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Abstract

The cross-entropy objective has proved to be an all-purpose training objective for1

autoregressive language models (LMs). However, without considering the penal-2

ization of problematic tokens, LMs trained using cross-entropy exhibit text degen-3

eration. To address this, unlikelihood training has been proposed to reduce the4

probability of unlikely tokens predicted by LMs. But unlikelihood does not con-5

sider the relationship between the label tokens and unlikely token candidates, thus6

showing marginal improvements in degeneration. We propose a new contrastive7

token learning objective that inherits the advantages of cross-entropy and unlikeli-8

hood training and avoids their limitations. The key idea is to teach a LM to gener-9

ate high probabilities for label tokens and low probabilities of negative candidates.10

Comprehensive experiments on language modeling and open-domain dialogue11

generation tasks show that the proposed contrastive token objective yields much12

less repetitive texts, with a higher generation quality than baseline approaches,13

achieving the new state-of-the-art performance on text degeneration.14

1 Introduction15

Autoregressive language models (LMs), such as OpenAI GPT-3 [1], have achieved impressive re-16

sults on various natural language processing (NLP) tasks. The goal of training LMs is to learn the17

true distribution of a text corpus, and this is usually achieved through next word prediction. Specif-18

ically, a standard approach to training LMs is to minimize the cross-entropy loss between the true19

distribution and the model prediction. Unfortunately, LMs trained using the cross-entropy objec-20

tive have been observed to exhibit text degeneration problems, where token, phrase, and sentence21

level repetition is a common symptom [6, 9, 27]. Such repeated texts differ markedly from those22

generated by humans.1 To analyze the reasons for degeneration, our work views the vocabulary of23

LMs as being composed of three sets of tokens at each time step, i.e., positive tokens (label tokens),24

negative tokens (incorrectly repeating tokens), and irrelevant tokens (all the others). Based on this25

taxonomy, we stress that cross-entropy is in fact a contrastive learning objective that contrasts posi-26

tive tokens with negative and irrelevant tokens. While it is necessary for LMs to learn how to rank27

positive tokens higher than other tokens in the predicted distribution, negative tokens are treated28

equally to irrelevant tokens (whose number is usually much larger) by the cross-entropy objective.29

As a consequence, negative tokens may not be suppressed hard enough.30

To address the above issue, Welleck et al. [27] have proposed unlikelihood training to penalize31

certain negative tokens, i.e., tokens being incorrectly repeated. The key idea behind unlikelihood32

training is to lower the probability of negative tokens assigned by LMs. Despite its success, the33

unlikelihood objective penalizes negative tokens by decreasing their predicted probability but does34

1Readers are referrred to Table 4 for some concrete examples. The degeneration problem even exists in
large-scale, state-of-the-art, pre-trained language models such as GPT-3 [18].
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Figure 1: Illustrating the differences between our proposed contrastive token learning, unlikelihood
training, and the cross-entropy objective for LMs. For contrastive token learning, we use the label
token as the positive token and the preceding M tokens as the negative tokens at each decoding step.

not consider the relationship between positive and negative tokens. Unlikelihood training also unin-35

tentionally boosts the probability of other irrelevant tokens. Moreover, all previous context tokens36

are used as negative candidates per generation step. Such an objective not only introduces a consid-37

erable amount of noise, but also results in sub-optimal repetition reduction, thus affecting the final38

generation performance.39

In this paper, we introduce a simple yet effective contrastive token learning (CT for short) objective40

that integrates the best of cross-entropy and unlikelihood training, penalizing negative tokens by41

contrasting them with positive tokens. The commonalities and differences between cross-entropy,42

unlikelihood training, and CT are illustrated in Figure 1. Briefly, (i) without distinguishing between43

negative and irrelevant tokens, cross-entropy cannot effectively suppress negative tokens; (ii) due to44

the lack of contrast between negative and positive tokens, it is difficult for unlikelihood training to45

penalize negative tokens; and (iii) through its more focused contrast between positive and negative46

tokens, CT can take goal-directed actions rather than just predicting label tokens, i.e., explicitly47

teaching the LM to assign negative tokens with a lower probability than positive tokens. In this48

work, we combine the CT and cross-entropy objectives to train LMs, where cross-entropy performs49

on the label tokens so that they are assigned the highest probability, and CT effectively suppresses50

negative tokens from being generated.51

We perform evaluations on the tasks of language modeling and open-domain dialogue generation.252

