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Abstract

The ability to estimate 3D human body pose and movement, also known as hu-
man pose estimation (HPE), enables many applications for home-based health
monitoring, such as remote rehabilitation training. Several possible solutions have
emerged using sensors ranging from RGB cameras, depth sensors, millimeter-
Wave (mmWave) radars, and wearable inertial sensors. Despite previous efforts
on datasets and benchmarks for HPE, few dataset exploits multiple modalities and
focuses on home-based health monitoring. To bridge this gap, we present mRI1,
a multi-modal 3D human pose estimation dataset with mmWave, RGB-D, and
Inertial Sensors. Our dataset consists of over 160k synchronized frames from 20
subjects performing rehabilitation exercises and supports the benchmarks of HPE
and action detection. We perform extensive experiments using our dataset and de-
lineate the strength of each modality. We hope that the release of mRI can catalyze
the research in pose estimation, multi-modal learning, and action understanding,
and more importantly facilitate the applications of home-based health monitoring.

1 Introduction

3D Human pose estimation (HPE) refers to detecting and tracking human body parts or key joints (e.g.,
wrists, shoulders, and knees) in the 3D space. It is a fundamental and crucial task in human activity
understanding and movement analysis with numerous application areas, including rehabilitation [29,
21, 6, 5], professional sports [23], augmented/virtual reality, and autonomous driving [16]. In
particular, human pose estimation plays an increasingly important role in healthcare applications,
such as remote rehabilitation training [25, 12]. The current mainstream rehabilitation treatment
involves a physical therapist supervising the patients in person. In contrast, HPE-based health
monitoring systems can help clinicians correct patients’ movements or instruct them remotely. To
this end, multiple datasets have studied HPE with health-related physical movements [5, 29, 21, 6].

Many existing studies rely heavily on processing RGB frames from color cameras for human pose
estimation [13, 4, 10, 22, 11, 14]. RGB image and video frames are the most common input types
since they offer an non-invasive approach for HPE. However, the image quality depends heavily on
the environmental setting, such as light conditions and visibility [2]. Moreover, using image and
video data poses significant privacy concerns, especially in a household environment. Finally, the
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data-intensive nature of real-time video processing requires computationally powerful equipment
with high cost and energy consumption.
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Figure 1: Overview of all modalities and annotations in mRI dataset. All sub-figures uses the
same sample frame during ‘both upper limb extension’. (a) 2D human keypoints with bounding
box on RGB image, (b) 3D mmWave point cloud, (c) 3D human skeletons, (d) IMU rotations, (e)
depth image. mRI dataset supports human pose estimation and action detection tasks. With mRI,
researchers from the fields of machine learning, computer vision, wearable computing can exploit the
complementary advantages of multi-modality, while clinical and rehabilitation experts can focus on
its healthcare movements.

Frame quality, privacy, and computational power drawbacks of video processing can be addressed by
emerging complementary sensor modalities, such as lidar, millimeter wave (mmWave) radar [2, 35,
38], and wearable inertial sensors [32, 30, 31, 33, 18, 36, 1], The point cloud from lidar overcomes
frame quality and privacy challenges. However, it has a high cost and computation power requirements
to process the data, making it unsuitable for indoor applications such as rehabilitation. In contrast,
mmWave radar can generate high-resolution 3D point clouds of objects while maintaining low
cost, privacy, and computational power advantages. Similarly, wearable inertial sensors provide
accurate rotation and acceleration information regarding joints with low cost and computational
power requirements [30, 31, 33, 1], yet at a price of body worn sensors.

High-quality and large-scale datasets provide a vital foundation for algorithm development. To
catalyze research in HPE, this work (mRI) combines mmWave radar, RGB-Depth (RGB-D), and
Inertial sensors to exploit their complementary advantages. We present a comprehensive 3D human
pose estimation dataset performed by 20 human subjects, consisting of more than 160k synchronized
frames from three sensing modalities. The contributions and unique aspects of mRI are as follows:

• Multiple Sensing Modalities. mRI consists of mmWave point cloud, RGB frames, depth frames,
and inertial signals. The experimental data is captured using a commercial low-power, and a low-
cost mmWave radar, two depth cameras, and six high-accuracy inertial measurement units (IMUs).
All sensors are temporally synchronized and spatially calibrated. To the best of our knowledge,
mRI is the first dataset that combines these complementary modalities.

