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Abstract

We present LEAP (Lifelong Experience Abstraction and Planning), a framework for
continual behavior learning in embodied agents through interaction with the envi-
ronment and guidance from humans. LEAP addresses the challenge of representing
flexible knowledge about tasks and environments — ranging from constraints and
subgoal sequences to action plans and high-level goals — in a unified framework.
At its core, LEAP builds on the Crow Definition Language (CDL), a behavior
rule language that integrates imperative programming with declarative planning
by allowing agents to express both executable subroutines and subgoal hierarchies.
Leveraging large language models (LLMs), LEAP translates diverse human in-
structions into CDL programs, generates planning-compatible code, and abstracts
reusable behavior rules from successful executions to support future generaliza-
tion. LEAP maintains a library of such CDL programs, enabling the agent to
accumulate and refine its behavioral repertoire over time. We evaluate LEAP on
the VirtualHome benchmark, demonstrating its ability to represent a wide variety
of human instructions and its capacity to continually improve task performance
through experience and interaction.

1 Introduction

To operate effectively in everyday human environments, an embodied agent must continually
adapt—learning to use new tools, generalize across scenes, and acquire skills that may not have been
present in its training data. Such learning can arise from diverse sources, including direct interaction
with the environment and natural language guidance from humans. Human-provided instructions
often convey both common-sense knowledge (e.g., how to cook a dish) and environment-specific in-
formation (e.g., what’s in the fridge). While this guidance significantly enhances an agent’s ability to
plan and act, over-reliance on human input in all situations is costly. This raises a key challenge: How
can we build agents that continually learn from environmental interactions and human instructions,
abstract reusable behavior knowledge, and reduce their dependence on humans over time?

We address this challenge by introducing LEAP (Lifelong Experience Abstraction and Planning),
a framework for embodied continual behavior learning. LEAP enables agents to acquire and reuse
flexible behavior knowledge from diverse natural language instructions and environmental feedback.
At the core of our framework is the Crow Definition Language (CDL; Mao et al., 2024), a behavior
rule language that unifies imperative programming (e.g., action sequences) with declarative planning
(e.g., subgoals and constraints), allowing the agent to represent both detailed execution steps and
high-level task abstractions. However, two key challenges remain: (1) how to robustly translate
diverse, ambiguous, and partially specified natural language into CDL programs, and (2) how to
extract generalizable behavior rules that can transfer to new environments and goals, rather than
simply recording task-specific action traces.
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Figure 1: Lifelong Experience Abstraction and Planning (LEAP) is a framework for continual
behavior learning through interaction with the environment and guidance from humans. LEAP
abstracts valuable behavior knowledge from interaction (a) and human guidance (c) into reusable
behavior rules (b).

To address these challenges, LEAP leverages large language models (LLMs) to parse human in-
structions into CDL programs, equipped with task decomposition and correction mechanisms that
improve translation accuracy and sample efficiency. LEAP further abstracts generalized behavior
programs from successful executions and stores them in a symbolic CDL library, enabling retrieval
and adaptation for future tasks. This allows the agent to learn incrementally over time, continually
refining its planning capabilities while reducing reliance on new human input.

We evaluate LEAP on a new human-in-the-loop benchmark based on the VirtualHome environ-
ment (Puig et al., 2018), featuring 210 long-horizon tasks across three distinct household scenes. We
extend the original benchmark annotations to include detailed success metrics based on both goal
satisfaction and critical action execution. Experimental results demonstrate that LEAP successfully
handles diverse, unstructured instructions and continually improves its performance across environ-
ments. Notably, learning and planning with LEAP outperforms methods relying solely on human
instructions, showing the system’s ability to generalize and reuse knowledge across tasks.

In summary, our key contributions are: 1) An algorithm that translates diverse natural language
instructions into structured behavior representations, 2) A mechanism for abstracting and storing
reusable behavior rules for continual agent learning, and 3) A new human-in-the-loop benchmark of
210 challenging long-horizon tasks in three household environments for systematically evaluating
continual behavior learning in embodied agents.

2 Related Work

Long-horizon embodied task planning. LLMs have been widely used in the design of embodied
agents. An approach is to have LLMs directly generate action sequences (Huang et al., 2022; Wang
et al., 2023b; Song et al., 2023; Joublin et al., 2024; Li et al., 2024b). However, this approach struggles
with realistic tasks that involve hundreds of objects and complex object relations. To improve on this,
some works have explored better prompting techniques (e.g., “chain-of-thought” and feedback) (Mu
et al., 2023; Zhu et al., 2023) or the use of scene graphs (Liu et al., 2024; Ni et al., 2024). Another
line of research focuses on translating task and environment knowledge into programs, typically using
one of two representations: 1. Planning Domain Definition Language (PDDL), Liu et al. (2023);
Guan et al. (2023); Wong et al. (2024); Smirnov et al. (2024) represent task as logical goals of the
final state but cannot capture action orderings or constraints; 2. Python functions, Liang et al. (2023);
Wang et al. (2023a, 2024b) translate task completion into hierarchical functions, but do not involve
search, making them less effective for tasks with implicit constraints. In this work, our framework
leverages CDL programs — a behavior rule language that integrates imperative programming with
declarative planning — to represent reusable behavior rules.

Embodied agent benchmarks. A number of embodied planning benchmarks have been proposed to
evaluate agents’ task planning abilities in embodied environments (Shridhar et al., 2020; Srivastava
et al., 2022; Li et al., 2024a; Choi et al., 2024; Li et al., 2024b; Yang et al., 2025), providing task
definitions, corresponding simulators (Kolve et al., 2017; Puig et al., 2018; Li et al., 2022; Puig
et al., 2023), and evaluation metrics. However, few of them incorporate human interaction. TEACh
(Padmakumar et al., 2022) provides agents with pre-collected human–human dialogues but does not
support online agent-human communication. Wang et al. (2024a) and Chang et al. (2025) model
the human as a cooperative agent but do not allow the human to provide guidance that helps the
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Figure 2: CDL can represent a diverse set of behavior knowledge.

agent improve. In our work, we create a human-in-the-loop benchmark based on the VirtualHome
environment (Puig et al., 2018), featuring an LLM-based human teacher who provides diverse natural
language guidance when queried by agents, allowing them to learn through interaction.

