
Reimaging Consumer Creditworthiness by Harnessing
E-Commerce Digital Footprints

Yijun LIa, Albert Di WANGb, Qi WU∗,a

aDepartment of Data Science, City University of Hong Kong
bMcCombs School of Business, The University of Texas at Austin

This version: March 9, 2025

Abstract

BigTech firms have reshaped consumer credit markets by seamlessly embedding Fintech lending

services into their ecosystems. Unlike traditional financial institutions, these companies possess

vast digital footprints generated from consumer activities, ranging from product browsing and

transaction execution to post-purchase credit management. However, few studies have investigated

the value of digital footprints in credit risk evaluation, particularly from a dynamic perspective,

thereby overlooking critical insights into how credit risk evolves over time. To address this gap,

we propose a novel framework that models consumer footprints in continuous time. By accommo-

dating irregular and sporadic footprints, our model enables real-time monitoring of default risk.

Additionally, the proposed end-to-end loss function jointly estimates the Probability of Default

and Exposure at Default, offering a more comprehensive view of credit risk than traditional scor-

ing approaches. We evaluate our model using longitudinal data from a leading BigTech platform.

Empirical results demonstrate that our method significantly outperforms established benchmarks.

Our findings underscore the critical role of modeling digital footprints in credit risk assessment,

providing valuable guidance for more inclusive, adaptive, and data-driven financial services.

Keywords: Financial Technology; Consumer Credit Risk; Digital Footprints; Irregular Time

Series.

∗ This paper absorbs and significantly revises the previous version titled Neural Learning of Online Credit Risk, and

supersedes it with substantial methodological and empirical advancements. For inquiries, please correspond with Qi

WU at qi.wu@cityu.edu.hk. All questions and comments are welcome.
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1. Introduction

The rise of BigTech firms in financial services has fundamentally reshaped consumer credit

markets. Companies such as Amazon and Alibaba, which initially operated as digital market-

places, have seamlessly integrated financial products like buy-now-pay-later (BNPL) and digital

lending into their platforms. By leveraging their extensive ecosystems of user interactions, these

platforms have successfully embedded credit solutions within their business models, lowering bar-

riers to purchase and increasing transaction volumes. By 2020, BigTech lenders had issued over

$700 billion in credit globally (Cornelli et al., 2023), highlighting their growing influence in shap-

ing modern financial markets.

Unlike traditional financial institutions that assess creditworthiness based on historical income

records, employment status, and credit bureau scores, BigTech lenders possess an alternative and

extensive source of financial insight: the vast digital footprints generated by millions of consumers

interacting with their platforms. The economic value of these digital traces has been demonstrated

in applications such as recommendation systems (Wang et al., 2024), user profiling (Valanarasu,

2021), and urban management (Traunmueller et al., 2018). As depicted in Figure 1, every online

activity, such as browsing a product, making a purchase, or managing an existing credit, leaves

behind a trace that can provide valuable signals of creditworthiness. These digital footprints offer

a real-time, behavior-driven perspective on financial decision-making, potentially enabling more

inclusive and adaptive credit risk assessment models.

While prior researches have demonstrated that non-traditional financial indicators, such as so-

cial media activity (Ge et al., 2017) or social network relationships (Lin et al., 2013), can offer

valuable credit risk signals, particularly for individuals with limited formal credit histories, these

indicators primarily capture static attributes of consumer behavior. They provide point-in-time

insights but lack the ability to track how financial decision-making unfolds over time (Berg et al.,

2020). In contrast, digital footprints from BigTech platforms provide a dynamic and continuous

record of consumer financial behavior, covering the entire decision-making chain: from initial in-

tent (browsing and product selection) to transaction execution (purchase and payment choice) and
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Fig. 1. Example digital footprints for a consumer. This consumer has M = 12 monthly bills issued on the last

day of each month (i.e., statement dates) and the payment due by the 10th of next month (i.e., due dates). Red

crosses indicate due dates, containing the default status and amount for each bill. The browsing, ordering, and credit-

management footprints are denoted by green squares, yellow circles, and blue triangles, respectively. The predictive

task involves using sporadic digital footprints of the last month to predict default outcomes for the current bill.

post-transaction credit management (credit repayment and refund). This ability to track consumer

financial interactions at every stage offers a richer view of credit risk.

Despite the recognized value of digital footprints, existing studies have largely overlooked

a critical aspect: the occurrence timing of digital footprints (Wang et al., 2018, Liang et al.,

2021). Our empirical analysis reveals that consumer credit behavior can be inferred not only

by the recorded attributes of digital footprints, but also by their precise timing. Specifically, we

find distinct temporal patterns in how consumers engage with BigTech services. For instance, as

illustrated in Figure 2, those at higher risk of default tend to show heightened financial activity,

such as increased borrowing and spending, immediately after due dates, while consumers with

lower credit risk are more likely to make proactive repayments before deadlines (see detailed anal-

ysis in Appendix Appendix B). These patterns suggest that creditworthiness is not just a function

of static financial standing but is dynamically reflected in the way consumers interact with the

platform over time (Agarwal et al., 2021).

