rStar-Math: Small LLMs Can Master Math Reasoning
with Self-Evolved Deep Thinking

Xinyu Guan“!? LiLyna Zhang ' Yifei Liu?' Ning Shang' Youran Sun'“* Yi Zhu'
Fan Yang'! Mao Yang !

Abstract

We present rStar-Math to demonstrate that small
language models (SLMs) can rival or even sur-
pass the math reasoning capability of OpenAl ol,
without distillation from superior models. rStar-
Math achieves this by exercising “deep think-
ing” through Monte Carlo Tree Search (MCTYS),
where a math policy SLM performs test-time
search guided by an SLM-based process reward
model. rStar-Math introduces three innovations
to tackle the challenges in training the two SLMs:
(1) a novel code-augmented CoT data synthesis
method, which performs extensive MCTS roll-
outs to generate step-by-step verified reasoning
trajectories used to train the policy SLM; (2) a
novel process reward model training method that
avoids naive step-level score annotation, yield-
ing a more effective process preference model
(PPM); (3) a self-evolution recipe in which the
policy SLM and PPM are built from scratch and
iteratively evolved to improve reasoning capabil-
ities. Through 4 rounds of self-evolution with
millions of synthesized solutions for 747k math
problems, rStar-Math boosts SLMs’ math reason-
ing to state-of-the-art levels. On MATH bench-
mark, it improves Qwen2.5-Math-7B from 58.8%
to 90.0%, surpassing ol-preview by +4.5%. On
the USA Math Olympiad (AIME), rStar-Math
solves an average of 53.3% (8/15) of problems,
ranking among the top 20% of the brightest high
school math students. Code and data are available
at https://github.com/microsoft/rStar.
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Task rStar-Math rStar-Math OpenAI  OpenAl GPT-40 DeepSeek-V3

(pass@1 Acc)  (Qwen-7B) (Phi3-mini) ol-preview ol-mini
MATH 90.0 88.6 85.5 90.0 76.6 90.2
AIME 2024 533 46.7 44.6 56.7 9.3 392
Olympiad Bench 65.6 60.3 - 65.3 433 55.4
College Math 60.5 59.3 - 57.8 48.5 58.9
Omni-Math 50.5 48.5 525 60.5 49.6 35.9

Table 1. rStar-Math enables frontier math reasoning in SLMs via
deep thinking over 64 trajectories.

1 Introduction

Recent studies have demonstrated that large language mod-
els (LLMs) are capable of tackling mathematical prob-
lems (Team, 2024; Yang et al., 2024; Liu et al., 2024). How-
ever, the conventional approach of having LLMs generate
complete solutions in a single inference — akin to System 1
thinking (Daniel, 2011) — often yields fast but error-prone re-
sults (Valmeekam et al., 2023; OpenAl, 2023). In response,
test-time compute scaling (Snell et al., 2024; Qi et al., 2024)
suggests a paradigm shift toward a System 2-style think-
ing, which emulates human reasoning through a slower and
deeper thought process. In this paradigm, an LLM serves as
a policy model to generate multiple math reasoning steps,
which are then evaluated by another LLM acting as a reward
model (OpenAl, 2024). The steps and solutions deemed
more likely to be correct are selected. The process repeats
iteratively and ultimately derives the final answer.

In the test-time compute paradigm, the key is to train a pow-
erful policy model that generates promising solution steps
and a reliable reward model that accurately evaluates them,
both of which depend on high-quality training data. Unfortu-
nately, it is well-known that off-the-shelf high-quality math
reasoning data is scarce, and synthesizing high-quality math
data faces fundamental challenges. For the policy model, it
is challenging to distinguish erroneous reasoning steps from
the correct ones, complicating the elimination of low-quality
data. It is worth noting that in math reasoning, a correct
final answer does not ensure the correctness of the entire rea-
soning trace (Lanham et al., 2023). Incorrect intermediate
steps significantly decrease data quality. As for the reward
model, process reward modeling (PRM) shows a great po-
tential by providing fine-grained feedback on intermediate
steps (Lightman et al., 2023). However, the training data is
even scarcer in this regard: accurate step-by-step feedback
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requires intense human labeling efforts and is impractical
to scale, while those automatic annotation attempts show
limited gains due to noisy reward scores (L.uo et al., 2024;
Chen et al., 2024). Due to the above challenges, existing
distill-based data synthesis approaches to training policy
models, e.g., scaling up GPT4-distilled CoT data (Tang
et al., 2024; Huang et al., 2024), have shown diminishing
returns and cannot exceed the capability of their teacher
model; meanwhile, as of today, training reliable PRMs for
math reasoning remains an open question.

In this work, we introduce rStar-Math, a self-evolvable
System 2-style reasoning approach that achieves the state-
of-the-art math reasoning, rivaling and sometimes even
surpassing OpenAl ol on challenging math competition
benchmarks with a model size as small as 7 billion. Un-
like solutions relying on superior LLMs for data synthe-
sis, rStar-Math leverages smaller language models (SLMs)
with Monte Carlo Tree Search (MCTYS) to establish a self-
evolutionary process, iteratively generating higher-quality
training data. To achieve self-evolution, rStar-Math intro-
duces three key innovations.

First, a novel code-augmented CoT data synthesis method,
which performs extensive MCTS rollouts to generate step-
by-step verified reasoning trajectories with self-annotated
MCTS Q-values. Specifically, math problem-solving is de-
composed into multi-step generation within MCTS. At each
step, the SLM serving as the policy model samples candidate
nodes, each generating a one-step CoT and the correspond-
ing Python code. To verify the generation quality, only
nodes with successful Python code execution are retained,
thus mitigating errors in intermediate steps. Moreover, ex-
tensive MCTS rollouts automatically assign a Q-value to
each intermediate step based on its contribution: steps con-
tributing to more trajectories that lead to the correct answer
are given higher Q-values and considered higher quality.
This ensures that the reasoning trajectories generated by
SLMs consist of correct, high-quality intermediate steps.

Second, a novel method that trains an SLM acting as a
process preference model, i.e., a PPM to implement the de-
sired PRM, that reliably predicts a reward label for each
math reasoning step. The PPM leverages the fact that, al-
though Q-values are still not precise enough to score each
reasoning step despite using extensive MCTS rollouts, the
Q-values can reliably distinguish positive (correct) steps
from negative (irrelevant/incorrect) ones. Thus the training
method constructs preference pairs for each step based on
Q-values and uses a pairwise ranking loss (Ouyang et al.,
2022) to optimize PPM’s score prediction for each reason-
ing step, achieving reliable labeling. This approach avoids
conventional methods that directly use Q-values as reward
labels (Luo et al., 2024; Chen et al., 2024), which are inher-
ently noisy and imprecise in stepwise reward assignment.

Finally, a four-round self-evolution recipe that progressively
builds both a frontier policy model and PPM from scratch.
We begin by curating a dataset of 747k math word problems
from publicly available sources. In each round, we use the
latest policy model and PPM to perform MCTS, generat-
ing increasingly high-quality training data using the above
two methods to train a stronger policy model and PPM for
next round. Each round achieves progressive refinement:
(1) a stronger policy SLM, (2) a more reliable PPM, (3)
generating better reasoning trajectories via PPM-augmented
MCTS, and (4) improving training data coverage to tackle
more challenging competition-level math problems.

Extensive experiments across four SLMs (1.5B-7B) and
seven math reasoning tasks demonstrate the effectiveness
of rStar-Math. Remarkably, rStar-Math improves all four
SLMs, matching or even surpassing OpenAl ol on chal-
lenging math benchmarks. On MATH benchmark, with
8 search trajectories, rStar-Math boosts Qwen2.5-Math-
7B from 58.8% to 89.4% and Qwen2.5-Math-1.5B from
51.2% to 87.8%. With 64 trajectories, the scores rise to
90% and 88.4%, outperforming ol-preview by 4.5% and
2.6% and matching o1-mini’s 90%. On the Olympiad-level
AIME 2024, rStar-Math solves on average 53.3% (8/15) of
the problems, exceeding ol-preview by 8.7% and all other
open-sourced LLMs. We further conduct comprehensive
experiments to verify the superiority of step-by-step verified
reasoning trajectories over state-of-the-art data synthesis
baselines, as well as the PPM’s effectiveness compared to
outcome reward models and Q value-based PRMs.

2 Related Works

Math Data Synthesis. Advancements in LLM math reason-
ing have largely relied on curating high-quality CoT data,
with most leading approaches being GPT-distilled, using
frontier models like GPT-4 for synthesis (Wang et al., 2024b;
Gou et al., 2023; Luo et al., 2023). Notable works include
NuminaMath (Jia LI & Polu, 2024a) and MetaMath (Yu
et al., 2023b). While effective, this limits reasoning to the
capabilities of the teacher LLM. Hard problems that the
teacher LLM cannot solve are excluded in the training set.
Even solvable problems may contain error-prone interme-
diate steps, which are hard to detect. Although rejection
sampling methods (Yuan et al., 2023; Brown et al., 2024)
can improve data quality, they do not guarantee correct in-
termediate steps. As a result, naively scaling up CoT data
generation using frontier LLMs yields diminishing returns,
with performance gains approaching saturation.

