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Abstract

Standard pretrained language models operate
on sequences of subword tokens without di-
rect access to the characters that compose each
token’s string representation. We probe the
embedding layer of pretrained language mod-
els and show that models learn the internal
character composition of whole word and sub-
word tokens to a surprising extent, without
ever seeing the characters coupled with the to-
kens. Our results show that the embedding
layer of RoBERTa holds enough information
to accurately spell up to a third of the vocabu-
lary and reach high average character ngram
overlap on all token types. We further test
whether enriching subword models with addi-
tional character information can improve lan-
guage modeling, and observe that this method
has a near-identical learning curve as train-
ing without spelling-based enrichment. Over-
all, our results suggest that language modeling
objectives incentivize the model to implicitly
learn some notion of spelling, and that explic-
itly teaching the model how to spell does not
enhance its performance on such tasks.

1 Introduction

Contemporary subword tokenization algorithms
such as BPE (Sennrich et al., 2016) partition a
string into contiguous spans of characters. Each
span represents a frequent character ngram, from
individual characters (a), through prefixes (uni)
and suffixes (tion), and even complete words (cats).
The tokenizer then converts each such span into
a discrete symbol (a token) with no internal struc-
ture, effectively discarding the token’s orthographic
information. Therefore, a model operating over se-
quences of subword tokens should be oblivious to
the spelling of each token. In this work, we show
that despite having no direct access to the subwords’
internal character composition, pretrained language
models do learn some notion of spelling.

To examine what pretrained language models
learn about spelling, we present the SpellingBee
probe. SpellingBee is a generative language model
that predicts the character composition of a token
given only its (uncontextualized) vector representa-
tion from the pretrained model’s embeddings ma-
trix. SpellingBee is trained on part of the model’s
vocabulary, and then tested by spelling unseen to-
ken types. If the probe can successfully reconstruct
the correct character sequence from an unseen to-
ken’s embedding, then there must be significant
orthographic information encoded in the vector.

We find that the embedding layers of several
pretrained language models contain surprising
amounts of character information. SpellingBee
accurately spells 31.8% of the held-out vocabu-
lary for RoBERTa-Large (Liu et al., 2019), 32.9%
for GPT2-Medium (Radford et al., 2019), and
40.9% for the Arabic language model AraBERT-
Large (Antoun et al., 2020). A softer metric that
is sensitive to partially-correct spellings (chrF)
(Popović, 2015) shows a similar trend, with 48.7
for RoBERTa-Large and 62.3 for AraBERT-Large.
These results are much higher than the baseline
of applying SpellingBee to randomly-initialized
vectors, which fails to spell a single token.

Given that subword models learn some notion
of character composition to fulfill language mod-
eling objectives, could they perhaps benefit from
knowing the exact spelling of each token a priori?
To that end, we reverse SpellingBee’s role and use
it to pretrain the embedding layer of a randomly-
initialized model, thus imbuing each token repre-
sentation with its orthographic information before
training the whole model on the masked language
modeling objective. We compare the pretraining
process of the character-infused model to that of
an identical model whose embedding layer is ran-
domly initialized (and not pretrained), and find that
both learning curves converge to virtually identi-
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cal values within the first 1000 gradient updates,
a fraction of the total optimization process. This
experiment suggests that while language models
may need to learn some notion of spelling to opti-
mize their objectives, they can quickly acquire all
the character-level information they need without
directly observing the composition of each token.

2 Spelling Bee

To measure how much a model knows the character
composition of its tokens, we introduce Spelling-
Bee, a generative probe that tries to spell out a to-
ken character-by-character. Specifically, Spelling-
Bee probes the original model’s embedding matrix,
since spelling is a property of token types, invari-
ant to context. For example, given the embedding
of the token cats, SpellingBee will try to generate
the sequence [c, a, t, s]. We do so by modeling
SpellingBee as a character-based language model,
where the first token is a vector representation of
the vocabulary item.1

Training We split the vocabulary to train and test
sets,2 and use teacher forcing to train SpellingBee.
In the example of cats, SpellingBee will compute
the following probabilities:

P (x1 = c | x0 = cats)

P (x2 = a | x0 = cats, x1 = c)

P (x3 = t | x0 = cats, x1 = c, x2 = a)
...

All of SpellingBee’s parameters are randomly ini-
tialized. The only parameters that are pretrained
are the token embeddings (e.g. the representation
of cats or a), which are taken from the original
pretrained language model we intend to probe,
and treated as constants; i.e. kept frozen during
SpellingBee’s training.

Inference & Evaluation Once SpellingBee is
trained, we apply it to the test set using greedy de-
coding. For each vocabulary item w in the test set,
SpellingBee is given only the corresponding em-
bedding vector ew, and is expected to generate the
character sequence w1, . . . , wn that defines w. We
measure success on the test set using two metrics:

1Some vocabularies have symbols for indicating preceding
whitespaces ( ) or that the next token is part of the same word
(##). SpellingBee learns to predict these symbols too.