To unlock the full potential of digital footprints for credit risk assessment, we introduce Neu-

Credit, a sequential modeling approach that integrates consumer footprints in a continuous-time

framework. Unlike traditional Recurrent Neural Networks, which process information in fixed

time steps, NeuCredit is built on the continuous-time domain, allowing it to model consumer

activity with a finer temporal granularity. By continuously tracking the evolution of consumer be-

haviors, NeuCredit provides a more responsive and real-time risk assessment, offering a significant
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(a) Number of browse on products. (b) The borrow amount. (c) The repaid amount.

Fig. 2. The temporal fluctuation in the frequency of non-default (blue) and default (red) consumer behaviors over

a one-month period. (a) Default consumers exhibit higher browsing activity, particularly around the middle of the

month. (b) A sharp increase in borrowing activity occurs immediately after the due date (10th day), with default

consumers borrowing more frequently than non-default consumers. (c) Repayment activity peaks around the due date,

with non-default consumers tending to make payments earlier, whereas default consumers exhibit delayed repayment

behavior.

advantage over conventional sequential models.

In addition, the evaluation of credit risk in modern financial systems extends beyond merely

estimating the Probability of Default (PD). A more comprehensive assessment incorporates Ex-

posure at Default (EAD)—the amount a consumer is expected to owe at the time of default. Tra-

ditional credit scoring frameworks often treat EAD as a secondary concern, assuming relatively

static credit exposures. However, in revolving credit products like BNPL and fintech loans, where

consumers can repeatedly borrow and repay within a short period, EAD becomes even more criti-

cal for risk assessment. Unlike installment loans with fixed repayment schedules, the outstanding

balance in revolving credit products fluctuates dynamically based on consumer borrowing and re-

payment behavior, making it essential to accurately estimate EAD to assess potential credit losses.

NeuCredit jointly models both PD and EAD, providing a more holistic measure of risk that enables

financial institutions to make better-informed lending decisions.

We validate NeuCredit using transaction data from a leading BigTech platform, comprising

49,223 active consumers over a 12-month period. The data encompasses a wide array of dig-

ital footprints captured as consumers interact with the platform, including activities related to

browsing, ordering, and credit management. The results show that our approach significantly

outperforms various baseline models across three distinct baseline streams. To further elucidate
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the source of this performance enhancement, we visually represent the continuous-time updating

process of latent default risk, which not only clarifies the improvements made by NeuCredit but

also illustrates how BigTech lenders can leverage this model for real-time credit risk assessment,

allowing them to design more adaptive and inclusive credit policies.

This study makes four contributions to the advancement of financial technology and consumer

credit risk assessment as follows:

• We develop a structured framework for leveraging digital footprints from BigTech platforms

to enhance consumer credit risk evaluation. By demonstrating how to use digital footprints,

such as browsing, purchasing, and credit management activities, to serve as reliable indi-

cators of financial responsibility, we provide a data-driven approach to credit assessment in

digital finance.

• We highlight the critical role of digital footprint timing in credit risk prediction, demon-

strating its potential value in capturing insights that extend beyond traditional models. To

effectively capture this overlooked perspective, we introduce a continuous-time attentive

neural network model that accurately represents the irregular and sporadic nature of digital

footprints, enabling a real-time assessment of consumer credit risk.

• We propose an end-to-end training loss function that jointly evaluates PD and EAD within a

unified framework. By integrating these two key risk components, our approach provides a

more comprehensive assessment of credit risk, enabling BigTech firms to improve consumer

segmentation, optimize credit allocation strategies, and deliver more personalized financial

services based on dynamic risk profiles.

• We conduct extensive empirical experiments using real-world data from a major BigTech

platform, demonstrating that our model significantly outperforms existing baselines - achiev-

ing a 3.9% improvement in AUC-ROC and a 15.7% increase in AUC-PR metrics.
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2. Literature Review

2.1. Consumer Credit Risk Assessment

The evolution of consumer credit has undergone significant transformation over the years,

largely driven by technological advancements and the emergence of innovative business mod-

els. Historically, consumer credit is dominated by commercial banks, utilizing empirical models

such as logistic regression and linear discriminant analysis to assess creditworthiness (Edward,

1968, Wiginton, 1980). Although they offer a standardized framework for evaluating risk, they

frequently exclude consumers with limited financial records.