Our empirical evidence demonstrates that LMs trained with the proposed CT objective can generate53

much less repetitive texts using standard greedy or beam search and achieve superior text generation54

performance under both automatic and human evaluations. CT has a minor negative influence on55

the perplexity of LMs, but thanks to the reduced repetition rates, in our case studies we observe56

substantial improvements regarding the quality of generated text.57

2 Background58

LMs aim to learn the true distribution over variable-length text sequences in a text corpus X =59

(x1, x2, . . . , x|X|) with |X| tokens. A popular approach to this task is next word prediction, i.e.,60

predicting a distribution over the next word following a given context. To train such a language61

model, cross-entropy and unlikelihood training are two representative objectives. In this section,62

we first review cross-entropy and unlikelihood training. We then provide an analysis of the text63

degeneration problem.64

2Our source code, including data pre-processing scripts, our trained models, and an interactive Google
Colab notebook, is available at https://anonymous.4open.science/r/lit-seq.

2

https://anonymous.4open.science/r/lit-seq


Table 1: The influence comparison of different learning objectives over the positive (label), negative
(incorrectly repeating), and irrelevant tokens (all the others) for the LMs.

Relevant tokens

Loss Positive Negative Irrelevant tokens Contrast

Cross-entropy (CE) Promote Suppress Suppress Yes
Unlikelihood training (UL) Promote Suppress/Promote Promote No
Contrastive token (CT) Promote Suppress Unchanged Yes

2.1 Cross entropy65

A standard approach to training a LM is to minimize the expected cross-entropy loss between the66

true distribution and the model prediction [28]. Specifically, the cross-entropy loss for each time67

step t is defined as:68

Lt
CE = − log p(xt|x<t) (1)

= − log
exp(hT

t Wxt)∑
x̂t∈V exp(hT

t Wx̂t
)

(2)

= log

1 +
∑

x̂t∈V,x̂t ̸=xt

exp(hT
t Wx̂t

− hT
t Wxt

)

 , (3)

where ht is the model hidden state at time t, W is the embedding matrix, and Wxt denotes the word69

embedding of token xt. Through some simple transformations from Eq. (1)–(3), we can see that70

Eq. (3) is similar to the N -pair contrastive loss [24] for visual object recognition. In other words,71

cross-entropy effectively trains LMs to contrast the label tokens (positive examples) xt with all the72

other non-label tokens (negative and irrelevant examples) x̂t ∈ V, x̂t ̸= xt in the whole vocabulary.73

2.2 Unlikelihood training74

To address the repetition issue of cross-entropy, Welleck et al. [27] have proposed unlikelihood75

training to penalize the likelihood of negative tokens (UL-T). The unlikelihood loss for time step t76

is defined as:77

Lt
UL = −

∑
x−
t ∈Ct

log(1− p(x−
t |x<t)), (4)

where Ct = {x1, . . . , xt−1}\{xt} is the set of negative tokens at time t, i.e., all previous context78

tokens. In this paper, we refer to this set of negative tokens as the preceding tokens set. As we will79

see in §2.3, UL-T does not work well as it can increase the probability of irrelevant tokens. Welleck80

et al. [27] have also proposed a more effective sequence-level unlikelihood objective (UL-S) that81

uses unlikelihood on decoded continuations during training time. We omit the details here as our82

proposed CT is more closely related to UL-T, but we do compare CT to UL-S in our experiments.83