Scaling Test-time Compute has introduced new scaling
laws, allowing LLMs to improve performance across by
generating multiple samples and using reward models for
best-solution selection (Snell et al., 2024; Wu et al., 2024,
Brown et al., 2024). Various search methods have been
proposed (Kang et al., 2024; Wang et al., 2024a), including
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Figure 1. The overview of rStar-Math.

random sampling (Wang et al., 2023) and tree-search meth-
ods (Yao et al., 2024; Zhang et al., 2024a; Qi et al., 2024)
like MCTS. However, open-source methods for scaling test-
time compute have shown limited gains in math reasoning,
often due to policy LLM or reward model limitations.

Reward Models are crucial for effective System 2 reason-
ing but are challenging to obtain. The major works include
Outcome Reward Model (Yang et al., 2024; Yu et al., 2023a)
and Process Reward Model (PRM) (Lightman et al., 2024).
While PRMs offer promising dense, step-level reward sig-
nals for complex reasoning (Luo et al., 2024), collecting
step-level annotations remains an obstacle. While (Kang

et al., 2024; Wang et al., 2024a) rely on costly human-
annotated datasets like PRM800k (Lightman et al., 2024),
recent approaches (Wang et al., 2024c; Luo et al., 2024)

explore automated annotation via Monte Carlo Sampling or
MCTS. However, they struggle to generate precise reward
scores, limiting performance gains. rStar-Math introduces a
novel process preference reward (PPM) that eliminates the
need for accurate step-level reward score annotation.

3 Methodology

In our work, we explore using two 7B SLMs to generate
higher-quality training data. However, self-generating data
presents significant challenges for SLMs. SLMs frequently
fail to generate correct solutions, and even when the final
answer is correct, the intermediate steps are often flawed or
of poor quality. Moreover, SLMs solve fewer challenging
problems compared to advanced models like GPT-4.

This section introduces our methodology, as illustrated in
Fig. 1. To mitigate errors and low-quality intermediate steps,
we introduce a code-augmented CoT synthetic method,
which performs extensive MCTS rollouts to generate step-
by-step verified reasoning trajectories, annotated with Q-
values. To further improve SLM performance on chal-
lenging problems, we introduce a four-round self-evolution
recipe. In each round, both the policy SLM and the reward
model are updated to stronger versions, progressively tack-
ling more difficult problems and generating higher-quality

training data. Finally, we present a novel process reward
model training approach that eliminates the need for pre-
cise per-step reward annotations, yielding the more effective
process preference model (PPM).

3.1 Step-by-Step Verified Reasoning Trajectory

Given a problem x and a policy model M, we use standard
MCTS to incrementally construct a search tree for step-by-
step solution exploration. As shown in Fig. 1(a), the root
node represents question z, and child nodes correspond to
intermediate steps s generated by M. A root-to-leaf path
ending at terminal node s, forms a trajectory t = x & s1 &
S92 @ ... B s4, with each step s; assigned a Q-value Q(s;).
From the search tree 7, we extract solution trajectories T =
{t1,42,...,t"}(n > 1). Our goal is to select high-quality
trajectories from 7 to construct the training set. To achieve
this, we introduce code-augmented CoT synthesis method
to filter out low-quality generations and perform extensive
rollouts to improve the reliability of Q-value accuracy.

Code-augmented CoT Generation. Prior MCTS ap-
proaches primarily generate natural language (NL) CoTs (Qi
et al., 2024; Zhang et al., 2024b). However, LLMs often
suffer from hallucination, producing incorrect or irrelevant
steps yet still arrive at the correct answer by chance (Lan-
ham et al., 2023). These flawed steps are challenging to
detect and eliminate. To address this, we propose a novel
code execution augmented CoT. As shown in Fig. 2, the
policy model generates a one-step NL CoT alongside its
corresponding Python code, where the NL CoT is embedded
as a Python comment. Only generations with successfully
executed Python code are retained as valid candidates.

Specifically, starting from the root node x, we perform
multiple MCTS iterations through selection, expansion,
simulation, and back-propagation. At step i, we collect
the latest reasoning trajectory x @ s; @ so @ ... B s;-1
as the current state. Based on this state, we prompt (see
Appendix A.4) the policy model to generate n candidates
8,0, +-»Si,;n—1. Python code execution is then employed
to filter valid nodes. As shown in Fig. 2, each generation
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Question: Bill walks $\frac{1}{2}$ mile south, then $\frac{3}{4}$ mile east, and finally $\frac{1}2}$ mile south. How many miles is he, in a direct line,
from his starting point? Express your answer as a decimal to the nearest hundredth.

otal_east = 3/4

# Step 3: Use the Pythagorean theorem to find the direct distance from the starting point

import math

direct_distance = math.sqrt(total_south**2 + total_east**2)
# Step 4: Round the direct distance to the nearest hundredth
direct_distance_rounded = round(direct_distance, 2

From the result, we can see that the direct distance from the starting point is \boxed{1.25} miles

Python code execution for step 1

# Step 1: Calculate the total distance walked south
: al_south = 1/2 +1/2 :

ition for step 2

i # Step 1: Calculate the total distance walked south
i total_south =1/2 +1/2 H
: # Step 2: Calculate the total distance walked east

i total east= 3/4

Figure 2. An example of Code-augmented CoT. To avoid syntax errors, the code at step ¢ is executed by concatenating it with code from
all previous steps. For example, step 2 includes code from step 1 to ensure correct execution.

s; ; 1s concatenated with the code from all previous steps,
forming s, ® s2 @ ... ® 5,1 D s; ;. Candidates that execute
successfully are retained as valid nodes and scored by the
PPM, which assigns a Q-value ¢(s;). Then, we use the well-
known Upper Confidence bounds for Trees (UCT) (Kocsis
& Szepesvari, 2006) to select the best node among the n
candidates. This selection is mathematically represented as:

_ In N, arent(s). _ q(s)
UCT(s) —Q(s)+c\/T, Q(s) = NGs) M

where N (s) denotes the number of visits to node s, and
Nparent(5) is the visit count of s’s parent node. The predicted
reward ¢(s) is provided by the PPM and will be updated
through back-propagation. c is a constant that balances
exploitation and exploration.

We repeat the process until reaching a terminal node, either
by arriving a final answer or hitting the maximum tree depth.
This is referred to as a rollout. Based on whether the rollout
reaches the correct answer, we perform back-propagation
to update the trajectory Q-value scores. We introduce the
score annotation methods in next sections.

Extensive Rollouts for Q-value Annotation. Accurate Q-
value () annotation in Eq. 1 is crucial for guiding MCTS
towards correct problem-solving paths and identifying high-
quality steps within trajectories. Following AlphaGo (Silver
et al., 2017) and rStar (Qi et al., 2024), we perform MCTS
rollout to assign a Q-value to each step. However, insuf-
ficient rollouts can lead to spurious Q-value assignments,
such as overestimating suboptimal steps. To mitigate this
issue, we draw inspiration from Go players, who refine their
evaluations for each move through repeated gameplay. Anal-
ogously, within each rollout, we update the Q-value of each
step based on its contribution to achieving the correct final
answer. Through extensive MCTS rollouts, steps consis-
tently leading to correct answers achieve higher Q-values,
occasional successes yield moderate Q-values, and consis-
tently incorrect steps receive low Q-values. Specifically,
we introduce two self-annotation methods to obtain these
step-level Q-values. Fig. 1(c) shows the detailed setting in
the four rounds of self-evolution.

Terminal-guided annotation. During the first two rounds,

when the PPM is unavailable or insufficiently accurate, we
use terminal-guided annotation. Formally, let ¢(s;)* denote
the q value for step s; after back-propagation in the k"
rollout, we score per-step Q-value as follows:

a(s:)" = a(s:)" " +a(sa)"; @

where the initial q value ¢(s;)° = 0 in the first rollout. If
this step frequently leads to a correct answer, its ¢ value will
increase; otherwise, it decreases. Terminal nodes (denoted
as sq in Eq. 2) are scored as ¢(sq) = 1 for correct answers
and ¢(sq) = —1 otherwise, as shown in Fig. 1.

PPM-augmented annotation. Starting from the third round,
we use PPM to score each step for more effective generation.
Compared to terminal-guided annotation, which requires
multiple rollouts for a meaningful g value, PPM directly
predicts a non-zero initial ¢ value. PPM also helps the policy
model to generate higher-quality steps, guiding solutions
towards correct paths. Formally, for step s;, PPM predicts
an initial ¢(s;)° value based on the partial trajectory:

q(si)o =PPM(x®s1Ps2®...Bsi—1Ds;)  (3)

This ¢ value will be updated based on terminal node’s ¢(s4)
value through MCTS back-propagation in Eq. 2. For termi-
nal node s4, we do not use PPM for scoring during training
data generation. Instead, we assign a more accurate score
based on ground truth labels as terminal-guided rewarding.