Library-based continual and lifelong learning. This refers to learning from a non-stationary and
potentially endless stream of tasks, where the agent improves over time by reusing and expanding a
library of accumulated knowledge. Zheng et al. (2024); Wang et al. (2024c) stores action histories
and workflows, which are straightforward, but may be redundant, and lack generalization when
the environment changes. Wong et al. (2024) build a PDDL library for planning, and Wang et al.
(2024b) construct a Python function library — both methods rely solely on trial-and-error within the
environment. Our method goes further by incorporating diverse human guidance, abstracting them
into CDL programs, and storing them in a structured CDL library as pairs of subtask descriptions
and corresponding CDL programs. This design facilitates reuse and enables fast adaptation to new
environments.

3 Preliminaries

Problem formulation. We consider a system with three primary components: the environment, the
agent, and the human. The environment is a tuple of ⟨X ,U , T ⟩, where X is the state space, U is the
primitive action space (See Appendix), and T is a deterministic transition function T : X × U → X .
We assume the state X is represented in an object-centric format, which includes a set of objects
(the agent also considered as an object) and their features. For example, a simple scene where an
agent is standing close to a table can be represented as an abstract state containing two objects, A
and B, with the features agent(A), table(B), close(A,B), close(B ,A). The agent has access to this
abstract state, but the environment is partially observable. At each timestep, the agent can observe
the features of objects that are directly visible (excluding objects in other rooms or inside closed
containers). Initially, the agent only knows about objects that cannot be moved (e.g., sinks). It can
discover new objects when they are close to the targets and when they open a new container.

Based on the environment, a collection of tasks are defined. Each task is described by a natural
language instruction, corresponding to a success rate estimator g({xt, ut}Ht=1) → [0, 1]. Given
an initial state x0 ∈ X and a natural language instruction, the target of the agent is to generate a
sequence of actions {u1 , u2 , ..., uH } such that g({xt, ut}Ht=1) is 1 (where xt = T (xt, ut)). When
the agent fails to complete a task for multiple attempts. The agent can request assistance from a
human. The human, who is assumed to have full observability of the environment, provides guidance
in format-free natural language based on complete information about the task and environment,
helping the agent complete the task.

Behavior rule representation. To flexibly represent and reuse behavior knowledge such as action
sequences and subgoal decomposition rules, we leverage CDL (Mao et al., 2024) as the representation
language for the behavior library. CDL uses the same state representation as the problem formulated
above, consisting of a set of objects and their features. The primary part of a CDL program is a set
of behavior rules (e.g., boil food in Figure 1). In general, the behavior rule contains two sections, a
goal section, which is a logical expression over object features (e.g., the goal of behavior “open“ is
opened(x)), and a body section, which defines how to achieve that goal from the current state. In this
work, we consider five types of statements in the body. 1) bind statements, which nondeterministically
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Figure 3: Overview pipeline of LEAP. Given a new task (a), LEAP first decomposes the task into
subgoals (b), and performs retrieval-augmented generation of behavior rules of individual subgoals
(c). Finally, it executes the plan with self-evaluation (d).

select an object satisfying a given constraint; 2) achieve statements, which should be recursively
refined with another behavior rule whose goal matches the specified condition; 3) assert statements,
which specify a condition that must hold along execution (i.e., a constraint that must continuously
hold true); 4) primitive actions and 5) procedure calls to behavior rules. In addition to these two
main sections, a behavior rule may also include an optional effect section, which describes the
expected changes to the abstract state resulting from the execution of the behavior. In CDL, a goal
can also be specified as a special “top-level” behavior rule (e.g., Figure 2). Accompanying CDL is
a general-purpose planner, Crow, which interprets CDL programs and abstracted states to output
plans. The planner uses a hierarchical search algorithm that supports a wide range of operations,
from imperative policy execution to planning and constraint-based variable binding, all depending on
the behavior specification.

4 Lifelong Experience Abstraction and Planning

LEAP is a framework for continual behavior learning and interaction. In this paper, we use a
household environment (Puig et al., 2018) as an example domain. In its lifetime, a LEAP agent
maintains a library of behavior rules represented in CDL. It is initialized with a given set of basic
behavior rules that allow the agent to move itself in the environment and perform simple pick-and-
place operations. Next, the agent receives a stream of tasks, each consisting of an initial state and a
goal instruction. The agent not only solves each task but also extracts reusable behaviors from the
experience and updates its behavior library.

Figure 3 illustrates how LEAP solves a single task. Upon receiving the initial observation and a
task instruction, as shown in (a), the agent begins by decomposing the task into subtasks (b) and
translating each subtask into a CDL program (c). During this translation process, the agent has access
to the behavior library that stores knowledge abstracted from previous tasks. As a generalizable
representation, CDL can adapt across diverse environments and goals. Shown in (d), the generated
CDL programs are then interpreted as action sequences to execute the task. After executing each
action sequence, an LLM evaluates whether the subtask has been successfully completed. If so, the
agent proceeds to the next subtask; otherwise, it replans and retries the current one. If the agent fails
to generate a valid plan after multiple attempts, it queries a human for additional guidance, which
is then incorporated into the CDL generation process. Once the entire task is completed, the newly
generated CDL programs are added to the library to improve future planning. Algorithm 1 illustrates
the overall system in pseudocode.