2.3 Discussion84

The main difference between Eq. (3) and the N -pair contrastive loss is that, in Eq. (3), negative and85

irrelevant tokens are treated equally by cross-entropy.3 These negative tokens need to be penalized86

harder than irrelevant tokens, otherwise, negative tokens may be incorrectly repeated in later time87

steps. This explains why LMs trained by cross-entropy have high repetition rates.88

Although UL-T penalizes negative tokens, it does not work well enough, and as can be seen from89

Table 1, the reasons are twofold. First, each negative token is not definitely penalized because it90

depends on the influence of other negative tokens, which can be seen from the gradient analysis91

of UL-T (Eq. (11) in Appendix D). Second, the formulation of UL-T unintentionally boosts the92

probability of other irrelevant tokens and may make them surface as repeated tokens. We detail this93

analysis in §3.3.94

3Albeit with different strengths, as seen in Eq. (10) in Appendix D.
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3 Method95

To address the issues discussed above and inherit the advantages of cross-entropy and unlikelihood96

training, in this section, we present a novel contrastive token learning (CT) objective for LMs. We97

first define the CT loss for each time step. Then we introduce a positive and negative token selection98

strategy. Finally, we discuss the differences and connections of CT with respect to cross-entropy99

and unlikelihood training.100

3.1 Contrastive token learning101

The key idea of CT is to promote positive (label) tokens in the ranking at each step, while lowering102

negative (incorrectly repeating) tokens, and leave other irrelevant tokens untouched. To this end, we103

formulate the CT loss for step t as:104

Lt
CT = log

1 +
∑

x−
t ∈St

N

exp(hT
t Wx−

t
− hT

t Wxt
)

 , (5)

where St
N is the negative token set and xt is the positive token (i.e., label token) at time t. We detail105

the token selection mechanism of St
N below.106

During the training phase, we combine the CT loss with the cross-entropy loss for each time step as107

follows:108

Lt = Lt
CE + Lt

CT , (6)
where Lt

CE aims to promote label tokens, training models to assign the highest probabilities to such109

tokens. On the other hand, Lt
CT focuses on contrasting positive tokens and negative tokens, so that110

the LMs can learn to effectively rank negative tokens lower than their positive counterparts.111

3.2 Negative token selection strategy112

Following [27], we use the preceding tokens set without requiring additional supervision as our113

negative tokens St
N . However, using all preceding tokens (as in [27]) may bring too much noise to114

the training process, especially for later time steps in a sequence. Hence, we instead propose to use115

the preceding M tokens set to decide the negative tokens, with M being a hyper-parameter. The set116

St
N is defined as:117

St
N = {xt−M , . . . , xt−1}\{xt}. (7)

Another difference with the preceding tokens set [27] is that, St
N is a multiset that does not remove118

redundant occurrences. Intuitively, minimizing the CT loss with the preceding M tokens set makes119

more frequently repeated tokens less likely to be predicted.120

3.3 Gradient analysis121

To see how loss functions influence the positive, negative and irrelevant tokens during training, we122

derive the gradient functions of each loss function with respect to these tokens in Appendix D. Table123

1 is an intuitive summary of the influences, from which one can observe that: (i) Cross-entropy124

trains to promote label tokens in rankings at each time-step, while suppressing all the other tokens125

including negative and irrelevant tokens. (ii) It cannot be decided for unlikelihood training whether126

the negative tokens are promoted or suppressed by the gradient function (cf. Eq. (11) in Appendix D,127

the valid region for the corresponding gradient function contains both positive and negative values),128

and irrelevant tokens are promoted, both of which are problematic. (iii) With contrastive token129

learning, CT promotes positive tokens and suppresses negative tokens, and it is the only objective130

that does not affect irrelevant tokens (cf. the gradient functions in Appendix D).131