3.2 Process Preference Model

Process reward models, which provide granular step-level
reward signals, is highly desirable for solving challenging
math problems. However, obtaining high-quality step-level
training data remains an open challenge. Existing methods
rely on human annotations (Lightman et al., 2023) or MCTS-
generated scores (Zhang et al., 2024b; Chen et al., 2024)
to label a score for each step. These scores then serve
as training targets, with methods such as MSE loss (Chen
et al., 2024) or pointwise loss (Wang et al., 2024c; Luo
et al., 2024; Zhang et al., 2024b) used to minimize the
difference between predicted and labeled scores. As a result,
the precision of these annotated step-level scores determines
the effectiveness of the final process reward model.
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Unfortunately, precise per-step scoring remains a unsolved
challenge. Although our extensive MCTS rollouts improve
the reliability of Q-values, precisely evaluating fine-grained
step quality presents a major obstacle. For instance, among
a set of correct steps, it is difficult to rank them as best,
second-best, or average and then assign precise scores. Sim-
ilarly, among incorrect steps, differentiating the worst from
moderately poor steps poses analogous challenges. Even
expert human annotation struggles with consistency, partic-
ularly at scale, leading to inherent noise in training labels.

We introduce a novel training method that trains a process
preference model (PPM) by constructing step-level positive-
negative preference pairs. As shown in Fig. 1(b), instead of
using Q-values as direct reward labels, we use them to select
steps from MCTS tree for preference pair construction. For
each step, we select two candidates with the highest Q-
values as positive steps and two with the lowest as negative
steps. Critically, the selected positive steps must lead to
a correct final answer, while negative steps must lead to
incorrect answers. For intermediate steps (except the final
answer step), the positive and negative pairs share the same
preceding steps. For the final answer step, where identical
reasoning trajectories rarely yield different final answers,
we relax this restriction. We select two correct trajectories
with the highest average Q-values as positive examples and
two incorrect trajectories with the lowest average Q-values
as negative examples. Following (Ouyang et al., 2022), we
define our loss function using the standard Bradley-Terry
model with a pairwise ranking loss:

1 pos ne
[:ppm(e) = 71E(Iyyfosyy:”eggﬂ)) [ZOQ(U(TQ(IvyZPO ) - 7‘9(.’17, Y; g)))}

os oS
POS =51 B ... ®si—1 B P

y?eg =851D...08i-1D S?eg
C))

rg(x,y;) denotes the PPM output, where x is the problem

and y is the trajectory from the first step to the i step. o

denotes the sigmoid function.

3.3 Self-Evolved Deep Thinking

when 1 is not final answer step, {

Math Problems Collection. We collect a large dataset
of 747k math word problems with ground-truth answers,
primarily from NuminaMath (Jia LI & Polu, 2024a) and
MetaMath (Yu et al., 2023b). Notably, only competition-
level problems (e.g., Olympiads and AIME/AMC) from
NuminaMath are included, as we observe that grade-school-
level problems do not significantly improve LLM complex
math reasoning. To augment the limited competition-level
problems, we follow (Li et al., 2024) and use GPT-4 to
synthesize new problems based on the seed problems in
7.5k MATH train set and 3.6k AMC-AIME training split.
However, GPT-4 often generated unsolvable problems or
incorrect solutions for challenging seed problems. To filter
these, we prompt GPT-4 to generate 10 solutions per prob-
lem, retaining only those with at least 3 consistent solutions.

Table 2. Percentage of the 747k math problems correctly solved in
each round. The first round uses DeepSeek-Coder-Instruct as the
policy LLM, while later rounds use our fine-tuned 7B policy SLM.

# models in MCTS GSM-level MATH-level Olympiad-level ~ All

Round 1 DeepSeek-Coder-V2-Instruct  96.61% 67.36% 20.99% 60.17%
Round 2 policy SLM-r1 97.88% 67.40% 56.04%  66.60%
Round 3 policy SLM-r2, PPM-12 98.15% 88.69% 62.16%  77.86%
Round 4  policy SLM-r3, PPM-13 98.15% 94.53% 80.58%  90.25%

Reasoning Trajectories Collection. Instead of using the
original solutions in the 747k math dataset, we conduct ex-
tensive MCTS rollouts (Sec. 3.1) to generate higher-quality
step-by-step verified reasoning trajectories. In each self-
evolution round, we perform 16 rollouts per math prob-
lem, which leads to 16 reasoning trajectories. Problems are
then categorized by difficulty based on the correct ratio of
the generated trajectories: easy (all solutions are correct),
medium (a mix of correct and incorrect solutions) and hard
(all solutions are incorrect). For hard problems with no
correct trajectories, an additional MCTS with 16 rollouts
is performed. After that, all step-by-step trajectories and
their annotated Q-values are collected and filtered to train
the policy SLM and process preference model.

Self-evolution Recipe. Due to the weaker capabilities of
SLMs, we perform four rounds of self-evolution to pro-
gressively generate higher-quality data. Each round uses
MCTS to generate step-by-step verified reasoning trajecto-
ries, which are then used to train the new policy SLM and
PPM. The new models are then used in next round. Fig. 1(c)
and Table 2 detail the models used for data generation in
each round, along with the new trained models. Next, we
outline the specific improvements targeted in each round.

O Round 1: Bootstrapping an initial strong policy SLM-r1.
To enable SLMs to self-generate reasonably good training
data, we perform a bootstrap round to fine-tune an initial
strong policy model. As shown in Table 2, we run MCTS
with DeepSeek-Coder-V2-Instruct (236B) to collect the SFT
data. With no available reward model in this round, we use
terminal-guided annotation for Q-values and limit MCTS
to 8 rollouts for efficiency. For correct solutions, the top-2
trajectories with the highest average Q-values are selected
as SFT data, which are then used to SFT the first policy
SLM, denoted as SLM-r1.

O Round 2: Training a reliable PPM-r2. In this round,
with the policy model updated to the 7B SLM-r1, we con-
duct extensive MCTS rollouts for more reliable Q-value
annotation and train the first reliable reward model, PPM-r2.
Specifically, we perform 16 MCTS rollouts per problem.
The resulting step-by-step verified reasoning trajectories
show significant improvements in both quality and Q-value
precision. As shown in Appendix Table 10, PPM-12 is no-
tably more effective than in the bootstrap round.

O Round 3: PPM-augmented MCTS to significantly im-
prove data quality. With the reliable PPM-r2, we perform
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PPM-augmented MCTS in this round to generate data, lead-
ing to significantly higher-quality trajectories. The gener-
ated reasoning trajectories and annotated Q-values are then
used to train the new policy SLM-r3 and PPM-r3, both of
which show significant improvements.

O Round 4: Solving challenging problems. After the third
round, while grade school and MATH problems achieve
high success rates, only 62.16% of Olympiad-level problems
are included in the training set. This is NOT solely due to
weak capabilities in our SLMs, as many Olympiad problems
remain unsolved by GPT-4 or ol. To improve coverage, we
adopt a straightforward strategy. For unsolved problems
after 16 rollouts, we perform an additional 64 rollouts, and
if needed, increase to 128. We also conduct multiple MCTS
tree expansions with different random seeds. This boosts
the success rate of Olympiad-level problems to 80.58%.

After four rounds of self-evolution, 90.25% of the 747k
math problems are covered in the training set , as shown in
Table 2. Among the remaining unsolved problems, most
are synthetic. A manual review of a random sample of 20
problems reveals that 19 are incorrectly labeled. Thus, we
conclude that the unsolved problems are of low quality and
stop the self-evolution at round 4.

4 Evaluation

4.1 Setup

Evaluation Datasets. We evaluate rStar-Math on diverse
mathematical benchmarks. In addition to the widely-used
GSMSK (Cobbe et al., 2021), we include challenging
benchmarks from multiple domains: (i) competition and
Olympiad-level benchmarks, such as MATH-500 (Lightman
et al., 2023), AIME 2024 (AI-MO, 2024a), AMC 2023 (Al-
MO, 2024b) and Olympiad Bench (He et al., 2024). Specifi-
cally, AIME is the exams designed to challenge the bright-
est high school math students in America; (ii) college-level
math problems from College Math (Tang et al., 2024) and
(iii) out-of-domain math benchmark: GaoKao (Chinese Col-
lege Entrance Exam) En 2023 (Liao et al., 2024).