4.1 State Representations and The Behavior Rule Library

State representations. At the beginning of each task, since we consider a partially observable setting,
the agent only knows the stationary objects. The features of all movable objects are initially set to
None. Two special features, unknown(a) and checked(a,b), are used to handle partial observability.
unknown(a) indicates that object a has not been discovered (all movable objects are initially marked

4



Algorithm 1 Pipeline Overview

Input: task description, guidance (Optional)
Initialize: empty the CDLPool at the start of each task

1: subtasks← Decomposition(task description) ▷ Section 4.2
2: for each subtask do
3: demos← Library-Retrieval(subtask) ▷ Section 4.3
4: CDL← Refine(CDLGenerator(subtask, demos, guidance)) ▷ Section 4.3
5: ActionSeq← CROW(CDL) ▷ Section 4.4
6: if subtask completed after executing ActionSeq then
7: CDLPool← CDLPool ∪ CDL
8: if whole task completed then
9: Library-Lift(CDLPool) ▷ Section 4.4

as unknown). checked(a,b) means the agent has explored around object b but did not find object a
there (See all features in Appendix A.2).

Behavior rule library. The agent is provided with a set of basic behavior rules that can be used to
achieve certain goals under constraint-free conditions. For example, the behavior turn on can achieve
the goal specified by predicate is on(x) when there is no additional constraints are present (e.g., the
task do not prohibit the agent get close to x). However, this basic behavior rule set is often insufficient.
It cannot handle situations involving additional constraints — such as when a necessary tool is
unavailable or a particular action is prohibited. Moreover, some goals may not be achievable using
any of the current basic behaviors (e.g., no basic behavior rules can achieve cooked(x)). Therefore,
it is necessary for the agent to learn new behavior rules. We organize the behavior rule library into
two parts: a predefined behavior rule library and a learned behavior rule library. The predefined
rules are directly provided to the agent when interpreting the goal. The learned rules are stored as
⟨subtask description, behavior rule⟩ pairs, which can be retrieved as references when generating new
behavior rules. Details are provided in Section 4.3.

4.2 Subtask Decomposition
Directly generating all behavior rules needed to solve a long-horizon, multi-stage task is challenging:
LEAP uses an LLM-based module that decomposes a task into multiple subtasks. For example, in
Figure 3, the task “cook chicken pasta” is decomposed into: cleaning the ingredients, boiling the
food, and plating the prepared food. The task decomposition module is useful in two cases: (1)
Insufficient information: when the agent lacks the necessary information for planning, such as the
location of relevant objects. For example, consider the task “Put the items on the table in their proper
places.” If the agent does not know which items are on the table, it cannot make a reliable plan. In
this case, a subtask such as “explore what items are on the table” should be added. (2) long-horizon
planning: when the task includes multiple complex stages, such as “cook chicken pasta”. Generating
all behavior rules at once can be inefficient—if an early step fails and replanning is needed, the design
effort for the later parts is wasted. In general, the number of subtasks is less than 4.

4.3 Retrieval-Augmented Behavior Rule Generation
Next, the agent generates a “top-level” goal behavior rule (behavior goal ()) that accomplishes
the task, along with additional rules that may be used to achieve subgoals within the behavior rule,
using an LLM. In addition, we use a simple rule to query the human for additional guidance: humn
guidance is requested when the agent fails to generate a valid plan or when the generated plan fails to
complete the subtask after 5 attempts.

Relevant behavior rule retrieval. Recall that the behavior rule library stores a collection of subtask
descriptions paired with CDL programs. When generating a new program, the agent retrieves up to K
relevant examples by computing cosine similarity between sentence embeddings of the current subtask
and those in the library, using the paraphrase-MiniLM-L6-v2 model from SentenceTransformer. The
value of K is a tunable hyperparameter. In our experiments, we set K = 200.

Behavior rule generation. We prompt the LLM to generate new CDL behavior rules based on the
following steps. We guide GPT-4o to reason through intermediate states required for task completion
using “Chain-of-Thought” (CoT) prompting. The input to the LLM consists of: 1) the subtask
description and optionally additional human-provided guidance; 2) CDL syntax, including predicates,
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keywords, and behavior definitions; 3) CoT examples, comprising two basic CoT-guided examples;
4) K pairs of subtask descriptions and behavior rules retrieved from the library. The LLM outputs
codes that use the keyword achieve to represent subgoals and assert to specify constraints. Direct
actions and behavior calls are also supported. Figure 2 gives a concrete example.

Refinement mechanism. Generated behavior rules may contain syntax and logical errors. When
errors exist, instead of directly resampling, we employ a refinement mechanism that handles different
types of errors separately. If the program contains syntax errors, such as incorrect keyword usage
or missing parameters, we design rule-based methods to automatically parse the erroneous parts
and rectify them. For logic-related issues where the CDL program is syntactically correct but the
interpreter fails to generate a plan, we introduce an LLM-based debugger to refine the program. The
debugger is prompted with the current plan, the planning state, and a list of common logical errors
along with their corresponding corrections to guide the refinement process.

Exploration rules. An important class of newly generated behavior rules is exploration behaviors
for object search. For task-relevant objects that are initially unknown to the agent, we prompt LLMs
to predict likely locations based on the objects’ category names. This knowledge is encoded as
additional behavior rules with the goal of “finding an object of a given type.” Details are provided
in the appendix. After generating all behavior rules for task completion and object search, a plan is
constructed under the assumption that the unknown object can be found at the predicted location. This
corresponds to the “most-likely-observation” heuristic used in partially observable MDP algorithms.
Importantly, even if the object is not at the predicted location, the agent will continue to observe and
replan, allowing it to adapt and search in alternative locations.

4.4 Execution and self-evaluation
Plan execution. Given the set of basic, exploration, and task-relevant behavior rules, the CROW
algorithm will find a plan that achieves the goal of the current subtask. The plan is a sequence of
actions that can be directly executed in the environment. During execution, the agent receives new
observations about nearby objects, which will be used to update its internal state representation.
Replanning is triggered whenever the initial plan is invalidated — for example, if the agent assumes
the chicken is in the fridge but fails to find it after opening it, or if a predicted action becomes
non-executable.

