88.3 89.08 88.9 89.19 89.2 89.35 87.81
Yolo-V2 89.75 86.94 86.94 87.5 87.49 88.15 88.34 87.71 86.3

iN
at

19

Cross-entropy 89.52 85.67 85.67 87.72 88.03 87.99 87.84 87.94 86.35
Hxe (α = 0.1) 89.7 85.78 85.78 88.12 88.31 88.3 88.23 88.27 86.91
Hxe (α = 0.6) 86.53 79.32 79.32 84.67 84.94 84.94 84.85 84.85 82.5

Soft-labels 89.27 83.22 83.22 87.52 87.82 87.87 87.84 87.78 85.25
Yolo-V2 89.15 84.96 84.96 87.27 87.57 87.7 87.77 87.38 86.12

tie
re

dI
m

ag
eN

et
-H

Alexnet 87.5 84.21 84.21 84.98 84.56 85.26 85.24 85.37 83.27
Convnext Tiny 95.79 94.58 94.58 94.75 94.65 95.18 95.23 95.01 93.26
Densenet121 93.51 91.45 91.45 92.1 92.09 92.19 92.23 92.25 91.38

Efficientnet v2 s 96.21 95.12 95.12 95.19 95.1 95.62 95.67 95.44 94.01
Inception v3 94.22 92.76 92.76 93.01 92.79 93.26 93.33 93.2 91.98

Resnet18 92.08 89.77 89.77 90.35 90.31 90.63 90.64 90.57 89.43
Swin v2 t 95.79 94.5 94.5 94.69 94.55 94.97 95.0 94.88 93.73

Vgg11 92.06 89.7 89.7 90.44 90.33 90.68 90.6 90.7 89.22
Vit b 16 95.37 94.14 94.14 94.33 94.22 94.52 94.57 94.54 93.52

Table D.6: Performance on hF2 metric of different decoding strategy for various models trained on various datasets
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Metric Group Optimal (Brute-force) Optimal (ours) Deng et al. (2012) Expected Info. Plurality Karthik et al. (2021) Jain et al. (2023) Argmax Top-Down Majority

Wu-Palmer
iNat19

(finetuned models)
289.8

(× 127) 2.286 0.212 0.211 0.033 0.033 0.036 0.018 0.021 0.004

tieredImageNet-H
(finetuned models)

125.7
(× 77) 1.641 0.157 0.166 0.043 0.031 0.024 0.010 0.021 0.003

tieredImageNet-H
(pretrained models)

125.7
(× 84) 1.499 0.159 0.168 0.046 0.031 0.024 0.010 0.022 0.003

Zhao
iNat19

(finetuned models)
289.8
(× 22) 13.319 0.212 0.210 0.033 0.033 0.036 0.018 0.020 0.004

tieredImageNet-H
(finetuned models)

125.7
(× 32) 3.908 0.156 0.165 0.046 0.032 0.024 0.010 0.022 0.003

tieredImageNet-H
(pretrained models)

125.7
(× 36) 3.496 0.158 0.168 0.047 0.031 0.024 0.010 0.022 0.003

Mistake Severity
iNat19

(finetuned models) – 0.011 0.211 0.214 0.034 0.034 0.036 0.018 0.021 0.004

tieredImageNet-H
(finetuned models) – 0.016 0.156 0.158 0.046 0.032 0.024 0.010 0.022 0.003

tieredImageNet-H
(pretrained models) – 0.016 0.158 0.160 0.045 0.032 0.024 0.010 0.022 0.003

hF0.5
iNat19

(finetuned models) Intractable 0.802 0.210 0.220 0.035 0.034 0.036 0.018 0.021 0.004

tieredImageNet-H
(finetuned models) Intractable 1.012 0.157 0.164 0.046 0.030 0.022 0.010 0.021 0.001

tieredImageNet-H
(pretrained models) Intractable 0.963 0.157 0.164 0.043 0.031 0.022 0.009 0.020 0.001

hF1
iNat19

(finetuned models) Intractable 1.053 0.213 0.220 0.032 0.034 0.036 0.018 0.020 0.004

tieredImageNet-H
(finetuned models) Intractable 1.491 0.154 0.163 0.047 0.030 0.022 0.011 0.022 0.001

tieredImageNet-H
(pretrained models) Intractable 1.387 0.158 0.163 0.046 0.031 0.023 0.008 0.021 0.002

hF2
iNat19

(finetuned models) Intractable 1.944 0.213 0.233 0.032 0.034 0.036 0.018 0.020 0.004

tieredImageNet-H
(finetuned models) Intractable 2.921 0.156 0.168 0.044 0.031 0.024 0.010 0.021 0.003

tieredImageNet-H
(pretrained models) Intractable 2.881 0.159 0.170 0.050 0.032 0.024 0.010 0.025 0.003

Table D.7: Decoding time for each strategy, reported in milliseconds per sample and averaged across all models within each
group.

D.4. Additional Information for the Blurring Motivation

In Section 5.1, we provide the motivation for introducing image blurring. We illustrate this motivation with a single example
based on Figure 3, which visualizes the agreement map for hF1-score and Majority decoding strategies. An agreement map
is constructed as follows:

• A simplex mesh in R3 is created, where each point corresponds to a single probability distribution over leaf nodes.
• For each point in the mesh, the probability is decoded using both the optimal decoding strategy and the heuristic

decoding strategy.
• The agreement map is constructed by coloring areas in green where the two decoding strategies agree, and in red where

they disagree.

In the following, we display agreement maps for all heuristic strategies selected in the main text versus the optimal strategy,
evaluated across all six metrics.

Figure D.1: Agreements maps of heuristic decoding strategies vs. Mistake Severity optimal decoding strategy.

Overall, it is evident that the more central the probability is within the simplex, the greater the disagreement between the
optimal decoding strategy and the heuristic strategy. This observation motivates the introduction of the blurring effect.
Specifically, blurring an image increases label uncertainty and randomness, causing the oracle probability distribution to
shift towards the center of the simplex. Similarly, the estimated oracle probability distribution follows this shift.
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Figure D.2: Agreements maps of heuristic decoding strategies vs. Wu-Palmer similarity optimal decoding strategy.