Base Models and Setup. We use SLMs of differ-
ent sizes as the base policy models: Qwen2.5-Math-
1.5B (Qwen, 2024b), Phi3-mini-Instruct (3B) (Abdin et al.,
2024), Qwen2-Math-7B (Qwen, 2024a) and Qwen2.5-Math-
7B (Qwen, 2024c).Due to limited GPU resources, we per-
formed 4 rounds of self-evolution exclusively on Qwen2.5-
Math-7B, yielding 4 evolved policy SLMs (Table 9) and 4
PPMs (Table 10). For the other 3 policy models, we fine-
tune them using step-by-step verified trajectories generated
from Qwen2.5-Math-7B’s 4th round. PPM from this round
is then used as the reward model for the 3 policy SLMs.

Baselines. We compare against three strong baselines repre-
senting both System 1 and System 2 approaches: (i) Fron-

tier LLMs, including GPT-40, the latest Claude, OpenAl
ol-preview and ol-mini. We measure their accuracy on
AMC 2023, Olympiad Bench, College Math, Gaokao and
GSMSK, with accuracy numbers for other benchmarks are
taken from public technical reports (Team, 2024). (ii) Open-
sourced superior reasoning models; (iii) Both System 1 and
System 2 performance of the base models trained from the
original models teams, including Instruct versions (e.g.,
Qwen2.5-Math-7B-Instruct) and Best-of-N (e.g., Qwen2.5-
Math-72B-Instruct+Qwen2.5-Math-RM-72B). Notably, the
reward model used for the three Qwen base models is a 72B
ORM, significantly larger than our 7B PPM.

Evaluation Metric. We report Pass@1 accuracy for all
baselines. For System 2 baselines, we use default evaluation
settings, such as default thinking time for ol-mini and o1-
preview. For Qwen models with Best-of-N, we re-evaluate
MATH-500 and AIME/AMC accuracy; other benchmarks
results are from their technical reports. For a fair compari-
son, rStar-Math run MCTS to generate the same number of
solutions as Qwen. Specifically, we generate 16 trajectories
for AIME/AMC and 8 for other benchmarks, using PPM to
select the best solution. We also report performance with in-
creased test-time computation using 64 trajectories, denoted
as rStar-Math%4,

4.2 Main Results

Results on diverse challenging math benchmarks. Ta-
ble 3 shows the results of rStar-Math with comparing to
state-of-the-art reasoning models. We highlight two key
observations: (1) rStar-Math significantly improves SLMs
math reasoning capabilities, achieving performance compa-
rable to or surpassing OpenAl ol with substantially smaller
model size (1.5B-7B). For example, Qwen2.5-Math-7B,
originally at 58.8% accuracy on MATH, improved dramati-
cally to 90.0% with rStar-Math, outperforming ol-preview
and Claude 3.5 Sonnet while matching ol-mini. On the
College Math benchmark, rStar-Math exceeds ol-mini by
2.7%. On AIME 2024, rStar-Math scored 53.3%, rank-
ing just below ol-mini, with the 7B model solving 8/15
problems in both AIME I and II, placing in the top 20% of
the brightest high school math students. Notably, 8 of the
unsolved problems were geometry-based, requiring visual
understanding, a capability rStar-Math currently does not
support. (2) Despite using smaller policy models (1.5B-
7B) and reward models (7B), rStar-Math significantly out-
performs state-of-the-art System 2 baselines. Compared
to Qwen Best-of-N baselines, which use the same base
models (Qwen2-Math-7B, Qwen2.5-Math-1.5B/7B) but a
10x larger reward model (Qwen2.5-Math-RM-72B), rStar-
Math consistently improves the reasoning accuracy of all
base models to state-of-the-art levels. Even against Best-
of-N with a 10x larger Qwen2.5-Math-72B-Instruct policy
model, rStar-Math surpasses it on all benchmarks except
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Table 3. The results of rStar-Math and other frontier LLMs on the most challenging math benchmarks. rStar-Math reports Pass@1
accuracy when searching 16 trajectories for AIME/AMC and 8 for others. rStar-Math®® shows results when sampling 64 trajectories.

Competition and College Level [010)))
Olympiad
Model Method MATH AIME 2024 AMC 2023 Bench College Math GSM8K  GaokaoEn 2023
Frontier LLMs
GPT-40 System 1 76.6 9.3 475 433 48.5 92.9 67.5
Claude3.5-Sonnet System 1 78.3 16.0 - - - 96.4 -
GPT-o1-preview - 85.5 44.6 90.0 - - - -
GPT-01-mini - 90.0 56.7 95.0 65.3 57.8 94.8 78.4
Open-Sourced Reasoning LLMs
DeepSeek-Coder-V2-Instruct System 1 75.3 133 57.5 37.6 46.2 94.9 64.7
NuminaMath-72B-CoT System 1 64.0 33 70.0 32.6 39.7 90.8 58.4
LLaMA3.1-70B-Instruct System 1 65.4 233 50.0 27.7 425 94.1 54.0
Qwen2.5-Math-72B-Instruct System 1 85.6 30.0 70.0 49.0 49.5 95.9 71.9
Qwen2.5-Math-72B-Instruct+72B ORM  System2  85.8 36.7 72.5 54.5 50.6 96.4 76.9
General Base Model: Phi3-mini-Instruct (3.8B)
Phi3-mini-Instruct (base model) System 1 414 3.33 7.5 12.3 33.1 85.7 37.1
rStar-Math (3.8B SLM+7B PPM) System2  85.4 40.0 71.5 59.3 58.0 94.5 77.1
rStar-Math®* (3.8B SLM+7B PPM) System 2  86.4 43.3 80.0 60.3 59.1 94.7 71.7
Math-Specialized Base Model: Qwen2.5-Math-1.5B
Qwen2.5-Math-1.5B (base model) System 1 51.2 0.0 22.5 16.7 38.4 74.6 46.5
Qwen2.5-Math-1.5B-Instruct System 1 60.0 10.0 60.0 38.1 47.7 84.8 65.5
Qwen2.5-Math-1.5B-Instruct+72B ORM  System2  83.4 20.0 72.5 47.3 50.2 94.1 73.0
rStar-Math (1.5B SLM+7B PPM) System2  87.8 46.7 80.0 63.5 59.0 94.3 71.7
rStar-Math%! (1.5B SLM+7B PPM) System2  88.6 46.7 85.0 64.6 593 94.8 79.5
Math-Specialized Base Model: Qwen2-Math-7B
Qwen2-Math-7B (base model) System 1 53.4 33 25.0 17.3 39.4 80.4 473
Qwen2-Math-7B-Instruct System 1 73.2 13.3 62.5 38.2 459 89.9 62.1
Qwen2-Math-7B-Instruct+72B ORM System2  83.4 233 62.5 47.6 479 95.1 71.9
rStar-Math (7B SLM+7B PPM) System 2  88.2 43.3 80.0 63.1 584 94.6 78.2
rStar-Math%* (7B SLM+7B PPM) System2  88.6 46.7 85.0 63.4 59.3 94.8 79.2
Math-Specialized Base Model: Qwen2.5-Math-7B
Qwen2.5-Math-7B (base model) System 1 58.8 0.0 22.5 21.8 41.6 91.6 51.7
Qwen2.5-Math-7B-Instruct System 1 82.6 6.0 62.5 41.6 46.8 95.2 66.8
Qwen2.5-Math-7B-Instruct+72B ORM System 2 88.4 26.7 75.0 49.9 49.6 979 75.1
rStar-Math (7B SLM+7B PPM) System 2 89.4 50.0 87.5 65.3 59.0 95.0 80.5
rStar-Math%! (7B SLM+7B PPM) System 2  90.0 53.3 87.5 65.6 60.5 95.2 813
o1-preview —&— rStar-Math (7B SLM+7B PPM) Qwen2.5 Best-of-N (72B LLM+72B ORM)
—== 0o1-mini Qwen2.5 Best-of-N (7B SLM+72B ORM)
MATH AIME 2024 Olympiad Bench College Math

Accuracy (%)

17 2 4 8 16 32 64 1 2 4 8 16 32 64 17 2 4 8 16 32 64 1 2 4 8 16 32 o4
#Sampled Solutions #Sampled Solutions #Sampled Solutions #Sampled Solutions

Figure 3. Reasoning performance under scaling up the test-time compute.
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GSMEK, using the same number of sampled solutions.

Scaling up test-time computation. By increasing test-
time computation, rStar-Math can explore more trajectories,
potentially improving performance. In Fig. 3, we show
the impact of test-time compute scaling by comparing the
accuracy of the official Qwen Best-of-N across different
numbers of sampled trajectories on four challenging math
benchmarks. Sampling only one trajectory corresponds to
the policy LLM’s Pass@]1 accuracy, indicating a fallback
to System 1 reasoning. We highlight two key observations:
(1) With only 4 trajectories, rStar-Math significantly out-
performs Best-of-N baselines, exceeding ol-preview and
approaching ol-mini, demonstrating its effectiveness. (2)
Scaling test-time compute improves reasoning accuracy
across all benchmarks, though with varying trends. On
Math, AIME, and Olympiad Bench, rStar-Math shows sat-
uration or slow improvement at 64 trajectories, while on
College Math, performance continues to improve steadily.