2We test various train/test splits to ensure the robustness
of our findings. See Section 3 for more detail.

exact match (EM), and character ngram overlap
score using chrF (Popović, 2015). While EM is
strict, chrF allows us to measure partial success.
We also report edit distance using Levenshtein dis-
tance ratio in Appendix A.

SpellingBee for Pretraining Embeddings
While we mainly use SpellingBee as a probe, a
variation of our method could potentially imbue
the embedding layer with character information
before training a language model. We could train
a probe with randomly-initialized embeddings
(instead of pretrained embeddings from another
model) to predict the spelling of all vocabulary
items, and use these trained probe embeddings
to initialize any target model’s embedding layer
(instead of random initialization). We experiment
with this method in Section 5, but find that it does
not have any significant impact on the convergence
of language models.

3 Experiment Setup

We begin with a series of probing experiments,
where we apply SpellingBee to the embedding
layer of various pretrained models.3

Pretrained Models We probe four pretrained
models: RoBERTa-Base and Large (Liu et al.,
2019), GPT2-Medium (Radford et al., 2019), and
AraBERT-Large (Antoun et al., 2020). This set
introduces some diversity in vocabulary, objective,
and scale: the first three models are trained on En-
glish corpora, while AraBERT is trained on text
in Arabic; GPT2 is an autoregressive language
model, while the rest are masked language mod-
els; RoBERTa-Base consists of 125M parameters
(with 768 dimensions per embedding), while the
other models have approximately 350M parameters
(with 1024 dimensions per embedding).

Control Since SpellingBee is a trained probe, we
wish to establish the probe’s baseline performance
when provided with inputs with no orthographic
information. As an empirical control, we train and
test SpellingBee on randomly-initialized vectors, in
addition to the main experiments where we utilize
the pretrained embedding layers.

Training & Testing Data We split the vocabu-
lary into training and testing data using the fol-
lowing protocol. First, we randomly sample 1000
token types as test. We then filter the remaining

3Hyperparameters are detailed in Appendix E.
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Filter RoBERTa GPT2 AraBERT
Base Large Medium Large

E
M

None 27.3 31.8 32.9 40.9
Similarity 15.7 18.2 17.9 21.9
Lemma 15.7 17.7 16.5 19.5
Control 0.0 0.0 0.0 0.0

ch
rF

None 44.7 48.7 51.6 62.3
Similarity 32.7 35.1 36.4 46.0
Lemma 32.6 34.8 35.2 43.9
Control 7.0 7.0 7.0 7.0

Table 1: The percent of token types that can be spelled
out exactly (EM) from their embeddings by Spelling-
Bee, and the ngram overlap between SpellingBee’s re-
productions and the token types’ true spellings (chrF).
The first three rows reflect different methods for filter-
ing the training data, and the fourth represents the con-
trol experiment, which uses randomly initialized em-
beddings. All SpellingBee instances in this table are
trained on 32000 examples.

vocabulary to eliminate tokens that may be too
similar to the test tokens, and randomly sample
32000 training examples.We experiment with three
filters: none, which do not remove tokens beyond
the test-set tokens; similarity, which removes the
top 20 most similar tokens for every token in test,
according to the cosine similarity induced by the
embedding vectors; lemma, which removes any to-
ken type that shares a lemma with a test-set token
(e.g. if diving is in the test set, then diver cannot
be in the training set).4 The lemma filter always
applies the similarity filter first, providing an even
more adversarial approach for splitting the data.
To control for variance, we create 10 such splits
for each model and filter, and report the averaged
evaluation metrics over all 10 test sets.

4 Results

Main Result Table 1 shows how well Spelling-
Bee can spell a vocabulary token using only its
frozen pretrained embedding. We observe that
SpellingBee is able to accurately recover the
spelling of up to 40.9% of the test set, while the
control is unable to spell even a single word cor-
rectly. A similar trend can be seen when consider-
ing the finer character ngram metric (chrF). Manu-
ally analyzing the predictions of the control base-
lines (see Appendix D) indicate that it primarily
generates combinations of frequent character se-
quences, which mildly contributes to the chrF score,

4We lemmatize using NLTK’s WordNet lemmatizer (Bird
and Loper, 2004) for English and Farasa’s Stemmer (Darwish
and Mubarak, 2016) for Arabic.

Training Examples

E
M

0

10

20

30

40

1000 2000 4000 8000 16000 32000

None Similarity Lemma Control

Training Examples

ch
rF

0

10

20

30

40

50

1000 2000 4000 8000 16000 32000

None Similarity Lemma Control

Figure 1: The amount of character information
SpellingBee is able to extract from RoBERTa-Large, as
measured by EM (top) and chrF (bottom), given differ-
ent quantities of training examples.

but does not affect EM. These results are persistent
across different models and filters, strongly indicat-
ing that the embedding layer of pretrained models
contain significant amounts of information about
each token’s character composition.