Self-evaluation. Since we can not directly receive subtask completion signal from the environment,
after executing the generated action sequence for a subtask, the agent uses an LLM to evaluate
whether the subtask has been fully completed. The LLM receives the action and observation history,
and determines whether to proceed to the next subtask or to replan the current one.

CDL programs lifting. Each time the agent successfully completes an entire task, the CDL programs
used to generate plans for each subtask are paired with their corresponding subtask descriptions and
added to the CDL library for future use.

5 VirtualHome-HG
We introduced a new dataset, VirtualHome-HG (Human Guidance), built on the VirtualHome
simulator (Puig et al., 2018, 2021). The dataset defines 210 diverse tasks across three different
annotated scenes. Specifically, the dataset includes 93 cooking tasks, 33 cleaning tasks, 27 laundry
tasks, and 57 rearrangement tasks. On average, each scene contains 376 distinct items spanning
157 categories. The benchmark supports both symbolic execution and visual simulation via the
VirtualHome environment. The action space consists of discrete actions such as walk, grab, and put
(see the full list in the Appendix 6).

Evaluation metric. We evaluate task completion from two perspectives: task completion rate and
key action execution rate. To compute the task completion rate, first, we define a ground truth goal for
each task, represented also in CDL. We compute an “oracle” plan based on this ground truth goal, a
fully-observed environment state, and a set of human-defined behavior rules to find a plan. The length
of this plan, denoted as Linit, reflects the reference number of steps required to complete the task.
Upon the agent finishing its execution, based on the final goal state, we compute another plan based
on ground truth goals and behavior rules, whose length is Lt. The task completion rate is computed
as: Cgoal = max {(Linit − Lt)/Linit, 0}. When the agent has successfully solved the task, Cgoal = 1.
We also compute a key-action execution rate: We manually annotate key actions required for each
task and calculate how many of these actions were executed, denoted as Caction = Nexecute/Nrequired.
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Simple Multi-stage Ambiguous Constraint Total

Method WOG WG WOG WG WOG WG WOG WG WOG WG

LLM Policy 70.4% 70.9% 49.5% 51.0% 46.2% 51.0% 37.2% 36.9% 59.1% 59.3%
LLM+P 88.5% 84.2% 44.5% 60.7% 48.0% 52.9% 47.0% 60.4% 67.8% 70.1%
Code as Policy 80.4% 89.6% 48.6% 64.1% 39.8% 50.3% 29.3% 42.5% 61.7% 69.9%
Voyager 84.7% 89.4% 61.0% 65.5% 47.8% 55.5% 34.5% 48.3% 70.1% 76.4%

Ours (ActSeq) 86.0% 90.4% 51.0% 66.3% 49.4% 53.4% 44.0% 55.5% 69.9% 74.0%
Ours (Full) 92.6% 94.9% 66.5% 69.5% 50.5% 64.8% 49.9% 65.3% 75.6% 80.1%

Table 1: Main results. WOG: without human guidance; WG: with human guidance.

Required actions can have logical combinations, such as (a1 then a2) or (a3 then a4) (i.e., execute
a1 followed by a2, or a3 followed by a4). The overall completion rate is a weighted sum of the two
types of completion rates C = 2/3 · Caction + 1/3 · Cgoal.
Human guidance. The ideal setting for evaluating agent learning from humans would involve a real
human providing real-time responses to agents. However, this approach is not only costly but also
challenging to standardize, making it difficult to ensure fair comparisons across different methods
and users. To address this, we annotate high-quality guidance within the dataset, describing how to
complete a task step by step using unstructured natural language. Notably, this language is written
to mimic human communication, such as how a parent might teach their child, without specifically
using robotic actions or referencing specific instances. We then introduce an LLM-based human
agent with access to these guidance annotations. When asked a question, the human agent responds
in a natural, human-like manner based on the provided guidance.

6 Experiments

We compare our method with three baselines without library learning and two baselines with library
learning: LLM Policy directly uses an LLM to generate action sequences based on task information
and predefined action rules. LLM+P (Liu et al., 2023) uses an LLM to translate the task into logical
goals of the final state, then employs a planner to generate a plan. Code-as-Policy (Liang et al., 2023)
uses an LLM to decompose the task, translates each subtask into Python functions, and executes them
to obtain a plan.

In the second group, we have Voyager-like (Wang et al., 2024b) which additionally stores pairs of
subtask descriptions and corresponding Python functions for successful tasks based on Code-as-Policy
and Ours(ActSeq) which replaces stored pairs of subtask descriptions and CDL programs with pairs
of subtask descriptions and action-observation sequences.

We evaluate each method on all 210 tasks in our benchmark without human guidance (WOG) and
with human guidance (WG). Both settings permit the agent to query the human about the location of
unknown objects after 5 failed exploration attempts. In the WG setting, the agent can also ask for
human guidance after 5 failed attempts to generate or execute a plan. We further select 4 subsets of
tasks to evaluate specific capabilities of each method:

Simple Set: Includes 78 single-stage tasks, typically requiring fewer than 15 actions. This set
evaluates the agent’s basic task completion ability.

Multi-stage Set: Comprises 30 multi-stage tasks requiring 30 to 150 actions, designed to evaluate
the agent’s ability in long-horizon reasoning and multi-stage problem solving.

Ambiguous Set: Consists of 57 tasks with highly ambiguous descriptions, such as “Make fried
bananas.” These tasks are difficult for LLMs to solve using only common-sense reasoning and rely
heavily on additional human guidance. This set evaluates the agent’s ability to understand and utilize
human guidance.

Constraint Set: Includes 30 tasks with strong implicit size constraints, requiring the agent to reason
about size relationships between objects. For example, a task may involve selecting a cup smaller
than the coffee machine to successfully prepare coffee.