Figure D.3: Agreements maps of heuristic decoding strategies vs. Zhao similarity optimal decoding strategy.

Figure D.4: Agreements maps of heuristic decoding strategies vs. hF0.5 optimal decoding strategy.

Figure D.5: Agreements maps of heuristic decoding strategies vs. hF1 optimal decoding strategy.

Figure D.6: Agreements maps of heuristic decoding strategies vs. hF2 optimal decoding strategy.

D.5. Additional Experiments for the blurring experiment

We begin by describing the experimental setup used for these evaluations. The models from previous experiments of
Appendix D.2, trained on various datasets, remain unchanged. However, we modify the test set images by applying
increasing levels of blur, parameterized by the standard deviation σ. This blur is applied to resized images, typically of size
224× 224, using a Gaussian Blur transformation with a kernel size of 61 and a standard deviation of σ.
We recall also the intuition of this blurring experiment. As the images become progressively more blurred, their features
become less informative, causing the posterior probability distribution to converge toward the center of the simplex. As
illustrated in Figure 1, even a human expert would find it challenging to confidently predict the true class label for the image
on the far right. This experimental setup is designed to amplify the frequency of disagreements between heuristic strategies
and optimal decoding.

D.5.1. MORE VISUAL EXAMPLES
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Figure D.7: Influence of blurring to the decision-making of various decoding strategies. Image displayed is labeled valley
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Figure D.8: Influence of blurring to the decision-making of various decoding strategies. Image displayed is labeled rhinoceros beetle
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Figure D.9: Influence of blurring to the decision-making of various decoding strategies. Image displayed is labeled magpie
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Figure D.10: Influence of blurring to the decision-making of various decoding strategies. Image displayed is labeled cello
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Figure D.11: Influence of blurring to the decision-making of various decoding strategies. Image displayed is labeled chime
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Figure D.12: Influence of blurring to the decision-making of various decoding strategies. Image displayed is labeled swing
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Figure D.13: Influence of blurring to the decision-making of various decoding strategies. Image displayed is labeled standard schnauzer
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Figure D.14: Influence of blurring to the decision-making of various decoding strategies. Image displayed is labeled ox
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D.5.2. FULL QUANTITATIVE RESULTS

Figure D.15 illustrates the relative gain in performance compared to optimal decoding strategies for the six selected metrics,
averaged across datasets and models. For the hFβ scores and the Mistake Severity metric, we observe the expected trend:
as image blurriness increases, the relative loss in performance of heuristic strategies becomes more pronounced. This aligns
with our intuition that as the problem becomes more uncertain, the choice of an appropriate decoding strategy becomes
increasingly important for optimizing a hierarchical target metric.

Interestingly, the results differ for the Zhao Similarity and Wu-Palmer metrics. While the optimal decoding strategy
consistently remains the best, the relative performance of heuristics exhibits an unexpected trend. Specifically, the relative
loss decreases significantly as the blur level increases up to σ = 3, after which it begins to increase again. Despite this
variability, the optimal decoding strategy maintains a statistically significant advantage over the heuristics in all cases.
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Figure D.15: Impact of blurring on the sub-optimality of heuristic decodings. This figure shows the relative performance gain (in %)
of heuristic decodings compared to the optimal decoding for the 6 selected metrics, as a function of the blur level. Results are averaged
across multiple models and datasets, with a 95% confidence interval displayed for each decoding strategy.
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E. Proofs.
This section provides the detailed proofs of the theoretical results.

E.1. Nodes decoding (H = N )

In this section we will rely on the conditional risk defined as follows:
Definition E.1. Let p ∈ ∆(L) and h ∈ N then we define the conditional risk of h for metric C as follows:

RC(h|p) =
∑
l∈L

p(l) · C(h, l)

E.1.1. HIERARCHICALLY REASONABLE METRICS : CASE IN WHICH EQUATIONS (2) AND (3) ARE VERIFIED.

Lemma E.2. Let C : N ×L → R be hierarchically reasonable. For n ∈ N \ {r}, define δCnl = C(n, l)−C(π(n), l) the
node-parent loss difference for label l and:

Mn = max
l∈L\L(n)

δnl > 0 mn = − max
l∈L(n)

δnl > 0 Mn = − min
l∈L(n)

δnl > 0 mn = min
l∈L\L(n)

δnl > 0

The, for p ∈ ∆(L), we have:
1. p(n) >

Mn

Mn+mn
:= qCmax(n) =⇒ ξ∗C(p) ̸= π(n)

2. p(n) <
mn

mn+Mn
:= qCmin(n) =⇒ ξ∗C(p) ̸= n

Proof.
Let L : N ×L → R satisfy Equations (2) and (3). We now proceed to prove statement 1.

Assume p(n) >
Mn

Mn+mn
. Then, we have:

p(n) >
Mn

Mn +mn

⇐⇒ mn p(n)︸︷︷︸
=
∑

l∈L(n) p(l)

> Mn (1− p(n))︸ ︷︷ ︸
=
∑

l∈L\L(n) p(l)

This implies

∑
l∈L(n)

p(l) · mn︸︷︷︸
≤C(π(n),l)−C(n,l)

>
∑

l∈L\L(n)

p(l) · Mn︸︷︷︸
≥C(n,l)−C(π(n),l)

Rewriting: ∑
l∈L(n)

p(l)C(π(n), l)−
∑

l∈L(n)

p(l)C(n, l) >
∑

l∈L\L(n)

p(l)C(n, l)−
∑

l∈L\L(n)

p(l)C(π(n), l)

Thus:

∑
l∈L

p(l)C(π(n), l) >
∑
l∈L

p(l)C(n, l)

And finally:

RC(π(n)|p) > RC(n|p)

Therefore, n has a strictly lower conditional risk than π(n), which shows that π(n) is not the optimal decoding.
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Statement 2 follows this exact same proof.