One may suggest that training SpellingBee over
32000 examples may leak information from the
test set. For example, if dog was seen during train-
ing, then spelling out dogs might be easy. We thus
consider the similarity and lemma filters, which
remove such near-neighbors from the training set.
While results are indeed lower (and probably do
account for some level of information leakage),
they are still considerably higher than the control,
both in terms of EM and chrF. Results using the
similarity and lemma filters are rather similar, sug-
gesting that embedding-space similarity captures
some information about each token’s lemma.

Finally, we find that the properties of pretrained
models also seem to have a significant effect on
the amount of spelling information SpellingBee
can extract. Larger models tend to score higher in
the probe, and the model trained on text in Ara-
bic appears to have substantially higher EM and
chrF scores than those trained on English corpora.
One possibility is that Arabic’s rich morphology
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Figure 2: The overall training loss (left), first steps of training loss (center), and validation loss (right) of RoBERTa-
Large, when training on the masked language modeling objective with embeddings pretrained by SpellingBee
(pretrained) and randomly-initialized embeddings (control).

incentivizes the model to store more information
about each token’s character composition, however
it is also possible that AraBERT’s different vocab-
ulary, which allocates shorter character sequences
to each token type, might explain this difference
(we discuss the link between sequence length and
accuracy later in this section).

Overall, our probing experiments show that even
though subword-based language models do not
have direct access to spelling, they can and do
learn a surprising amount of information about the
character composition of each vocabulary token.

Probing with Less Training Data We further
examine whether SpellingBee can extract informa-
tion when trained on less examples. Figure 1 shows
how well SpellingBee can spell RoBERTa-Large’s
vocabulary when trained on varying amounts of
data, across all filters. We find that more data
makes for a better probe, but that even a few thou-
sand examples are enough to train SpellingBee to
extract significant character information from the
embeddings, which cannot be extracted from ran-
domized vectors (the control).5

5 Pretraining Language Models to Spell

Our probing experiments reveal that language mod-
els learn some partial notion of spelling, despite
the lack of direct access to characters. Therefore,
we hypothesize that learning to spell is beneficial
for language models, and propose pretraining the
embedding layer using a variant of the SpellingBee
probe described in Section 2. Here, the goal is to
imbue each embedding with enough information
for SpellingBee to accurately generate its surface
form, and then initialize the language model with
the pretrained embeddings before it starts training
on the language modeling objective.

5We provide additional analysis on spelling accuracy by
subword frequency and length in Appendices B and C.

We apply this process to RoBERTa-Large, train-
ing the model’s embedding layer with SpellingBee
using the same hyperparameter settings from Ap-
pendix E, with the key difference being that the em-
beddings are now tunable parameters (not frozen).6

We train RoBERTa-Large on English Wikipedia us-
ing the hyperparameter configuration of 24hBERT
(Izsak et al., 2021), and cease training after 24
hours (∼16000 steps). For comparison, we train
exactly the same model with a randomly-initialized
embedding layer.

Figure 2 shows the masked language modeling
loss with and without pretrained embeddings. We
see that the curves quickly converge into one. After
only 1000 training steps, the difference between the
validation losses never exceeds 0.01. This result in-
dicates that the model does not utilize the character
information injected into the tokens’ embeddings.
Along with the results from Section 4, we conjec-
ture that the model learns an implicit notion of
spelling during pretraining, which is sufficient for
masked language modeling, and does not benefit
from explicitly adding orthographic information.

6 Conclusion

This work reveals that pretrained language models
learn, to some extent, the character composition
of subword tokens. We show that our Spelling-
Bee probe can spell many vocabulary items using
their uncontextualized embedding-layer represen-
tations alone. Trying to explicitly infuse character
information into the model appears to have a min-
imal effect on the model’s ability to optimize its
language modeling objective, suggesting that the
model can independently learn all the character-
level information it needs for the task.

6To verify that this process does indeed encode the to-
kens’ spellings into the embeddings, we apply a SpellingBee
probe (using a different random initialization) to the learned
embeddings, which yields 93.5% EM on held-out token types.
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A Levenshtein Distance

Levenshtein distance (Levenshtein et al., 1966) is
an edit distance metric that, given two strings, cal-
culates the minimal number of changes needed to
be done in order to make the two strings identical.
Levenshtein distance ratio is the length-normalized
version, which is computed by adding the sum of
lengths of both strings to the edit distance and divid-
ing by the same sum of lengths. We report the main
experiment’s results using this ratio in Table 2.