• Healthcare Movements Focus. We use ten clinically-suggested rehabilitation movements that
involve the upper body, lower body, and the major muscles related to human mobility. These
movements are crucial for patients to recover from sequelae of central nervous system disorders,
such as Parkinson’s disease (PD) and cerebrovascular diseases (e.g., stroke). Hence, the mRI dataset
can serve as a reference from healthy subjects, while the experimental methodology can enable
future studies with patients.

• Flexible Data Format and Extensive Benchmarks. We release the raw synchronized and
calibrated sensor data and a comprehensive set of benchmarks for 2D/3D human pose estimation
and action detection using multiple modalities (see Section 3). The proposed end-to-end pipeline
pre-processes the raw data into the point cloud, features, and 2D/3D keypoints.

• Low-Power & Low-Cost Requirements. Widespread use of home-based rehabilitation depends
critically on the affordability and operating cost of the deployed systems. Our mRI dataset and
findings pave the way to sustainable systems with low-power and low-cost sensors and edge devices.
For example, only mmWave radar and IMU sensors can be used in the field after they are trained
with all three modalities (including RGB-D) in a clinical environment.
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2 Dataset

Overview. Our dataset includes 3D point cloud from mmWave, RGB frames and depth maps
from RGB-D cameras, joints rotations and accelerations from wearable IMU sensors, as well as
annotations of 2D keypoints, 3D joints, and action labels of 12 clinically relevant movements.
Table 1 shows detailed specifications and properties of our sensors. More details can be found in the
supplementary A.3.
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Figure 2: Overview of the experimental setup. (a) shows all non-intrusive sensors, including mmWave
radar, two RGB, and depth cameras. (b) shows a zoom-in version of the mmWave radar and its
antennas. The front and back views of the IMU are shown in (c) and (d), respectively. (e) and (f)
show the front and back view of the subject standing as a “T pose” with six IMUs and zoom-in views
of IMUs. The gray dash line boxes in (a), (e), and (f) represent the position of non-intrusive sensors.
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Figure 3: Overview of all rehab movements.

Rehabilitation exercises. We consider 12 movements related to rehabilitation exercises covering
the entire human body. The first 10 rehabilitation movements are modified from [29, 2]. Figure 3
shows all movements: (a) left upper limb extension, (b) right upper limb extension, (c) both upper
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# Freq. Con. Power Privacy↑ Anti-inter.↑ Intrusive Output
mmWave [26] 1 10 Hz Wired 2.1 W ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ No Point cloud

RGB [15] 2 30 Hz Wired 16 W ⋆ ⋆ No RGB frame
Depth [15] 2 30 Hz Wired 16 W ⋆⋆ ⋆⋆ No Depth and infra-red frame
IMU [34] 6 50 Hz BLE 120 mW ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Yes Accelerations and quaternions

Table 1: Comparison across sensors. #: Number of sensors. Freq.: Sampling frequency. Con.:
Type of connection to the host PC. Privacy indicates privacy-preserving ability. Anti-interference
represents how much it is affected by environmental factors like non-ideal lighting.

limb extension, (d) left front lunge, (e) right front lunge, (f) squat, (g) left side lunge, right side lunge,
(h) left limb extension, and right limb extension. The 11th and 12th movement are stretching and
relaxing in free forms (11), and walking in a straight line (12), respectively. These two movements
are meant to increase the diversity of the dataset, as the movement in 11 is determined by each subject
and the movement in 12 features a global displacement. The duration of each type of movement is
around 1 minute per subject.

3 3D Human Pose Estimation Evaluation

We introduce a standardized evaluation pipeline for 3D human pose estimation, use latest models to
benchmark the performance of each modality, and discuss their results.

Figure 4: Visualization of sample pose data and results during left front lunge. Top row (from left
to right): an RGB frame with detected human bounding box and 2D keypoints, the refined 3D pose
derived from two cameras, and the 3D point cloud from mmWave radar. Bottom row (from left to
right) shows the estimated 3D pose from a single RGB camera, IMU signals, and mmWave radar.

Experiment protocol. We consider two settings of data splits. Setting 1 (S1 Random Split): A
random split of 80% and 20% of all data is used as the training and testing set, respectively. Setting
2 (S2 Split by Subjects): A randomly selected subset (80%, i.e., 16 out of 20) of the subjects is
used for training, while the rest are for testing. S1 mimics a case where personalized HPE model is
possible, while S2 evaluates across-subject generalization. For each setting, we randomly sample
three splits and report the averaged results. More details are provided in the supplement A.3.

Further, we also define two evaluation protocols based on the design of our movements. Protocol
1 (P1) consists of all 12 movements, including stretching and relaxing in free forms and walking.
While Protocol 2 (P2) only considers the first ten rehabilitation movements. Such protocols help us
investigate the robustness of the model in terms of fixed/free form movement.