Let us also prove that

mn

mn +Mn
:= qCmin(n) ≤ qCmax(n) =

Mn

Mn +mn

The function x 7→ x
x+C where C is a constant is an increasing function on R+ and as mn ≤Mn we have,

qCmin(n) ≤
Mn

Mn + Mn︸︷︷︸
≥mn

≤ Mn

Mn +mn
= qCmax(n)

Theorem E.3. Let L be a hierarchically reasonable metric and p ∈ ∆(L), then the optimal decision rule ξ∗C(p) can be
computed with an algorithm of O(dmax · |L|+ |N |) time complexity.

Algorithm 2 qCmin(n) and qCmax(n) computation.
[tb]

function GETCST(Ln, L)
Mn ← max

l∈L\Ln

C(n, l)− C(π(n), l) > 0

mn ← min
l∈Ln

C(π(n), l)− C(n, l) > 0

Mn ← max
l∈Ln

C(π(n), l)− C(n, l) > 0

mn ← min
l∈L\Ln

C(n, l)− C(π(n), l) > 0

return mn

mn+Mn
, Mn

Mn+mn

end function
function QCOMP(n, qCmin, qCmax, L)

if n ∈ L then
q1, q2 ← GETCST({n}, L)
qCmin(n)← q1
qCmax(n)← q2
return {n}

else
L(n)←

⋃
c∈C(n)

QCOMP(c, qCmin, qCmax, L)

q1, q2 ← GETCST(L(n), L)
qCmin(n)← q1
qCmax(n)← q2
return L(n)

end if
end function
qCmin, q

C
max ← 0|N |, 0|N |

PROBANODES(r, qCmin, qCmax, L)
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Algorithm 3 Probability Computation

1: function PROBANODESREC(n, p, pleaves)
2: if n ∈ L then
3: p(n)← pleaves(n)
4: return p(n)
5: else
6: p(n)←

∑
c∈C(n)

PROBANODESREC(c, p, pleaves)

7: end if
8: end function
9: function PROBANODES(pleaves)

10: p← 0|N |
11: PROBANODESREC(r, p, pleaves)
12: return p
13: end function

Algorithm 4 Candidate Selection

1: function FINDCANDSETREC(n, p, S, qmax, qmin)
2: if p(n) > qmax(n) then
3: S ← S \ {π(n)}
4: else if p(n) < qmin(n) then
5: S ← S \ {n}
6: else if n ∈ L or p(n) < min

n∈N
qmin(n) then

7: return
8: end if
9: for c ∈ C(n) do

10: FINDCANDSETREC(c, p, S, qmax, qmin)
11: end for
12: end function
13: function FINDCANDSET(p, qmax, qmin)
14: S ← N
15: FINDCANDSETREC(r, p, S, qmax, qmin)
16: return S
17: end function

Algorithm 5 Brute-force search

1: function BRUTEFORCE(S, p)
2: nopt ← ∅
3: ropt ←∞
4: for n ∈ S do
5: r ←

∑
l∈L

p(l)C(n, l)

6: if r < ropt then
7: ropt ← r
8: nopt ← n
9: end if

10: end for
11: return nopt
12: end function
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Algorithm 6 General Algorithm

1: function FINDOPTIMAL(pleaves, qmax, qmin)
2: p← PROBANODES(pleaves)
3: S ← FINDCANDSET(p, qmax, qmin)
4: nopt ← BRUTEFORCE(S, p)
5: return nopt
6: end function

Proof. The general algorithm is summarized in Algorithm 6. It consists in

1. Computing probability distribution over nodes, given probability distribution over leaves. (Algorithm 3)
2. Filtering each node based on condition of Lemma E.2. It outputs a candidate set S which can all be the optimal

prediction (Algorithm 4)
3. A brute-force algorithm is performed on this remaining candidate set (Algorithm 5)

• Algorithm 2 correspond to the computation of (qCmin(n))n∈N and (qCmax(n))n∈N . This is independant of the input
probability distribution p and can be performed beforehand. To this extent, the time complexity of Algorithm 1 is not
added to the overall complexity of the optimal decoding. However this algorithm has a O(|N | · |L|) complexity. In
fact, function QCOMP consists in a tree traversal in which each node is visited exactly once. For each visit, constants
Mn,mn,Mn,mn are computed in a O(|L|) time complexity. Therefore, the overall complexity of Algorithm 2 is
O(|N | · |L|).

• Algorithm 3 correspond to the computation the whole probability distribution over all nodes given probability distribu-
tion over leaf nodes. This seemingly trivial computation is a tree traversal which necessitates the visit of exactly each
node. Therefore the overall complexity of Algorithm 3 is O(|N |). This has to be done for each probability distribution,
and therefore contributes to Theorem E.3 time complexity.

• Algorithm 7 correspond to the candidate selection step. It performs once again a tree traversal, which also necessitates
to visit each node exactly once. Therefore the overall complexity of Algorithm 3 is O(|N |). For convenience, we
separate Algorithm 3 and Algorithm 4, but this can be done simultaneously.

• Algorithm 5 is a basic brute-force algorithm. For each node n ∈ S, the computation of the risk r necessite |L| operation.
Therefore the overall complexity of Algorithm 4 is O(|S| · |L|). Let us now prove that |S| = O(dmax).

Proof of |S| = O(dmax).

