
CodeXData: Do Code Generating Language Models Understand Data?

Anonymous ACL submission

Abstract

Large language models (LLMs) are effective001
at code generation. Certain code tasks, such002
as data wrangling or analysis, can be data-003
dependent. To study the extent to which code004
generating models condition on input data, we005
define two novel data-centric taxonomies that006
characterise (1) the data required to complete a007
task and (2) the data available for a given task.008
Our system CODEXDATA generates Python009
code under various taxonomy configurations,010
given an underlying LLM such as CODEX or011
INCODER. To evaluate CODEXDATA, we cu-012
rate two new datasets for Python code gen-013
eration from natural language for data-centric014
tasks. We evaluate these datasets by vary-015
ing configurations over our taxonomies and016
find that performance varies based on the task017
class, data access, and prompting strategy.018
This is the first empirical measurement of the019
impact of data in the NL-to-code setting using020
LLMs for data-centric tasks.021

1 Introduction022

Large language models (LLMs) that generate code023

solutions based on natural language specifications024

have evolved rapidly and demonstrated effective-025

ness in practice (Li et al., 2022). Existing evalua-026

tions of code generating LLMs, such as OpenAI’s027

CODEX model (Chen et al., 2021a), often include028

a small number of input-output examples as part of029

the prompt to the model. However, for data-centric030

tasks such as those in spreadsheets and computa-031

tional notebooks, entire tables of data are present032

and have the potential to positively influence the033

model behavior. An understanding of the struc-034

ture of such input data has been exploited in previ-035

ous program synthesis approaches (Singh, 2016).036

LLMs have the ability to surpass previous work037

because they have access to relevant world knowl-038

edge (from training) not present in the prompt.039

Our work investigates the impact of data on the ef-040

fectiveness of LLMs for generating code and pro-041

vides objective measures of the performance of 042

LLMs for a variety of data-dependent tasks that 043

require a sophisticated understanding of the data 044

context in which they are operating. For instance, 045

the query “extract the street name from each ad- 046

dress” is under-specified, because without know- 047

ing the address format, it is not possible to know 048

which part is the street name. However, if a data 049

sample is given (e.g. “1024 Turing Way, Boston 050

MA 88588”), LLMs have the potential to synthe- 051

size the correct solution – as the example captures 052

the data requirement for this task. 053

Although prompting with the required data 054

might improve code generation, there are practi- 055

cal considerations that limit data availability. Re- 056

sources such as bandwidth, memory, and time all 057

impose constraints; the application can be limited 058

to a subset of a large dataset, or the prompt can 059

be limited to a small set of tokens. Privacy con- 060

cerns can restrict the type of data that can be used, 061

such as personally identifiable information, and 062

where or how the data can be transmitted. The data 063

source itself may impose constraints, such as data 064

obtained from ever-changing streams where only 065

a snapshot can be provided to a model. Therefore: 066

the success of data-centric code generation using 067

LLMs is dependent on both the data required by a 068

given task, and the data available for that task. 069

We introduce two new taxonomies for code gen- 070

eration from natural language to capture the nu- 071

ances of these data requirements. The first con- 072

cerns the extent to which data is required to fully 073

interpret a task. A task can be data-independent, 074

where the query itself provides sufficient informa- 075

tion for the model, such as “return the unique val- 076

ues from column location”. A task can be data- 077

dependent, such as extracting the street name from 078

an address (described previously), where the query 079

lacks data-specific information required by the 080

model, such as the input structure or format. Fi- 081

nally, a task can be external-dependent, where the 082

1

query requires world knowledge outside the task,083

e.g., “create a new column that verifies that the084

year is an election year in the US”.085

Our second taxonomy concerns redaction of086

task data. We focus on queries over tabular data087

and so we define our taxonomy in terms of the088

column headers and data rows of a table. Follow-089

ing data redaction, a task has access to either the090

original column headers or simply an anonymous091

schema (generated headers such as “Col1”), and092

none, some, or all of the table rows.093

To explore the impact of our taxonomies on094

code generation, we curate two new datasets. Each095

datapoint in our datasets consists of a textual096

query, a data input (column-major-flat table), and097

an expected correct output (extra columns). Our098

first dataset SOFSET is sourced from questions099

on StackOverflow1 that request help to solve a100

spreadsheet task. The dataset is challenging be-101

cause it consists of real-word multi-step data ma-102

nipulation problems. Additionally, whilst we gen-103

erate Python pandas code to solve each task, the104

tasks were formulated in the context of spread-105

sheets and formulas. We argue that because the106

tasks were not designed to be solved with Pandas,107

this presents an additional challenge over existing108

datasets. To further evaluate model performance109

on tasks relevant to specific data-types (e.g. ad-110

dresses and dates) and the impact of noise in the111

data, we create a second synthetic dataset TYPE-112

SET with curated types and queries based on ques-113

tions from StackOverflow and Mr. Excel2.114

Using these datasets and taxonomies we eval-115

uate CODEXDATA, our system to convert natu-116

ral language into code for querying tabular data.117

CODEXDATA queries an LLM (CODEX or IN-118

CODER (Fried et al., 2022) in our experiments)119

with a prompt that combines both task description120

and task data to generate Python code that uses121

the Pandas API as shown in Figure 1. We evaluate122

our approach using CODEX because of its state-of-123

the art performance and practical usage in the code124

completion tool, GitHub Copilot3. We also eval-125

uate the INCODER model (an opensource alterna-126

tive to CODEX) which is trained from scratch on127

publicly available code and StackOverflow posts.128

Our main contribution is the first empirical129

study that measures the impact of data on the code130

generated by LLMs for data-centric tasks. To sup-131

1https://stackoverflow.com/questions/tagged/excel-formula
2https://www.mrexcel.com/board/forums/excel-questions.10/
3https://github.com/features/copilot/

port this study, we make the following additional 132

contributions: 133

1. We define two novel data-centric task tax- 134

onomies. The first characterises the data re- 135

quired to complete a task. The second char- 136

acterises the data redacted for a given task. 137

2. We curate two new datasets to explore the im- 138

pact of our taxonomies on data-centric code 139

generation. The first dataset is a collection of 140

real spreadsheet problems from StackOver- 141

flow. The second dataset is a synthetic bench- 142

mark designed to evaluate the impact of dif- 143

ferent data types and noise on performance. 144

Our datasets have 200 and 64 unique tasks, 145

with a median of 10 and 20 data rows respec- 146

tively, making them larger and more diverse 147

than prior data-centric datasets. 148

3. We study how data redaction and prompting 149

strategies affect the performance (pass@k) 150

for different task classes. We find that data 151

redaction can lead to a significant perfor- 152

mance drop (as shown in Table 1, depend- 153

ing on the configuration, we can see a drop 154

of over 50% for pass@10), but generally, 155

with just one example row and our prompt- 156

ing method, we restore performance to within 157

5% of the full data performance (Figure 2). 158

2 Background and Related work 159

Code generating LLMs like Codex (Chen et al., 160

2021a), PaLM (Chowdhery et al., 2022), InCoder 161

(Fried et al., 2022), CodeGen (Nijkamp et al., 162

2022), CodeT5 (Wang et al., 2021) and Alpha- 163

Code (Li et al., 2022) have been trained or fine- 164

tuned for code-specific tasks and can be adapted 165

for data-centric domains such as SQL (Trummer, 166

2022) and data wrangling (Narayan et al., 2022). 167

Data-centric Code Generation. We explore the 168

question: how does data impact code genera- 169

tion for data-centric tasks? We focus on Pan- 170

das tasks with column-major-flat tables to produce 171

new data columns. Related work on data-centric 172

code generation has focused on SQL tasks (Rajku- 173

mar et al., 2022) from the Spider benchmark (Yu 174

et al., 2018) or in-place data transformations that 175

do not yield a new dataframe column (Narayan 176

et al., 2022). To evaluate our data-centric ap- 177

proach, we curate two new Pandas datasets with 178

queries and input dataframes. Python datasets like 179

2

User Query Q

User Input Table T

Names

Create column with first names

User IDE (e.g., Python notebook)

…

Valid Completions C,O

Output 1

Output 10

… Completion 1

Redacted Data R

Anon Anon

Prompt P

Code executable?

Output type matches?
…

Data Description D

Type + column information

EXEC

Outputs O

VALIDATE

Completions C

…
Completion 1

Output 1 …

REDACT

DESCRIBE

LLM

PROMPT

Create column with first names
The Column has string elements.

Completion 20

Completion 10

Names

Figure 1: The figure illustrates components of CODEXDATA that transform the user input table and query into a list
of valid completions. The data is redacted to anonymize private information. A data description is extracted from
the input table. The resulting redacted data, data description and query are used to construct a prompt which is fed
to a code synthesis LLM such as CODEX or INCODER, generating multiple possible completions. The outputs of
these completions are then validated and the first k valid completions (along with the outputs) are returned.

APPS (Hendrycks et al., 2021) and HumanEval180

(Chen et al., 2021a)) are not data-centric, while the181

tasks from prior Pandas datasets (e.g. Jain et al.182

(2022) or Zan et al. (2022)) do not have compa-183

rable complexity and the data available is insuffi-184

cient for detailed analysis. We also evaluate the185

impact of data redaction and noisy data on data-186

centric code-generation. Narayan et al. (2022) ex-187

plore the role of noisy table attributes in LLM per-188

formance for entity matching. They also identify189

the challenges of data privacy, but do not empir-190

ically explore the impact of privacy-related deci-191

sions on performance.192

Prompt Engineering. Careful prompt engineer-193

ing for LLMs is effective (Reynolds and Mc-194

Donell, 2021). We explore prompting techniques195

specifically for code generation. Instruction-style196

prompts have been effective for NLP tasks (Mishra197

et al., 2021). We construct prompts that instruct198

the model to generate solutions with a certain199

property, e.g., type-correctness. Prompts based200

on summarising have also been effective (Kuz-201

nia et al., 2022). We propose data-description202

prompts that summarize information about the203

dataframes in our tasks. Chain-of-thought prompt-204

ing combined with symbolic reasoning (Gao et al.,205

2022) could be an interesting future direction.206

3 CodeXData: Technical Approach207

Algorithm 1 presents our inference algorithm,208

with an associated overview in Figure 1. It takes209

Algorithm 1 CodeXData Inference Algorithm
Input: Explicit: user query Q, input table T , cardinality k.

Implicit: completion limit kmax (with k ≤ kmax).
Output: Pair of lists (C,O), with |C| = |O| ≤ k, of unique

completions and their corresponding outputs.
1: procedure CODEXDATA(Q,T, k)
2: R← REDACT(T) ▷ redact the input table
3: D ← DESCRIBE(T) ▷ extract data description
4: P ← PROMPT(Q,R,D) ▷ prompt creation
5: B,C,O ← kmax, [], [] ▷ initialize budget, caches
6: while B > 0 ∧ |C| < k do
7: c← LLM(P) ▷ sample completion
8: B ← B − 1 ▷ decrement budget
9: o← EXEC(c, T) ▷ execute against T

10: if VALIDATE(o) ∧ (c /∈ C) then
11: C ← C + [c] ▷ append completion to C
12: O ← O + [o] ▷ append output to O