When using CT together with CE, as we do for our final loss function, negatives are suppressed both132

in CT and in CE, while irrelevant tokens are only suppressed in CE. Therefore, our CT objective is133

able to better restrain incorrectly repeated tokens.134

4 Related work135

We review two lines of related work, i.e., neural text degeneration and contrastive learning.136
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Neural text degeneration. With large-scale pre-training, state-of-the-art neural LMs are able to137

generate human-like texts [1, 28]. However, they suffer from the text degeneration problem, where138

model-generated texts are dull and repetitive [6, 7, 27]. The text degeneration problem is especially139

serious with open-ended generation tasks, such as dialogue generation [9, 23] and language model-140

ing [6, 27]. Some decoding approaches have been proposed to address this problem, by introducing141

randomness [4, 6] or disparity [23, 25] at inference time. Some other work suggests that the de-142

generation problem is caused by defects of the likelihood training objective, and improved training143

objectives have been proposed [8, 25, 27].144

Our proposed contrastive token learning approach belongs to the training objective family. Com-145

pared to unlikelihood training [27], we address the suppression of repetitive tokens by contrasting146

them with positive tokens.147

Contrastive learning. In computer vision, contrastive learning has been widely employed to learn148

representations [2, 10, 24]. Noise-contrastive estimation [5] has been proved successful for training149

word embeddings [16]. In recent years, contrastive learning has gained more attention in the area of150

natural language processing too. Most work builds contrasts at the sequence or document level by151

corrupting the ground truth sequence [3, 12, 14, 29] or mining positive/negative samples [17, 19].152

Existing token-level contrastive learning frameworks contrast model representations from different153

positions [25, 30]. Differently, we contrast word embeddings while using the hidden representations154

as anchor points similar to the triplet contrastive loss [22]. Our formulation effectively contrasts155

logits output by the model for positive and negative tokens, thus it is more direct than unlikelihood156

training on addressing the repetitive degeneration problem. To the best of our knowledge, our pro-157

posed contrastive token learning is the first to use token embeddings as positive/negative examples158

in a contrastive framework for the text degeneration problem.159

5 Experimental setup160

We compare CT with baseline approaches on the language modeling and open-domain dialogue161

generation task. Since our experimental results on the dialogue task show a similar pattern as on the162

language modeling task, we will focus on the language modeling task in the body of the paper and163

postpone the setup and analyses of the dialogue task to Appendix I.164

Baselines and implementation. We implement several state-of-the-art baselines and use them with165

GPT-2 [20]: (i) The vanilla cross-entropy (CE) objective; (ii) decoding-based methods: banning166

3-grams [21], top-k sampling [4], nucleus sampling [6] and contrastive search (SimCTG-CS) [25];167

and (iii) learning-based methods: unlikelihood training [27], SimCTG [25], and noise-contrastive168

estimation (NCE; detailed in Appendix C) [5]. More details can be found in Appendix E.169

Dataset, training and inference details. At training time, we fine-tune GPT-2 small on the widely-170

used Wikitext-103 dataset [15] with each learning-based approach (including the CE baseline) for171

50K steps with 3K warm-up steps. As suggested in [27], for sequence-level unlikelihood training,172

we first fine-tune the language model using UL-T for 48.5K steps, and then switch to the UL-S173

objective for another 1.5K steps, resulting in UL-TS. Best model checkpoints for each task are174

selected according to the lowest validation CE loss with an evaluation interval of 1K training steps.175

We use trunks of 512 tokens, and a training batch size of 4. All models are trained using the Adam176

optimizer [11] with a learning rate of 1e-5. For UL-TS, we had to use a smaller learning rate of177

1e-6, otherwise the generated texts contain massive ungrammatical repetitions (continuous token178

repetitions, as can be seen in Table 5 of Appendix F).179

At inference time, we compare the performance of each approach to text degeneration using both180

greedy search and beam search. We use k = 50 for top-k sampling, and p = 0.9 for deciding the181

sampling pool of the nucleus method. We follow Welleck et al. [27] to use 50 tokens as the input182

prefix and let the model generate 100 tokens as a continuation.183

Evaluation metrics. We measure the perplexity (ppl) of different approaches. For measuring gen-184

erative repetition, we follow Welleck et al. [27] to use 1-gram to 4-gram repetition rates (rep-1185