We recall condition 2 of Theorem E.3:
p(n) < qCmin(n) =⇒ ξ∗C(p) ̸= n

Then, the contrapositive writes :

n ∈ S =⇒ p(n) ≥ qCmin(n) ≥ min
n∈N

qCmin(n) := qCmin

Therefore, ∑
n∈S

p(n)︸︷︷︸
≥qCmin

≥ |S| · qCmin

Inequality holds also for n = r because p(r) = 1 ≥ qCmin. This can be rewritten:

|S| ≤ 1

qCmin

·
∑
n∈S

p(n)︸ ︷︷ ︸
≤

∑
n∈N

p(n)

We recall. p(n) =
∑

n∈L(n) p(l). Then, on a given level of the hierarchy i.e on a set {n ∈ N , d(n) = d}, there is no
common leaf descendant between two elements of the set. We therefore have∑

n∈N
d(n)=d

p(n) ≤ p(l)
l∈L

= 1
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Eventually,

∑
n∈N

p(n) =

dmax∑
d=0

∑
n∈N

d(n)=d

p(n)

︸ ︷︷ ︸
≤1

≤ dmax + 1 (7)

Which finally give,

|S| ≤ 1

qCmin

· (dmax + 1) = O(dmax)

Wrapping up everything we obtain a time Complexity for Algorithm 6 of O(dmax · |L|+ |N |)

E.1.2. APPLICATION TO SPECIFIC METRICS

In this section, we detailed the proof of statements made in Section 4.2.1. We aim to retrieve the two following propositions.

Proposition E.4. Tree distance Loss Optimal Decision Rule (Ramaswamy et al., 2015). Let DL be the Tree distance Loss
whose definition is DL(h, y) = Length of the shortest path between h and y in T . Let p ∈ ∆(L) then optimal decision
rule ξDL(p) is given by :

ξDL(p) = argmax
n∈N

d(n) s.t p(n) ≥ 0.5

Proposition E.5. Generalized Tree distance Loss Optimal Decision Rule (Cao et al., 2024). Let DLc be the Generalized
Tree distance Loss whose definition is DLc(h, y) = DL(h, y)+ c · d(h). Where d(h) is the depth of node h. Let p ∈ ∆(L)
then optimal decision rule ξDL(p) is given by :

ξDLc
(p) = argmax

n∈N
d(n) s.t p(n) ≥ 1 + c

2

Proof.

We prove the second Proposition, as the first one is included in the second. Let n ∈ N\{r} and l ∈ L\L(n) then :

δDLc

nl = DLc(n, l)−DLc(π(n), l)

= DL(n, l) + c · d(n)− (DL(π(n), l) + c · (d(n)− 1))

= DL(n, l)−DL(π(n), l)︸ ︷︷ ︸
=1(because l∈L\L(n))

+ c(d(n)− d(n) + 1)

= 1 + c

Then,

Mn = max
l∈L\L(n)

δDLc

nl = 1 + c

Similarly,

mn = 1− c Mn = 1− c mn = 1 + c

Therefore, qDLc
max = qDLc

max = 1+c
2 . Lemma E.2 gives:

• if p(n) > 1+c
2 then π(n) is not the optimal prediction

• if p(n) < 1+c
2 then n is not the optimal prediction

Then, as there can be at most node per level whose probability is greater than 1+c
2 ≥ 1

2 we retrieve that ξDLc(p) is the
deepest node whose probability is greater than 1+c

2 . This concludes the proof.
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E.1.3. HIERARCHICALLY REASONABLE METRICS : CASE IN WHICH EQUATIONS (3) AND (4) ARE VERIFIED.

In such case, we have the following result:

Proposition E.6. Let C : N × L → R be a metric that satisfy Equations (3) and (4). For n ∈ N \ {r}, define
δCnl = C(n, l)− C(π(n), l) the node-parent loss difference for label l and

• M̃n = max
l∈L\L(n)

LCA(n,l)̸=r

C(n, l)− C(π(n), l) > 0 m̃n = min
l∈L(n)

C(π(n), l)− C(n, l) > 0

• M̃n = max
l∈L(n)

C(π(n), l)− C(n, l) > 0 m̃n = min
l∈L\L(n)

LCA(n,l)̸=r

C(n, l)− C(π(n), l) > 0

Let an be the shallowest non-root ancestor of n (an ∈ C(r)) the set of children of r. For p ∈ ∆(L), we have:
1. p(n) >

M̃n

M̃n+m̃n
· p(an) := qCmax(n) · p(an) =⇒ ξ∗C(p) ̸= π(n)

2. p(n) <
m̃n

m̃n+M̃n
· p(an) := qCmin(n) · p(an) =⇒ ξ∗C(p) ̸= n

Proof.
Let L : N ×L → R be a hierarchical metric that satisfy Equations (3) and (4). We now proceed to prove statement 2.

Assume p(n) <
m̃n

m̃n+M̃n
p(an). Then, we have:

p(n) <
m̃n

m̃n + M̃n

p(an)

⇐⇒ M̃n p(n)︸︷︷︸
=
∑

l∈L(n) p(l)

< m̃n (p(an)− p(n))︸ ︷︷ ︸
=
∑

l∈L\L(n)
LCA(n,l)̸=r

p(l)

This implies

∑
l∈L(n)

p(l) · M̃n︸︷︷︸
≥C(π(n),l)−C(n,l)

<

=
∑

l∈L\L(n)
LCA(n,l)=r

p(l)(

=0︷ ︸︸ ︷
C(n, l)− C(π(n), l))

︷︸︸︷
0 +

∑
l∈L\L(n)
LCA(n,l) ̸=r

p(l) · m̃n︸︷︷︸
≤C(n,l)−C(π(n),l)

Rewriting: ∑
l∈L(n)

p(l)C(π(n), l)−
∑

l∈L(n)

p(l)C(n, l) <
∑

l∈L\L(n)

p(l)C(n, l)−
∑

l∈L\L(n)

p(l)C(π(n), l)

Thus:

∑
l∈L

p(l)C(π(n), l) <
∑
l∈L

p(l)C(n, l)

And finally:

RC(π(n)|p) < RC(n|p)

Therefore, π(n) has a strictly lower risk than n, which shows that n is not the optimal decoding.

Statement 1 follows this exact same proof.
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Proposition E.7. Let L be an evaluation measure that verifies 3 and 4. Let p ∈ ∆(L), then the optimal decision rule
ξ∗C(p) can be obtained through an algorithm of O(dmax · |L|+ |N |) time complexity.