13: return (C,O)

as input a user query Q as text, user input table T 210

as a Pandas dataframe, and the target cardinality k 211

of distinct completions to generate. To ensure ter- 212

mination within a reasonable time, we set a limit 213

kmax on the number of calls to CODEX (kmax = 214

8k). For our example, Q is “create a new column 215

with the first names”, T is Data({"Name":["Jay 216

M","Emma G"]}), and k is 10. 217

At a high-level the algorithm redacts the input 218

table (line 2) using REDACT; extracts a data de- 219

scription of the table using DESCRIBE (line 3); 220

combines the query Q, redacted data R, and data 221

description D to create a prompt P using PROMPT 222

(line 4); queries LLM repeatedly using this prompt 223

until the target completions are reached or we ex- 224

ceed the budget of calls (lines 6-12). Each comple- 225

3

tion c (line 7) is executed on the input table (line226

9) using an EXEC procedure, and if the completion227

is new and its output o satisfies a VALIDATE pro-228

cedure, the two are accumulated in C and O. The229

lists of completions and outputs are returned to the230

user (line 13). We describe the key components.231

REDACT. A data redactor procedure REDACT232

creates redacted data R from the input table233

T . For our running example, redacted data234

R in the no data (+ anonymous headers) and235

no data (+ actual headers) cases would be236

Data({"Anon":[]}) and Data({"Names":[]})237

resp. REDACT can alternatively provide a subset238

of rows as R = Data({"Names":["Jay M"]}) or239

the full dataframe with no redaction.240

DESCRIBE. A descriptor procedure DESCRIBE241

extracts a data description D from the input table242

T . The description can consist of: number of el-243

ements in a column, column type or basic predi-244

cates satisfied by all the column elements (e.g. all245

lowercase). It can also be a regular expression that246

captures a pattern supported by a substantial por-247

tion of the column elements (Padhi et al., 2018),248

e.g., all elements in column Names match the regex249

format [A-Z][a-z]+ [A-Z]+.250

PROMPT. A prompt creation procedure PROMPT251

creates a textual prompt by combining the user’s252

query, redacted data, and data description. The253

baseline prompt concatenates redacted data R, and254

textual query Q. We consider three more strate-255

gies for creating a prompt. Instruction prompts256

(Mishra et al., 2021) append instructions to the257

baseline prompt, and emphasize that the comple-258

tion should have a particular property: write an259

executable and type correct pandas solution for260

the following query: create a new column with261

the first names (Table 2 in Appendix). Example-262

usage prompts add concrete Pandas examples in263

a few-shot format. They prepend to the baseline264

prompt examples that emphasize a property (See265

Table 3 in Appendix). Data-description prompts266

augment the baseline prompts with the data de-267

scription D. For example, if D is column type in-268

formation, the prompt would be: create a new col-269

umn with the first names. Returns pd.Dataframe270

with new columns. Data columns are as follows:271

First Names (as str) (Table 4 in Appendix).272

LLM. The completion procedure LLM queries273

CODEX’s Da Vinci engine (or any other code gen-274

erating LLM, e.g. INCODER), passing the prompt275

P , a temperature derived from k, and predefined276

stop sequences. We use stop sequences that we 277

have found to allow the LLM to generate at least 278

one solution while typically not using the entire to- 279

ken budget. The completion then undergoes clean- 280

up, such as truncating at the first comment af- 281

ter executable code, and removing whitespace and 282

comments. Further details are in Appendix E.5. 283

EXEC. Execution procedure EXEC constructs an 284

executable program by (1) rewriting the comple- 285

tion c into c′ to expose the likely answer by finding 286

a top-level statement that has a particular form and 287

assigning it to a fresh variable and (2) appending 288

the rewritten completion c′ to the code that defines 289

the input table T to create a completed program. 290

It executes the program in a sandbox to obtain the 291

final output o. Further details are in Appendix E.6. 292

VALIDATE. We validate the extracted output (e.g., 293

for expected output type) using an output validator 294

VALIDATE. The completions that pass the valida- 295

tor, i.e. valid completions, are returned to the user. 296

4 Experiments 297

We design our experiments to study how model 298

performance changes with (a) level of data redac- 299

tion, (b) prompting strategy, and (c) noise level of 300

the data, across the three task classes in our tax- 301

onomy. For redaction, we consider no-data ac- 302

cess (with anonymized and properly named col- 303

umn headers), full-data access and subset-data 304

access (in all our experiments we use the first 305

row only as subset). The task classes are of 306

increasing difficulty in terms of data required: 307

data-independent (IND), data-dependent (DEP) 308

and external-dependent (EXT). We evaluate how 309

prompting can bridge the gap between data re- 310

quired and the data available. In particular, we 311

evaluate the performance of the data-description 312

prompting strategies to understand whether data 313

description information in the query can help us 314

mitigate the impact of data redaction. We also in- 315

vestigate the performance of the three prompting 316

strategies: instruction, example-usage and data- 317

description in presence of full data. 318

4.1 Task Classes 319

Data-independent tasks. These tasks can be 320

solved using the query alone without any data ac- 321

cess. For example, the query "create a new column 322

that counts how many holidays (7/3/22, 8/2/22, 323

15/10/22) are between the dates in Start Date and 324

End Date" can be solved without knowledge of the 325

4

actual data. Pandas offers functions that can oper-326

ate on default formats like "dd/mm/yy". If the date327

format was not directly specified, the model would328

need to access the data to infer the correct format.329

Data-dependent tasks. These tasks cannot be330

solved using the query alone: the model needs to331

have access to the data. For instance, the query332

"create a new column with the number of days be-333

tween the two date columns" requires data access334

to identify the correct column names and date for-335

mat, both absent from the query.336

External-dependent tasks. These tasks can only337

be solved with external world knowledge in addi-338

tion to data access. For example, the query "create339

a new column that counts how many US holidays340

are between the dates in Start Date and End Date",341

requires the model to know about US holidays.342

4.2 Our Datasets343

We curate two novel Pandas datasets, SOFSET344

and TYPESET, which consist of real-world prob-345

lems across diverse domains to answer our re-346

search questions. Our datasets are larger and more347

diverse than either of two existing Pandas datasets,348

JIGSAW (Jain et al., 2022) and CERT (Zan et al.,349

2022). In addition to the three task classes, we350

classify the tasks based on data types (strings,351

numbers, names, dates, units, addresses and mixed352

types) that are popular for data-centric tasks (Ta-353

ble 5). All the datasets in the paper were collected354

and manually annotated by the authors.355

SOFSET. This dataset is a collection of 200 real-356

world tasks from StackOverflow where the user357

has asked about spreadsheets. We sample these358

tasks deterministically from the highest rated posts359

in StackOverflow (as of March 2022) after we fil-360

ter with the tag "ExcelFormulas". These tasks are361

representative of real problems users have since362

they correspond to the highest rated posts. We363

manually check that the posts are genuine tasks.364

Tasks in this dataset, especially those in the DEP365

and EXT task classes, represent complex problems.366

Each task in the dataset consists of a query, data367

and hand-annotated metadata. We manually write368

the queries, either from scratch or summarise the369

verbose ask into a concise query based on the orig-370

inal StackOverflow description. We either use the371

data the user has added to their query, or if it is372

ambiguous, we create new data that matches the373

query. We also add extra rows and corner cases374

to make the data have at least 10 rows. The meta-375

data we add includes column names, type of query, 376

type of data access, question type and type of col- 377

umn referencing. We provide the expected output 378

(values in the newly generated column). We re- 379

move post identifiers for anonymization. 380

TYPESET. We construct a synthetic dataset 381

TYPESET with type-specific tasks to further evalu- 382

ate performance across the three task classes. This 383

dataset is a collection of 64 tasks mostly over date 384

and address types. The tasks consist of synthetic 385

queries that are common for each type (e.g. for 386

type date - extract the year from a date) paired with 387

type-specific data columns sourced from Sher- 388

lock (Hulsebos et al., 2019), AutoType (Yan and 389

He, 2018) and Wikidata (Vrandecic and Krötzsch, 390

2014). We manually annotate the queries along 391

with Pandas solutions and expected outputs. 392

TYPESETNOISY. We create a noisy version of 393

the TYPESET dataset with 131 tasks to evalu- 394

ate how performance changes in the presence of 395

noisy data. Specifically, we alter approximately 396

20% of the values in the input columns. We in- 397

duce four noisy scenarios: corruption: inserts a 398

space, dash, or a new line at a random position in 399

the input strings; missing: replaces values in an 400

input column with an empty string; mixformat: 401

changes column formats (for e.g. mixes ints and 402

floats or combine different date/address formats); 403

and additional columns: adds redundant anony- 404

mous and appropriately named columns based on 405

the column type of the data frame. The au- 406

thors observed these scenarios commonly occur in 407

StackOverflow questions used for the dataset cre- 408

ation4. Further, similar robustness measures have 409

been used in Text-to-SQL parsing (Pi et al., 2022) 410

against adversarial table perturbations. 411

4.3 Evaluation Metrics 412

We report correctness based on whether the gen- 413

erated code produces the expected output. Con- 414

sider a single datapoint consisting of a query Q, 415

an input table T , and an expected correct out- 416

put o. The probability that at least one of k in- 417

ferred outputs is correct is called pass@k (Chen 418

et al., 2021a). More formally, pass@k is the prob- 419

ability that o ∈ O if we sample (C,O) from 420

CODEXDATA(Q,T, k). To measure this proba- 421

bility empirically for each datapoint, we compute 422

up to 2k valid programs by sampling (C,O) from 423

4
https://support.microsoft.com/en-us/office/top-ten-ways-to-clean-your-data-

2844b620-677c-47a7-ac3e-c2e157d1db19

5

CODEXDATA(Q,T, 2k). We count the number s424

of occurrences of o in O, and hence compute an es-425

timate of pass@k as 1−
(
2k−s
k

)
/
(
2k
k

)
(Chen et al.,426

2021a). By computing 2k completions the esti-427

mate has lower variance than by simply computing428

k completions. Each pass@k on a whole dataset429

is the average of pass@k over all its datapoints.430

We also calculate a partial form of the metric431

written as pass@k(X%). It is defined similarly to432

pass@k except the correctness of an output col-433

umn depends on the X% of inferred output that434

matches the expected output. So, pass@k(100%)435

is the same as pass@k. This partial metric is re-436

quired to distinguish solutions that fail on an edge437

case from solutions that are inherently wrong (e.g.438

reference the wrong column or API). We conduct a439

sensitivity analysis of pass@k and report observed440

standard deviations for each task class with and441

without data redaction (Appendix Figure 15).442

4.4 Empirical Insights443

We assess performance across tasks for differ-444

ent data redactions and prompting strategies us-445

ing the datasets SOFSET and TYPESET. We use446

anonymized versions of column names for the no-447

data (anonymous columns) redaction and proper448

column names for the other three redactions. We449

report results for CODEXDATA with CODEX and450

INCODER-6B (Fried et al., 2022) as the underly-451

ing LLMs. The prompting experiments are con-452

ducted with full-data access unless specified oth-453

erwise. All evaluation results are averaged over454

tasks (and correspond to a single CODEXDATA455

run), computing 2k valid completions to estimate456

pass@k or pass@k(X%). In the appendix, we re-457

port stability across several runs and detailed error458

analyses including invalid completions.459

Performance varies with the underlying LLM.460

Table 1 shows that in general CODEX performs461

considerably better than INCODER across all task462

categories, datasets and redaction levels. The gap463

for IND tasks in SOFSET is consistent with prior464

results (Fried et al., 2022). We hypothesize that465

the gap between LLMs in the DEP and EXT tasks466

is due to CODEX having enhanced world knowl-467

edge. However, the tasks in SOFSET EXT are too468

difficult for either model to address successfully.469

The level of data redaction has a high impact470

on pass@k. Table 1 shows that in most settings,471

pass@k drops when the data redaction is stricter,472

i.e. pass@k is highest in the full data case (d). The473

performance degradation from no redaction (d) to 474

partial redaction (only first row (c)) is relatively 475

small in most cases, which implies that sampling 476

rows is almost as effective as providing full data. 477

Performance varies with dataset complexity. 478

Tasks in SOFSET are more complex than in 479

TYPESET because of the difficulty of the user 480

query (e.g. involves multi-step computations) and 481

number of corner cases in the data. In particular, 482

in DEP and EXT tasks the complexity gap between 483

datasets is high which directly translates to a big 484

performance gap as seen in Table 1. The pass@k 485

for DEP and EXT tasks is higher than IND tasks for 486

TYPESET— we attribute this to the uneven distri- 487

bution of problems across classes and data-types. 488

For example, there are more IND tasks of data-type 489

address which is the most difficult category. The 490

x-axis in Figure 2 represents how pass@10 varies 491

with percentage of examples passed. Interestingly, 492

we see a sharper decrease in pass@10(X%) in 493

Figure 2 for SOFSET compared to TYPESET due 494

to presence of complex corner cases in the former. 495

Data-description prompts counter data redac- 496

tion. Figure 2 shows the interplay of data de- 497

scriptions in the prompt under different data redac- 498

tions. For each pair of same colored lines, the 499

dashed line represents the result when a data de- 500

scription (here type information) is added to the 501

original prompt. The data-description prompt im- 502

proves performance in all cases but is particularly 503

valuable in the cases where (a) a subset of the data 504

is present or (b) all data is removed and columns 505

anonymized, and helps more in (a). So we can use 506

data-description prompts to counter data redac- 507

tion. (INCODER plots in Appendix Figure 14). 508

Careful prompt engineering helps. We con- 509

duct more prompting experiments (using PROMPT 510

from section 3). The full results for both CODEX 511

and INCODER, are in (Figure 10, Figure 11, Fig- 512

ure 12) in the Appendix. Figure 3 presents the 513

prompting strategies that outperform baseline for 514

CODEX. We see that carefully extracting the data 515

description (in the form of regular expressions, 516

number of column elements and type information) 517

helps for both datasets. Interestingly, instructing 518

the model to be concise, executable and gener- 519

ate iterative solutions also improves performance 520

across the two datasets. The best performing strat- 521

egy for SOFSET (regular expressions + type in- 522

formation) has a pass@10 of 0.56 compared to the 523

baseline pass@10 of 0.53 (5.6%). TYPESET has a 524

6

SOFSET Data-Independent (IND) Data-Dependent (DEP) External-Dependent (EXT)
Model Data Redaction # pass@5 pass@10 # pass@5 pass@10 # pass@5 pass@10
CODEX (a) no data, anon names 133 0.50 0.57 37 0.08 0.14 31 0.08 0.11