The advent of peer-to-peer lending platforms, such as Lending Club and Prosper, introduces

a new paradigm in consumer credit by facilitating direct lending between individuals, bypassing

traditional financial institutions. Unlike banks, these platforms often cater to borrowers who lack

credit histories, necessitating the exploration and integration of alternative data sources to enhance

credit risk prediction. Such alternative data includes social network relationships (Lin et al., 2013),

social media activities (Ge et al., 2017), soft information (Iyer et al., 2016), online records (Berg

et al., 2020), telecommunication behaviors (Zhou et al., 2021b), semantic text analysis (Wang

et al., 2020, Netzer et al., 2019), transaction data (Lee et al., 2024), and even microexpressions of

applicants (Chang et al., 2024).

The incorporation of these alternative data sources into credit scoring models has necessitated

the adoption of more sophisticated machine-learning techniques. Methods such as support vector

machines (Luo et al., 2020), ensemble models (Bai et al., 2022), and deep neural networks (Cheng

et al., 2022) have become increasingly prevalent due to their ability to process large datasets and

uncover complex, nonlinear patterns that traditional statistical models might overlook (Li et al.,

2024a).

More recently, BigTech firms have further revolutionized consumer credit through the advent

of FinTech lending. They introduce unconditional revolving credit services that enable consumers

to make purchases on their platforms without immediate payment. Consumers can access this

credit as long as their spending remains within the assigned limit and typically benefits from a

one-month interest-free period, which incentivizes higher spending (Li et al., 2024b). However,
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the unconditional nature of this credit inherently increases financial risk, yet limited research has

investigated how consumer digital footprints can be utilized for credit risk assessment, particularly

from a dynamic perspective that captures the evolving patterns of financial behavior over time.

Beyond estimating the PD as a measure of credit risk, financial institutions also explore various

alternative measures, including EAD, estimating the outstanding exposure at the time of default.

For revolving credit products like credit cards and FinTech loans, where borrowing and repayment

are continuous, EAD estimation becomes more challenging due to fluctuating balances and credit

limits. Accurately estimating EAD in this context is essential for effective risk management, as

it influences expected loss calculations and informs capital allocation and pricing decisions. To

tackle these challenges, various methods have been proposed, including mixture models (Leow

and Crook, 2016, Tong et al., 2016) and generalized cohort methods (Gürtler et al., 2018).

Despite these efforts, most approaches tend to focus on a single aspect of credit risk (i.e., PD

or EAD) without modeling these factors simultaneously. This isolated approach can lead to sub-

optimal risk assessments, as it fails to capture the interactions between different risk components.

Recognizing this gap, Papouskova and Hajek (2019) introduced a two-stage credit risk model that

first employs class-imbalanced ensemble learning to predict PD, followed by a regression for EAD

estimation. While this method begins to integrate multiple risk components, it still treats PD and

EAD sequentially rather than concurrently.

Building on these developments, our study advances the literature by integrating digital foot-

prints into a dynamic credit risk modeling framework that jointly predicts PD and EAD. By high-

lighting the significance of timing in capturing default tendencies and refining exposure estimates,

our approach improves the precision and reliability of credit risk assessment. This enables BigTech

institutions to implement more targeted and responsive credit strategies, ultimately paving the way

for adaptive, data-driven decision-making in digital finance.

2.2. Multivariate Time Series Modeling

Evaluating credit risk is a complex task involving multivariate time series classification and

forecasting. Traditional models like Autoregressive Moving Average and Exponential Smooth-

ing have long been staples in time series analysis (Hamilton, 2020). While effective for simpler

7



datasets, these methods often fall short when dealing with the complexity of modern data, es-

pecially in capturing non-linear relationships and high-order dependencies that are prevalent in

real-world scenarios.

The introduction of Recurrent Neural Networks (RNNs), including architectures like Gated

Recurrent Unit (GRU) (Cho et al., 2014) and Long Short-Term Memory networks (LSTM) (Hochre-

iter and Schmidhuber, 1997), marked a significant leap forward in handling temporal dependencies

in data. These models have demonstrated excellence across various tasks such as forecasting (Li

et al., 2025), classification (Wang et al., 2018), imputation (Cao et al., 2018), and anomaly detec-

tion (Lin et al., 2024). Their versatility has led to widespread applications in fields ranging from

finance (Chen et al., 2024) to marketing (Yin et al., 2024) and healthcare (Ray et al., 2023).

Despite their strengths, standard RNN face limitations when processing long sequences. They

can struggle to retain information from earlier time steps, which is critical for accurate predictions

in time series data. To address this, the attention mechanism is introduced, allowing models to

focus on relevant parts of the input sequence and thereby improving performance (Bahdanau,

2014).