– rep-4), which are defined as the number of repeated n-grams divided by the total number of186

generated n-grams in each sequence, micro-averaged over the whole dataset. We also report the187

generation diversity at the dataset level, which is measured by distinct 1-gram rates (dist-1) [13]188

and unique 1-gram counts (uniq-1). We adopt human evaluation for measuring the quality of189

5



Table 2: Results on the test set of Wikitext-103 for the language modeling task. ↑/↓ arrows denote
whether higher or lower is better for a metric. The best result for either type of approach (decoding-
based vs. learning-based) under each metric is highlighted in bold face. ‡ Does not count as the best.
† For this experiment, we use a beam size of 5 as suggested in its original paper [25].

ppl↓ ppl-s↓ search rep-1↓ rep-2↓ rep-3↓ rep-4↓ dist-1↑ uniq-1↑

GPT-2 18.01 25.95 greedy 71.03 60.12 54.77 50.93 1.15 12787
beam 77.02 69.70 65.49 61.69 1.12 12545

de
co

di
ng

-b
as

ed 3-gram ban 18.01 25.95 greedy 50.09 18.31 0.00‡ 0.00‡ 1.52 16940
beam 40.91 10.40 0.00‡ 0.00‡ 1.35 15114

Top-k 18.01 25.95 greedy 34.80 9.38 3.86 1.73 2.23 24840
beam 73.47 64.38 59.31 54.88 1.19 13280

Nucleus 18.01 25.95 greedy 38.41 12.10 5.50 2.78 2.06 23038
beam 74.28 65.70 60.86 56.58 1.17 13004

SimCTG-CS 18.12 26.10 greedy 70.23 58.92 53.44 49.54 1.17 13005
beam† 31.93 6.52 2.23 0.94 1.77 19746

le
ar

ni
ng

-b
as

ed

SimCTG 18.12 26.10 greedy 70.23 58.92 53.44 49.54 1.17 13005
beam 75.87 68.02 63.54 59.52 1.15 12835

NCE 18.60 32.88 greedy 57.23 41.59 35.50 31.75 1.32 14774
beam 56.02 40.99 34.73 30.48 1.28 14322

UL-T 18.93 26.63 greedy 60.91 45.15 38.31 33.90 1.26 14071
beam 67.39 55.95 49.85 44.78 1.15 12874

UL-TS 18.88 27.41 greedy 51.98 29.17 19.71 14.42 1.29 14378
beam 45.81 23.96 15.60 10.41 1.27 14141

CT 18.72 64.01 greedy 22.09 4.02 1.49 0.80 2.05 22832
beam 27.18 9.71 5.73 3.77 1.68 18697

Human – – – 29.92 7.25 2.81 1.14 3.41 19034

model generated texts. We randomly select 100 prefixes from the test set of Wikitext-103, and com-190

pare the continuations generated using CT with those by the best-performing baselines according to191

the automatic evaluation results. Since it does not make much sense to compare continuations with192

either side having excessive repetitions, we filter out such pairs using a threshold of rep-4 ≤ 0.05193

to make the comparisons more competitive. Then we display the prefix and two continuations from194

different systems (side-by-side, in a random order) to three crowd workers and ask them to select195

the winner in terms of repetition, coherence, fluency, and overall quality. Ties are allowed for all196

aspects. We use majority voting to decide the final winner. Details about our question form design197

and the instructions to crowd workers can be found in Appendix G.198

6 Evaluation results199

We conduct extensive experiments to demonstrate the advantages of our proposed CT. In this section,200

we discuss how CT compares to SOTA methods under both the automatic and human evaluations as201

well as showing some visualization analysis on its generation probability.202

6.1 Baseline comparison203

The performance comparisons between our CT and the baselines on the language modeling task are204