Evaluation metrics. We adopt Mean Per Joint Position Error (MPJPE) and Procrustes Analysis
MPJPE (PA-MPJPE), widely used in human body pose estimation [10], as the main metrics. MPJPE
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Protocol 1 Protocol 2

Modality Setting MPJPE (mm)↓ PA-MPJPE (mm)↓ MPJPE (mm)↓ PA-MPJPE (mm)↓

mmWave S1 163.3±9.1 94.1±3.6 125.1±2.4 74.1±1.0

S2 186.6±23.8 97.3±7.8 126.6±11.3 75.0±7.1

RGB S1 116.9±0.1 66.8±0.2 115.0±0.1 64.4±0.1

S2 120.1±3.7 67.5±1.9 118.4±3.8 64.7±1.4

IMUs S1 80.2±12.6 51.9±1.9 40.9±1.0 28.4±0.9

S2 147.4±18.4 74.5±5.9 94.3±13.8 54.0±4.9

Table 2: 3D human pose estimation results for mmWave, RGB, and IMUs. We report the mean and
standard deviation of joint errors averaged across multiple splits under both our settings (S1 & S2).

represents the mean Euclidean distance between ground truth and prediction for all joints. MPJPE
is calculated after aligning the root joints (the pelvis) of the estimated and ground truth 3D pose.
PA-MPJPE is MPJPE after being aligned to the ground truth by the Procrustes method [7], a similarity
transformation including rotation, translation, and scaling.

Methods. We conduct 3D human pose estimation using mmWave, RGB, and IMUs separately using
latest methods. Here we briefly introduce the methods considered in our evaluation and refer to our
supplement for more implementation details.

• mmWave: We use the model from [2] that learns a convolutional neural network on the 5D
point cloud to regress the 3D joints. The model is trained from scratch on our dataset, and
outputs the 3D joints in the global coordinates system.

• RGB: We adopt the model from [17], where 2D keypoints from a sequence of frames
are “lifted” into 3D joints (in the camera coordinate system) using a convolutional neural
network. We use the pre-trained model from [17]. As the pre-trained model outputs a
different set of joint, we only evaluate on a subset that intersects with our set of joints.

• IMUs: We employ the feature processing method from [36], with a convolutional neural
network trained to regress rotations relative to a root joint (e.g., pelvis) using data from
IMUs. The model is trained from scratch on our dataset.

Results and discussion. Table 2 shows the 3D HPE results for mmWave, RGB, and IMUs. Under
S1 and P1, mmWave-based HPE achieves 163 and 94 mm for MPJPE and PA-MPJPE, respectively.
The metrics are further reduced to 125 and 74 mm for P2. IMU-based HPE obtains MPJPE and
PA-MPJPE of 87 and 60 mm, respectively, under S1 and P1. Figure 4 shows visualization comparison
of estimation across different modalities.

Under S2, mmWave-based HPE performs similarly to S1, while IMU-based HPE obtains worse
results than S1. This is because the sensing data from IMU is more fine-grained on the joints
while mmWave grasps more information about body trunk, which is not too subject-specific. As
a result, the IMU-based model is more sensitive to different subjects. We can observe that for all
modalities S2 yields higher standard deviations than S1 since the difference between subjects is much
more significant than random split, between train and test set. Similarly, P1 yields higher standard
deviations than P2 since all movements in P2 are fixed positions, which makes the model learning
the keypoints distribution easier.

RGB-based HPE achieve 116 and 66 mm MPJPE and PA-MPJPE for P1 under S1. Both data-split
yield similar results. To compare, the same model achieves 36 mm PA-MPJPE on Human3.6M
dataset. However, the model is trained and evaluated on Human3.6M while it is only evaluated on
our dataset. In summary, all modalities perform reasonably well on our dataset.

4 Conclusion and future work

In this paper, we proposed health-related human pose estimation using multiple sensing modalities.
Our results help to understand the advantages of individual sensing modalities in the context of
home-based health monitoring. We hope that our work can catalyze the research including but not
limited to pose estimation, multi-modal learning, and action understanding, thus facilitating critical
applications in healthcare.
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A Supplementary Materials

This document complements the main paper by describing: (1) results of pose estimation using
additional metrics related to rehabilitation (A.1); (2) an analysis of our 3D pose refinement used to
obtain ground-truth pose for our dataset (A.2); (3) details of our implementation and benchmark
(A.3); (4) details of mmWave imaging (A.4); and (5) visualization of our pose estimation results
(A.5).