However, traditional RNNs and attention mechanisms are not inherently equipped to handle

the irregular and sporadic nature of dynamic consumer footprints. These models are typically

designed for sequential data with uniform time steps, such as natural language, where the timing

between words is consistent. In contrast, consumer behavior data can be highly irregular, with

events occurring at unpredictable intervals. This irregularity means that the precise timing of

events carries essential contextual information that standard RNNs may overlook.

To address these challenges, literature has diverged into two main streams. The first stream

enhances temporal sensitivity by incorporating explicit time information as additional features

(Choi et al., 2016). Further advancements like Time2Vec embed time into high-dimensional vec-

tors, providing a more expressive representation of temporal information (Kazemi et al., 2019).

Other models learn time embeddings that capture trends and seasonality, enriching the model’s

understanding of temporal patterns (Zhou et al., 2021a).

The second stream involves adapting RNNs to operate in a continuous-time framework, aim-

ing to align the model more closely with the natural flow of time. Unlike discrete-time RNNs that
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assume constant hidden states between observations, continuous-time models introduce mecha-

nisms that allow the model’s memory to evolve over time. For instance, GRU-D incorporates

decay mechanisms that enable the model’s hidden state to diminish exponentially as time pro-

gresses, better reflecting the temporal decay of information (Che et al., 2018). Similarly, the

T-LSTM model divides the LSTM’s memory into short-term and long-term components, integrat-

ing decay into the short-term memory to capture the diminishing influence of former data (Baytas

et al., 2017).

Our paper aligns with this second approach by employing a continuous-time attentive GRU

implemented through Neural ODEs (Chen et al., 2018). We recognize that the decay mechanisms

used in models like GRU-D are specific instances of ODEs, making them subsets of our broader

modeling framework. By integrating continuous-time dynamics with attention mechanisms, our

model can better handle irregular time intervals and focus on the most relevant events in a con-

sumer’s activity sequence.

3. Methodology

3.1. Overview

In this section, we outline the data structure and notations used in our analysis. We employ

lowercase letters to signify scalar values (e.g., x), bold lowercase letters to represent vectors (e.g.,

x), and bold uppercase letters to denote matrices (e.g., X). For clarity, a comprehensive list of

all variable notations, including the dimensions of vectors and matrices, is provided in Appendix

Appendix A.

Consumer footprints on BigTech platforms are captured at two levels of data granularity:

month-level and daily-level. We collect data from N consumers over M months, focusing on

their browsing, ordering, and credit-management activities. For each consumer i (i ∈ {1, · · · ,N})

consumer in the m-th (m ∈ {1, · · · ,M}) month, these activities can occur on any day within the

month, reflecting the irregular and sporadic nature of online consumer interactions. To effectively

handle the variability in timing of these activities, we record the occurrence timestamps of brows-

ing, ordering, and credit-management footprints for each consumer i at each month m as vectors
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m , and ti,c
m :

ti,b
m = [ti,b

m,1, · · · , t
i,b
m,Ki,b

m
] = 1 ≤ ti,b

m,1, · · · , t
i,b
m,Ki,b

m
≤ Tm,

ti,o
m = [ti,o

m,1, · · · , t
i,o
m,Ki,o

m
] = 1 ≤ ti,o

m,1, · · · , t
i,o
m,Ki,o

m
≤ Tm,

ti,c
m = [ti,c

m,1, · · · , t
i,c
m,Ki,c

m
] = 1 ≤ ti,c

m,1, · · · , t
i,c
m,Ki,c

m
≤ Tm,

where Ki,b
m , Ki,o

m , and Ki,c
m represent the total number of records that browsing, ordering, and credit-

management for consumer i at month m occur. Tm stands for the number of days in month m. In

the sequel, unless specifically noted, we will drop the consumer upper script i and month lower

script m to lighten the notations. Therefore, ti,b
m , ti,o

m , and ti,c
m shall become tb, to, and tc.

Then, at specific times for browsing, ordering, and credit-management, identified respectively

as tb
k ∈ tb, to

k ∈ to, and tc
k ∈ tc, we use xb

tbk
∈ RDb , xo

tok
∈ RDo , and xc

tck
∈ RDc to denote the features

of occurred browsing, ordering, and credit-management footprints. Db, Do, and Dc indicate the

feature dimensions for browsing, ordering, and credit-management, respectively. Therefore, the

sequences of these activities for each month m are compiled as follows:

Xb = [xb
tb1
, · · · , xb

tb
Kb

], Xo = [xo
to1
, · · · , xo

toKo
], Xc = [xc

tc1
, · · · , xc

tcKc
].

In this paper, our objective is to predict the default amount ym at each month m and default

probability p(ym > 0) for each consumer at the end of each month m by leveraging their histor-

ical digital footprints of browsing {Xb
1, · · · ,X

b
m}, ordering {Xo

1, · · · ,X
o
m}, and credit-management

{Xc
1, · · · ,X

c
m}.