4.3 Ablation Study and Analysis

Table 4. The continuously improved math reasoning capabilities
via rStar-Math self-evolved deep thinking. Starting from round 2,
the 7B base model powered by rStar-Math surpasses GPT-4o0.

Olympiad College
Bench  Math

GPT-40 76.6 93 475 433 48.5 92.9 67.5

Base 7B model 588 00 225 21.8 41.6 91.6 51.7
rStar-Math Round 1 752 10.0 57.5 35.7 454 90.9 60.3
rStar-Math Round 2 86.6  43.3  75.0 59.4 55.6 94.0 76.4
rStar-Math Round 3 87.0  46.7 80.0 61.6 56.5 94.2 77.1
rStar-Math Round 4 894  50.0 87.5 65.3 59.0 95.0 80.5

Round# MATH AIME AMC GSM8K Gaokao

The effectiveness of self-evolution. The impressive results
in Table 3 are achieved after 4 rounds of rStar-Math self-
evolved deep thinking. Table 4 details the performance
across rounds, showing continuous accuracy improvements.
In round 1, the main improvement comes from applying SFT
to the base model. Round 2 brings a significant boost with
the application of a stronger PPM in MCTS, which unlocks
the full potential of System 2 deep reasoning. Notably, start-
ing from round 2, rStar-Math outperforms GPT-40. Rounds
3 and 4 show further improvements, driven by stronger
System 2 reasoning through better policy SLMs and PPMs.

The effectiveness of step-by-step verified reasoning tra-
jectory. rStar-Math generates step-by-step verified reason-
ing trajectories, which eliminate error intermediate steps and
further expand training set with more challenging problems.
To evaluate its effectiveness, we use the data generated from
round 4 as SFT training data and compare it against three
strong baselines: (i) GPT-distillation, which includes open-
sourced CoT solutions synthesized using GPT-4, such as
MetaMath (Yu et al., 2023b), NuminaMath-CoT (Jia LI &
Polu, 2024b); (ii) Random sampling from self-generation,
which use the same policy model (i.e., policy SLM-r3) to
randomly generate trajectories; (iii) Rejection sampling,

where 32 trajectories are randomly sampled from the policy
model, with high-quality solutions ranked by our trained
ORM (appendix A.2). For fairness, we select two correct
trajectories for each math problem in baseline (ii) and (iii).
All SFT experiments use the same training recipe.

Table 5. Ablation study on the effectiveness of our step-by-step ver-
ified reasoning trajectories as the SFT dataset. We report the SFT
accuracy of Qwen2.5-Math-7B fine-tuned with different datasets.

Olympiad College

Dataset MATH AIME Bench Math

GPT-40 - 76.6 9.3 433 48.5
GPT4-distillation MetaMath 552 333 19.1 39.2
(Open-sourced) NuminaMath-CoT 69.6 10.0 37.2 43.4
Self- i Random sample 724 10.0 41.0 48.0
ei-generation Rejection sampling 734 133 44.7 50.8

by policy SLM-r3 Step-by-step verified (ours) 78.4  26.7 47.1 52.5

Table 5 shows the math reasoning accuracy of Qwen2.5-
Math-7B fine-tuned on different datasets. We highlight two
observations: (i) Fine-tuning with our step-by-step veri-
fied trajectories significantly outperforms all other baselines.
This is primarily due to our PPM-augmented MCTS for
code-augmented CoT synthesis, which provides denser veri-
fication during math solution generation. It proves more ef-
fective than both random sampling, which lacks verification,
and rejection sampling, where ORM provides only sparse
verification. (ii) Even randomly sampled code-augmented
CoT solutions from our SLM yields comparable or bet-
ter performance than GPT-4 synthesized NuminaMath and
MetaMath datasets. This indicates that our policy SLMs, af-
ter rounds of self-evolution, can generate high-quality math
solutions. These results demonstrates the huge potential of
our method to self-generate higher-quality reasoning data
without relying on advanced LLM distillation.

The effectiveness of PPM. We train both a strong ORM
and Q-value score-based PRM (PQM) for comparison. To
ensure a fair evaluation, we use the highest-quality train-
ing data: the step-by-step verified trajectories generated in
round 4, with selected math problems matching those used
for PPM training. Similar to PPM, we use step-level Q-
values as to select positive and negative trajectories for each
math problem. The ORM is trained using a pairwise ranking
loss (Ouyang et al., 2022), while the PQM follows (Chen
et al., 2024; Zhang et al., 2024b) to use Q-values as re-
ward labels and optimize with MSE loss. Detailed training
settings are provided in Appendix A.2.

Table 6. Ablation study on the reward model. Process reward
models (PQM and PPM) outperform ORM, with PPM pushing the
frontier of math reasoning capabilities.

RM Inference MATH AIME Olympiad Bench  College Math
ol-mini - 90.0 56.7 65.3 55.6
ORM  Best-of-N 82.6 26.7 55.1 55.5
PQM MCTS 88.2 46.7 62.9 57.6
PPM MCTS 89.4 50.0 65.3 59.0
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Table 6 compares the performance of ORM, PQM, and PPM
for System 2 reasoning using our final round policy model.
ORM provides reward signals only at the end of problem
solving, so we use the Best-of-N, while PQM and PPM
leverage MCTS-driven search. As shown in Table 6, both
PQM and PPM outperform ORM by providing denser step-
level reward signals, leading to higher accuracy on complex
math reasoning tasks. However, PQM struggles on more
challenging benchmarks, such as MATH and Olympiad
Bench, due to the inherent imprecision of Q-values. In con-
trast, PPM constructs step-level preference data for training,
enabling our 7B policy model to achieve comparable or
superior performance to ol-mini across all benchmarks.

5 Conclusion

In this work, we present rStar-Math, a self-evolved Sys-
tem 2 deep thinking approach that significantly boosts the
math reasoning capabilities of small LLMs, achieving state-
of-the-art OpenAl ol-level performance. Extensive exper-
iments across four different-sized SLMs and challenging
math benchmarks demonstrate the superiority of rStar-Math,
with achieving leading results while outperforming exist-
ing math reasoning LLMs and Best-of-N baselines. We
observe that there can be further improvements with more
challenging math problems, which we leave as future work.

Impact Statement

This paper presents work whose goal is to advance the field
of deep learning. While our research focuses on enhancing
the mathematical reasoning capabilities of large language
models, we acknowledge potential societal implications
such as applications in education and automated problem-
solving. There are many broader consequences of our work,
none of which we feel must be specifically highlighted here.
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A Appendix

A.1 Findings and Discussions

Question: Given positive integers $x$ and $y$ such that $2x"2y"3 + 4y"3 = 149 + 3x"28$,
what is the value of $x + y$?

| (<code> )
1 | from sympy import symbols, Eq, solve
— | | # Define the variables x and y
1 = L2
o X, y = symbols('x y")
i : \<end_of_step> . PPM score: -0.08
c ! — : N
<8 : # Define the equation
< egﬁ;‘“g’{‘ ;ESSAXMZA‘/“?’ * AAZ;F;E 149+ 3:;;129) Intrinsic self-reflection:
[} score: -U. . . .
@\ 3 J Thinking outside the box,
1 (. |
8 | | # Solve the equation for y in terms of x find an easier solution!
M Szlltlg'Ugf:;sljvf(equamn' y) PPM ‘e: -0.348 /(Since we need positive integers, we need to find the \
. F score. 9.9 values of x and y that satisfy the equation
# We will check for small integer values of x and y
for x_val in range(1, 10)
| fory_ valinrange(l, 10)
if 2*x_val**2*y_val**3 + 4*y val**3 == 149 + 3*x_val**2
print(\"x = {x_val}, y = {y_val}\")
: " rint(f\"x + {x_val +y_val}\")
# Now print the final answer RInt y = =
Grlt(soﬁuuon)\n \ break PRV scores 0 620/
<end_of_code> PPM score: -0.517 <gnd_of_step> v
<output> /# Now print the final answer N\

[(B*X**2/(2*x**2 + 4) + 149/(2*X**2 + 4))**(1/3), ~(3*X**2/(2*x*+2 + 4) +
149/(2x**2 + A))**(1/3)/2 - Sqri(3)HI*(3*X**2/(2*x**2 + 4) + 149/(2*x**2 +
A))H(L/3)/2, ~(3*X**2/(2*x**2 + 4) + 149/(2*x**2 + 4))*(1/3)/2 +

# The loop will find the first valid pair (x, y) and print x +y
<end_of_code>

<output>
sSqr(3)*1*(3*x**2/(2*x**2 + 4) + 149/(2*x**2 + 4))**(1/3)/2] x=3,y=2
kendfofﬁoutpul:> X+y=5
Y=t PPM score: 0.698
‘ kend of output> /
s v
<answer> Wrong <answer>
The value of \\(x + y\\) is \\boxed{8} From the result, we can see that the value of x + y is
<end_of_answer> score: -0.526 =
(send_of_ PPM score: -0.529 Momealy Correct| PPM score: 0.835
\<end_of_answer> )

Figure 4. An example of intrinsic self-reflection during rStar-Math deep thinking.