Algorithm 7 Candidate Selection

1: function FINDCANDSETRECBIS(n, p, S, qmax, qmin)
2: if p(n) > qmax(n) · p(an) then
3: S ← S \ {π(n)}
4: else if p(n) < qmin(n) · p(an) then
5: S ← S \ {n}
6: else if n ∈ L or p(n) < min

n∈N
qmin(n) · p(an) then

7: return
8: end if
9: for c ∈ C(n) do

10: FINDCANDSETRECBIS(c, p, S, qmax, qmin)
11: end for
12: end function
13: function FINDCANDSETBIS(p, qmax, qmin)
14: S ← N
15: Call: FINDCANDSETRECBIS(r, p, S, qmax, qmin)
16: return S
17: end function

Algorithm 8 General Algorithm Bis

1: function FINDOPTIMAL(pleaves, qmax, qmin)
2: p← PROBANODES(pleaves)
3: S ← FINDCANDSETBIS(p, qmax, qmin)
4: nopt ← BRUTEFORCE(S, p)
5: return nopt
6: end function

The general algorithm is summarized in Algorithm 8. It follows the exact same intuition of Algorithm 56. It consists in

1. Compute probability distribution over nodes, given probability distribution over leaves. (Algorithm 3)
2. Filtering each node based on condition of Theorem E.6. It outputs a candidate set S which can all be the optimal

prediction (Algorithm 7)
3. A brute-force algorithm is performed on this remaining candidate set (Algorithm 5)

As before, We obtain a O(|S| · |L|+ |N |) time complexity for Algorithm 8. Let us now prove that |S| = O(dmax).

We recall second condition 2 of Proposition E.6:

p(n) < qCmin(n) · p(an) =⇒ ξ∗C(p) ̸= n

Then, the contrapositive writes :

n ∈ S =⇒ p(n) ≥ qCmin(n) · p(an)
≥ p(an) · min

n∈N
qCmin(n)︸ ︷︷ ︸

:=qCmin

We write D(n) the set of descandants of n in T . (defined inclusively : n ∈ D(n). Let c ∈ C(r) Then,∑
n∈S

n∈D(c)

p(n)︸︷︷︸
≥p(c)·qCmin

≥ |S ∩ D(c)| · qCmin
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Inequality holds also for n = c because p(c) ≥ qCmin · p(c). This can be rewritten:

|S ∩ D(c)| ≤ 1

qCmin

·
∑
n∈S

n∈D(c)

p(n)

︸ ︷︷ ︸
≤

∑
n∈D(c)

p(n)

We recall. p(n) =
∑

n∈L(n) p(l). Then, on a given level of the hierarchy i.e on a set {n ∈ N , d(n) = d}, there is no
common leaf descendant between two elements of the set. We therefore have∑

n∈D(c)

d(n)=d

p(n) ≤
∑

l∈L(c)

p(l) = p(c)

Then,

∑
n∈D(c)

p(n) =

dmax∑
d=1

∑
n∈N

d(n)=d

p(n)

︸ ︷︷ ︸
≤p(c)

≤ dmax · p(c)

Which gives,

|S ∩ D(c)| ≤ 1

qCmin

· dmax · p(c)

And eventually :

|S| ≤ 1 +
∑

c∈C(r)

|S ∩ D(c)| ≤ 1 +
1

qCmin

· dmax ·
∑

c∈C(r)

p(c)

︸ ︷︷ ︸
=1

Finally this yields :

|S| = O(dmax)

which completes the proof.
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E.2. Subset of nodes decoding

E.2.1. ON THE CARDINALITY OFMT (N )

Proposition E.8. For T = (N , E), where each non-leaf node has at least two children, the cardinality of MT (N )

satisfies |MT (N )| ≥ 2
|N|
2 − 1.

Proof.

We define the following property:

P(n) = ”For a tree T = (N , E) with |N | = n, where every non-leaf node has at least two children, it holds that |L| ≥ n
2 .”

Let |N | = n. We will use strong induction on n.

Base Case: For n = 1, the tree T has only one node, which is a leaf. Thus, |L| = 1, and the inequality holds since 1 ≥ 1
2 .

Induction Hypothesis: Assume that for all trees with k nodes (where k < n), the number of leaves is at least k
2 .

Inductive Step: Consider a tree T with n nodes. We need to show that |L| ≥ n
2 .

Let v be the deepest node in T . Let u be the parent of v. Since all internal nodes have at least two children, u has at least
two children.

Let k be the number of children of u. All these k children are leaves because v is the deepest node.

We then removing these k leaves and their edges from T . This results in a smaller tree T ′ with n− k nodes.

By the induction hypothesis, the number of leaves in T ′ is at least n−k
2 .

The total number of leaves in the original treeH is the sum of:

• The k leaves that were removed.
• The leaves in the smaller tree T ′.
• We need to remove u from the leaf count in T ′ as t is a leaf in T ′ but not inH.

Therefore, by induction hypothesis, the number of leaves in T is at least:

k +
n− k

2
− 1

By simplifying the expression we obtain:

k +
n− k

2
− 1 =

2k + n− k − 2

2
=

n+ k − 2

2

We need to show:
n+ k − 2

2
≥ n

2
Which is true if and only if:

n+ k − 2 ≥ n

k − 2 ≥ 0

Since k ≥ 2 (all internal nodes have at least 2 children), this is true.

Therefore, by induction, for any tree with n nodes, where every internal node has at least two children, the number of leaves
|L| is at least n

2 .

Let T = (N , E) be a hierarchy. By applying P(n) with n = |N | we have that T has at least |N |
2 leaves: |L| ≥ |N |

2 . Each
subset of these |L| leaves corresponds to a unique element ofMT (N ).

There are 2|L| − 1 different subsets of the |L| leaves (excluding the empty subset). Each of these subsets, forms a unique
element of inMT (N ).

Therefore,
|MT (N )| ≥ 2

|N|
2 − 1
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This completes the proof.

E.2.2. THE CASE OF hFβ SCORES

Throughout this section, we will use a concept analogous to risk, referred to as utility.