3.2. Sporadic Sequential Behaviors Encoding

The central component of our NeuCredit is a recurrent unit designed to capture the dynamic

patterns of consumer behavior over time. Recurrent Neural Networks (RNNs) are widely rec-

ognized for their effectiveness in processing sequential data and have been extensively used to

model consumer behaviors (Yin et al., 2024). In an RNN, each input vector is processed in order,

with its information incorporated into the network’s hidden state. This hidden state acts as the

network’s internal memory, essential for retaining and transferring information across time steps

(Goodfellow et al., 2016).
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Vanilla RNN often encounter challenges such as the vanishing or exploding gradient problem,

which inhibits their capacity to model long-term dependencies. To overcome these limitations,

advanced variants such as LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014)

have been developed. These architectures introduce gating mechanisms that regulate the flow of

information. For instance, the GRU updates its hidden state using the following equations:

rt = σ(Wrxt + Urht−1 + br),

zt = σ(Wzxt + Uzht−1 + bz),

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh),

ht = (1 − zt) ⊙ h̃t + zt ⊙ ht−1 (1)

where xt is the input vector of variables at time t, and ht is the memory of GRU that aggregates

information accumulated up to timestamp t. rt serves as the reset gate, determining the extent to

which the previous memory should be disregarded when generating the current memory. zt acts as

the update gate, dictating the trade-off between retaining the previous memory and incorporating

the new input at each timestamp. h̃t represents the candidate update gate, capturing the new infor-

mation that needs to be added to the current memory. {Wr,Ur,br}, {Wz,Uz,bz}, and {Wh,Uh,bh}

are the trainable network parameters. Additionally, ⊙ is the Hadamard product operator that im-

plements the element-wise multiplication. σ(·) and tanh(·) are activation functions that introduce

non-linearity.

Despite these advancements, GRU still has limitations when modeling consumer footprints,

particularly due to their inadequate handling of the exact timing of events and the intervals between

them. For instance, consider a GRU used to model a sequence of consumer orders within a month,

with events occurring on days to
1 = [16, 21, 22, 23, 26, 29]. While the GRU captures the order of

these events, it does not account for their specific timestamps. If the first event occurred on day 17

instead of day 16, with all other features remaining the same, the GRU would produce the same

prediction. This inability to distinguish between events occurring at different times can lead to

significant inaccuracies, especially when the timing of consumer actions provides crucial insights

into financial behavior and potential risks.

To address this challenge, it is imperative to recognize that RNN encounter limitations due
11



(a) Discrete-time memory evolution. (b) Continuous-time memory evolution.

Fig. 3. The difference between discrete-time and continuous-time memory evolution.

to their exclusive focus on events at discrete-time events. For clarity, consider the ordering se-

quence in Figure 3a, where the GRU updates its hidden state only at the times of observable

events t1, t2, t3, t4, and keeps the hidden state constant during periods without observations such as

t1 − t2, t2 − t3, and t3 − t4. As a result, predicting values at a specific time point, such as t4, relies

solely on the memory updated at t3, ignoring the actual duration between t3 and t4.

The intrinsic limitation of GRU necessitates a solution that accounts for the continuous-time

dynamics present in the data instead of discrete-time dynamics (De Brouwer et al., 2019). Starting

from the GRU update Eqn. (1), if we subtract the memory ht−1 from both sides, we can derive the

following expression:

ht − ht−1 = (1 − zt) ⊙ (h̃t − ht−1).

Then, by taking the limit as the time difference between t − 1 and t tends to zero, we arrive at the

continuous-time dynamics of memory as an ODE

dh(t)
dt
= (1 − z(t)) ⊙

(
h̃(t) − h(t)

)
. (2)

This ODE, referred to as GRU-Continuous, allows the hidden state to evolve continuously over

time, even during intervals without observations. When new inputs become available, we use the

original GRU update equations (Eqn. (1)), now referred to as GRU-Discrete, to update the hidden

state based on the new data. By integrating the continuous-time and discrete-time formulations,

we create a hybrid model called GRU-Hybrid. This model effectively bridges the gaps between

discrete events and provides a more robust representation of the hidden state’s evolution over time,

accommodating irregular intervals and sporadic behaviors. This process is visually illustrated in
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Figure 3b. In practical implementation, the continuous dynamics described by the ODE can be

integrated into neural network architectures (Chen et al., 2018).