The emergence of intrinsic self-reflection capability. A key breakthrough in OpenAl ol is its intrinsic self-reflection
capability. When the model makes an error, it recognizes the mistake and self-correct with a correct answer (Noam Brown
& Lightman, 2024). Yet it has consistently been found to be largely ineffective in open-sourced LLMs. Thus, the
community has actively explored various approaches, including self-correction (Huang et al., 2023; Kumar et al., 2024),
self-reflection (Renze & Guven, 2024; Shinn et al., 2024), to explicitly train or prompt LLMs to develop such capability.

In our experiments, we unexpectedly observe that our MCTS-driven deep thinking exhibits self-reflection during problem-
solving. As shown in Fig. 4, the model initially formalizes an equation using SymPy in the first three steps, which would
lead to an incorrect answer (left branch). Interestingly, in the fourth step (right branch), the policy model recognizes the low
quality of its earlier steps and refrains from continuing along the initial problem-solving path. Instead, it backtracks and
resolves the problem using a new, simpler approach, ultimately arriving at the correct answer. An additional example of
self-correction is provided in AppendixA.3. Notably, no self-reflection training data or prompt was included, suggesting that
advanced System 2 reasoning can foster intrinsic self-reflection.

PPM shapes the reasoning boundary in System 2 deep thinking. Both the policy and reward models are crucial for System
2 deep reasoning. Our experiments show that different policy models achieve similar performance in System 2 reasoning
(see Appendix A.2 ), with the PPM largely determines the upper performance limit. Fig. 5 summarizes the accuracy of policy
models of different sizes and the accuracy achieved after applying reward models. We conclude that, despite differences in
Pass@1 accuracy due to variations in training methods, data, and model size, the reward model is the key factor in System 2
reasoning. For instance, although the SFT accuracy of rStar-Math-7B is lower than Qwen2.5-Math-72B-Instruct, pairing it
with our 7B PPM allows rStar-Math to outperform the 72B policy model with Qwen 72B ORM. Moreover, despite varying
Pass@1 accuracy across our three policy SLM sizes, the final reasoning accuracy converges after applying the PPM.
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[ rStar Policy model [ Qwen 72B Policy model
[ rStar 7B PPM improvement 1 Qwen 72B ORM improvement
AIME 2024 AMC 2023 Olympiad Bench College Math
rStar-Math (Qwen7B) 525 59
rStar-Math (Qwen1.5B)
50.1 59
rStar-Math (Phi3.8B)
Qwen2.5-Math-72B A RE 50-6
T T T T T T T T
0 50 0 20 40 0 50 0 25 50 0 25 50
Pass@1 accuracy (%) Pass@1 accuracy (%) Pass@1 accuracy (%) Pass@1 accuracy (%) Pass@1 accuracy (%)

Figure 5. Pass@1 accuracy of policy models and their accuracy after applying System 2 reasoning with various reward models, shows that
reward models primarily determine the final performance.

PPM spots theorem-application steps. When solving challenging math problems, identifying and applying relevant
theorems or key conclusions often form the cornerstone of successful problem-solving (Xin et al., 2024). In our experiments,
we find that during rStar-Math problem-solving, our PPM effectively identifies critical theorem-application intermediate
steps within policy model’s deep thinking process. These steps are predicted with high reward scores, guiding the policy
model to the correct solution. Appendix A.3 provides examples where the PPM successfully identifies key theorems such
as Fermat’s little theorem (Weisstein, a), Vieta’s formulas (Weisstein, b), the AM-GM inequality (amg), the Pythagorean
theorem (pyt), and the Shoelace Theorem (sho), etc.

Generalization to theorem proving. rStar-Math is generalizable to more challenging math tasks, such as theorem proving,
though its current focus is on word problems due to dataset limitations. Nonetheless, rStar-Math demonstrates the ability to
prove mathematical statements. As shown in Appendix A.3, it successfully proves an Olympiad-level problem involving
Fermat’s Little Theorem, providing a step-by-step correct proof through its deep reasoning process. This achievement is
primarily due to the policy model’s strong reasoning capabilities, as the current PPM, which lacks step-level proof training,
cannot yet reliably evaluate intermediate steps. Future work will focus on creating step-level proof datasets to enable the
PPM to better solve theorem proving tasks.

A.2 Additional Experiments and Details

Data Generation Details. As detailed in Sec. 3.3, each round starts by self-generating step-by-step verified trajectories for
747k math word problems. The maximum tree depth d is set to 16, with 16 MCTS rollouts conducted per problem by default.
At each step, we allow to explore § candidate nodes, and the constant c in Eq. 1 is set to 2 to promote greater exploration. In
the bootstrap round, due to the large size of the initial policy model (236B), we used smaller parameters: 8 rollouts and 5
candidate nodes per step. To improve the accuracy of solving challenging problems in round 4, we increase the number of
candidate nodes to 16 and conduct 2 MCTS tree expansions per problem using different random seeds. Detailed prompts are
available in Appendix A.4.

Training Details. In each round, we collect step-by-step verified trajectories to fine-tune the policy LLM and train the
PPM. To reduce noise in synthetic math problems (e.g., incorrect ground-truth answers labeled by GPT-4), we remove
synthetic problems with trajectories achieving less than 50% accuracy. Based on our extensive experiments, the policy LLM
is fine-tuned from the initial base model in each round, rather than training incrementally on the model from the previous
round. All policy SLMs are trained for 2 epochs with a sequence length of 4096 tokens and a batch size of 128. We use
AdamW optimizer with a linear learning rate scheduler, setting the initial learning rate to 7e-6 for Qwen models, and a
cosine scheduler with an initial learning rate of 5e-6 for Phi3-mini-Instruct. The PPM is trained for 1 epoch with a batch
size of 512 and an initial learning rate of 7e-6.

Table 7. Training cost per round

GPUs Training time

Policy 8xMI300X 20 hours
PPM 8xMI300X 15 hours
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Training PPM. The PPM is initialized from the fine-tuned policy model, with its next-token prediction head replaced by a
scalar-value head consisting of a linear layer and a tanh function to constrain outputs to the range [-1, 1]. We filter out math
problems where all solution trajectories are fully correct or incorrect. For problems with mixed outcomes, we select two
positive and two negative examples for each step based on Q-values, which are used as preference pairs for training data.

Training the ORM and PQM. The Outcome Reward Model (ORM) and the Q-value-based Process Reward Model (PQM)
share the same model architecture and training parameters with and our PPM. For ORM training, we filter trajectories from
math problems containing both correct and incorrect solutions. Specifically, the two trajectories with the highest average
Q-values are selected as positive examples, while the two with the lowest are chosen as negative examples. Following
Qwen2.5-Math (Yang et al., 2024), we adopt the pairwise ranking loss (Ouyang et al., 2022) to optimize the ORM. To train the
PQM, we follow (Chen et al., 2024) to use step-level Q-values as reward labels. Let x = x5 51 B s2P... D sq be the trajectory,
with annotated Q-values Q = (Q(s1),Q(s1), ..., Q(sq)) and predicted Q-values Q' = (Q'(s1), Q' (s1),...,Q'(s4)) for
each step. To stabilize PQM training, we treat each trajectory as a single training sample and predict Q-values for all steps
simultaneously, rather than splitting it into individual per-step samples. Specifically, to predict the Q-value Q’(s;) for step
si, PQM takes the trajectory from the question up to step s; (i.e., t B s1 B s2 D ... D s;) as input and outputs a value between
-1 and 1. We use a mean squared error (MSE) loss for PQM training:

Eprm(x) = ”Q - Q/”z (5)

Table 8. Inference costs of rStar-Math. We show the average number of generated tokens required to generate a trajectory for a given
question.

MATH AIME 2024 AMC 2023 Olympiad Bench  College Math  GSM8K  GaokaoEn 2023
5453 15693 14544 7889 4503 3299 6375

Table 9. Pass@1 accuracy of the resulting policy SLM in each round, showing continuous improvement until surpassing the bootstrap
model.

Round# MATH AIME 2024 AMC 2023 Olympiad Bench College Math GSM8K GaokaoEn 2023
DeepSeek-Coder-V2-Instruct

(bootstrap model) 75.3 13.3 57.5 37.6 46.2 94.9 64.7

Base (Qwen2.5-Math-7B) 58.8 0.0 22.5 21.8 41.6 91.6 51.7
~ policy SLMrl 696 33 300 347 445 884 574

policy SLM-12 73.6 10.0 35.0 39.0 45.7 89.1 59.7

policy SLM-r3 75.8 16.7 45.0 44.1 49.6 89.3 62.8

policy SLM-r4 78.4 26.7 47.5 47.1 52.5 89.7 65.7

Table 10. The quality of PPM consistently improves across rounds. The policy model has been fixed with policy SLM-r1 for a fair
comparison.