(b) no data, prop names 132 0.50 0.58 38 0.08 0.12 31 0.05 0.10
(c) subset data 132 0.55 0.60 38 0.15 0.14 31 0.13 0.14
(d) full data 132 0.61 0.67 38 0.19 0.30 31 0.17 0.21

INCODER (a) no data, anon names 133 0.05 0.05 37 0.06 0.05 31 0.00 0.00
(b) no data, prop names 132 0.16 0.17 38 0.12 0.12 31 0.13 0.20
(c) subset data 132 0.10 0.18 38 0.08 0.08 31 0.12 0.13
(d) full data 132 0.17 0.20 38 0.08 0.08 31 0.10 0.14
TYPESET Data-Independent (IND) Data-Dependent (DEP) External-Dependent (EXT)

Model Data Redaction # pass@5 pass@10 # pass@5 pass@10 # pass@5 pass@10
CODEX (a) no data, anon names 15 0.44 0.49 13 0.31 0.38 36 0.23 0.25

(b) no data, prop names 19 0.40 0.42 8 0.22 0.35 37 0.38 0.43
(c) subset data 19 0.52 0.62 8 0.76 0.81 37 0.61 0.76
(d) full data 19 0.52 0.58 8 0.78 0.92 37 0.78 0.83

INCODER (a) no data, anon names 15 0.43 0.50 13 0.34 0.35 36 0.10 0.11
(b) no data, prop names 19 0.36 0.36 8 0.24 0.24 37 0.21 0.23
(c) subset data 19 0.46 0.47 8 0.48 0.50 37 0.14 0.17
(d) full data 19 0.42 0.50 8 0.58 0.62 37 0.20 0.21

Table 1: Impact on pass@k with data redaction for SOFSET (top) and TYPESET (bottom) for both CODEX and
INCODER. The results are grouped by different task classes: IND, DEP and EXT. # indicates the number of
examples (anonymization can change task class).

SOFSET TYPESET

Figure 2: Interplay between the varying amount of data redaction and how data description in the prompt helps
with performance for CODEX. For each redaction, we evaluate the performance by adding a data description to
the prompt in the form of type information. Type information is especially helpful when we only have access to
anonymous columns and a subset of the data. The extracted data descriptions do not depict private information.

relative performance improvement of 4%.525

Prompting can also sometimes hurt as seen in526

case of regex (subset). This prompt adds too much527

data description (one regex per element) which528

likely ends up confusing the model. So prompts529

can be beneficial but only when curated carefully.530

Noisy data impacts performance. We evaluate531

the impact of noise in TYPESETNOISY. Addition532

of approximately 20% noise to the data leads to a533

drop in pass@10(75%) and higher (Figure 4). IN-534

CODER is more affected by noise (Appendix Fig-535

ure 17). This is consistent with prior insight from536

text-to-SQL tasks (Pi et al., 2022).537

Performance varies considerably per data-type.538

Performance across data-types differs in pass@k,539

length of completions, number of retrieved com- 540

pletions, and the extent to which those comple- 541

tions are executable. Tasks with string data-type 542

have an average pass@k of 0.83 compared to 0.48 543

for tasks with dates data-type. Overall, the model 544

performs best on units tasks, worst on addresses 545

(Tab 14 in Appendix). 546

Generation efficiency depends on redaction and 547

task class. We compute the number of total com- 548

pletions required by CODEX to produce 20 valid 549

completions (as determined by the VALIDATE pro- 550

cedure). We perform this experiment on TYPE- 551

SET, across task classes and redaction levels. Fig- 552

ure 5 shows the pass@10 performance as a func- 553

tion of total completion count. Irrespective of 554

7

SOFSET TYPESET

Figure 3: Impact of prompting strategies on SOFSET and TYPESET. We present a subset of prompting strategies
that perform better than the baseline, full results in Figure 10 and Figure 12. Data-description prompts with type
information and regular expression patterns that match column elements outperform the baseline for both datasets.

Figure 4: Impact pass@10(X%) for the different noisy
scenarios (e.g. corruption) in TYPESETNOISY com-
pared to the original TYPESET (baseline) for CODEX.

task class, access to data greatly reduces the num-555

ber of generations needed; for example, with full-556

data we need fewer than 50 completions. We557

need more completions for data-dependent tasks558

than data-independent tasks. In general, sampling559

more completions results in a poorer pass@10.560

(INCODER plots in Appendix Figure 16).561

5 Conclusion and Future Work562

Our work highlights the importance of data for563

code generation on data-centric tasks. We empir-564

ically show that data influences both the system’s565

capability to generate good solutions and its effi-566

ciency, and that optimizing prompts improves per-567

formance. Our study is a first step towards un-568

derstanding the relationship between code gener-569

ation and data in LLMs. As a result, we scoped570

our exploration to enable a focused analysis. Han-571

0 10 20 30 40 50 60 70 80 90

Number of completions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
p

a
ss

@
1

0

(EXT)

(EXT)

(EXT)

(EXT)

(EXT)

(EXT)

(DEP)

(DEP)

(DEP)

(DEP)

(DEP)

(DEP)

(IND)

(IND)

(IND)

(IND)

(IND)

(IND)

full-data

subset-data

no-data

SOFSET

TYPESET

Dataset

Figure 5: Interplay between pass@10 and total number
of retrieved completions from CODEX for the different
datasets (shapes), degree of data redaction (color) and
task classes (labels). Lower right (Low pass@10 and
many completions): most results for runs with highly
redacted data and DEP tasks lie here. Upper left (High
pass@10 and few completions): most results for runs
with no redaction and/or IND tasks lie here. Lower left-
/middle (Low pass@10 and few completions): most
results for runs for EXT tasks lie here.

dling a broader problem space (e.g., multi-table in- 572

puts, hierarchical table inputs, new table outputs) 573

raises interesting challenges in how to best encode 574

the data. We hypothesise that the impact of data 575

redaction can not be fully eliminated so it would 576

be interesting to investigate how to integrate with 577

approaches to privacy preservation. 578

8

References579

Philip E Agre et al. 1997. Lessons learned in trying580
to reform AI. Social science, technical systems, and581
cooperative work: Beyond the Great Divide, 131.582

Emily M Bender and Alexander Koller. 2020. Climb-583
ing towards nlu: On meaning, form, and understand-584
ing in the age of data. In Proceedings of the 58th585
annual meeting of the association for computational586
linguistics, pages 5185–5198.587

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming588
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-589
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,590
Greg Brockman, Alex Ray, Raul Puri, Gretchen591
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-592
try, Pamela Mishkin, Brooke Chan, Scott Gray,593
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz594
Kaiser, Mohammad Bavarian, Clemens Winter,595
Philippe Tillet, Felipe Petroski Such, Dave Cum-596
mings, Matthias Plappert, Fotios Chantzis, Eliza-597
beth Barnes, Ariel Herbert-Voss, William Hebgen598
Guss, Alex Nichol, Alex Paino, Nikolas Tezak,599
Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-600
tanu Jain, William Saunders, Christopher Hesse,601
Andrew N. Carr, Jan Leike, Josh Achiam, Vedant602
Misra, Evan Morikawa, Alec Radford, Matthew603
Knight, Miles Brundage, Mira Murati, Katie Mayer,604
Peter Welinder, Bob McGrew, Dario Amodei, Sam605
McCandlish, Ilya Sutskever, and Wojciech Zaremba.606
2021a. Evaluating large language models trained on607
code.608

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,609
Henrique Ponde de Oliveira Pinto, Jared Kaplan,610
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg611
Brockman, et al. 2021b. Evaluating large lan-612
guage models trained on code. arXiv preprint613
arXiv:2107.03374.614

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,615
Maarten Bosma, Gaurav Mishra, Adam Roberts,616
Paul Barham, Hyung Won Chung, Charles Sutton,617
Sebastian Gehrmann, Parker Schuh, Kensen Shi,618
Sasha Tsvyashchenko, Joshua Maynez, Abhishek B619
Rao, Parker Barnes, Yi Tay, Noam M. Shazeer,620
Vinodkumar Prabhakaran, Emily Reif, Nan Du,621
Benton C. Hutchinson, Reiner Pope, James Brad-622
bury, Jacob Austin, Michael Isard, Guy Gur-Ari,623
Pengcheng Yin, Toju Duke, Anselm Levskaya, San-624
jay Ghemawat, Sunipa Dev, Henryk Michalewski,625
Xavier García, Vedant Misra, Kevin Robinson,626
Liam Fedus, Denny Zhou, Daphne Ippolito, David627
Luan, Hyeontaek Lim, Barret Zoph, Alexander628
Spiridonov, Ryan Sepassi, David Dohan, Shivani629
Agrawal, Mark Omernick, Andrew M. Dai, Thanu-630
malayan Sankaranarayana Pillai, Marie Pellat, Aitor631
Lewkowycz, Erica Oliveira Moreira, Rewon Child,632
Oleksandr Polozov, Katherine Lee, Zongwei Zhou,633
Xuezhi Wang, Brennan Saeta, Mark Díaz, Orhan Fi-634
rat, Michele Catasta, Jason Wei, Kathleen S. Meier-635
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and636
Noah Fiedel. 2022. Palm: Scaling language model-637
ing with pathways. ArXiv, abs/2204.02311.638

Michael Droettboom, Roman Yurchak, Hood Chatham, 639
Dexter Chua, Gyeongjae Choi, Marc Abramowitz, 640
casatir, Jan Max Meyer, Jason Stafford, Madhur 641
Tandon, Michael Greminger, Grimmer Kang, Chris 642
Trevino, Wei Ouyang, Joe Marshall, Adam Seer- 643
ing, Nicolas Ollinger, Ondřej Staněk, Sergio, Teon L 644
Brooks, Jay Harris, Alexey Ignatiev, Seungmin Kim, 645
Paul m. p. P., jcaesar, Carol Willing, Cyrille Bogaert, 646
Dorian Pula, Frithjof, and Michael Jurasovic. 2022. 647
Pyodide: A Python distribution for WebAssembly 648
(0.19.0). 649

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I. 650
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen 651
tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. 652
Incoder: A generative model for code infilling and 653
synthesis. ArXiv, abs/2204.05999. 654

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 655
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 656
ham Neubig. 2022. Pal: Program-aided language 657
models. arXiv preprint arXiv:2211.10435. 658

Patrick M. Haluptzok, Matthew Bowers, and 659
Adam Tauman Kalai. 2022. Language models 660
can teach themselves to program better. ArXiv, 661
abs/2207.14502. 662

Dan Hendrycks, Steven Basart, Saurav Kadavath, 663
Mantas Mazeika, Akul Arora, Ethan Guo, Collin 664
Burns, Samir Puranik, Horace He, Dawn Xiaodong 665
Song, and Jacob Steinhardt. 2021. Measuring 666
coding challenge competence with apps. ArXiv, 667
abs/2105.09938. 668

Madelon Hulsebos, Kevin Hu, Michiel Bakker, 669
Emanuel Zgraggen, Arvind Satyanarayan, Tim 670
Kraska, Çağatay Demiralp, and César Hidalgo. 671
2019. Sherlock: A deep learning approach to se- 672
mantic data type detection. In Proceedings of the 673
25th ACM SIGKDD International Conference on 674
Knowledge Discovery & Data Mining. ACM. 675

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan 676
Natarajan, Suresh Parthasarathy, Sriram Rajamani, 677
and Rahul Sharma. 2022. Jigsaw: Large language 678
models meet program synthesis. In International 679
Conference on Software Engineering (ICSE). 680

Kirby Kuznia, Swaroop Mishra, Mihir Parmar, and 681
Chitta Baral. 2022. Less is more: Summary of long 682
instructions is better for program synthesis. arXiv 683
preprint arXiv:2203.08597. 684

Yujia Li, David Choi, Junyoung Chung, Nate Kush- 685
man, Julian Schrittwieser, Rémi Leblond, Tom Ec- 686
cles, James Keeling, Felix Gimeno, Agustin Dal 687
Lago, et al. 2022. Competition-level code 688
generation with alphacode. arXiv preprint 689
arXiv:2203.07814. 690

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin 691
Choi, and Hannaneh Hajishirzi. 2021. Reframing 692
instructional prompts to gptk’s language. arXiv 693
preprint arXiv:2109.07830. 694

9

https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.5281/zenodo.5834941
https://doi.org/10.5281/zenodo.5834941
https://doi.org/10.5281/zenodo.5834941
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/

Avanika Narayan, Ines Chami, Laurel Orr, and Christo-695
pher R’e. 2022. Can foundation models wrangle696
your data? ArXiv, abs/2205.09911.697

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,698
Haiquan Wang, Yingbo Zhou, Silvio Savarese, and699
Caiming Xiong. 2022. A conversational paradigm700
for program synthesis. ArXiv, abs/2203.13474.701