shown in Table 2. For models, the repetition and diversity results are calculated on model-generated205

continuations of 100 tokens, using 50 tokens of human-created text as the prefix. For the human206

performance, we calculate the metrics on trunks of 100 tokens for a fair comparison. The ppl207

metric is for 512-token sequences to comply with the training sequence length. To be comparable to208

existing work [25, 27], we also report ppl-s for short sequences of 50 tokens. We use a sequence209

length of 150 tokens and M = 60 as the negative window size for CT. Justifications for such hyper-210

parameter selections can be found in Appendix F.2.211
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Figure 2: Histograms for rep-1 (left) and rep-4 (right) rates of each method, on the Wikitext-103
test set.

CT compared to learning-based approaches. One can observe that CT performs the best and212

even outperforms humans according to rep-* rates and unique token counts (uniq-1) when us-213

ing greedy search. However, the repetition problem is still not yet solved, because when looking214

at specific cases, models trained by CT still occasionally generate texts with excessive repetitions,215

though being much rarer than baseline methods. To see how each method performs at every repe-216

tition level, we group the rep-1 and rep-4 rates of model-generated texts in to 5 bins, and plot217

their histograms in Figure 2, from which we can see that CT generates substantially less degener-218

ated continuations (with rep-1≥ 0.4 and rep-4≥ 0.2). For UL-TS, we were able to achieve219

lower repetition rates with a larger learning rate of 1e-5 during training. However, the trained LM220

often generates ungrammatical repetitions. This problem does not exist with CT when trained with221

a learning rate as large as 1e-4. The comparisons are shown in Table 5 in Appendix F, and in §6.3222

we show that this is caused by UL-TS being uncertain about its predictions at later time steps.223

The diversity improvements brought by CT are the largest among all learning-based methods, espe-224

cially when using greedy search. CT increases the second highest uniq-1 count (NCE) by 55%.225

When comparing NCE and UL-T, one can see that utilizing the contrast between positive and neg-226

ative tokens works better than solely penalizing negative tokens. The primary difference between227

CT and NCE is that the positive and negative tokens of CT interact with each other, while those228

of NCE do not (Table 1, more details in Appendix D). This explains the lower rep-* rates and229

higher diversity of CT, which also concurs with the observation made by Sohn [24] that interactive230

contrastive losses work better than non-interactive counterparts.231

The ppl increase brought by CT is minor, with 0.71 points. When calculated on short sequences,232

due to the length mismatch of training and test sequences, ppl-s scores are higher than ppl for all233

approaches. Among them, contrastive objectives (NCE and CT) have larger ppl-s increases than234

other methods. Although CT has the highest increase on ppl-s, our case study (Table 4) shows235

that the generation quality of CT is not harmed, but on the contrary is improved due to the lower236

repetition and higher diversity of the generated texts.237

CT compared to decoding-based approaches. Although CT is a learning-based method, we still238

compare it against decoding approaches for a more comprehensive understanding of its performance.239

When greedy search is used, CT outperforms the best decoding method (Top-k) in terms of rep-*240

rates, which again proves the effectiveness of contrastive learning. When using beam search, all241

but SimCTG-CS perform significantly worse than CT, both in terms of repetition rates and diversity.242

SimCTG-CS is effective at reducing repetition as it explicitly requires a disparity among different243

time steps at inference time. This can harm the generation quality, especially the coherence and244

fluency, as we see in §6.2. It is also worth noting that SimCTG-CS only works together with its245

SimCTG training objective and with beam search [25]. In summary, one can see that the repetition246

problem can be better addressed from the model learning perspective, in which case a simple greedy247

decoding strategy suffices.248

6.2 Human evaluation249

Human evaluation results are shown in Table 3. Regarding the overall quality, CT performs signifi-250

cantly better than Top-k and SimCTG-CS, two decoding based approaches. Instead of purely learn-251

ing generation policies from data, decoding approaches exert heuristics at inference time, which252
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Table 3: Win/lose rates (%) of CT compared to baselines under human evalutaions. For a competi-
tive comparison, we filtered out highly repetitive examples of either model in the pair. * indicates
statistical significance as determined with a sign test (p < 0.05).