Round# MATH AIME 2024 AMC 2023 Olympiad Bench  College Math GSM8K  GaokaoEn 2023

PPM-rl 75.2 10.0 57.5 35.7 45.4 90.9 60.3
PPM-12 84.1 26.7 75.0 52.7 54.2 93.3 73.0
PPM-r3 85.2 333 71.5 59.5 55.6 93.9 76.6
PPM-r4 87.0 43.3 77.5 61.5 56.8 94.2 77.8

Inference Setting. In our evaluation, we run multiple MCTS to generate candidate solution trajectories. For each problem,
we generate 32 candidate nodes at each step and use the PPM to score each node. Since the PPM is effective at providing
step-level quality evaluations, we did not perform multiple MCTS rollouts to update per-step Q-values. After each MCTS
finsh, we select the trajectory with highest PPM score as the final answer. Table 8 presents the average number of tokens
generated to produce a trajectory in MCTS.

Self-evolution Inference Costs. In the initial bootstrap round, we use DeepSeek-Coder-v2-Instruct (236B) as the policy
model, using 10 nodes of 8x80GB H100 GPUs with 8 MCTS rollouts. This required approximately two weeks to finish the
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data generation. For rounds 2—4, using our fine-tuned 7B SLM as the policy model, data generation was performed on 15
nodes of 4x40GB A100 GPUs, with each round completed in three days. In the final round, to include more challenging
problems, we increased the number of MCTS rollouts to 64, extending the data generation time to one week.

Table 11. Pass@1 accuracy of our fine-tuned policy models for Phi3-mini, Qwen2.5-Math-1.5B, Qwen2-Math-7B and Qwen2.5-Math-7B.

Model MATH AIME 2024 AMC 2023 Olympiad Bench  College Math GSMS8K  GaokaoEn 2023
General Base Model: Phi3-mini-Instruct (3.8B)
Phi3-mini-Instruct 41.4 3.33 7.5 12.3 33.1 85.7 37.1
Our policy model 68.0 10.0 37.5 36.6 48.7 87.9 53.2
Math-Specialized Base Model: Qwen2.5-Math-1.5B
Qwen2.5-Math-1.5B 51.2 0.0 22.5 16.7 38.4 74.6 46.5
Qwen2.5-Math-1.5B-Instruct 60.0 10.0 60.0 38.1 47.7 84.8 65.5
Our policy model 74.8 13.3 47.5 42.5 50.1 83.1 58.7
Math-Specialized Base Model: Qwen2-Math-7B
Qwen2-Math-7B 534 33 25.0 17.3 39.4 80.4 473
Qwen2-Math-7B-Instruct 73.2 13.3 62.5 38.2 45.9 89.9 62.1
Our policy model 73.8 16.7 45.0 43.9 52.0 88.3 65.2
Math-Specialized Base Model: Qwen2.5-Math-7B
Qwen2.5-Math-7B 58.8 0.0 22.5 21.8 41.6 91.6 51.7
Qwen2.5-Math-7B-Instruct 82.6 6.0 62.5 41.6 46.8 95.2 66.8
Our policy model 78.4 26.7 47.5 47.1 52.5 89.7 65.7
—8— rStar-Qwen2.5-Math-7B —0— Qwen2.5-Math-7B-Instruct
AIME MATH Olympiad Bench College Math
95 - 80 1
65 -
60 -
70 -
90 A 60 -
40 A
60 - 55 4
85 A
201 50 - 50 4
2 4 8 16 32 64 2 4 8 16 32 o©4 2 4 8 16 32 o4 2 4 8 16 32 64
#Sampled solutions #Sampled solutions #Sampled solutions #Sampled solutions

Figure 6. Pass@N accuracy with random sampling from different policy models. Compared to the official Qwen instruct version, our
policy model exhibits a stronger ability to sample correct solutions.

Pass@N. Table 11 compares the math reasoning performance of our policy models with the instruct versions developed
by the original model team. Our policy models do not consistently outperform the instruct versions. For example, on
the Qwen2.5-Math-7B base model, Qwen2.5-Math-7B-Instruct achieves 4.2% higher accuracy on the MATH benchmark.
However, the pass@1 accuracy alone does not fully reflect the reasoning capabilities for the policy model in System 2 deep
thinking paradigm.To provide a more comprehensive evaluation, Fig.6 and Fig.7 present the pass@N accuracy. In this
metric, the policy model generates N solutions under two settings: random sampling (Fig.6) and PPM-augmented MCTS
deep thinking (Fig.7). A problem is considered solved if one solution is correct. As shown in Figure 6, our policy model
performs similarly to Qwen2.5-Math-7B-Instruct on the MATH benchmark’s pass@64 and significantly outperforms it
on others. This suggests that despite initial pass@1 accuracy differences, our policy model can generate correct solutions
through multiple samples. Figure 7 further compares the pass@N accuracy of our four policy models (different sizes) after
MCTS deep thinking under the same PPM guidance. We can observe that after generating 64 trajectories, the pass@N
accuracy of different policy models becomes comparable.

Ablation on the MCTS search parameters. We perform additional analysis on the number of candidate nodes per step in
MCTS. As shown in Table 12, increasing the number of candidate nodes generally improves accuracy, but beyond 32 nodes,
performance saturates.
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—@— rStar-Qwen2.5-Math-7B —0— rStar-Qwen2.5-Math-1.5B
rStar-Qwen2-Math-7B rStar-Phi3-mini
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Figure 7. Pass@N accuracy with PPM-augmented MCTS. Under the same PPM guidance, the four policy models of varying sizes
demonstrate convergent capabilities in sampling correct solutions.

Table 12. Ablation study on the number of candidate nodes in MCTS.

MATH-500 AIME 2024
8 rollouts 64 rollouts 8 rollouts 64 rollouts
node=4 87.2 88.8 33.3 36.7
node=8 87.2 88.8 333 433
node=16 88.4 89.0 36.7 50.0
node=32 89.4 89.0 50.0 53.3
node=40 89.4 90.0 46.7 53.3
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A.3 Examples of Reasoning Trajectories

Self-correction Example

Question: The coordinates of a parallelogram are (5, 3), (6, 8), (7, 4) and (z,y) and > 7. What is the value of z + y

Our trajectory:

< code >

# Import necessary libraries
import numpy as np

< end_of _step >

Define the coordinates of the parallelogram

np.array ([5, 3])
np.array ([6, 8])
np.array ([7, 4])

< end_of _step >

#
A
B
C

# Calculate the vector differences to find the missing coordinate D

# In a parallelogram, the vector difference between two adjacent sides is equal to the vector difference between the other two adjacent sides
# We can use the formula: D = A + (C - B)

D=A+ (C-B)

< end_of _step >

# Since the coordinates provided are (5, 3), (6, 8), (7, 4) and (X, y), we can infer that the vector from B to C should be the same as the
vector from A to the missing point (X, y)
# This means: (x - 5,y - 3) = (1, -4) because the vector from B to Cis (7 - 6,4 - 8) = (1, -4)

# Solve for x and y
x=5+1
y =3+ (=4

< end-of _step >

# Verify that the point (X, y) exists and satisfies the condition x ; 7
# Since x = 6 is not greater than 7, we need to use the correct formula that maintains the parallelogram property and x ¢, 7

# Correcting the formula to find the other possible D [Self-correction!]
D=C+ (B -A)

< end-of _step >

# Solve for x and y again
x =7+ (6 - 5)
y =4+ (8 - 3)

Zend-of _step >

# Verify that the point (x, y) exists and satisfies the condition x ; 7
# Since x = 8 is greater than 7, which satisfies the condition given, we can now find the sum of x and y
x_plus_.y = x +y

—

< end-of _step >

# Now print the final answer

print (x_plus_y)

# This should print the value of x +y
< end_of_code >

< output >17< end-of _output >

< answer >The value of x +y is <i end_of _answer >
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Math statement proof using Fermat’s little theorem

Question: If ( pt+a ) is a perfect square for some value of ( t ), then ( apT_l - 1) 1is divisible by ( p ) (where ( p ) is a prime number).