Definition E.9. Utility. Let p ∈ ∆(L) and h ∈ P(N ) then we define the hFβ conditional expected utility of h as follows:

UhFβ
(h|p) =

∑
l∈L

p(l) · hFβ(h, l)

E.2.3. REFRAMING THE PROBLEM

We recall that

MT (N ) = {h ∈ P(N ),∀(n1, n2) ∈ h, n1 ̸= n2 =⇒ n1 /∈ A(n2) and n2 /∈ A(n1)}

We also define,
UT (N ) = {haug, h ∈ P(N )}

Proposition E.10. The function ϕ :MT (N )→ UT (N ), defined by ϕ(h) = haug, is bijective.

Proof. An element of UT (N ) represent a subtree of T which contains the root node. This subtree is uniquely defined by the
set of leaves in the subtree, which is an element ofMT (N ). This completes the proof.

We first prove that

Proposition E.11. Let p ∈ ∆(L) then

ξ∗hFβ
(p) ∈ argmin

h∈P(N )

UhFβ
(h|p) = argmin

h∈UT (N )

UhFβ
(h|p) = argmin

h∈MT (N )

UhFβ
(h|p)

Proof. We prove first the first equality. By definition of hFβ , hFβ(h, l) = hFβ(h
aug, l) for any l. Therefore, UhFβ

(h|p) =
UhFβ

(haug|p) and

argmin
h∈P(N )

UhFβ
(h|p) = argmin

h∈P(N )

UhFβ
( haug︸︷︷︸
∈UT (N )

|p) = argmin
h∈UT (N )

UhFβ
(h|p)

Then for the second equality :

argmin
h∈UT (N )

UhFβ
(h|p) = argmin

h∈UT (N )

UhFβ
(ϕ−1(ϕ(h)︸︷︷︸

=h

)|p) = argmin
h∈MT (N )

UhFβ
(h|p)

Last equlity holds by setting h′ = ϕ−1(h) and using Proposition E.2.3.

From now on the problem at stake is therefore :

ξ∗hFβ
(p) ∈ argmin

h∈UT (N )

UhFβ
(h|p)
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E.2.4. MAIN RESULTS ABOUT hFβ

We begin by proving a result we are going to use a lot. Let β ∈ R∗, let h ∈ UT (N ) and for n ∈ N we denote d(n) the
depth of node n. We have :

hFβ(h, l) =
(1 + β2) · |h ∩ A(l)|
|h|+ β2 · (d(l) + 1)

(8)

In fact,

hR(h, l) =
|h ∩ A(l)|
|A(l)|︸ ︷︷ ︸
=d(l)+1

=
|h ∩ A(l)|
d(l) + 1

And,

hP(h, l) =
|h ∩ A(l)|
|h|

And therefore,

hFβ(h, l) =
(1 + β2)

1
hP(h,l) + β2 1

hR(h,l)

=
(1 + β2)

|h|
|h∩A(l)| + β2 d(l)+1

|h∩A(l)|

=
(1 + β2) · |h ∩ A(l)|
|h|+ β2 · (d(l) + 1)

We continue by proving the following result:

Lemma E.12. Let p ∈ ∆(L) and dmin = maxl∈L d(l) the minimum depth of leaf nodes, then ξ∗hFβ
(p) ̸= ∅ and the

optimal expected utility UhFβ
(ξ∗hFβ

(p)|p) is lower-bounded as follows

UhFβ
(ξ∗hFβ

(p)|p) ≥ 1 + β2

1 + β2 · (dmin + 1)
(9)

Proof.

UhFβ
(∅|p) = 0

And,

UhFβ
(r|p) = (1 + β2) ·

=1︷ ︸︸ ︷
|r ∩ A(l)|

|r|︸︷︷︸
=1

+ β2 · (d(l)︸︷︷︸
≥dmin

+ 1)
≤ 1 + β2

1 + β2(dmin + 1)

Therefore, as UhFβ
(r|p) > UhFβ

(∅|p), ξ∗hFβ
(p) ̸= ∅ and,

UhFβ
(ξ∗hFβ

(p)|p) ≥ UhFβ
(r|p) ≥ 1 + β2

1 + β2 · (dmin + 1)

This completes the proof.

Let us now prove the following lemma.

Lemma E.13. Let p ∈ ∆(L) and n ∈ N\{r} and dmax(n) = maxl∈L(n) d(l) the leaf nodes maximum depth among leaf
descendants of n. Then,
p(n) < 1

1+β2(dmax(n)+1) := q
hFβ

min (n) =⇒ n /∈ ξ∗hFβ
(p)

Proof. Let h ∈ UT (N ) be non-empty. Let n ∈ N\h then,
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UhFβ
(h ∪ {n}) =

∑
l∈L

p(l) hFβ(h ∪ {y}, l) =
∑
l∈L

p(l)
(1 + β2) · |h ∪ {y} ∩ A(l)|
|h ∪ {y}|︸ ︷︷ ︸
=|h|+1

+ β2(d(l) + 1)

=
∑

l∈L(n)

p(l)
(1 + β2) ·

=|h∩A(l)|+1︷ ︸︸ ︷
|h ∪ {y} ∩ A(l)|

|h|+ 1 + β2(d(l) + 1)
+

∑
l∈L\L(n)

p(l)
(1 + β2) ·

=|h∩A(l)|︷ ︸︸ ︷
|h ∪ {y} ∩ A(l)|

|h|+ 1 + β2(d(l) + 1)

=
∑

l∈L(n)

p(l)
1 + β2

|h|+ 1 + β2(d(l) + 1)
+

∑
l∈L

p(l)
(1 + β2) · |h ∩ A(l)|
|h|+ 1 + β2(d(l) + 1)

Hence,

UhFβ
(h ∪ {n})− UhFβ

(h) =∑
l∈L(n)

p(l)
1 + β2

|h|+ 1 + β2(d(l) + 1)
+
∑
l∈L

p(l)
(1 + β2) · |h ∩ A(l)|
|h|+ 1 + β2(d(l) + 1)