Saswat Padhi, Prateek Jain, Daniel Perelman, Olek-702
sandr Polozov, Sumit Gulwani, and Todd Millstein.703
2018. Flashprofile: a framework for synthesizing704
data profiles. Proceedings of the ACM on Program-705
ming Languages, 2(OOPSLA):1–28.706

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun707
Li, and Jian-Guang Lou. 2022. Towards robustness708
of text-to-SQL models against natural and realistic709
adversarial table perturbation. In Proceedings of the710
60th Annual Meeting of the Association for Compu-711
tational Linguistics (Volume 1: Long Papers), pages712
2007–2022, Dublin, Ireland. Association for Com-713
putational Linguistics.714

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-715
danau. 2022. Evaluating the text-to-sql capabilities716
of large language models. ArXiv, abs/2204.00498.717

Laria Reynolds and Kyle McDonell. 2021. Prompt718
programming for large language models: Beyond719
the few-shot paradigm. In Extended Abstracts of the720
2021 CHI Conference on Human Factors in Com-721
puting Systems, pages 1–7.722

Advait Sarkar. 2022. Is explainable AI a race723
against model complexity? arXiv preprint724
arXiv:2205.10119.725

Advait Sarkar, Mateja Jamnik, Alan F Blackwell, and726
Martin Spott. 2015. Interactive visual machine727
learning in spreadsheets. In 2015 IEEE Symposium728
on Visual Languages and Human-Centric Comput-729
ing (VL/HCC), pages 159–163. IEEE.730

Rishabh Singh. 2016. Blinkfill: Semi-supervised pro-731
gramming by example for syntactic string transfor-732
mations. Proceedings of the VLDB Endowment,733
9(10):816–827.734

Immanuel Trummer. 2022. Codexdb: Generating code735
for processing sql queries using gpt-3 codex. ArXiv,736
abs/2204.08941.737

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-738
data: a free collaborative knowledgebase. Commun.739
ACM, 57(10):78–85.740

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH741
Hoi. 2021. Codet5: Identifier-aware unified742
pre-trained encoder-decoder models for code un-743
derstanding and generation. arXiv preprint744
arXiv:2109.00859.745

Albert Webson and Ellie Pavlick. 2022. Do prompt-746
based models really understand the meaning of their747
prompts? In Proceedings of the 2022 Conference of748

the North American Chapter of the Association for 749
Computational Linguistics: Human Language Tech- 750
nologies, pages 2300–2344, Seattle, United States. 751
Association for Computational Linguistics. 752

Jack Williams, Carina Negreanu, Andrew D Gordon, 753
and Advait Sarkar. 2020. Understanding and infer- 754
ring units in spreadsheets. In 2020 IEEE Symposium 755
on Visual Languages and Human-Centric Comput- 756
ing (VL/HCC), pages 1–9. IEEE Computer Society. 757

Cong Yan and Yeye He. 2018. Synthesizing type- 758
detection logic for rich semantic data types using 759
open-source code. In Proceedings of the 2018 Inter- 760
national Conference on Management of Data, SIG- 761
MOD ’18, page 35–50, New York, NY, USA. Asso- 762
ciation for Computing Machinery. 763

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 764
Dongxu Wang, Zifan Li, James Ma, Irene Li, 765
Qingning Yao, Shanelle Roman, Zilin Zhang, and 766
Dragomir R. Radev. 2018. Spider: A large- 767
scale human-labeled dataset for complex and cross- 768
domain semantic parsing and text-to-sql task. In 769
Proceedings of the 2018 Conference on Empirical 770
Methods in Natural Language Processing, Brussels, 771
Belgium, October 31 - November 4, 2018, pages 772
3911–3921. Association for Computational Linguis- 773
tics. 774

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, 775
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen, 776
and Jian-Guang Lou. 2022. Cert: Continual pre- 777
training on sketches for library-oriented code gen- 778
eration. ArXiv, abs/2206.06888. 779

10

https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425

A Ethics Statement780

There are broad ethical impacts resulting from781

the creation of AI models that attempt to gener-782

ate code solutions from natural language descrip-783

tions and these are discussed in detail in previous784

papers including Codex (Chen et al., 2021a), Al-785

phaCode (?), and PaLM (Chowdhery et al., 2022).786

These impacts include overreliance, misalignment787

between what the user expressed and what they in-788

tended, potential for bias and under/over represen-789

tation in the model results, economic impacts, the790

potential for privacy and security risks, and even791

environmental considerations. All of these con-792

siderations also apply to the work described here.793

Our focus is to highlight how the presence of data794

improves the performance of these models but it795

is important to note that the quality of the data796

used in the prompt will impact whether the result-797

ing generation exhibits bias, exposes private data,798

etc. We explore the overall impact of providing799

data as part of the prompt but do not conduct a800

more focused analysis of determining how bias in801

the prompt data might influence the resulting code802

generation, a task we leave for future work.803

We are wary of using the word ‘understand’ in804

this paper. It has been correctly argued that lan-805

guage models do not really ‘understand’ language806

in the sense of connecting language’s syntactic807

content with the semantics of the physical world808

(Bender and Koller, 2020; Webson and Pavlick,809

2022). There have long been critics of the use810

of such terms in AI research (Agre et al., 1997).811

Nonetheless, large language models have shown812

themselves in certain situations to be capable of813

the syntactic manipulation of language which in814

humans we take to be commonsense evidence of815

understanding. This is the less contentious man-816

ner in which we use the word. Thus our intention817

in using the word ‘understand’ is not to claim that818

models can connect data with real-world concepts,819

but rather that the model can manipulate language820

about data in a useful manner, where ‘useful’ is821

defined by our quantitative benchmarks. These822

benchmarks aim to be reflective of a qualitative823

notion of utility, but as with all quantitative bench-824

marks the process of operationalising a qualitative825

notion inevitably requires some reductionism.826

This paper does not directly contribute to a tool827

built on the assumed capabilities of language mod-828

els to understand data, but nonetheless, it is moti-829

vated by their potential applications in such tools.830

These tools may be deployed in many data appli- 831

cations such as databases, spreadsheets, and busi- 832

ness intelligence applications. Depending on the 833

audience of the tool, various interaction design 834

concerns arise. Explainability of the model is a 835

key consideration, and the tool should offer deci- 836

sion support to evaluate mispredictions and poten- 837

tial next steps (Sarkar, 2022). Previous research of 838

non-experts using inference driven tools for data 839

manipulation has shown the importance of tool de- 840

sign in the critical appreciation of the model and 841

its limitations, and in the potential cost of errors 842

(Williams et al., 2020; Sarkar et al., 2015). As an 843

exploratory paper without a concrete application, 844

we do not encounter these issues, but the project 845

has nonetheless been reviewed by our institution’s 846

ethics board, which checks for compatibility with 847

Microsoft’s Responsible AI standard.5 848

There is the question of the sources of data and 849

of consent to use the data in the manner exhib- 850

ited in this paper. We have reviewed each of the 851

datasets we have included in this paper to ensure 852

that our use is compatible with the intent of the au- 853

thors and publishers. Our datasets have also been 854

reviewed by our institution’s ethics board to re- 855

view that this is an ethical use. 856

5https://www.microsoft.com/en-us/ai/
responsible-ai

11

https://www.microsoft.com/en-us/ai/responsible-ai
https://www.microsoft.com/en-us/ai/responsible-ai