Some tasks are not included in any of the four subsets, as they do not clearly meet the criteria defined
above. However, all 210 tasks are included in the total evaluation.
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6.1 Results
Overview. LLM Policy performs poorly even on simple tasks, due to its difficulty in reasoning over
many objects and their complex relationships. LLM+P struggles with multi-stage tasks because it
cannot decompose tasks and is limited by the representational ability of PDDL, which can not specify
action orderings or constraints. Code-as-Policy and Voyager translate tasks into imperative Python
functions, perform poorly on tasks with implicit constraints (e.g., action putin(a,b) implicitly requires
size(a) < size(b)). Since they cannot search alternatives (e.g., trying different cups). Our method
addresses these limitations and is capable of solving complex tasks with diverse human instructions.

Our framework better leverages human guidance. As shown in Table 1, our framework achieves
the highest performance and the largest improvement in Ambiguous Set after receiving human
guidance (14.3%), compared to LLM+P(4.9%), Code-as-Policy (10.5%), and Voyager(7.7%). These
tasks typically involve an ambiguous task description, making it difficult for LLMs to generate
solutions using only common-sense. Considering “Make a cup of coffee using a coffee machine,”
where all methods receive guidance, including the information “use a cup of proper size.” Code-
as-Policy and Voyager achieve success rates under 20% because they fail to infer that “proper”
refers to constraints size(cup) < size(coffee machine), and select too large cups. LLM+P, despite
supporting search, achieves only a 58% success rate due to its lack of task decomposition. Our
framework achieves a 100% success rate. It translates natural language into CDL programs that
represent constraint specification, and finds plans with search, task decomposition, and self-evaluation.

CDL library stores reusable knowledge and benefits future planning. As illustrated in Figure
4, the performance of our method demonstrates continous and faster improvement compared other
library-based approaches (Voyager and Ours(ActSeq)). In contrast, baseline methods without library
learning show no increase in success rates, indicating that the tasks do not becoming easier. To further
demonstrate the benefits of constructing a CDL library, we conducted ablation experiments (Table 2,
comparison between w/o CDL Library and Full) and a focused evaluation on cooking tasks (Figure
5). As Table 2 shows, removing the CDL library resulted in a noticeable decrease in success rates
across all types of task.

Cooking tasks often share common knowledge (e.g., cleaning or boiling), so we design focused
experiments to show how the CDL library enhances performance. Tasks are grouped into 3 levels: 24
easy, 36 medium, and 30 hard. In the continual learning setup (Figure 5), the agent first learns from
human-guided easy and medium tasks before attempting harder ones, with no human help during
testing. Prior experience significantly improves performance — by 12% on medium and 17% on hard
tasks — outperforming direct human guidance, which yields only 5% and 6% gains, respectively.

Figure 4: Moving average success rates of different meth-
ods across 210 tasks, all performed without human guid-
ance. Baseline methods without the library show no im-
provement, suggesting that the tasks do not become easier
over time. In contrast, our method shows clear improve-
ment, demonstrating its ability to learn and adapt.

Figure 5: Success rate in the cooking
test for different settings. “Continual”
refers to the agent having completed eas-
ier tasks with human guidance and built
a CDL library, without human input dur-
ing the test.
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Normal Multi-stage Ambiguous Constraint Total Gen. Time

w/o CDL Library 87.7% 69.0% 61.0% 56.2% 76.6% 1339
w/o Refinement 93.6% 70.1% 61.2% 68.3% 79.6% 1598
w/o Decomposition 93.0% 56.4% 62.7% 48.8% 77.4% 871
Full 94.9% 69.5% 64.8% 65.3% 80.1% 1428

Table 2: Results of ablation experiments. Gen. Time denotes the total time taken to generate CDL
programs for all 210 tasks using each method.

Storing CDL programs is better than storing action history. Storing interaction history is a
common strategy in continual learning (Zheng et al., 2024; Wang et al., 2024c). However, as shown
in Table 1 and Figure 4, storing CDL programs yields significantly better results in all kinds of
tasks. Our insight is that action history is highly dependent on the specific scene. When the scene
changes, stored actions may refer to target objects that no longer exist or actions that can no longer
be executable. Additionally, statistical results show that the average length of action history (4,889)
from a single task is ten times longer than the corresponding CDL program (492) and often includes
many failed attempts. These observations suggest that abstraction is essential.

Sub-task decomposition facilitates feasible CDL program generation. Table 2 shows that in-
corporating subtask decomposition leads to increased overall task performance, particularly for
Multi-stages tasks and Constraint tasks. The improvement in Constraint tasks occurs because such
tasks always consist of multiple stages, such as placing specific items at different locations. The
performance gain from subtask decomposition comes from simplifying CDL behavior rule generation
by handling one subtask at a time.

Refinement is more efficient than resampling. The CDL interpreter provides valuable feedback,
allowing the refinement mechanism to correct errors more efficiently. As shown in Table 2, incorporat-
ing the refinement mechanism reduces CDL generation time by approximately 10% while achieving
even better overall performance.

7 Conclusion

We present LEAP, a framework for continual behavior learning that can learn from both human
guidance and interaction with the environment. Our experiments demonstrate that LEAP can better
utilize diverse human guidance and achieve better continual learning ability than prior PDDL-based
and Python-function-based methods. Although this work focuses on embodied planning tasks, the
core ideas of LEAP can also be applied to other domains requiring lifelong learning.

Limitations. A limitation of LEAP is the increased number of LLM queries due to subtask decompo-
sition and self-evaluation. Furthermore, our simple human-querying strategy leaves open how to ask
more precise, informative questions.
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A Dataset

A.1 Environment

Our benchmark is built on the VirtualHome simulator (Puig et al., 2018). We select three distinct
scenes, enhance them with additional objects, introduce new environment states, and annotate the
simulator to support a broader range of tasks defined in our benchmark, such as cooking and doing
laundry. Figure 6 visualizes these scenes.
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Figure 6: Visualization of the selected VirtualHome scenes.