−
∑
l∈L

p(l)
(1 + β2) · |h ∩ A(l)|
|h|+ β2(d(l) + 1)

Combining second and third term we obtain :

UhFβ
(h ∪ {n}|p)− UhFβ

(h|p)

=
∑

l∈L(n)

p(l)
1 + β2

|h|+ 1 + β2(d(l) + 1)︸ ︷︷ ︸
≥dmin+1

−
∑
l∈L

p(l)
(1 + β2) · |h ∩ A(l)|

(|h|+ 1 + β2( d(l) + 1︸ ︷︷ ︸
≤dmax(n)+1

))(|h|+ β2(d(l) + 1))

≤ 1 + β2

|h|+ 1 + β2(dmin + 1)

∑
l∈L(n)

p(l)

︸ ︷︷ ︸
=p(n)

− 1

|h|+ 1 + β2(dmax(n) + 1)

∑
l∈L

p(l)
(1 + β2) · |h ∩ A(l)|
|h|+ β2(d(l) + 1)︸ ︷︷ ︸
=UhFβ

(h|p)

≤ 1 + β2

|h|+ 1 + β2(dmin + 1)
p(n)− 1

|h|+ 1 + β2(dmax(n) + 1)
UhFβ

(h|p)

Now, let us conclude the proof.

If ξ∗hFβ
(p) = {r} then hFβ ⊂ {n ∈ N , p(n) ≥ 1

1+β2(dmax(n)+1)} because p(r) = 1. If ξ∗hFβ
(p) ̸= {r} then Lemma E.2.4

gives us ξ∗hFβ
(p) ̸= ∅.

Now suppose, ξ∗hFβ
(p) ̸⊂ {n ∈ N , p(n) ≥ 1

1+β2(dmax(n)+1)}: it exists n ∈ ξ∗hFβ
(p) such that p(n) < 1

1+β2(dmax(n)+1) . Then
consider h = ξ∗hFβ

(p)\{n}, then previous result give us :

UhFβ
(ξ∗hFβ

(p)|p)− UhFβ
(h|p) ≤ 1 + β2

|h|+ 1 + β2(dmin + 1)
p(n)︸︷︷︸

< 1
1+β2(dmax(n)+1)

− 1

|h|+ 1 + β2(dmax(n) + 1)
UhFβ

(h|p)︸ ︷︷ ︸
≥ 1+β2

1+β2·(dmin+1)

By reducing to the same denominator we obtain:

UhFβ
(ξ∗hFβ

(p)|p)− UhFβ
(h|p)

<
|h|β2

(|h|+ 1 + β2(dmin + 1))(1 + β2(dmax(n) + 1))(|h|+ 1 + β2(dmax(n) + 1))(1 + β2(dmin + 1))
(dmin − dmax(n))︸ ︷︷ ︸

≤0

< 0
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which is impossible because by definition of ξ∗hFβ
(p), we have UhFβ

(ξ∗hFβ
(p)|p) > UhFβ

(h|p). This concludes the proof :
ξ∗hFβ

(p) ⊂ {n ∈ N , p(n) ≥ 1
1+β2(dmax(n)+1)}

Lemma E.14. Let T be a hierarchy, and dmax = maxl∈L d(l) the maximum depth of its leaf nodes. Let p ∈ ∆(L) and
n ∈ N \ {r}. Then, ξ∗hFβ

(p) ⊂ {n ∈ N , p(n) ≥ 1
1+β2(dmax+1)} := Q(p). and therefore, |ξ∗hFβ

(p)| ≤ |Q(p)| where
|Q(p)| ≤ Nmax = (1 + β2(dmax + 1)) · (dmax + 1) = O(d2max)

Proof. The first result is a direct implication of Lemma E.13. Let us now show that, |Q(p)| = O(d2max).

Let p ∈ ∆(L), the first result implies that:

n ∈ ξ∗hFβ
(p) =⇒ p(n) ≥ 1

1 + β2(dmax + 1)

Therefore, ∑
n∈hFβ

p(n)︸︷︷︸
≥ 1

1+β2(dmax+1)

≥ |ξ∗hFβ
(p)| · 1

1 + β2(dmax + 1)

This can be rewritten:
|ξ∗hFβ

(p)| ≤ (1 + β2(dmax + 1)) ·
∑

n∈ξ∗hFβ
(p)

p(n)

︸ ︷︷ ︸
≤

∑
n∈N

p(n)

We already proved in Equation 7 of the proof of Lemma E.3 that,

∑
n∈N

p(n) ≤ dmax + 1

This finally gives,

|ξ∗hFβ
(p)| ≤ (1 + β2(dmax + 1)) · (dmax + 1)

Denoting Nmax = (1 + β2(dmax + 1)) · (dmax + 1), we have

Therefore |ξ∗hFβ
(p)| ≤ Nmax and Nmax = O(d2max).

This completes the proof.

Let us now prove the main theoretical result of the article.

Theorem E.15. Let dmax = maxl∈L d(l) be the leaf nodes maximum depth. Let p ∈ ∆(L), then the optimal decision rule
ξ∗hFβ

(p) can be obtained through an algorithm of O(d2max · |N |) time complexity.