Overall Repetition Coherence Fluency

Comparison Win Lose Win Lose Win Lose Win Lose

CT vs Top-k 58* 36 40* 23 56* 36 45 36
CT vs SimCTG-CS 55* 35 46* 18 52 36 54* 28
CT vs UL-TS 48 43 43 28 39 45 47 38
CT vs Human 27 67* 30 35 23 67* 27 57*

may prevent the language model from performing naturally. This explains the worse performance of253

decoding approaches on coherence and fluency. CT performs generally better than UL-TS except on254

coherence, but none of these differences are statistically significant. This suggests that CT has a sim-255

ilar generation quality as UL-TS on low-repetitive examples, but CT has much lower repetition rates256

as reported in Table 2. This result is expected, as both CT and UL-TS are learning-based approaches257

for training data-driven models, and on normal cases such as low-repetitive generations, they should258

perform similarly. Compared to human performance, there is still a large margin for machine learn-259

ing models before they have a comparable performance on the language modeling task. Although260

CT performs on par with humans regarding repetition, its generations are far less coherent and fluent261

than those of humans. This may be mitigated by using larger models such as GPT-2 large or GPT-3.262

However, we could not perform such experiments due to a lack of computational resources.263

6.3 Visualization analysis of the generation probability264

We also conduct analyses to understand the predicted probability of model-generated tokens at infer-265

ence time. As shown in Figure 3, diagonal cells represent the probability of generated tokens at the266

corresponding time steps; off-diagonal cells represent the probability of context tokens. The plots267

are averaged over 10 random instances from the test set of Wikitext-103.268

0 10 20 30 40 50 60 70 80 90
CT

0
10

20
30

40
50

60
70

80
90

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90
CE

0
10

20
30

40
50

60
70

80
90

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80 90
UL-TS

0
10

20
30

40
50

60
70

80
90

0.1

0.2

0.3

0.4

0.5

Figure 3: Heat maps for the generation probability of CT, CE and, UL-TS, at inference time. Row
and column labels represent model-generated tokens at each time step, and the saturation of each
cell represents the corresponding probability of each token. Please refer to §6.3 for a more detailed
description. Heat maps for NCE, UL-T and SimCTG look similar to that of CE, and can be found
in Appendix F, Figure 4.

We have the following key observations from Figure 3: (i) The heat map of CT shows a high variance269

in the diagonal, meaning that the model becomes certain and uncertain from time to time. As noted270

by Holtzman et al. [6], human-created texts also show such a pattern when fed through pretrained271

language models. (ii) In comparison, the heat map for CE shows clear stripes, which stand for272

excessive repetition of context n-grams. Besides, the diagonal cells are increasingly darker from273

top to bottom, revealing that the language model is becoming more and more certain about its later274

predictions, and it seems to positively correlate with the heavier repetition in the later halves of275

sequences. (iii) Contrary to CE, the heat map for UL-TS is almost white at the lower and the276

right parts of the heat map, indicating the language model is uncertain about any prediction in later277

stages, and the generated tokens just win marginally over other candidates. This is expected, since278
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Table 4: Continuations generated using UL-TS have heavier repetition than those generated using
CT. Greedy search is used. More comparisons to other approaches can be seen in Table 6 in Ap-
pendix F.

rep-1

Prefix the American lobster, H. americanus. It may grow to a length of 60 cm ( 24 in ) and a mass of 6 kilograms ( 13 lb ),
and bears a conspicuous pair of claws. In life, the lobsters are blue,