3.3. Continuous-time Attention Mechanism

The attention mechanism fundamentally enhances the capacity of RNNs to process long se-

quences effectively, which is first introduced by Bahdanau et al. (2015) and generalized by Vaswani

et al. (2017). By allowing models to dynamically focus on particular segments of an input se-

quence for generating representations, attention mechanisms alleviate the constraints imposed by

the fixed-sized hidden states of traditional RNNs. The adoption of this technique has led to sub-

stantial advancements in a range of applications, such as natural language processing and image

processing. Furthermore, the use of attention weights significantly enhances the interpretability

of neural network decisions, providing clear insights into which aspects of the input data are pri-

oritized during the prediction process (Guo et al., 2019). This level of transparency is especially

valuable in domains such as credit risk evaluation.

(a) Discrete-time attention. (b) Continuous-time attention.

Fig. 4. The difference between discrete-time and continuous-time attention mechanism.

The attention mechanism fundamentally relies on constructing a context vector, cs, for a spe-

cific time point s. In discrete-time scenarios, it is achieved by computing a weighted sum of the

hidden states ht1 , · · · ,htK , as illustrated by Figure 4a and following equation:

cs =

K∑
k=1

αs,tkhtk , where αs,tk =
es,tk∑K
l=1 es,tl

. (3)

Here, αs,tk represents the attention score, which quantifies the relevance of the query qs at time s

and with each hidden state htk at each observed time point tk. The attention score is derived from
13



a normalized similarity measure, typically calculated through an exponential function of the dot

product, es,tk = exp(q⊤s htk). However, this discrete-time method poses challenges for generalization

to continuous-time, where the evaluation of αs,tk would require potentially infinite computations

(Jhin et al., 2021).

To address this limitation and apply attention within our proposed continuous-time GRU frame-

work, it is crucial to extend the discrete-time attention concept into a continuous-time setting. This

extension is depicted by Figure 4b and the following formulation:

c(s) =
∫ T

0
α(s, t)h(t)dt, where α(s, t) =

e(s, t)∫ T

0
e(s, t)dt

. (4)

where e(s, t) = exp(q(s)⊤h(t)) represents the continuous-time equivalent of the similarity score.

The computation of the context vector c(s) involves evaluating two integrals: one to normalize the

similarity scores over the observation period,
∫ T

0
e(s, t)dt, and another to compute the weighted

average of hidden states across the same period. To simplify the computation, consider:

c(s) =
∫ T

0
α(s, t)h(t)dt =

∫ T

0

e(s, t)∫ T

0
e(s, t)dt

h(t)dt =
1∫ T

0
e(s, t)dt

∫ T

0
e(s, t)h(t)dt

To efficiently compute the context vector for the continuous-time attention mechanism, we try

to compute the denominator and the numerator involved separately. For the denominator, denote

E(T ) =
∫ T

0
e(s, t)dt, and thus

dE(t)
dt
=

d
∫ t

0
e(s, t′)dt′

dt
= e(s, t). (5)

Similarly, for the numerator, we assume C(T ) =
∫ T

0
e(s, t)h(t)dt. By applying the Leibniz integral

rule, we can derive:

dC(t)
dt
=

d
∫ t

0
e(s, t′)h(t′)dt′

dt
= e(s, t)h(t) +

∫ t

0

∂e(s, t′)h(t′)
∂t

dt′ = e(s, t)h(t). (6)

By integrating the Eqn. (2) for the hidden state dynamics and attention components, Eqns. (5)

and (6), we can construct an augmented ODE system that captures the continuous dynamics of

the attention mechanism in conjunction with the GRU’s memory updates. This augmented ODE
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system is represented as:

d
dt

 h (t)
C (t)
E (t)

 =
 (1 − z(t)) ⊙

(
h̃(t) − h(t)

)
e(s, t)h(t)

e(s, t)

 . (7)

Solving this ODE from an initial observation period up to time T involves integrating each

component of the system over the time interval from 0 to T , obtaining h(T ), C(T ), and E(T ). The

initial values, h(0), C(0), and E(0), are often set to zero in practical applications to simplify the

integration process.

In the context of predicting credit risk, our goal is to assess the probability and amount of

default at the end time T of each month, taking into account the comprehensive digital footprints

of consumers throughout that month. To enhance the predictive power of the final hidden state

h(T ), we combine it with the context vector using an additive formulation z(T ) = h(T ) + C(T )
E(T ) .

This enriched state z(T ) leverages both the dynamic memory encoded by the GRU-Hybrid, which

captures sequential dependencies and temporal patterns, and the context vector, which distills the

essence of the consumer’s behavior across the observed period into a focused snapshot.

3.4. Hierarchical Network

Given that the consumer footprints are available at the daily level while the billing is calculated

at the monthly level, we employ a hierarchical architecture, as illustrated in Figure 5. This archi-

tecture is specifically designed to evaluate credit risk at the end of each billing month, utilizing the

encoded memories derived from browsing, ordering, and credit-management footprints.