B Datasheets for Datasets857

B.1 MOTIVATION858

For what purpose was the dataset created?859

Was there a specific task in mind? Was there860

a specific gap that needed to be filled? Please861

provide a description.862

Answer: We created the new dataset to be able863

to evaluate how well LLMs perform on data-864

centric tasks when they are given various degrees865

of access to data. LLMs have been evaluated on866

Python generations in prior work - on puzzles, e.g.867

(Haluptzok et al., 2022), on programming con-868

tests, e.g. (Li et al., 2022), on Python problems,869

e.g. (Chen et al., 2021b) or (Hendrycks et al.,870

2021), and even Pandas tasks, e.g. (Zan et al.,871

2022) or (Jain et al., 2022). We are contributing872

this dataset as it contains larger dataframes and873

more diverse tasks than prior work, allowing us874

to draw meaningful conclusions for our research875

questions.876

Who created this dataset (e.g., which team,877

research group) and on behalf of which entity878

(e.g., company, institution, organization)?879

Answer: to be added after ARR reviews to not880

break anonymity881

What support was needed to make this882

dataset? (e.g. who funded the creation of the883

dataset? If there is an associated grant, provide884

the name of the grantor and the grant name885

and number, or if it was supported by a com-886

pany or government agency, give those details.)887

Answer: to be added after ARR reviews to not888

break anonymity889

B.2 COMPOSITION890

What do the instances that comprise the891

dataset represent (e.g., documents, photos, peo-892

ple, countries)? Are there multiple types of in-893

stances (e.g., movies, users, and ratings; peo-894

ple and interactions between them; nodes and895

edges)? Please provide a description.896

Answer: Queries and data from StackOverflow or897

synthetic data.898

How many instances are there in total (of899

each type, if appropriate)?900

Answer: We have collected a benchmark of 780901

datapoints.902

Does the dataset contain all possible in-903

stances or is it a sample (not necessarily ran-904

dom) of instances from a larger set? If the905

dataset is a sample, then what is the larger906

set? Is the sample representative of the larger 907

set (e.g., geographic coverage)? If so, please 908

describe how this representativeness was val- 909

idated/verified. If it is not representative of 910

the larger set, please describe why not (e.g., to 911

cover a more diverse range of instances, be- 912

cause instances were withheld or unavailable). 913

Answer: Part of the dataset (SOFSET) is a sam- 914

ple from all the queries in Stackoverflow under 915

the tag "ExcelFormula". The dataset was sampled 916

such that we prioritize highly rated questions/an- 917

swers, so we believe they are representative for 918

real problems users have. TYPESET was synthet- 919

ically created with queries that are common for 920

each type (e.g. extracting the year from a date) - as 921

the dataset has fine-grained types (e.g. names and 922

addresses) we have a small set of possible queries 923

available. 924

What data does each instance consist of? 925

“Raw” data (e.g., unprocessed text or images) 926

or features? In either case, please provide a de- 927

scription. 928

Answer: Each datapoint comprises of a query (e.g. 929

"count the number of clothing items"), data (e.g. 930

a table of products and sales) and hand-annotated 931

metadata (e.g. column names, type of query, type 932

of data access). 933

Is there a label or target associated with each 934

instance? If so, please provide a description. 935

Answer: We provide the expected output (values 936

in the newly generated column) and for TYPESET 937

we also provide a Pandas solution. 938

Is any information missing from individual 939

instances? If so, please provide a description, 940

explaining why this information is missing (e.g., 941

because it was unavailable). This does not in- 942

clude intentionally removed information, but 943

might include, e.g., redacted text. 944

Answer: No 945

Are relationships between individual in- 946

stances made explicit (e.g., users’ movie rat- 947

ings, social network links)? If so, please de- 948

scribe how these relationships are made ex- 949

plicit. 950

Answer: No 951

Are there recommended data splits (e.g., 952

training, development/validation, testing)? If 953

so, please provide a description of these splits, 954

explaining the rationale behind them. 955

Answer: This dataset is hand-curated for evalua- 956

tion only. 957

12

Are there any errors, sources of noise, or re-958

dundancies in the dataset? If so, please provide959

a description.960

Answer: Part of the dataset has been augmented961

(the data has been corrupted) to help us explore the962

impact of naturally occuring noise in users’ work.963

We added missing data, corrupted data values, sur-964

plus columns and mixed formats.965

Is the dataset self-contained, or does it link966

to or otherwise rely on external resources (e.g.,967

websites, tweets, other datasets)? If it links968

to or relies on external resources, a) are there969

guarantees that they will exist, and remain con-970

stant, over time; b) are there official archival971

versions of the complete dataset (i.e., includ-972

ing the external resources as they existed at the973

time the dataset was created); c) are there any974

restrictions (e.g., licenses, fees) associated with975

any of the external resources that might apply976

to a future user? Please provide descriptions of977

all external resources and any restrictions asso-978

ciated with them, as well as links or other access979

points, as appropriate.980

Answer: Self-contained981

Does the dataset contain data that might be982

considered confidential (e.g., data that is pro-983

tected by legal privilege or by doctor-patient984

confidentiality, data that includes the content985

of individuals’ non-public communications)? If986

so, please provide a description.987

Answer: No988

Does the dataset contain data that, if viewed989

directly, might be offensive, insulting, threaten-990

ing, or might otherwise cause anxiety? If so,991

please describe why.992

Answer: No993

Does the dataset relate to people? If not, you994

may skip the remaining questions in this sec-995

tion.996

Answer: No997

Does the dataset identify any subpopulations998

(e.g., by age, gender)? If so, please describe how999

these subpopulations are identified and provide a1000

description of their respective distributions within1001

the dataset.1002

Answer: No1003

Is it possible to identify individuals (i.e., one1004

or more natural persons), either directly or in-1005

directly (i.e., in combination with other data)1006

from the dataset? If so, please describe how.1007

Answer: No1008

Does the dataset contain data that might be 1009

considered sensitive in any way (e.g., data that 1010

reveals racial or ethnic origins, sexual orien- 1011

tations, religious beliefs, political opinions or 1012

union memberships, or locations; financial or 1013

health data; biometric or genetic data; forms 1014

of government identification, such as social se- 1015

curity numbers; criminal history)? If so, please 1016

provide a description. 1017

Answer: No 1018

B.3 COLLECTION 1019

How was the data associated with each in- 1020

stance acquired? Was the data directly observ- 1021

able (e.g., raw text, movie ratings), reported by 1022

subjects (e.g., survey responses), or indirectly 1023

inferred/derived from other data (e.g., part-of- 1024

speech tags, model-based guesses for age or lan- 1025

guage)? If data was reported by subjects or in- 1026

directly inferred/derived from other data, was 1027

the data validated/verified? If so, please de- 1028

scribe how. Answer: Directly observable 1029

Over what timeframe was the data col- 1030

lected? Does this timeframe match the creation 1031

timeframe of the data associated with the in- 1032

stances (e.g., recent crawl of old news articles)? 1033

If not, please describe the timeframe in which 1034

the data associated with the instances was cre- 1035

ated. Finally, list when the dataset was first 1036

published. 1037

Answer: The StackOverflow posts date back to 1038

2006 and we curated the dataset throughout 2022. 1039

What mechanisms or procedures were used 1040

to collect the data (e.g., hardware apparatus or 1041

sensor, manual human curation, software pro- 1042

gram, software API)? How were these mecha- 1043

nisms or procedures validated? 1044

Answer: We manually sourced the datapoints and 1045

manually annotated with metadata. 1046

What was the resource cost of collecting the 1047

data? (e.g. what were the required compu- 1048

tational resources, and the associated financial 1049

costs, and energy consumption - estimate the 1050

carbon footprint. See Strubell et al.(?) for ap- 1051

proaches in this area.) 1052

Answer: The costs were negligible (no computa- 1053

tion cost) and the annotations were sourced among 1054

the research group. 1055

If the dataset is a sample from a larger set, 1056

what was the sampling strategy (e.g., determin- 1057

istic, probabilistic with specific sampling prob- 1058

13

abilities)?1059

Answer: Deterministic - we sampled based on1060

highest rated posts in StackOverflow after filter-1061

ing to the tag ExcelFormula and checking manu-1062

ally that the posts were genuine tasks (not related1063

to Excel behaviour).1064

Who was involved in the data collection1065

process (e.g., students, crowdworkers, contrac-1066

tors) and how were they compensated (e.g., how1067

much were crowdworkers paid)?1068

Answer: Researchers in the team (no extra com-1069

pensation).1070

Were any ethical review processes conducted1071

(e.g., by an institutional review board)? If so,1072

please provide a description of these review1073

processes, including the outcomes, as well as1074

a link or other access point to any supporting1075

documentation.1076

Answer: Yes, the dataset passed our institution’s1077

on-boarding and publishing reviews1078

Does the dataset relate to people? If not, you1079

may skip the remainder of the questions in this1080

section.1081

Answer: No1082

Did you collect the data from the individuals1083

in question directly, or obtain it via third par-1084

ties or other sources (e.g., websites)?1085

Answer: Third party (StackOverflow)1086

Were the individuals in question notified1087

about the data collection? If so, please describe1088

(or show with screenshots or other information)1089

how notice was provided, and provide a link or1090

other access point to, or otherwise reproduce,1091

the exact language of the notification itself.1092

Answer: No, all data was public and we didn’t in-1093

fringe any licensing1094

Did the individuals in question consent to the1095

collection and use of their data? If so, please1096

describe (or show with screenshots or other in-1097

formation) how consent was requested and pro-1098

vided, and provide a link or other access point1099

to, or otherwise reproduce, the exact language1100

to which the individuals consented.1101

Answer: Not applicable1102

If consent was obtained, were the consent-1103

ing individuals provided with a mechanism to1104

revoke their consent in the future or for certain1105

uses? If so, please provide a description, as well1106

as a link or other access point to the mechanism1107

(if appropriate)1108

Answer: Not applicable1109

Has an analysis of the potential impact of the 1110

dataset and its use on data subjects (e.g., a data 1111

protection impact analysis)been conducted? If 1112

so, please provide a description of this analy- 1113

sis, including the outcomes, as well as a link or 1114

other access point to any supporting documen- 1115

tation. 1116

Answer: No 1117

B.4 PRE-PROCESSING / CLEANING / 1118

LABELING 1119

Was any preprocessing/cleaning/labeling of the 1120

data done(e.g.,discretization or bucketing, tok- 1121

enization, part-of-speech tagging, SIFT feature 1122

extraction, removal of instances, processing of 1123

missing values)? If so, please provide a descrip- 1124

tion. If not, you may skip the remainder of the 1125

questions in this section. 1126

Answer: We manually created the queries (ei- 1127

ther from scratch or based on the original Stack- 1128

Overflow description), we augmented the data (we 1129

added more rows, corner cases, augmentations), 1130

we extracted metadata (e.g. questions type, type 1131

of column referencing). 1132

Was the “raw” data saved in addition to the 1133

preprocessed/cleaned/labeled data (e.g., to sup- 1134

port unanticipated future uses)? If so, please 1135

provide a link or other access point to the 1136

“raw” data. 1137

Answer: No. 1138

Is the software used to preprocess/clean/la- 1139

bel the instances available? If so, please provide 1140

a link or other access point. 1141

Answer: We will provide access to the software 1142

we built for data processing, but the majority of 1143

the work carried involved manual annotations. 1144

B.5 USES 1145

Has the dataset been used for any tasks al- 1146

ready? If so, please provide a description. 1147

Answer: The current work is the first use of the 1148

dataset. 1149

Is there a repository that links to any or all 1150

papers or systems that use the dataset? If so, 1151

please provide a link or other access point. 1152

Answer: Not applicable 1153

What (other) tasks could the dataset be used 1154

for? 1155

Answer: The dataset could be used the evalu- 1156

ate code generation for other languages (e.g. R 1157

or SQL) on data-centric tasks, query generation 1158

(from the code). 1159

14

Is there anything about the composition of1160

the dataset or the way it was collected and pre-1161

processed/cleaned/labeled that might impact1162

future uses? For example, is there anything1163

that a future user might need to know to avoid1164

uses that could result in unfair treatment of in-1165

dividuals or groups (e.g., stereotyping, quality1166

of service issues) or other undesirable harms1167

(e.g., financial harms, legal risks) If so, please1168

provide a description. Is there anything a fu-1169

ture user could do to mitigate these undesirable1170

harms?1171

Answer: No.1172

Are there tasks for which the dataset should1173

not be used? If so, please provide a description.1174

1175

Answer: No.1176

B.6 DISTRIBUTION1177

Will the dataset be distributed to third parties1178

outside of the entity (e.g., company, institution,1179

organization) on behalf of which the dataset1180

was created? If so, please provide a descrip-1181

tion.1182

Answer: Yes, it will be distributed widely.1183

How will the dataset will be distributed (e.g.,1184

tarball on website, API, GitHub)? Does the1185

dataset have a digital object identifier (DOI)?1186

1187

Answer: Github1188

When will the dataset be distributed?1189

Answer: At the end of the anonymity period.1190

Will the dataset be distributed under a copy-1191

right or other intellectual property (IP) license,1192

and/or under applicable terms of use (ToU)? If1193

so, please describe this license and/or ToU, and1194

provide a link or other access point to, or oth-1195

erwise reproduce, any relevant licensing terms1196

or ToU, as well as any fees associated with these1197

restrictions.1198

Answer: Yes, TBC1199

Have any third parties imposed IP-based or1200

other restrictions on the data associated with1201

the instances? If so, please describe these re-1202

strictions, and provide a link or other access1203

point to, or otherwise reproduce, any relevant1204

licensing terms, as well as any fees associated1205

with these restrictions.1206

Answer: No.1207

Do any export controls or other regulatory1208

restrictions apply to the dataset or to individual1209

instances? If so, please describe these restric- 1210

tions, and provide a link or other access point 1211

to, or otherwise reproduce, any supporting doc- 1212

umentation. 1213

Answer: No. 1214

B.7 MAINTENANCE 1215

Who is supporting/hosting/maintaining the 1216

dataset? 1217

Answer: The authors, but we will also accept PRs 1218

from the community if they would like to extend 1219

the dataset and they pass our quality checks. 1220

How can the owner/curator/manager of the 1221

dataset be contacted (e.g., email address)? 1222

Answer: via Github 1223

Is there an erratum? If so, please provide a 1224

link or other access point. 1225

Answer: No. 1226

Will the dataset be updated (e.g., to correct 1227

labeling errors, add new instances, delete in- 1228

stances)? If so, please describe how often, by 1229

whom, and how updates will be communicated 1230

to users (e.g., mailing list, GitHub)? 1231

Answer: Yes, we will consider any requests and if 1232

any mistakes are pointed out we will update regu- 1233

larly (monthly to start with). 1234

If the dataset relates to people, are there 1235

applicable limits on the retention of the data 1236

associated with the instances (e.g., were indi- 1237

viduals in question told that their data would 1238

be retained for a fixed period of time and then 1239

deleted)? If so, please describe these limits and 1240

explain how they will be enforced. 1241

Answer: Not applicable. 1242

Will older versions of the dataset continue to 1243

be supported/hosted/maintained? If so, please 1244

describe how. If not, please describe how its ob- 1245

solescence will be communicated to users. 1246

Answer: No. 1247

If others want to extend/augment/build on/- 1248

contribute to the dataset, is there a mechanism 1249

for them to do so? If so, please provide a 1250

description. Will these contributions be vali- 1251

dated/verified? If so, please describe how. If 1252

not, why not? Is there a process for communi- 1253

cating/distributing these contributions to other 1254

users? If so, please provide a description. 1255

Answer: Yes, via PRs. 1256

C Examples of problems for different 1257

scenarios 1258

15

Description Prompt Example

Data-Independent (IND)

import pandas as pd
df = pd.DataFrame()
df["String"] = ["Anna"]
create a new column with the String column capitalized

Data-Dependent (DEP)

import pandas as pd
df = pd.DataFrame()
df["Name"] = ["Anna"]
df["DoB"] = ["20/10/1989"]
extract the year from the date

External knowledge (EXT)

import pandas as pd
df = pd.DataFrame()
df["State"] = ["WA"]
expand the state name.

Anonymous header and no data

import pandas as pd
df = pd.DataFrame()
df["Col1"] = []
Create a column with the first number

Proper header

import pandas as pd
df = pd.DataFrame()
df["Address"] = []
Create a column with the first number from the address

Proper header and data sample

import pandas as pd
df = pd.DataFrame()
df["Address"] = ["6088 184A ST"]
Create a column with the first number

Full data

import pandas as pd
df = pd.DataFrame()
df["Address"] = ["6088 184A ST", "4234 32A ST"]
Create a column with the first number

Figure 6: Prompt examples for the different taxonomies. Top three rows cover task taxonomies. For class IND, the
query contains all information required for the completion: the input column name and the task. For class DEP,
the query does not specify the date format or column. For class EXT, the model needs external world knowledge
about US states. Bottom four rows cover data availability.

16

Description Prompt & Completion Example

Completion for a prompt
with no data in the
dataframe

import pandas as pd
df = pd.DataFrame()
df["Col1"] = []
Create a column with the first number
df["Col2"] = [1]

Completion for a prompt
with only the first row of
the dataframe

import pandas as pd
df = pd.DataFrame()
df["Col1"] = ["6088 184A ST"]
Create a column with the first number
df[’Col2’] = df[’Col1’].str.split().str[0]

Completion for a prompt
with only a direct refer-
ence to the columns

import pandas as pd
df = pd.DataFrame()
df["Address"] = []
Create a column with the first number from the address
df[’Number’] = df[’Address’].str.extract(
’(\d+)’, expand = False)

Figure 7: Prompt examples and completions results for type errors in the TypeGoldSet using different data avail-
ability.

Description Prompt & Completion Example

Completion for a prompt
with no data in the
dataframe

import pandas as pd
df = pd.DataFrame()
df["Col1"] = []
Create a new column with the time stamp
df[’New_Col’] = pd.datetime.now()
print(df)

Completion for a prompt
with only the first row of
the dataframe

import pandas as pd
df = pd.DataFrame()
df["Col1"] = ["Fri, 06 Feb 1987 06:00:37 GMT"]
Create a new column with the time stamp
df[’Col2’] = pd.to_datetime(df.Col1)

Completion for a prompt
with only a direct refer-
ence to the columns

import pandas as pd
df = pd.DataFrame()
df["Date"] = []
Create a new column with the time stamp from the dates
df[’Time Stamp’] = pd.to_datetime(df[’Date’]).apply(
lambda x: x.timestamp())

Figure 8: Prompt examples and completions results for value errors in the TypeGoldSet using different data avail-
ability.