UL-TS with a white spot on the underside. The eggs are laid in a single, white sac, and hatch in the spring. The adult is about
1 @.5 2 cm ( 0 @.@ 8 1 @.@ 9 in ) long, and weighs about 1 @.5 2 @.@ 5 kg ( 2 @.5 3 @.@ 8 lb ). The eggs are
laid in a single, white @ brownish @ brown shell, with a white margin

0.55

CT yellow, or greenish @-@ brown with short pointed teeth. The male lays eggs on top of the female’s abdomen, which
are incubated by means of tubes attached to the skin. After three weeks, the eggs hatch into adult males. = = Taxonomy
= = The genus H. americanus has been described by several authors since its discovery in 1887. Most notably John
Browning ( 1827 - 1901 ), who wrote about it in his book On Lobsters

0.18

Prefix He married around 752, and by 757 the couple had had five children three sons and two daughters but one of the
sons died in infancy in 755. From 754 he

UL-TS was a prominent figure in the Church of England, and in 758 he was appointed vicar of St John’s, and in 759 he was
appointed vicar of the Church of Scotland. He died in 761, and was succeeded by his son, John, who died in 762.
= = Early life = = John was born in the parish of St John’s, in the parish of St John’s, in the parish of St John’s
parish,

0.61

CT continued to live at St. John’s Church, near Bath, where he received instruction from William de Montfort on how
to build a dam for irrigation purposes. The first mention of this work came in 757 when it was discovered that a
large portion of the earth beneath the riverbed had been washed away by floods caused by wind gusts. This led to
speculation that it might be connected to the Norman invasion of England. In 758, however, Henry VIII granted
permission for construction of a

0.21

UL-TS penalizes repetitions unilaterally, and repetitions are more common in the later half of a279

model-generated sequence. Even though UL-TS is able to effectively reduce repetition rates, its280

heat map shows that the language model trained by UL-TS may subject to frequent grammatical281

errors, as can be seen in Appendix F, Table 5.282

6.4 Case study283

To intuitively see how well CT performs, we selected some example generations of CT, and compare284

them with those generated using UL-TS in Table 4. More often than not, continuations generated by285

CT are less repetitive and make more sense than those generated by UL-TS. The reason for the poor286

quality of UL-TS is that sequence-level unlikelihood training penalizes repeated 4-grams generated287

by LMs, making LMs uncertain about their predictions as suggested in Figure 3.288

7 Conclusion and discussion289

In this paper we studied the neural text degeneration problem. By integrating the best of cross-290

entropy and unlikelihood training objectives, we obtain a simple and effective contrastive token291

learning (CT) framework. The main novelty of this work is adapting contrastive learning to the292

token level of autoregressive language model training. As far as we are aware, our work is the first293

to use model hidden states as the anchor points and tokens as the positive and negative examples to294

formulate the contrastive loss. By contrasting the preceding M tokens at a training step with the label295

token, LMs learn to not repeat such tokens, thus alleviating the repetition problem. Although the idea296

of negative tokens is similar to UL, our formulation of contrastive objective is more effective and297

safer to use. Experiments on the open-ended text generation and open-domain dialogue generation298

tasks show that CT beats UL-TS, the previous state-of-the-art approach to tackling the repetitive text299

degeneration problem. CT not only achieves the lowest repetition rates and the highest generation300

diversity, but also higher generation quality according to our human evaluation.301

We performed experiments on fine-tuning LMs for reducing their repetition rates, which can be302

beneficial for related tasks such as abstractive summarization, machine translation, and image cap-303

tioning. Our early experiments show that CT can be safely integrated when training a language304

model from scratch, which can be helpful for future pre-training of large language models. In this305

work, we used CT with decoder-only (GPT2) and encoder-decoder (BlenderBot) language models,306

but we note that CT can also be used with encoder language models (e.g., BERT [26]) to potentially307

improve the model performance such as prediction accuracy. The repetitive degeneration problem308

is still not fully solved as occasional, excessive phrase repetitions remain in the generated texts. We309

leave these research directions as future work.310
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