In the bottom-level layers, we utilize an attentive GRU-Hybrid to process daily consumer foot-

prints, specifically browsing xb
m, ordering xo

m, and credit-management xc
m, into distinct represen-

tations zb
m(Tm) ∈ RDz , zo

m(Tm) ∈ RDz , and zc
m(Tm) ∈ RDz respectively. Additionally, demographic

features such as age, location, and gender are integrated using a feedforward neural network to

form a static demographic representation zd ∈ RDz . To enhance prediction, we introduce a gated

fusion layer to combine zb
m(Tm), zo

m(Tm), and zc
m(Tm) and fuse them into a vector zm. The formula

for this layer is given by:

zm =
∑

softmax( f ([zd; zb
m(Tm); zo

m(Tm); zc
m(Tm)])) ⊙ [zd; zb

m(Tm); zo
m(Tm); zc

m(Tm)], (8)
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Fig. 5. The model framework of NeuCredit.

where f : RDdz+Dbz+Doz+Dcz → R4 are trainable function, capturing the relative importance of static,

browse, order, and credit-management information in credit risk assessment.

In the upper-level layer, where the time interval between two consecutive months is uniformly

spaced, we thus employ a vanilla GRU to capture the serial dependencies at the month level.

Specifically, the input to the monthly GRU is the fused memories zm at month m, and the monthly

GRU updates the monthly memories hm ∈ RDh according to:

hm = GRU(zm,hm−1). (9)

This ensures that the memory at month m is dependent on consumer behaviors at the daily level in

month m and the memory from the previous month hm−1.

3.5. Expected Loss

In the existing literature on credit risk, the primary focus has traditionally been on predicting

the PD (Oskarsdottir and Bravo, 2021). While this provides a useful measure of risk, it does not
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account for the variance in the amounts owed by different consumers, which can significantly

impact the potential losses for BigTech platforms. For example, the financial impact of a default

by a consumer owing $10,000 is substantially more severe than that of a consumer with a $100

debt.

To address this limitation, our model extends beyond only predicting the PD to also estimating

the potential default amounts, referred to as EAD. By incorporating both PD and EAD, we can

provide a more comprehensive measure of credit risk.

Our loss function (Ly), termed Expected Loss, is formulated to minimize the negative log-

likelihood of default behaviors for all consumers across all months. i.e.,

Ly = − log

 N∏
i=1

M∏
m=1

[1 − pd(yi
m = 0)]1

{yi
m=0} · [pd(yi

m > 0)pa(yi
m; µi

m, σ
i
m)]1

{yi
m>0}

 ,
= −

N∑
i=1

M∑
m=1

1{yi
m=0} log[1 − pd(yi

m = 0)] + 1{yi
m>0} · log[pd(yi

m > 0)pa(yi
m; µi

m, σ
i
m)]. (10)

Here, yi
m represents the amount of default for consumer i at month m. The indicator functions

1{yi
m=0} and 1{yi

m>0} signify whether the consumer has default behavior. If the amount is 0 (non-

default), then 1{yi
m=0} = 1 and 1{yi

m>0} = 0; if the amount is greater than 0 (default), then 1{yi
m=0} = 0

and 1{yi
m>0} = 1. Moreover, pd(yi

m > 0) = 1 − pd(yi
m = 0) represents the probability of default

for the consumer, while pa(yi
m; µi

m, σ
i
m) represents the distribution of the potential default amount

given the parameters µi
m, σ

i
m. It’s worth noting that pa(yi

m; µi
m, σ

i
m) only appears in the second term

when 1{yi
m>0} = 1, as default amount of the non-default consumers always equal to 0.

The Eqn. (10) can be further simplified as follows

Ly = −

N∑
i=1

M∑
m=1

1{yi
m=0} log[1 − pd(yi

m = 0)] + 1{yi
m>0} · log[pd(yi

m > 0)] + 1{yi
m>0} · log[pa(yi

m; µi
m, σ

i
m)].

We can observe that the first two terms represent the cross-entropy loss (LCE) for predicting

whether the consumer will be default. The third term is to fit the distribution of default amounts

only when consumers exhibit default behaviors. We assume the default amount for each con-

sumer follows the Log-normal distribution with varying µi
m, σ

i
m. The reason is that the log-normal

distribution is capable of modeling skewed distributions well, particularly those exhibiting non-

negativity and heavy-tailed characteristics (see Figure D.13 in Appendix Appendix D). Therefore,
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the loss function can be finally expressed as

Ly =

N∑
i=1

M∑
m=1

LCE + 1{yi
m>0} ·

[
log(yi

mσ
i
m

√
2π) +

(log yi
m − µ

i
m)2

2(σi
m)2

]
. (11)

We can then estimate the heterogeneous probability of default pd(yi
m > 0), the distribution param-

eters of default amount µi
m and σi

m conditional on the hi
m learned from Hierarchical Network at

each month, i.e.,

(
pd(yi

m > 0), µi
m, σ

i
m

)
= gy(hi

m), (12)

where gy : RDz → R3 is a function constructed by a two-layer feed-forward network.