Filter RoBERTa GPT2 AraBERT
Base Large Medium Large

None 69.7 72.7 74.4 83.6
Similarity 61.5 63.7 64.5 75.8
Lemma 61.4 63.3 63.7 74.8

Control 25.6 26.4 27.0 25.7

Table 2: Levenshtein distance ratio. The first three rows
reflect different methods for filtering the training data,
and the fourth represents the control experiment, which
uses randomly initialized embeddings. All SpellingBee
instances in this table are trained on 32000 examples.

B Spelling Accuracy by Frequency

We test whether pretrained models tend to
store more spelling-related information in higher-
frequency token types. We focus on RoBERTa-
Large, and assign each token in the test set to
its frequency quintile according to the number of
times it appeared in the pretraining corpus – from
the 10000 most frequent token types (top 20%) to
those ranked 40000-50000 in the vocabulary (bot-
tom 20%) – and measure the average performance
of SpellingBee within each quintile. Figures 3 and
4 shows the results with and without the similarity
filter. We observe that SpellingBee is indeed able
to extract more information from higher-frequency
token types, suggesting that the pretrained model
has more information about their character compo-
sition.

C Spelling Accuracy by Length

We analyze the effect of token length on the probe’s
ability to spell. A priori, it is reasonable to assume
that it is easier for the probe to spell shorter to-
kens, since less information needs to be extracted
from the embedding and there are less discrete de-
cisions to be made while decoding. Indeed, Figure
5 shows that with the none filter most vocabulary
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Figure 3: The EM scores of SpellingBee on RoBERTa-
Large for each frequency quintile with the none filter
(top) and the similarity filter (bottom).

0-10K 10K-20K 20K-30K 30K-40K 40K-50K
Frequency

0

20

40

60

80

ch
rF

none Filter

0-10K 10K-20K 20K-30K 30K-40K 40K-50K
Frequency

0

20

40

60

80

ch
rF

similarity Filter

Figure 4: The chrF scores of SpellingBee on RoBERTa-
Large for each frequency quintile with the none filter
(top) and the similarity filter (bottom).

tokens with 2-4 characters can be accurately re-
produced from their vector representations, while
longer tokens are harder to replicate. This trend
is particularly sharp when the similarity filter is
applied, as the probe is hardly able to spell tokens
with 6 or more characters accurately; having said
that, the probe is able to generate many partially
correct spellings, as measured by chrF (Figure 6).
Perhaps a less intuitive result is the probe’s fail-
ure to spell single-character tokens. A closer look
reveals that many of these examples are rare or
non-alphanumeric characters (e.g. ç and $), which
are probably very difficult for the probe to gener-
ate if it had not seen them during training. While
these results show strong trends with respect to
length, token length is also highly correlated with
frequency, and it is not necessarily clear which of
the two factors has a stronger impact on the amount
and resolution of character-level information stored
in the embedding layer of pretrained models.
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Figure 5: The EM scores of SpellingBee on RoBERTa-
Large for each token length with the none filter (top)
and the similarity filter (bottom). The rightmost col-
umn groups together tokens with length of 11 or above.
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Figure 6: The chrF scores of SpellingBee on RoBERTa-
Large for each token length with the none filter (top)
and the similarity filter (bottom). The rightmost col-
umn groups together tokens with length of 11 or above.

D Manual Error Analysis

We manually analyze 100 random tokens that
SpellingBee spelled incorrectly with the lemma fil-
ter to understand the nature of the spelling mistakes.
Out of those 100 we display 20 mistakes in Table
3 alongside the spelling prediction of the control
baseline. SpellingBee’s mistakes vary from single-
character typos to completely different words. Hav-
ing said that, the vast majority of mistakes have
significant overlap with the correct spelling, such
as shared prefixes and capitalization.

E Hyperparameters

We implement SpellingBee with a 6-layer encoder-
decoder model, with 512 model dimensions.
The model parameters are optimized with Adam
(Kingma and Ba, 2015) for 1000 steps with up to
1024 tokens per batch, a learning rate of 5e-4, and a
dropout rate of 0.1. These are the default hyperpa-

Token SpellingBee Control

Issa Asey kinston
Rhod Rob hoedn

Memory Mathinge entically
metals metrys leaved
Reed Redd fomparing
break breach promoters
summit mosump seasons

Catholic Cravital tonversal
cleanup lamed paclus
Winner Womer purden
LIM LUM Send

Copy Cople providers
voicing relicing walking
Stab Stamb hoviders
356 353 budiance

find wive malding
Psychic Syptanc joacter
Looking Lowing parging

CLOSE DEFIC tuldence
prolific promistic complexement

Table 3: Sampled SpellingBee errors with the lemma
filter alongside the control baseline’s spelling for the
same tokens. The underscore ( ) represents a preceding
whitespace.

rameters for training a transformer language model
in Fairseq (Ott et al., 2019).