Our trajectory for proving:

< code >

# Step 1: Define the variables

from sympy import symbols, isprime, sqrt, mod_inverse
# Define the variables

p, t, a = symbols('p t a')

< end_of _step >

# Step 2: Assume p*t + a is a perfect square

# This means there exists an integer k such that p*t + a = k?
# Rearrange to find a in terms of p, t, and k

#a=k?-pt

< end_of _step >

# Step 3: Use Fermat’s Little Theorem
# Fermat’s Little Theorem states that if p is a prime and a is an integer not divisible by p,

then a(P=1) = 1 (mod P)
# We need to show that a((P=1)/2) _ | is divisible by p
< end-of _step >

# Step 4: Substitute a = k? - p*t into Fermat’s Little Theorem
#al(P=1)/2) = (k2 - p*t)((pfl)/2) (mod p)

# Since p*t is divisible by p, (k2 - p*t)((?=1)/2) = k(»=1) (mod p)
# By Fermat’s Little Theorem, k(*—1) =1 (mod p)

< end-of _step >

# Step 5: Therefore, a{(P=1)/2) = | (mod p)
# This implies a((P=1)/2) _ 1 = 0 (mod p)
# Hence, a{(P=1)/2) _ | is divisible by p

< end_of _step >

# Now print the final answer

print("The expression a((P=1)/2) _ | is divisible by p.”)
< end-of_code >

< output >

The expression a((P=1)/2) _ 1 is divisible by p.

The statement is true.

< end-of _output >
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Problem-solving with application of the Vieta’s formulas and the AM-GM inequality

Question: Let a be a positive real number such that all the roots of

2 +ar’+ar+1=0
are real. Find the smallest possible value of a.

Our trajectory for proving:
< code >

# Step 1: Define the polynomial equation
from sympy import symbols, solve, Eq

# Define the variable and the parameter
X, a = symbols(’x a’)
< end-of_step >[PPM Score: -0.46430]

# Step 2: Define the polynomial equation
polynomial = x**3 + a*x**2 + a*x + 1
< end_of _step >[PPM Score: 0.53937]

# Step 3: Use Vieta’s formulas to relate the coefficients to the roots

# Since the polynomial is monic (leading coefficient is 1), the sum of the roots (taken one at a time) is -a
# The sum of the products of the roots taken two at a time is a

# The product of the roots is -1

# Since all roots are real, we can denote them as rl, 2, r3

# From Vieta’s formulas:

#rl+2+r3=-a

#r1*12 + 12*13 + r3*rl = a

#r1*12%3 = -1

< end_of _step > [PPM Score: 0.9989]

# Step 4: Use the AM-GM inequality to find the minimum value of a
#By AM-GM, (r1#12 + r2*r3 + r3*rl) / 3 >= (r1#r2%13)(2/3)

# Substituting the known values:

#a/3>=(-1)2/3)

#a/3>=1

#a>=3

< end-of_step > [PPM Score: 0.9999]

# Step 5: Verify if a = 3 is achievable

#Ifa=3,thenrl +r2 +r3 =-3 and r1*r2 + r2*r3 + r3*rl =3

# We need to check if there exist real roots that satisfy these conditions

# Consider the case where rl =12 =r3 =-1

# Thenrl + 12 +r3 =-3 and r1*r2 + r2*r3 + r3%*rl = 3, and r1*r2*r3 = -1
# Thus, a = 3 is achievable with real roots

< end_of _step > [PPM Score: 1.0]

# Step 6: Print the final answer

print(3)

< end_of _code >

< output >3< end_of output >

< answer >The smallest possible value of a is .

< end_of _answer >
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Problem-solving with application the Shoelace Theorem

Question: In the diagram, D and E are the midpoints of AB and BC respectively. Determine the area of quadrilateral DBEF'. [asy]
size(180); defaultpen(linewidth(.7pt)+fontsize(10pt));
pair A,B,C,D, E, F;

A=(0,6);

B=(0,0);

C=(8,0);

D=(0,3);

E=(4,0);

F=(8/3,2);

draw(E-A-C-D);

draw((-1,0)—(10,0), EndArrow);

draw((0,-1)—(0,8), EndArrow);

label(”A(0,6)”, A, W);

label(”B(0,0)”, B, SW);

label(”C(8,0)”, C, S);

label(”D”, D, W);

label("E”, E, S);

label("F”, F, SW);

label(’z”, (10,0), dir(0));

label(”’y”, (0,8), dir(90)); [/asy]

Our trajectory for proving:
< code >

# Step 1: Define the coordinates of points A, B, C, D, and E

A= (0, 6)
B = (0, 0)
C= (8, 0
D = (0, 3) # Midpoint of AB
E = (4, 0) # Midpoint of BC

< end_of _step >[PPM Score: -0.76639]

# Step 2: Define the coordinates of point F using the section formula (known to be (8/3, 2))
F = (8/3, 2)
< end-of _step >[PPM Score: 0.8429]

# Step 3: Use the Shoelace Theorem to find the area of quadrilateral DBEF
# Shoelace Theorem formula: Area = 0.5 * —x1y2 + x2y3 + x3y4 + x4yl - (y1x2 + y2x3 + y3x4 + y4x1)—
# Coordinates of D, B, E, F are (0, 3), (0, 0), (4, 0), (8/3, 2) respectively

xl, yl =D
x2, y2 =B
x3, y3 = E
x4, y4 = F
area = 0.5 % abs(xlxy2 + x2xy3 + x3xy4 + x4=yl

— (yl%x2 + y2%x3 + y3%x4 + y4d=xxl))
< end_of _step >[PPM Score: 0.9972]

# Step 4: Print the area of quadrilateral DBEF
print (area)

< end-of_code >
< output >8.0< end_of _output >

< answer >< end_of_answer >
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A.4 Prompt Examples

MCTS Prompt for DeepSeek-V2-Coder-Instruct (bootstrap round)

You are a powerful agent with broad math knowledge and great python programming skills. You need to use python interpreter to do
accurate calculation on math equations.

!!! Remember:

1. Use code solve the problem step by step. The solution should include three parts: < code >, < output >, and < answer >.
2. All calculations should be done in python code. Provide concise reasoning and thinking in the comments of the code.

3. The most related python packages include ‘math‘, ‘sympy*, ‘scipy‘, and ‘numpy*.

4. Please use the following template:

Question: the input question

< code >Construct the code step by step. Use < end-of_step > to indicate the end of each step. Ensure your code can execute
correctly(excluding < end_of_step >) and print the answer. Avoid undefined variables (NameError), unimported packages, or
formatting errors (SyntaxError, TypeError). In the last step of the code, print the final answer and add a comment: Now print the final
answer.< end_of_code >

< output >Execute the code in using the Python interpreter and display the printed results.< end_of _output >

< answer >The concise answer without verbose context, put your final answer’s numerical part (without unit, only focus on the
numerical part if it’s a choice question) in

boxed.< end_of_answer > Now! It’s your turn.

Question: {input}

The following are 2 demonstration examples:

Question: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times must Terrell lift
them in order to lift the same total weight?

< code >

# Step 1: Calculate the total weight lifted with two 20-pound weights

total_weight_20 =2 * 20 * 12

< end_of _step >

# Step 2: Calculate the weight lifted per repetition with two 15-pound weights
weight_per_rep_15=2 * 15

< end-of _step >

# Step 3: Calculate the number of repetitions needed to lift the same total weight with two 15-pound weights
reps_needed = total_weight_20 / weight_per_rep_15

< end-of _step >

# Now print the final answer

print(reps_needed)

< end-of _code >

< output >16.0 < end_of_output > < answer >From the result, we can see that Terrell must lift the 15-pound weights
boxed16 times to lift the same total weight.

< end_of_answer >,

Question: Find the value of x that satisfies V3x+5 _ V5 Express your answer as a common fraction.
6z T5 3 RICESM
< code >

from sympy import symbols, Eq, solve, sqrt

# Define the variable x
x = symbols(’x’)
< end_of _step >

# Define the equation
equation = Eq(sqrt(3*x + 5) / sqrt(6*x + 5), sqrt(5) / 3)

< end_of _step >

# Solve the equation for x
solution = solve(equation, X)
< end_of _step >

# Now print the final answer
print(solution)
< end-of _code >

< output >[20/3]

. . |20
< end_of _output > < answer >From the result, we can see that the value of x is

< end-of_answer >
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MCTS Prompt for our policy SLM

MCTS prompt for next step generation:

< |user| >:

{input question}

< |assistant| >: Let’s think step by step and solve the problem with code. {trajectory of previous steps}

SFT Prompt Example:

< |user| >:

How many numbers can you get by multiplying two or more distinct members of the set
1,2,3,5, 11 together?

< |assistant| >: Let’s think step by step and solve the problem with code.
< code >

# Step 1: Create the set of numbers

numbers = {1, 2, 3, 5, 11}

< end-of _step >

# Step 2: Define a function to generate all possible products of two or more distinct members of the set

from itertools import combinations
def generate_products (numbers):
products = set()
for r in range(2, len(numbers) + 1):
# For combinations of 2, 3, 4, and 5 elements
for combo in combinations (numbers, r):
product = 1
for num in combo:
product x= num
products.add(product)
return products

< end_of _step >

# StepBe (atandtuec e produenerate _products (numbers)

< end_of _step >

# Step 4: Calculate the number of unique products
num-_unique_products = len(unique_products)
< end_of _step >

# Now print the final answer

print (num-_unique_products)
< end-of_code >

< output >15< end_of _output >

< answer >From the result, we can see that there are unique products.
< end_of_answer >
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