For sections, figures, tables, and equations, we use numbers (e.g., Table 1) to refer to the main paper
and capital letters (e.g., Table A) to refer to this supplement.

A.1 Further Analysis of Pose Estimation Results

We report additional evaluation metric, the mean average error (MAE) of joints angle to supplement
our main results in the paper (using MPJPE and PA-MPJPE). The metric is widely considered to
evaluate rehabilitation-specific movements — a main focus of our dataset. We only consider Protocol
2 here since it has all rehabilitation-related movements.

Joints angle. We use the joint coordinates estimated by our models to find the angles between critical
joints. We focus on the four commonly used joint angles: left & right elbow angles and left & right
knee angles. The elbow angle is found using the shoulder, elbow, and wrist positions. First, we obtain
the bone length between the shoulder and elbow and the length between the elbow and wrist using
joint coordinates. Then, the angle is calculated using triangulation from the law of cosines. Similarly,
the knee angles are obtained using the hip, knee, and ankle positions. The ground truth angle is
computed using the refined ground truth 3D coordinates, and we calculated MAE between the ground
truth and each modality. Table A shows detailed results of joins angle MAE. We observe that under
S1, RGB modality yields below 10◦ for all joints, while mmWave and IMUs lead to larger errors
regarding the elbow angles (>10◦). This behavior is observed since the movement of the upper limbs
is larger than that of the lower limbs for most movements. The setting of S2 yields higher errors
than under S1 since S2 requires the model to generalize to unseen subjects, which is arguably more
challenging.

Modality Setting Left elbow Left knee Right elbow Right knee

mmWave S1 18.7±0.2 2.9±0.1 16.0±0.2 3.2±0.1

S2 24.5±2.3 10.4±1.3 22.9±2.9 11.6±1.3

RGB S1 9.0±0.1 8.3±0.1 9.3±0.1 7.7±0.1

S2 11.5±0.6 14.8±1.6 11.1±0.7 14.0±1.5

IMUs S1 7.9±0.1 2.6±0.1 11.3±0.2 2.4±0.1

S2 8.4±1.0 5.6±0.2 9.7±0.8 5.7±0.2

Table A: MAE of joints angle (◦) for mmWave, RGB, and IMUs. We report the mean and standard
deviation of MAE averaged across multiple splits under both our settings (S1 & S2).

A.2 Analysis of 3D Joints Quality

To validate the reliability of the obtained 3D joints, we further annotate a subset of the whole dataset
and calculate the error. Specifically, we manually annotate 2D keypoints of the images, randomly
sampled from subjects and movements. Then, we obtain the re-project 2D keypoints using refined
3D joints and camera parameters via camera calibration. Finally, we calculate the mean absolute
percentage error (MAPE), and the percentage of correct keypoints threshold at 50% of the head
segment length (PCKh) between the 2D keypoints from the model and the re-projection. The MAPE
is 1.5%, and PCKh is 98.92. These quantitative results show that the proposed method of obtaining
3D joints is reasonably accurate. Figure A compares manual annotated 2D keypoints and re-projected
2D keypoints from refined 3D joints. Blue dots represent manual annotations, and red dots show the
re-projection keypoints. We can observe that keypoints from the two methods almost overlap.
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(a) (b)

Figure A: A comparison of manual annotated 2D keypoints and re-projected 2D keypoints from
refined 3D joints. Blue dots represent manual annotations and red dots show the re-projection
keypoints.

A.3 Benchmark and Implementation Details

We now describe implementation details of methods considered in our benchmark. We use Py-
Torch [19] to implement all our models. Intel Xeon Gold 6242R @ 80x 4.1GHz and NVIDIA
GeForce RTX 3090 are used to train these models. The code and pre-trained models will be open-
sourced to facilitate the research area. Both raw data and synchronized data are released to the public
as well. All material published is made available under the following Creative Commons license:
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Data-split. For Setting 1 (S1 Random Split), we set three different random seeds to split the data
to 80% and 20% as training and testing set, respectively. For Setting 2 (S2 Split by Subjects), we
selected subset of the subjects to split the data, generated by three random seeds as well. Three
different splits we used in the paper are shown as follows: (1) [17, 13, 11, 15], (2) [9, 7, 20, 8], and (3)
[3, 16, 7, 2]. For example, [17, 13, 11, 15] means that subject 17, 13, 11, 15 are used for testing and
the rest for training.

mmWave-HPE. We follow [2] for the implementation for mmWave-HPE model. The input layer
of the CNN takes the stacked 5-channel feature tensors. Two consecutive convolution layers follow
the input layer with 16 and 32 channels, respectively. After the convolutions, the output is fed to
the first fully-connected (FC) layer with 512 neurons. The final output of CNN contains 51 neurons,
representing 3D coordinates for the 17 joints. All activation functions are Relu except for the final
FC layer, where we use linear activation. Dropout layers are used after the convolution and fully
connected layers to avoid excessive dependency on specific neurons. The model converges within
around 50 epochs with early stopping settings.