A.2 State representation

VirtualHome includes a set of built-in features, and the original simulator supports transitions between
these states. To construct our benchmark, we select a subset of these features — removing onces such
as Facing and Cream — and add two new states cooked and has water to better support cooking-
related tasks. In addition, to design more realistic tasks with size constraints, we introduce the size
feature. All state features (Table 3), relationships features (Table 4), and property features (Table 5)
are listed below.

Feature Description
is on(x: item) The item is switched on
is off(x: item) The item is switched off
plugged(x: item) The item is plugged in
unplugged(x: item) The item is unplugged
open(x: item) The item is open
closed(x: item) The item is closed
dirty(x: item) The item is dirty
clean(x: item) The item is clean
cut(x: item) The item has been cut
inhand(x: item) The item is in hand
has water(x: item) The item contains water (new add)
cooked(x: item) The item is cooked (new add)

Table 3: State features

Feature Description
on(x: item, y: item) Item x is on item y
inside(x: item, y: item) Item x is inside item y
close(x: item, y: item) Item x is close to item y
holds rh(x: character, y: item) The character holds item y with right hand
holds lh(x: character, y: item) The character holds item y with left hand
close char(x: character, y: item) The character is close to item y
inside char(x: character, y: item) The character is inside item y

Table 4: Relationship features
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Feature Description
surfaces(x: item) The item has a surface
grabbable(x: item) The item can be grabbed
hangable(x: item) The item can be hung
recipient(x: item) The item can receive contents
cuttable(x: item) The item can be cut
pourable(x: item) The item can be used for pouring
can open(x: item) The item can be opened
has switch(x: item) The item has a switch
containers(x: item) The item can contain other items
has plug(x: item) The item has a plug
movable(x: item) The item can be moved
is food(x: item) The item is food
size(x: item)→ int64 Returns the size of the item (new add)

Table 5: Property features

A.3 Action space

Table 6 lists all valid actions considered in our benchmark. Notably, the action exp and obs are newly
introduced to address the partially observable setting in our tasks, enabling agents to actively explore
the environment.

Controller Description
walk executor(x: item) Makes the character walk toward the item
switchoff executor(x: item) Turns off the specified item (e.g., a lamp)
switchon executor(x: item) Turns on the specified item (e.g., a lamp)
put executor(x: item, y: item) Places item x onto item y (e.g., put cup on table)
putin executor(x: item, y: item) Puts item x inside item y (e.g., put apple into fridge)
grab executor(x: item) Grasps the item (e.g., pick up a cup)
wash executor(x: item) Washes the item (e.g., wash a dish)
scrub executor(x: item) Scrubs the item (e.g., scrub a pot)
rinse executor(x: item) Rinses the item with water (e.g., rinse a plate)
open executor(x: item) Opens the item (e.g., open a door)
close executor(x: item) Closes the item (e.g., close a fridge)
pour executor(x: item, y: item) Pours the contents of item x into item y
plugin executor(x: item) Plugs in the item (e.g., plug in a toaster)
plugout executor(x: item) Unplugs the item (e.g., unplug a toaster)
cut executor(x: item) Cuts the item (e.g., cut a carrot)
touch executor(x: item) Touches the item (e.g., touch a button)
type executor(x: item) Types on the item (e.g., keyboard)
push executor(x: item) Pushes the item (e.g., push a chair)
pull executor(x: item) Pulls the item (e.g., pull a drawer)
exp(x: item, y: item) Expresses a relation or interaction between items (new add)
obs(x: item, q: string) Makes an observation or query about the item (new add)

Table 6: The action space we considered in this work

A.4 Examples

A.4.1 Task examples

The first example is a simple task that illustrates the basic components of a task definition. Each
task in our dataset includes a Task Name, Task Description, Guidance, Required Action, Keystate
Logic, and corresponding key behavior rules. The Guidance is provided to the LLM-based human
agent to enable them to offer assistance. The Required Action is used for key action evaluation.
Keystate Logic specifies the logical composition of the keystate, which can be used to compute task
completion rate.
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Task name: Wash windows
Task description: Wipe all the windows in the house by towel.
Guidance: Hold a towel. And wipe all the windows in the house.
Required Action:
S0_Actions: wipe_executor(window_63) and wipe_executor(window_86) and
wipe_executor(window_348)
S1_Actions: wipe_executor(window_2156) and wipe_executor(window_191)
and wipe_executor(window_310)
S2_Actions: wipe_executor(window_2109) and wipe_executor(window_40)
and wipe_executor(window_181) and wipe_executor(window_287) and
wipe_executor(window_346)
Keystate Logic: k1

behavior k1():
body:

bind towel: item where:
is_towel(towel)

achieve inhand(towel)

The second example is a task in Constraint Set:

Task name: Make coffee
Task description: Make a cup of coffee using the coffee maker.
Guidance: Put a proper sized cup into the coffee machine and start it.
The coffee machine is already filled with water and coffee beans.

Simply place the cup and start the machine.
Required Action: None
Keystate Logic: k1

behavior k1():
body:

bind coffe_maker: item where:
is_coffe_maker(coffe_maker)

bind cup: item where:
is_cup(cup)

achieve inside(cup , coffe_maker)
achieve is_on(coffe_maker)

The third example presents a multi-stage, long-horizon task.