17

Description Prompt & Completion Example

Original

import pandas as pd
df = pd.DataFrame()
df["Col1"] = [41, 163, ...]
df["Col2"] = [83, 60, ...]
Create a new column with the sum of the numeric columns
df[’Col3’] = df[’Col1’] + df[’Col2’]

Mixed types and numeric
delta

import pandas as pd
df = pd.DataFrame()
df["Col1"] = [41, "163", ...]
df["Col2"] = ["83", 59.9, ...]
Create a new column with the sum of the numeric columns
df[’sum’] = df[’Col1’].astype(float) +
df[’Col2’].astype(float)

Empty strings

import pandas as pd
df = pd.DataFrame()
df["Col1"] = [41, "", ...]
df["Col2"] = ["", "", ...]
Create a new column with the sum of the numeric columns
df[’Sum’] = df.apply(pd.to_numeric,
errors=’coerce’).sum(axis=1)

print(df)

Original

import pandas as pd
df = pd.DataFrame()
df["String"] = ["mailto: andrew_wilson@gmx.net",
... "mailto: emily_marie_lopez@gmx.net"]

Create a new column with the email address extracted from the string column
df[’Email’] = df[’String’].str.extract(
’([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+)’,

expand=True)

Text corruption

import pandas as pd
df = pd.DataFrame()
df["String"] = ["andrew_wilson@gmx.net",
... "-mailto: emily_marie_lopez@gmx.net"]

Create a new column with the email address extracted from the string column
df[’Email’] = df[’String’].str.extract(
r’(?<=mailto:) (\\S+)’)

Figure 9: Prompt examples and completions results for corruptions in TypeGoldSet

18

D Prompt Experiments1259

This section includes concrete prompt examples1260

for the different prompting schemes. Refer to ta-1261

bles Table 2 for instruction prompts, Table 3 for1262

example-usage prompts, Table 4 for data descrip-1263

tion prompts.1264

E Implementation details1265

E.1 Statistics about our datasets1266

E.2 Task classes1267

We distinguish three task classes:1268

(IND) data-independent1269

For these tasks there is a solution that can be1270

applied to the data without knowing the content1271

or format. Hence, if there is a Pandas or default1272

Python function that can be applied with default1273

parameters the task is of class (IND). Examples1274

are simple date operations, like to extract days or1275

hours, with default formats that can be inferred by1276

the pandas function "to_date" are of class A.1277

(DEP) data-dependent1278

For these tasks the model needs to know the data1279

content and/or format to find the solutions. For1280

example, if we would need a special parameter,1281

filtering or any kind of parameterization derived1282

from the content and the format of the data the task1283

it is of class (DEP). Examples are data operations1284

on dates with non-default format, mixed formats1285

or corrupted values. In these cases we need either1286

a special parameter (for example errors=coerce) or1287

other transformations derived from the data.1288

(EXT) external-dependent1289

The model can not find a solution of the task1290

only knowing the data content and the format.1291

Its need additional open world knowledge. This1292

knowledge needs to be beyond the knowledge1293

about the pandas and python syntax, APIs and li-1294

braries. Examples are operations in names where1295

we need knowledge about what a surname, middle1296

name or first name is. Or operations on addresses1297

where we might need to know what a zip code or1298

a state is.1299

E.3 Anonymous columns1300

We say a column header (or column name) is1301

anonymous when it does not give any informa-1302

tion about the content or type of the columns. For1303

example the column name "Names" indicates that1304

the column contains names or the column name1305

"Dates" indicates that the column contains date1306

values. On the other hand a column name like 1307

"Data" or "Info" does give no information about 1308

the content or type of the column. 1309

E.4 Adding noise 1310

For our investigations on how much use the mode 1311

is making of the actual data in the dataframes and 1312

to check the quality of the solution on non-perfect 1313

data, we added additional noise. This additional 1314

noise is: 1315

Corrupting values: 1316

With a probability of 20% a value in an input 1317

column will have a corrupted value. For string like 1318

objects this corruptions will be an insertion of a 1319

space, a dash or a new line in a random position in 1320

the corresponding string. 1321

Mixing formats: 1322

For numerical values, we mix integer and float, 1323

for date values we mix different date formats and 1324

for names and addresses with permute the tokens. 1325

Missing values: 1326

With a probability of 20% a value in an input 1327

column will be replaced with a empty string which 1328

represents a missing value in all our settings. 1329

E.5 Obtaining completions 1330

Parallelization. For efficiency, we request multi- 1331

ple completions from Codex per iteration in Alg.1. 1332

To try to minimize both inference time and the 1333

load on OpenAI’s servers, we adapt the batch size 1334

to an estimate of the probability that the next com- 1335

pletion is valid. The batch size used in each itera- 1336

tion is n = min (⌈r/p⌉, B, L), where r = k− |C| 1337

is the number of valid completions still to obtain, 1338

B is the remaining completion budget, and L is a 1339

parallelization limit enforced by the Codex API. 1340

The probability estimate p is updated after each 1341

iteration by counting the number of valid and in- 1342

valid completions in that iteration’s batch. 1343

Since pass@k is calculated only from valid 1344

completions, it is not influenced by either paral- 1345

lelization or batch size adaptation. We addition- 1346

ally report the average "pool" size (valid and in- 1347

valid completions) to measure the cost of retriev- 1348

ing valid completions using the above approach in 1349

all our experiments. 1350

Temperature. We use the same k-dependent tem- 1351

perature t as described in Chen et al. (2021a); i.e. 1352

for k = 1, t = 0.2; for 1 < k ≤ 5, t = 0.4, for 1353

5 < k ≤ 50, t = 0.6; otherwise t = 0.8. 1354

19

Prompt Name Prompt Example (Query Q)

instruct-concise write a concise, short and idiomatic pandas solution for the following query:
create a new column with the last names.

instruct-execute write an executable and type correct pandas solution for the following query:
create a new column with the last names.

instruct-function write a pandas function that create a new column with the last names.

instruct-iterative create a new column with the last names. Prioritize the iterative programming style
with use of for loops, while loops and iterative data structures

instruct-lambda create a new column with the last names. Prioritize the functional programming style
with use of lambdas, comprehensions, and generators

instruct-domain create a new column with the last names. Prioritize the use of pandas operators that
deal with string manipulation.

assert-concise create a new column with the last names. The following example demonstrates how
to write a concise, short and idiomatic pandas solution.

assert-execute create a new column with the last names. The following example demonstrates
how to write an executable and type correct pandas solution.

assert-function The following example demonstrates how to write a pandas function that create
a new column with the last names.

assert-iterative
create a new column with the last names. The following example demonstrates how to
prioritize the iterative programming style with use of for loops, while loops and

iterative data structures.

assert-lambda
create a new column with the last names. The following example demonstrates how to
prioritize the functional programming style with use of lambdas, comprehensions,
and generators.

assert-domain create a new column with the last names. The following example prioritizes the use
of pandas operators that deal with string manipulation.

ask-concise how to create a new column with the last names? how to write a concise, short and
idiomatic pandas solution?

ask-execute how to create a new column with the last names? how to write an executable and
type correct pandas solution?

ask-function how to write a pandas function that create a new column with the last names?

ask-iterative how to create a new column with the last names? how to prioritize the iterative
programming style with use of for loops, while loops and iterative data structures?

ask-lambda how to create a new column with the last names? how to prioritize the functional
programming style with use of lambdas, comprehensions, and generators?

ask-domain how to create a new column with the last names? how to prioritize the use of pandas
operators that deal with string manipulation?

Table 2: Instruction prompt experiments include command-style prompts, assert-style prompts and ask-style
prompts illustrated on the query create a new column with the last names. The different prompts vary along
two dimensions: the style in which the model is queried and the property we want the completions to emphasize.
The phrasing style we explore are instruct, assert and ask. Examples of properties include executable, type cor-
rectness and using operators from the problem domain.

Stop sequences. The most effective stop sequence1355

we found that allows Codex to generate at least1356

one solution while not usually using the entire to-1357

ken budget is a blank line followed by a line com-1358

ment; i.e. \n\n#. Further, to keep Codex from1359

generating what appears to be the rest of a forum1360

post after a code snippet, we also use the stop se-1361

quence </code>.1362

Completion cleanup. Having forum posts appar-1363

ently in Codex’s training data means some com-1364

pletions would raise SyntaxError exceptions1365

when executed due to formatting artifacts, and1366

therefore be invalid. Instead, to make the most of1367

the completion budget, we replace formatting arti-1368

facts. In particular, we replace HTML escape se-1369

quences such as < and " with Python1370

operators and delimiters.1371

Cleanup additionally removes unnecessary 1372

whitespace, blank lines and comments, and trun- 1373

cates completions at \n# when it appears after ex- 1374

ecutable code. 1375

E.6 Executing completions 1376

Rewriting. Completions returned by Codex do not 1377

clearly indicate which variables or expressions are 1378

intended to be the answer to a query. This must be 1379

inferred from the shape of the code. We found that 1380

an effective way to identify and expose the likely 1381

answer is to search backwards to find the last unin- 1382

dented (i.e. top-level) statement that has one of a 1383

few forms, and rewrite the completion so that its 1384

last statement is an assignment to a fresh identifier 1385

varout. The statement forms and rewrites are 1386

20

Prompt Name Prompt Example

usage-function

import pandas as pd
def startswith_at(txt):

return txt.startswith(’@’)
df = pd.DataFrame("Names":["Charles Moore", "Anna Green"])
create a new column with the last names.

usage-iterative

import pandas as pd
df = pd.DataFrame("a":[1, 2, 3])
loop over the rows of a df using pd.iloc, create a function to iterate over the df.
for i in df.index:

val = df[col].iloc[i]

df = pd.DataFrame("Names":["Charles Moore", "Anna Green"])
create a new column with the last names.

usage-lambda

import pandas as pd
df = pd.DataFrame("a":[1, 2, 3])
group df on column b and keep half of the elements at random
dfout = df.groupby(’b’).apply(lambda x:x.sample(frac=0.5))

df = pd.DataFrame("Names":["Charles Moore", "Anna Green"])
create a new column with the last names.

Table 3: Example-usage prompt examples illustrated on the query create a new column with the last names.
Example-usage prompts append example code snippets to the query that demonstrate how to solve the pandas
problem in various ways.

• var = expr: append the statement varout1387

= var to the completion1388

• var[expri] = expr: append the statement1389

varout = var to the completion1390

• print(expr, ...): replace this statement1391

and the rest of the completion with varout =1392

expr1393

• expr: replace this statement and the rest of1394

the completion with varout = expr1395

Rewriting also inserts import statements1396

for common libraries (e.g. import numpy as1397

np).1398

The rewritten completion is appended to the1399

code that defines the input dataframe to create a1400

completed program. The completed program and1401

the output variable name varout are sent to a sand-1402

box for execution.1403

Sandboxing. Because of security risks inherent1404

in running LLM-generated code, we run com-1405

pleted programs in a sandbox. Our sandbox is a1406

JavaScript web service that runs Python programs1407

in Pyodide (Droettboom et al., 2022), a Python1408

distribution for WebAssembly. While Python pro-1409

grams running in Pyodide have access to the host’s1410

network resources, they at least are isolated from1411

other host resources including its filesystem, of-1412

fering some level of protection from malicious or1413

accidentally harmful completions.1414

After running the code, the sandbox returns the 1415

value of varout. 1416

E.7 Evaluation 1417

For a completion to be considered a correct solu- 1418

tion in the calculation of pass@k, its actual output 1419

must match the expected output. Matching can- 1420

not be the same as equality and still conform to 1421

a reasonable notion of correctness; for example, 1422

the natural breakdown of a solution might gener- 1423

ate intermediate columns in the actual output that 1424

are not in the expected output. 1425

The actual output is allowed to vary from the ex- 1426

pected output in the following ways and still match 1427

the expected output: 1428

• Extra columns 1429

• Different column order 1430

• Different column headers 1431

• Number expected; actual is a number within 1432

small relative error (default 0.01) 1433

• Number expected; actual is a string that 1434

parses as a number within small relative er- 1435

ror 1436

• Boolean expected; actual is number 0 or 1 1437

• Boolean expected; actual is a string that rep- 1438

resents a truth value 1439

21

Prompt name Prompt template

column-info

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
There is 1 column in the input data. The column Position has 10 entries, 10 of
which are unique.

type-info

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
Returns
- - - - - - - - - - - - - - - - - - - -
pd.Dataframe with new columns. Data columns are as follows:
Position integers (as int)
Letter strings (as str)

regex-info (exact)

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
10 of 10 elements in column Position match the regex format [0-9]+ where
examples of these elements include 8 and 23.

regex-info (partial)

df = pd.DataFrame("Body Fat":["4%", "14%"])
create a new column that writes Body Builder if Body Fat is less than 5%, else if it is
less than 13% writes Athletic, else writes No Data Yet.
9 of 10 (90%) elements in column Body Fat match the regex format [0-9]+%
where an example of these elements is (40%). 1 of 10 (10%) elements in column
Body Fat match the regex format NA where an example of these elements is NA.

regex-type-info

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
Returns
- - - - - - - - - - - - - - - - - - - -
pd.Dataframe with new columns. Data columns are as follows:
Position integers (as int) that match the regex [0-9]+
Letter strings (as str)

regex-type-col-info

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
There is 1 column in the input data. The column Position has 10 unique entries.
Returns
- - - - - - - - - - - - - - - - - - - -
pd.Dataframe with new columns. Data columns are as follows:
Position integers (as int) that match the regex [0-9]+
Letter strings (as str)

properties (textual)
df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
The column Position has the following properties: All elements contain digits.

properties (format)
df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
The column Position satisfies ContainsDigits()

Table 4: Data-description prompts illustrated on the queries Given the position number n, create a new column
with the nth letter of the alphabet. Data-description prompts aim to extract task-specific structural information
about the data input provided by the user. We automatically compute information about the number of elements in
the columns, the type of each of the column elements (one of string, integer, boolean) and properties satisfied by
the elements. In addition, we compute a regular expression that captures a pattern of the elements in the column.