Let us recall that the task, is to find the optimal decision rule for the metric hFβ , which is given by ξ∗hFβ
: ∆(L) → H,

where:
ξ∗hFβ

(p) = argmax
h∈UT (N )

UhFβ
(h|p)

We adopt here a similar approach to Waegeman et al. (2014) to deal with the optimization problem. Let k ≤ |N |, let us
denote Uk

T (N ) = {h ∈ P(N ), h = haug and |h| = k} the set of parts of N of k elements which belong to UT (N ) then

ξ∗hFβ
(p) = argmax

k∈{1...|N |}
argmax
hk∈Uk

T (N )

UhFβ
(hk|p)

With Lemma E.14 we can restrict the search to
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• k ≤ |Q(p)|
• hk ⊂ Q(p)

And therefore, we can rewrite the problem as follows:

ξ∗hFβ
(p) = argmax

k∈{1...|Q(p)|}
argmax
hk∈Uk

T (N )

hk⊂Q(p)

UhFβ
(hk|p)

Next, we rewrite UhFβ
(h|p) as follows :

UhFβ
(h|p) =

∑
l∈L

p(l) hFβ(h, l)

=
∑
l∈L

p(l)
(1 + β2) ·

=
∑

n∈N
1(n∈h∩A(l))︷ ︸︸ ︷
|h ∩ A(l)|

|h|+ β2 · (d(l) + 1)

=
∑
l∈L

p(l)
(1 + β2)

|h|+ β2(d(l) + 1)

∑
n∈N

1(n ∈ A(l))1(n ∈ h)

=
∑
n∈N

1(y ∈ h)
∑
l∈L

p(l)1(y ∈ A(l)) 2

|h|+ d(l) + 1

=
∑
n∈N

1(n ∈ h)
∑

l∈L(n)

p(l)
1 + β2

|h|+ β2(d(l) + 1)

So that, when |h| = k we have,

UhFβ
(hk|p) =

∑
n∈N

1(n ∈ h)
∑

l∈L(n)

p(l)
1 + β2

k + β2(d(l) + 1)︸ ︷︷ ︸
:=∆β

k(n)

Therefore the problem can be rewritten:

ξ∗hFβ
(p) = argmax

k∈{1...|Q(p)|}
argmax
hk∈Uk

T (N )

hk⊂Q(p)

∑
n∈N

1(n ∈ h)∆β
k(n) (10)

Based on Equation 10 we propose then the following strategy to find the optimal decision rule

1. We obtain Q(p) and compute ∆β
k(n) for k ≤ |Q(p)| and n ∈ Q(p)

2. For each k ≤ |Q(p)|, we find h∗
k which consists in the k nodes that correspond to the top-k (∆β

k(n))n∈Q(p) and
compute UhFβ

(h∗
k|p) =

∑
n∈h∗

k
∆β

k(n)

3. We find optimal rule with kopt = maxk≤|Q(p)| UhFβ
(h∗

k|p) and ξ∗hFβ
(p) = h∗

kopt

41



To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers

Algorithm 9 Computation of depths

1: function DREC(n, δ, d)
2: if n ∈ L then
3: d(n)← δ
4: return
5: else
6: for c ∈ C(r) do
7: d(n)← δ
8: DREC(c, δ + 1, d)
9: end for

10: end if
11: end function
12: function D()
13: d← 0|N |
14: DREC(r, 0, d)
15: return d
16: end function

Algorithm 10 Computation of Q(p)
1: function QREC(n, p, d, Q)
2: if p(n) ≥ 1

1+β2(dmax(n)+1) then
3: Q← Q ∪ {n}
4: if n ∈ L then
5: return
6: else
7: for c ∈ C(n) do
8: QREC(c, p, d, Q)
9: end for

10: end if
11: else
12: return
13: end if
14: end function
15: function Q(p, d)
16: Q← ∅
17: QREC(r, p, d, Q)
18: return Q
19: end function
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Algorithm 11 Computation of ∆

1: function DELTAREC(n, p, d, k, ∆, β, d)
2: if n ∈ L then
3: ∆(n)← p(n) · 1+β2

k+β2(d(n)+1)

4: return ∆(n)
5: else
6: ∆(n)←

∑
c∈C(n)

DELTAREC(c, p, k, ∆, β, d)

7: return ∆(n)
8: end if
9: end function

10: function DELTA(p, d, β, q)
11: ∆← 0q×N
12: for k ← 0 to q do
13: DELTAREC(r, p, d, k, ∆(k), β)
14: end for
15: return ∆
16: end function

Algorithm 12 Optimal decision rule for hFβ

[H]
1: function OPTIMALK(k, ∆, Q)
2: h∗ ← argtopk

n∈Q
∆(n)

3: u←
∑

n∈h∗ ∆(n)
4: return h∗, u
5: end function
6: function OPTIMAL(∆, Q)
7: h∗ ← ∅
8: umax ← −∞
9: for k ∈ {1 . . . |Q|} do

10: h, u← OPTIMALK(k, ∆(k), Q)
11: if u > umax then
12: umax ← u
13: h∗ ← h
14: end if
15: end for
16: return h∗

17: end function

Algorithm 13 General Algorithm for hFβ

1: function FINDOPTIMAL(pleaves, β)
2: p← PROBANODES(pleaves)
3: d← D()
4: Q← Q(p, d)
5: ∆← DELTA(p, d, β, |Q|)
6: h∗ ← OPTIMAL(∆, Q)
7: return h∗

8: end function

Complexity
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General algorithm for finding ξ∗hFβ
(p) is summarized in Algorithm 12.

It consists in :

1. Node probability computation. This is performed through a tree traversal which visit exactly once each node. Therefore
the time complexity is O(|N |)

2. Depths computation. Similarly, it is a tree traversal which has O(|N |) time complexity
3. Q(p) computation. This is also performed through a tree traversal which visit at most each node one. Therefore the

time complexity is O(|N |). This three first steps can be performed simultaneously. For convenience, we separate to
make it more understandable.

4. ∆ computation. For each k in {1 . . . |Q(p)|}, ∆(k) is computed through a tree traversal in which each node is visited
exactly once. Therefore this step has a O(|Q(p)| · |N |) = O(d2max · |N |).

5. The last step consists in enumerating all k ∈ {1 . . . |Q(p)|}. Each step requires first to find the top k elements of among
|Q(p)| which can be performed in |Q(p)| operation and then compute the sum this k element. Overall each step has
then a O(|Q(p)|+ k) = O(|Q(p)|) = O(d2max) time complexity. Then, in total the total complexity is O(d4max)

In total the algorithm has therefore an overall time complexity of O(d2max · |N |). Ths completes the proof.
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