Task name: Cook chicken pasta
Task description: Make a plate of chicken pasta
Guidance: To boil pasta , fill a pot with water. Put the pot on the
stove and turn on the stove. Then put the pasta into the pot. To cook
chicken , add some oil in a fryingpan and heat it on the stove. Then
put the chicken into the fryingpan. Lastly , put the pasta and chicken
in a plate.
Required Action: None
Keystate Logic: ((k1 then k2) or (k2 then k1)) then (k3 or k4)

behavior k1():
body:

bind pasta: item where:
is_dry_pasta(pasta)

bind stove: item where:
is_stove(stove)

symbol pot_with_water=exists pot:item: is_pot(pot) and
has_water(pot)
if not pot_with_water:

bind pot: item where:
is_pot(pot)
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achieve has_water(pot)
achieve inside(pasta , pot)
achieve on(pot , stove)
achieve is_on(stove)

else:
bind pot: item where:

is_pot(pot) and has_water(pot)
achieve inside(pasta , pot)
achieve on(pot , stove)
achieve is_on(stove)

behavior k2():
body:

bind chicken: item where:
is_food_chicken(chicken)

bind fryingpan: item where:
is_fryingpan(fryingpan)

bind stove: item where:
is_stove(stove)

bind oil: item where:
is_oil(oil)

achieve inside(oil ,fryingpan)
achieve on(fryingpan , stove)
achieve is_on(stove)
achieve inside(chicken , fryingpan)

behavior k3():
body:

bind plate: item where:
is_plate(plate)

bind pasta: item where:
is_dry_pasta(pasta)

bind chicken: item where:
is_food_chicken(chicken)

achieve inside(pasta , plate)
achieve inside(chicken , plate)

behavior k4():
body:

bind plate: item where:
is_plate(plate)

bind pasta: item where:
is_dry_pasta(pasta)

bind chicken: item where:
is_food_chicken(chicken)

achieve on(pasta , plate)
achieve on(chicken , plate)

A.4.2 Agent-Human communication examples

In this section, we present several examples of question-answering interactions recorded in the
experimental logs:

• Question: Can you teach me how to boil the vegetables?
Answer: First, clean the vegetables. Then, fill a pot with water and heat it on the stove. Finally,
place the vegetables in the pot.

• Question: Can you teach me how to iron the skirt?
Answer: Place the skirt on the ironing board. Turn on the iron, then gently move it back and forth
over the skirt.
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Figure 7: Statistics of the required action lengths for the four experiment task sets

• Question: Can you teach me how to add coffee grounds and water to the coffee maker?
Answer: The coffee maker is already filled with water and coffee beans. Simply place a cup under
the spout and start the machine.

• Question: Can you teach me how to fill a pot with water?
Answer: Hold the pot under a faucet, then turn on the faucet to fill it with water.

• Question: Can you teach me how to slice chicken?
Answer: Place the chicken on a cutting board. Hold a knife firmly and slice the chicken into
pieces.

A.5 Dataset Statistics

Our benchmark consists of 210 tasks spanning three different scenes, including 93 cooking tasks,
33 cleaning tasks, 27 laundry tasks, and 57 rearrangement tasks. These tasks cover a wide range of
complexity, from the simplest requiring only a single action to the most complex involving up to 159
actions.

In addition to the task type, we further categorize the tasks into four sets based on their properties: 78
normal tasks, 57 ambiguous tasks, 30 multi-stage tasks, and 27 strong-constraint tasks. On average,
each task requires 19.8 actions (median: 16.0; standard deviation: 25.3). As shown in Figure 7, normal
tasks exhibit the lowest and most consistent action counts (mean: 8.9; range: 1–23), while ambiguous
tasks show moderate complexity with notable variability (mean: 16.5; range: 1–35). Multi-stage
tasks are the most complex, requiring significantly more actions (mean: 58.1; range: 25–159) and
demonstrating the highest variation. Strong-constraint tasks also reflect moderate complexity but with
more controlled variation (mean: 26.9; range: 8–50). This hierarchical structure of task complexity
offers a comprehensive testbed for evaluating performance across varying difficulty levels and diverse
scenarios, effectively capturing the breadth of real-world task challenges.

B Implementation details

B.1 LLM Prompts

In this work, we use gpt-4o-2024-08-06 as the LLM component for all methods. Below, we present
the prompts used for each module.
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Subtask Decomposition for a given task, we prompt the LLM to decide whether the task should be
decomposed into multiple subtasks or executed directly. The few-shot prompt is composed of the
following elements:

1. A task decomposition principle block that provides high-level guidance, encouraging mini-
mal subtask count for simple tasks.

2. A sequence of examples, each including:
• A natural language task description;
• A list of completed subtasks (or none if the current subtask is the first subtask);
• Optional human guidance;
• A structured output: a list of next subtask or No decomposition.

3. A final instruction block that reinforces the output formatting rules, including when to use
No decomposition and how to number subtasks if decomposition is necessary.

4. A dynamically filled section with the current task information, including the current task
description, completed subtasks, and human guidance.

CDL Generator The prompt design for this core module is described in the main text (Section 4.3)
and is omitted here.

CDL Debugger (Logical Error) The syntax error can be directly corrected by rule-based functions,
and this LLM-based debugger is used to correct logical errors. The prompt is composed of the
following elements:

1. A task description section that includes the current subtask, the overall task description,
completed subtasks, and additional observations if available.

2. The incorrect CDL program and corresponding error message (from CROW).
3. A set of examples illustrates common errors and their corrected versions
4. A final instruction block that requires the model to revise the CDL program directly.

Here we provide one of the examples given to the CDL debugger that corrects logical errors:

- Error example:
behavior put_apple_on_table(apple:item ,table:item):

body:
achieve inhand(apple)
achieve on(apple ,table)

Error Analysis: In this example , using achieve inhand(apple) means the
apple must remain in hand until the end of the behavior. However ,

achieve
on(apple , table) indicates that the apple should be placed on the
table.
This leads to a contradiction. The apple cannot be both held and
placed at the same time. The solution is to remove the unnecessary
inhand(apple)
condition , as on(apple , table) is the actual intended goal of this
behavior rule.

- Corrected behavior rule:
behavior put_apple_on_table(apple:item ,table:item):

body:
achieve on(apple ,table)

Self-Eval for a given subtask, we prompt the LLM to decide whether the subtask has been completed
based on a structured summary of actions taken, CDL program, and collected observations. The
prompt is composed of the following elements:

1. A task overview section that encourages evaluating based on action effects and known
information, assuming all actions succeed and ignoring timing constraints.
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2. A dynamically filled section that includes:

• The current subtask to evaluate;
• A list of actions already taken observed effects;
• The next intended subtask;
• The overall task description;
• Optional human guidance;
• The CDL program.