• String expected; actual is a string that differs1440

only in case1441

Allowed string truth value representations, al-1442

lowed relative error, and whether string matching1443

is case-sensitive are (optionally) overridden per1444

data point as appropriate.1445

F Detailed evaluation 1446

F.1 Stability analysis 1447

To estimate the stability of the CODEXDATA al- 1448

gorithm on pass@k we ran each task in TYPESET 1449

and SOFSET 10 times and estimated the pass@5. 1450

In Fig.15 we show the corresponding means and 1451

standard deviations for SOFSET (top) and TYPE- 1452

SET (bottom). Due to the effort to run CODEX for 1453

each example we were only able to calculate these 1454

numbers for k=5. 1455

22

Data type Example of task TYPESET SOFSET

strings sub-string extracts: df["col1"].str[4:10] 16 116
numbers divisions e.g. df["col1"] / df["col2"] 14 34
names surname in upper-case df["Givenname"].str.upper()[0] 12 13
dates extract month e.g. pd.DatetimeIndex(df[’date’]).month 14 32
units conversions 40 1
addresses extract the state df["col1"].str[:-2] 18 4
mixed types combine columns df["col1"] + df["col2"].astype(str) 14 0

Table 5: Number of tasks per data type in TYPESET and SOFSET with an example.

G Remaining InCoder experiments1456

G.1 Detailed error analyses1457

23

SOFSET Instruction Prompts (Questions) TYPESET Instruction Prompts (Questions)

SOFSET Instruction Prompts (Assertions) TYPESET Instruction Prompts (Assertions)

SOFSET Instruction Prompts (Commands) TYPESET Instruction Prompts (Commands)

Figure 10: This figure presents prompt results for the instruction type prompts for SOFSET and TYPESET datasets
for CODEX. We evaluate the different ways of phrasing the instruction: as a command, as an assertion and as
a question. We observe that instruction prompts that are phrased as a command perform slightly better than
instruction prompts phrased as an assertion or question. A speculation can be made about the impact of training
data: not many natural language comments are typically phrased as questions.

24

SOFSET Instruction Prompts (Questions) TYPESET Instruction Prompts (Questions)

SOFSET Instruction Prompts (Assertions) TYPESET Instruction Prompts (Assertions)

SOFSET Instruction Prompts (Commands) TYPESET Instruction Prompts (Commands)

Figure 11: This figure presents prompt results for the instruction type prompts for SOFSET and TYPESET datasets
for INCODER. We evaluate the different ways of phrasing the instruction: as a command, as an assertion and
as a question. We observe that instruction prompts that are phrased as a command perform slightly better than
instruction prompts phrased as an assertion or question. A speculation can be made about the impact of training
data: not many natural language comments are typically phrased as questions.

25

SOFSET Example-Usage Prompts TYPESET Example-Usage Prompts

SOFSET Data Description Prompts TYPESET Data Description Prompts

Figure 12: This figure presents prompt results for the example usage and data description prompting strategy for
SOFSET and TYPESET datasets for CODEX. We observe that example usage prompts always perform worse
or same as the baseline. Amongst the data description prompts, augmenting type information leads to better
performance in both the datasets.

26

SOFSET Example-Usage Prompts TYPESET Example-Usage Prompts

SOFSET Data Description Prompts TYPESET Data Description Prompts

Figure 13: This figure presents prompt results for the example usage and data description prompting strategy for
SOFSET and TYPESET datasets for INCODER. We observe that example usage prompts always perform worse
or same as the baseline. Amongst the data description prompts, augmenting type information leads to better
performance in both the datasets.

SOFSET TYPESET

Figure 14: Interplay between the varying amount of data redaction and how data description in the prompt helps
with performance for INCODER. For each redaction, we evaluate the performance by adding a data description
to the prompt in the form of type information. Type information is especially helpful when we only have access
to anonymous columns and a subset of the data. The extracted data descriptions do not directly depict private
information.

27

Notation
Metric Description Type
pass@k see metrics unit test
pass@k(%) see metrics unit test
NumUniqueValid Number of unique completions that are valid (have no run-

time errors and have the correct output type).
code

NumSuccess Number of completions that produce the correct output
type and values (pass unit test).

unit test

NumError Number of runtime errors (completions with no valid out-
put produced).

runtime

NumSyntaxErrors Number of syntax errors (completion generated is no valid
python code).

runtime

NumTypeErrors Number of type errors in the generated completions (oper-
ations/function not allowed for type).

runtime

NumValueErrors Number of value errors (value caused error in operation/-
function).

runtime

NumIndexErrors Number of error involving the dataframe index. runtime
NumAttributeErrors Number of attribute errors (referred object attribute does

not exists for example).
runtime

NumNameErrors Number of name errors (function/variable does not exists). runtime
NumKeyErrors Number of key errors (column does not exist). runtime
NumRegexErrors Number of regular expression errors. runtime
NumAssertionErrors Number of assertion errors in the completions. runtime
NumCorrectOutputType Number of completion that produce the correct output type

(a new column).
semantic

NumTypeMismatch Number of mismatches of the output type of the comple-
tion and the ground truth output. Please note that the mis-
match values are only computed for completions that are
valid/execute.

semantic

NumValueMismatch Number of mismatches of the column values from the gen-
erated by the completion and the ground truth.

semantic

DiffColNumber Number of completions with different output column num-
ber than ground truth output.

semantic

InputColumnsError Number of completions that do not use the input columns
from the dataframe.

semantic

ExtraColumnsError Number of completions that use columns that are not rele-
vant for the task.

semantic

NumCompletions Number of completions retrieved. stats
CompletionLenght String length of generated completions. stats

Table 6: Short description of the used metrics. For each experiment we calculate the above metrics and report them
as average over all completions and all examples per evaluation. Please see the Metrics section for further details.

28

Full-data vs no-data experiments SOFSET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.673 0.583 0.6016 0.5687
Pass@K75pct 0.8273 0.7533 0.7512 0.7217
Pass@K70pct 0.8519 0.7761 0.7874 0.7709
Pass@K50pct 0.933 0.8584 0.8642 0.8259
Pass@K30pct 0.9524 0.906 0.9069 0.8625
Pass@K25pct 0.9531 0.9123 0.9152 0.8662
NumUniqueValid 0.8086 0.6397 0.7529 0.6604
NumSuccess 0.3135 0.2292 0.2952 0.2242
NumError 0.1833 0.3454 0.2384 0.3274
NumSyntaxErrors 0.0072 0.0159 0.0074 0.0167
NumTypeErrors 0.0214 0.0306 0.0252 0.0327
NumValueErrors 0.0405 0.0655 0.0714 0.0632
NumIndexErrors 0.007 0.0109 0.007 0.0088
NumAttributeErrors 0.0098 0.0146 0.0106 0.0209
NumNameErrors 0.0045 0.0094 0.0062 0.0087
NumKeyErrors 0.0081 0.018 0.0068 0.0715
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.8086 0.6397 0.7529 0.6604
NumTypeMismatch 0.0081 0.0149 0.0087 0.0122
NumValueMismatch 0.4951 0.4105 0.4577 0.4362
DiffColNumber 0.0264 0.0313 0.0201 0.0301
DiffTableNumber 0.0264 0.0313 0.0201 0.0301
CompletionLenght 9.5091 9.5446 9.5564 9.6114
NumCompletions 28.7045 40.0606 31.25 40.1053

Table 7: Detailed results for SOFSET for task class (IND) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

29

Full-data vs no-data experiments SOFSET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.302 0.1213 0.1384 0.1354
Pass@K75pct 0.4031 0.1739 0.2294 0.1564
Pass@K70pct 0.4352 0.1859 0.2793 0.1901
Pass@K50pct 0.6094 0.376 0.4767 0.3741
Pass@K30pct 0.7121 0.4835 0.605 0.4546
Pass@K25pct 0.7121 0.4835 0.605 0.4546
NumUniqueValid 0.6071 0.2997 0.5895 0.2926
NumSuccess 0.0828 0.0296 0.0497 0.0243
NumError 0.3761 0.6936 0.398 0.7017
NumSyntaxErrors 0.0112 0.0207 0.0105 0.0209
NumTypeErrors 0.172 0.3263 0.1473 0.259
NumValueErrors 0.0653 0.123 0.1023 0.0928
NumIndexErrors 0.0018 0.0063 0.0049 0.0083
NumAttributeErrors 0.0398 0.0876 0.0333 0.0865
NumNameErrors 0.0029 0.0061 0.0036 0.0034
NumKeyErrors 0.0074 0.0162 0.0052 0.1619
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0003 0.0 0.0
NumCorrectOutputType 0.6071 0.2997 0.5895 0.2926
NumTypeMismatch 0.0168 0.0068 0.0126 0.0057
NumValueMismatch 0.5244 0.2701 0.5398 0.2683
DiffColNumber 0.0328 0.0413 0.0419 0.0261
DiffTableNumber 0.0328 0.0413 0.0419 0.0261
CompletionLenght 9.6305 9.8837 9.6271 9.9495
NumCompletions 41.4474 80.3421 42.3421 88.3243

Table 8: Detailed results for SOFSET for task class (DEP) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

30

Full-data vs no-data experiments SOFSET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.2078 0.0962 0.1369 0.1124
Pass@K75pct 0.4314 0.2181 0.2546 0.2097
Pass@K70pct 0.4641 0.2835 0.2869 0.2258
Pass@K50pct 0.6079 0.3806 0.5297 0.3277
Pass@K30pct 0.7273 0.5732 0.6814 0.5658
Pass@K25pct 0.7273 0.5732 0.6814 0.5658
NumUniqueValid 0.6669 0.4943 0.6079 0.4372
NumSuccess 0.0559 0.011 0.0314 0.0244
NumError 0.3193 0.4991 0.3826 0.5566
NumSyntaxErrors 0.0118 0.0156 0.0126 0.0174
NumTypeErrors 0.0492 0.1167 0.0433 0.1196
NumValueErrors 0.1019 0.1487 0.1449 0.1448
NumIndexErrors 0.0025 0.013 0.0058 0.0211
NumAttributeErrors 0.0248 0.0834 0.0283 0.0688
NumNameErrors 0.0126 0.0145 0.0114 0.0127
NumKeyErrors 0.0073 0.0106 0.0064 0.0937
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.6669 0.4943 0.6079 0.4372
NumTypeMismatch 0.0138 0.0066 0.0095 0.0061
NumValueMismatch 0.611 0.4833 0.5765 0.4128
DiffColNumber 0.0487 0.077 0.0621 0.0548
DiffTableNumber 0.0487 0.077 0.0621 0.0548
CompletionLenght 9.5894 9.8389 9.6326 9.8971
NumCompletions 36.4516 55.2581 41.3548 65.2258

Table 9: Detailed results for SOFSET for task class (EXT) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