RGB-HPE. We employ HRNet-W32 [24] (with bounding boxes from Mask RCNN [9]) to detect 2D
keypoints of human body parts in all RGB frames from both cameras. W32 in HRNet represents the
width of the high-resolution nets in the last three stages. The pre-trained model from [17] is utilized
for 3D joints estimation. It “lift” 2D keypoints from a sequence of frames into 3D joints.

IMU-HPE. We follow [36] for IMU calibration, normalization, and features generation. Each IMU
has its own coordinate system. As a result, two steps are needed to make the output compatible with
neural network models. First, calibration: transforming the raw inertial measurements into the same
reference frame. Second, normalization: transforming the leaf joint inertia into the root’s space and
scaling it to a suitable size for the network input. This method calculates the transition matrices for
each sensor before capturing the movements, and it requires subjects to perform a ‘T pose’ before
the experiments. The feature tensors extracted and transformed by this method capture the joint
rotation and acceleration effectively such that multilayer perceptron (MLP) or CNN can regress the
3D joints with these features. We use a similar model as mmWave-HPE, except the input tensors are
only 1-channel feature tensors for IMUs. The model converges within around 30 epochs with early
stopping settings.

Skeleton-based action detection. We re-purpose an existing model [37] for the skeleton-based
action detection. Specifically, the model takes a sequence of estimated 3D poses from individual
modality as inputs. These poses are further encoded into a feature pyramid using a multi-scale
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Symbol Description Values Symbol Description Values

fc Starting frequency 77 GHz θres Angle resolution 9.55◦

Tc Chirp signal duration 32 µs NRX No. of RX antennas 4
B Bandwidth 3.20 GHz NP Maximum points detectable per frame 64
S Slope of chirp signal 100 MHz/µs NTX No. of TX antennas 3
N No. of chirps per frame 96 vres Velocity resolution 0.35 m/s
dres Range resolution 4.69 cm vmax Maximum Velocity 5.69 m/s

Table B: List of major parameters and variables related to mmWave and their values for mmWave
point cloud generation.

transformer. Shared classification and regression heads check the feature pyramid, thus producing an
action candidate at every timestamp.

A.4 mmWave Imaging

(a) (b)

(c) (d)

: doppler velocity
: radar device

Figure B: mmWave point cloud representation for one frame. (a), (b), (c), and (d) shows the 3D view,
front view, side view, and top view, respectively.

We follow [2] for the mmWave point cloud generation including software and hardware setup, data
pre-process, and follow [3] for fusing the continuous frames point cloud to reduce the effect of
sparsity. For the comprehensive details and math derivation of mmWave imaging background, please
refer to [20, 27, 28, 8]. Figure B shows a sample input frame from different views. The red marker
represents the radar location. Figure B(a) shows that point positions in 3D view, while the other plots
show the front view, side view, and top view. Specifically, Figure B(a) illustrates the Doppler velocity,
which indicates the relative velocity from the detected point to the radar. The colors in the figures
represent the energy intensity of the reflected signals. Table B lists the key parameters we used to
generate the mmWave point cloud.
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Figure C: Visualization of body poses from one subject performing right side lunge. The units in
axes are meter.

A.5 Additional Visualization

Figure C shows one subject performing right side lunge. Figure D and E demonstrate pose estimation
results from different camera pose. The results are displayed with the RGB frame from the camera,
the refined 3D pose, and the 3D point cloud from mmWave radar. The first row, from left to right:
RGB frame with detected human bounding box and 2D keypoints, the refined 3D pose from multiple
cameras, and mmWave radar point cloud signal. The second row, from left to right: estimated 3D
pose from a single RGB camera, IMU signals, and mmWave radar point cloud. The captions include
the action label and four commonly used joint angles: left & right elbow angles and left & right knee
angles.

Figure D: Dataset visualization when yaw = 0◦, pitch = 0◦. The units in axes are meter.

11



Figure E: Dataset visualization when yaw = 135◦, pitch = 45◦. The units in axes are meter.
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