3. A final instruction block that specifies the required output format, including a binary decision
(Yes/No) indicating the result of the self-evaluation. If the answer is No, an explanation is
also provided.

B.2 Exploration behavior template

The LLM first selects the most likely location of target instance, denoted as
LLM chosen loc instance, which is selected from the discovered and not checked objects.
The relevant information is then embedded into the template below, where LLM chosen loc cat
and LLM chosen loc id denote the category and ID of LLM chosen loc instance, respectively.
This exploration behavior can be used directly while interpreting an CDL program:

behavior find_{target_instance}_around_{LLM_chose_loc }({
target_instance }:item):

goal: not unknown ({ target_instance })
body:

bind {LLM_chose_loc_cat}_instance:item where:
is_{LLM_chose_loc_cat }({ LLM_chose_loc_cat}_instance) and
id[{ LLM_chose_loc_cat}_instance ]=={ LLM_chose_loc_cat_id}

achieve close_char(char ,{ LLM_chose_loc_cat}_instance)
if can_open ({ LLM_chose_loc_cat}_instance):

achieve_once open({ LLM_chose_loc_cat}_instance)
exp({ target_instance },{ LLM_chose_loc_cat}_instance)

else:
exp({ target_instance },{ LLM_chose_loc_cat}_instance)

eff:
unknown [{ target_instance }]= False
close[{ target_instance },{ LLM_chose_loc_cat}_instance ]=True
close[{ LLM_chose_loc_cat}_instance ,{ target_instance }]= True

B.3 Behavior rule library

B.3.1 Basic behavior rule library

LEAP is provided with a set of basic behavior rules that can be used to achieve certain goals under
constraint-free conditions. Here we provide some examples :

# Example 1: This behavior rule can be used to get close to an obj.
behavior walk_to(obj: item):

goal: close_char(char , obj)
body:

achieve not unknown(obj)
walk_executor(obj)
let inhand_objects=findall o: item where: inhand(o)

eff:
inside_char[char , :] = False
close_char[char , :] = False
foreach o in inhand_objects:

inside[o, :]= False
close[o, :] = False
close[:, o] = False
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foreach icf in (findall t:item: obj_inside_or_on(obj , t)):
close_char[char , icf] = True
if not (can_open(icf) and closed(icf)):

unknown[icf] = False
foreach o in inhand_objects:

close[o, icf] = True
close[icf , o] = True

close_char[char ,obj] = True
foreach o in inhand_objects:

close[o, obj] = True
close[obj , o] = True

# Example 2: This behavior rule can pick up an obj.
behavior grab(obj: item):

goal: inhand(obj)
body:

assert grabbable(obj)
achieve not unknown(obj)
achieve has_a_free_hand(char)
achieve close_char(char , obj)
grab_executor(obj)

eff:
inhand[obj] = True
on[obj , :] = False
inside[obj , :] = False
close[obj , :] = False
close[:, obj] = False
if exists item1: item : holds_lh(char , item1):

holds_rh[char , obj] = True
has_a_free_hand[char] = False

else:
holds_lh[char , obj] = True

# Example 3: This behavior rule can be used to turn off an obj.
behavior switch_off(obj: item):

goal: is_off(obj)
body:

assert has_switch(obj)
achieve not unknown(obj)
achieve has_a_free_hand(char)
achieve close_char(char , obj)
switchoff_executor(obj)

eff:
is_off[obj] = True
is_on[obj] = False

B.4 Learned behavior rule library

Here we provide some examples that learned by LEAP through interaction with the environment and
guidance from human:

# Example 1
Subtask description: Wash the clothes in the washing machine.
CDL program:
behavior start_washing(clothes:item , washing_machine:item):

body:
achieve inside(clothes , washing_machine)

behavior operate_washing_machine(washing_machine:item):
body:

achieve closed(washing_machine)
achieve is_on(washing_machine)
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behavior __goal__ ():
body:

bind basket: item where:
is_basket_for_clothes(basket)

# Select the basket for clothes

bind washing_machine: item where:
is_washing_machine(washing_machine)

# Select the washing machine

foreach clothes: item:
# Load all dirty clothes from the basket into the washing
machine

if is_clothes(clothes) and inside(clothes , basket):
start_washing(clothes , washing_machine)

operate_washing_machine(washing_machine)
# Start the washing machine

# Example 2
Subtask description: Boil the egg.
CDL program:
behavior boil_egg(egg:item , pot:item , stove:item):

body:
achieve has_water(pot)
achieve inside(egg , pot)
achieve on(pot , stove)
achieve is_on(stove)

behavior __goal__ ():
body:

bind egg: item where:
is_food_egg(egg)

# Select the egg

bind pot: item where:
is_pot(pot)

# Select a pot

bind stove: item where:
is_stove(stove)

# Select a stove

boil_egg(egg , pot , stove)
# Boil the egg in the pot on the stove

# Example 3
Subtask description: Slice the bread and toast it.
CDL program:
behavior slice_bread(bread: item , cutting_board: item , knife: item):

body:
achieve on(bread , cutting_board) # Place the bread on the
cutting board
achieve cut(bread) # Slice the bread

behavior toast_bread(bread: item , toaster: item):
body:

achieve inside(bread , toaster)
# Place the sliced bread inside the toaster
achieve closed(toaster)
# Close the toaster
achieve is_on(toaster)
# Turn on the toaster to toast the bread

behavior __goal__ ():
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body:
bind bread: item where:

is_food_bread(bread) and cuttable(bread)
# Select a cuttable bread

bind cutting_board: item where:
is_cutting_board(cutting_board)

# Select a cutting board

bind knife: item where:
is_knife(knife)

# Select a knife

bind toaster: item where:
is_toaster(toaster)

# Select a toaster

slice_bread(bread , cutting_board , knife)
# Slice the bread
toast_bread(bread , toaster)
# Toast the sliced bread
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