31

Full-data vs no-data experiments TYPESET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.55 0.4 0.5881 0.5663
Pass@K75pct 0.7741 0.6263 0.7013 0.6915
Pass@K70pct 0.7741 0.6263 0.7013 0.6915
Pass@K50pct 0.7741 0.6263 0.7013 0.6923
Pass@K30pct 0.7741 0.6263 0.7263 0.6923
Pass@K25pct 0.7741 0.6263 0.7263 0.6923
NumUniqueValid 0.8481 0.6374 0.793 0.6897
NumSuccess 0.4008 0.2669 0.3914 0.3257
NumError 0.1399 0.3498 0.2006 0.2987
NumSyntaxErrors 0.0025 0.0064 0.0083 0.0104
NumTypeErrors 0.0455 0.1061 0.069 0.0583
NumValueErrors 0.0173 0.0277 0.0146 0.1008
NumIndexErrors 0.0 0.0004 0.0 0.0
NumAttributeErrors 0.0 0.0197 0.0006 0.0097
NumNameErrors 0.0 0.0047 0.0 0.0039
NumKeyErrors 0.0042 0.002 0.0 0.0034
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.8481 0.6374 0.793 0.6897
NumTypeMismatch 0.012 0.0128 0.0063 0.0116
NumValueMismatch 0.4474 0.3705 0.4016 0.364
DiffColNumber 0.0087 0.0169 0.0043 0.0103
DiffTableNumber 0.0087 0.0169 0.0043 0.0103
InputColumnsError 0.0961 0.0539 0.0721 0.0222
ExtraColumnsError 0.0 0.0 0.0 0.0
CompletionLenght 9.5944 9.7442 9.6465 9.6858
CompletionSize 25.15 45.35 28.15 41.8

Table 10: Detailed results for TYPESET for task class (IND) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

32

Full-data vs no-data experiments TYPESET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.9243 0.3454 0.8071 0.3333
Pass@K75pct 0.9243 0.3454 0.8071 0.4876
Pass@K70pct 0.9243 0.3618 0.8071 0.4876
Pass@K50pct 0.9243 0.3748 0.8071 0.5293
Pass@K30pct 0.9243 0.375 0.8071 0.5293
Pass@K25pct 0.9243 0.375 0.8071 0.5293
NumUniqueValid 0.7122 0.325 0.6844 0.5172
NumSuccess 0.4548 0.1282 0.386 0.1739
NumError 0.2822 0.674 0.3156 0.4828
NumSyntaxErrors 0.0 0.0159 0.0 0.0
NumTypeErrors 0.1031 0.1846 0.0854 0.2164
NumValueErrors 0.0567 0.1867 0.0875 0.0808
NumIndexErrors 0.0 0.0213 0.0 0.0129
NumAttributeErrors 0.0138 0.1038 0.0202 0.0851
NumNameErrors 0.0 0.0 0.0 0.0023
NumKeyErrors 0.0 0.0 0.0 0.0181
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.7122 0.325 0.6844 0.5172
NumTypeMismatch 0.0056 0.001 0.0 0.0
NumValueMismatch 0.2574 0.1968 0.2984 0.3432
DiffColNumber 0.0054 0.013 0.006 0.006
DiffTableNumber 0.0054 0.013 0.006 0.006
InputColumnsError 0.0889 0.0448 0.0464 0.1982
ExtraColumnsError 0.0 0.0 0.0 0.0
CompletionLenght 9.5041 9.8964 9.7128 9.8413
CompletionSize 30.5 68.75 35.25 47.25

Table 11: Detailed results for TYPESET for task class (DEP) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

33

Full-data vs no-data experiments TYPESET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.854 0.4407 0.7824 0.2383
Pass@K75pct 0.8947 0.5174 0.8131 0.2677
Pass@K70pct 0.8947 0.5174 0.8131 0.2677
Pass@K50pct 0.8975 0.5174 0.8131 0.2677
Pass@K30pct 0.8976 0.5174 0.8131 0.2677
Pass@K25pct 0.8976 0.5174 0.8131 0.2677
NumUniqueValid 0.7303 0.4097 0.6981 0.292
NumSuccess 0.3118 0.1299 0.2794 0.0728
NumError 0.2639 0.5855 0.2994 0.7016
NumSyntaxErrors 0.0087 0.0186 0.0049 0.0053
NumTypeErrors 0.0807 0.2443 0.1063 0.131
NumValueErrors 0.0677 0.0889 0.0493 0.0846
NumIndexErrors 0.0036 0.0009 0.0004 0.0023
NumAttributeErrors 0.0057 0.0245 0.0063 0.0145
NumNameErrors 0.0521 0.1623 0.0821 0.0083
NumKeyErrors 0.0027 0.0095 0.0042 0.0057
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0002 0.0 0.0
NumCorrectOutputType 0.7303 0.4097 0.6981 0.292
NumTypeMismatch 0.0058 0.0048 0.0025 0.0064
NumValueMismatch 0.4186 0.2798 0.4187 0.2192
DiffColNumber 0.0174 0.0182 0.0089 0.0103
DiffTableNumber 0.0174 0.0182 0.0089 0.0103
InputColumnsError 0.3928 0.1325 0.3077 0.0901
ExtraColumnsError 0.0 0.0 0.0 0.0
CompletionLenght 9.4444 9.8718 9.5836 10.1252
CompletionSize 29.0 72.6111 32.5556 95.3784

Table 12: Detailed results for TYPESET for task class (EXT) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

34

Noise level experiment
missing mixformat corruption baseline

Pass@K 0.2189 0.4613 0.2557 0.6423
Pass@K75pct 0.477 0.5435 0.6777 0.7017
Pass@K70pct 0.5868 0.5435 0.6777 0.7017
Pass@K50pct 0.6563 0.5436 0.7044 0.7127
Pass@K30pct 0.724 0.5436 0.7044 0.7189
Pass@K25pct 0.7713 0.5436 0.7044 0.7303
NumUniqueValid 0.7905 0.8084 0.7503 0.8112
NumSuccess 0.0552 0.1788 0.0987 0.3083
NumError 0.2037 0.1864 0.2476 0.1833
NumSyntaxErrors 0.0038 0.0056 0.0081 0.0095
NumTypeErrors 0.0369 0.038 0.0122 0.0358
NumValueErrors 0.0674 0.0467 0.0869 0.0678
NumIndexErrors 0.033 0.0021 0.0034 0.0004
NumAttributeErrors 0.0034 0.0433 0.0049 0.0115
NumNameErrors 0.0023 0.0022 0.0 0.0
NumKeyErrors 0.0021 0.0028 0.0 0.0025
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.7905 0.8084 0.7503 0.8112
NumTypeMismatch 0.0058 0.0052 0.0021 0.0055
NumValueMismatch 0.9283 0.7826 0.8667 0.6284
DiffColNumber 0.0207 0.0311 0.0289 0.0214
DiffTableNumber 0.0207 0.0311 0.0289 0.0214
InputColumnsError 0.0716 0.0276 0.0864 0.1536
ExtraColumnsError 0.0 0.0 0.0 0.0
CompletionLenght 9.6438 9.5977 9.7633 9.5553
NumCompletions 27.9167 27.1875 37.2143 26.9318

Table 13: Code completions results on TYPESETNOISY for different levels of noise. Metrics shown are average
numbers across the sampled completions.

35

Performance per data-type on TYPESET

units strings numeric names mixed dates address
Pass@K 0.9652 0.8333 0.5461 0.4809 0.5 0.4892 0.3205
Pass@K75pct 0.9798 0.9722 0.7128 0.7181 0.5587 0.5799 0.6193
Pass@K70pct 0.9798 0.9722 0.713 0.7181 0.5587 0.58 0.6646
Pass@K50pct 0.9798 0.9722 0.7938 0.7266 0.5587 0.5877 0.6928
Pass@K30pct 0.9798 0.9722 0.7938 0.7303 0.5587 0.5877 0.7354
Pass@K25pct 0.9798 0.9722 0.7938 0.7303 0.5587 0.62 0.7543
NumUniqueValid 0.7004 0.9084 0.543 0.8675 0.6703 0.6406 0.8546
NumSuccess 0.2792 0.5707 0.246 0.2807 0.2835 0.1515 0.1791
NumError 0.2963 0.0879 0.4507 0.1311 0.3192 0.3559 0.1365
NumSyntaxErrors 0.0032 0.0 0.0017 0.0028 0.0037 0.0035 0.0136
NumTypeErrors 0.1273 0.0 0.209 0.0028 0.1575 0.1229 0.0
NumValueErrors 0.0264 0.0239 0.1493 0.021 0.0276 0.0704 0.0638
NumIndexErrors 0.0018 0.0023 0.0 0.0087 0.0 0.0061 0.0074
NumAttributeErrors 0.0053 0.0051 0.0011 0.0016 0.0048 0.0401 0.0016
NumNameErrors 0.0938 0.0 0.0 0.0 0.003 0.0013 0.0023
NumKeyErrors 0.0 0.0024 0.0 0.0014 0.0 0.0004 0.0036
NumRegexErrors 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.7004 0.9084 0.543 0.8675 0.6703 0.6406 0.8546
NumTypeMismatch 0.0033 0.0037 0.0062 0.0014 0.0105 0.0035 0.0088
NumValueMismatch 0.4212 0.3377 0.297 0.5868 0.3868 0.4891 0.6755
DiffColNumber 0.0097 0.0138 0.0043 0.0355 0.0047 0.0071 0.0124
DiffTableNumber 0.0097 0.0138 0.0043 0.0355 0.0047 0.0071 0.0124
InputColumnsError 0.6608 0.0 0.0137 0.0067 0.3417 0.0088 0.0313
ExtraColumnsError 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CompletionLenght 9.3607 9.7139 9.8027 9.6785 9.6382 9.5844 9.6848
NumCompletions 29.25 22.1389 47.25 23.1071 35.0769 40.9032 24.4872

Table 14: Code completions results on TYPESET by data-types. Metrics shown are averaged across the sampled
completions.

36

SOFSET

TYPESET

Figure 15: pass@5 scores for 10 (the red mark cor-
responds to Table 1) CodeXData runs for data inde-
pendent tasks full-data; data independent tasks no-data;
data dependent tasks full-data, data dependent tasks
no-data; external knowledge tasks full-data; external
knowledge tasks no-data.

0 10 20 30 40 50 60 70 80 90

Number of completions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
a
ss

@
1

0

(EXT)

(EXT)

(EXT)

(EXT)

(EXT)

(EXT)

(EXT)

(EXT)

(DEP)

(DEP)

(DEP)(DEP)

(DEP)

(DEP)

(DEP)

(DEP)

(IND)

(IND)

(IND)

(IND)

(IND)

(IND)

(IND)

(IND)

full-data

subset-data

no-data

SOFSET

TYPESET

Dataset

Figure 16: Interplay between pass@10 and total num-
ber of retrieved completions from INCODER for the
different datasets (shapes), degree of data redaction
(color) and task classes (labels). Lower right (Low
pass@10 and many completions): most results for runs
with highly redacted data and DEP tasks lie here. Up-
per left (High pass@10 and few completions): most
results for runs with no redaction and/or IND tasks lie
here. Lower left/middle (Low pass@10 and few com-
pletions): most results for runs for EXT tasks lie here.

Figure 17: Impact on pass@10(X%) for the different
noisy scenarios such as corruption in TYPESETNOISY
compared to the original data in TYPESET (baseline)
for INCODER.

37

(a) full-data, (b) subset-data, (c) no-data prop-col, (d) no-data anon-col

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
a
s
s
@

k

(IND) data-independent (DEP) data-dependent (EXT) external-dependent
(a

)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

1
5
10

K

SOFSET

(a) full-data, (b) subset-data, (c) no-data prop-col, (d) no-data anon-col

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
a
s
s
@

k

(IND) data-independent (DEP) data-dependent (EXT) external-dependent

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

1
5
10

K

TYPESET

Figure 18: Impact on pass@k for CODEX with data redaction for SOFSET and TYPESET. The results shown
are grouped by the different task classes: data-independent (IND), data-dependent (DEP) and external-dependent
(EXT). In each group, the different bars represent different levels of redaction: (a) full data, (b) a subset of the data
(only one row) (c) no data and proper column names and (d) no data and anonymous column names. Redaction
has negligible effect on IND tasks, and a large impact on DEP and EXT tasks.

(a) full-data, (b) subset-data, (c) no-data prop-col, (d) no-data anon-col

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
a
s
s
@

k

(IND) data-independent (DEP) data-dependent (EXT) external-dependent

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

1
5
10

K

SOFSET

(a) full-data, (b) subset-data, (c) no-data prop-col, (d) no-data anon-col

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
a
s
s
@

k

(IND) data-independent (DEP) data-dependent (EXT) external-dependent

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

1
5
10

K

TYPESET

Figure 19: Impact on pass@k for INCODER with data redaction for SOFSET and TYPESET. The results shown
are grouped by the different task classes: data-independent (IND), data-dependent (DEP) and external-dependent
(EXT). In each group, the different bars represent different levels of redaction: (a) full data, (b) a subset of the data
(only one row) (c) no data and proper column names and (d) no data and anonymous column names. Redaction
has negligible effect on IND tasks, and a large impact on DEP and EXT tasks.

38