Finally, we can estimate the expected loss (ELi
m) for consumer i at month m as the product of

PD and EAD, i.e.,

ELi
m = pd(yi

m > 0) · E[yi
m] = pd(yi

m > 0) · exp
(
µi

m +
(σi

m)2

2

)
. (13)

Once the expected loss of consumers is determined, the platform can classify consumers into

different categories. For example, for consumers with high default amounts and probability of

default, the platform should monitor their behavior in a timely manner and adjust their credit limits

to reduce losses. For consumers with low default amounts and probability of default, platforms

should consider increasing their credit limits to encourage their spending.

4. Experiment

4.1. Research Context

We obtain a proprietary dataset from a leading Chinese BigTech platform listed on U.S. stock

exchanges. This platform boasts over 500 million active consumers and generates annual revenue

exceeding $100 billion. Offering a wide array of product categories, including electronics, daily

necessities, food items, and pharmaceuticals, it enables consumers to engage in various online

shopping activities such as searching, browsing, and ordering. In addition to retail services, the

platform provides financial offerings like consumer credit, allowing customers to finance their

purchases first and pay later. The associated BigTech lender offers significant flexibility in payment
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arrangements, including options for installment payments on orders and bills, as well as minimum

payments on bills. While this flexibility empowers consumers to manage their finances effectively,

it also introduces complexity to credit risk assessment due to the diversity of payment behaviors.

Our dataset includes comprehensive data on browsing, ordering, and credit-management ac-

tivities of 49,223 active consumers over the course of 12 monthly billing cycles. The browsing

data provides insights into the device type used and specific product information such as the shop,

brand, and product category. The ordering data captures details about the products purchased,

quantities, total order amounts, and the use of coupons, cash, or credit cards, along with shipping

addresses. Additionally, the credit-management data encompasses a range of actions that affect the

consumer’s outstanding credit balance, including credit used for purchases, choices of installment

plans, applicable installment interest fees, and adjustments to credit balances due to refunds or

payments. The richness and granularity of this dataset provide an excellent opportunity to model

consumer behavior and assess credit risk in a real-world setting. For a detailed and statistical

description of the dataset, please refer to Appendix Appendix D.

4.2. Experiment Setting

To rigorously evaluate the generalizability of our model, we partition the dataset into training

and testing sets. Specifically, we allocate 10,000 individuals for training and reserve the remaining

39,223 for testing, ensuring that the test set is substantially larger to provide a robust assessment

under real-world conditions. Within the training cohort, we employ a 5-fold cross-validation strat-

egy to optimize hyperparameters and prevent overfitting. In each of the five experiments, 8,000

individuals are used for training and 2,000 for validation.

Given the significant imbalance between positive and negative samples in our dataset, where

the defaults are relatively rare (only around 10% of consumers), we select the Area Under the

Receiver Operating Characteristic Curve (AUC-ROC) and the Area Under the Precision-Recall

Curve (AUC-PR) as evaluation metrics. The AUC-ROC metric provides insight into the trade-off

between true positive and false positive rates across various threshold settings, aiding in under-

standing the model’s overall discriminative ability. Additionally, in imbalanced datasets, AUC-PR

is often more informative as it focuses on the model’s performance in predicting the minority class
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by assessing precision and recall.

To evaluate the performance in predicting EAD, we rank defaulting consumers according to

their actual default amounts and their predicted default amounts separately. We then compute

the Spearman’s Rank Correlation (SRC) coefficient between these two rankings as the evalua-

tion metric (Chamberlain et al., 2017). We chose this metric over Mean Squared Error (MSE) or

Mean Absolute Error (MAE) because these metrics are sensitive to extreme values, which can dis-

proportionately influence results and skew the assessment of overall performance (Hyndman and

Koehler, 2006). In contrast, SRC measures the strength and direction of the association between

the two rankings, providing valuable practical insights. By accurately ranking consumers based on

their likelihood of incurring significant delinquencies, the platform can implement more targeted

and efficient risk management strategies.

In our experiments, the input feature sizes for the browsing, ordering, and credit-management

footprints are 11, 19, and 10, respectively, reflecting the dimensionality of data collected in each

category. To fine-tune our model, we employ a random search within predefined parameter ranges,

as detailed in Appendix Appendix C. This method allows for efficient exploration of the hyper-

parameter space without the computational expense of exhaustive grid search. We implement an

adaptive learning rate strategy, starting with an initial rate of 0.005 and halving it when the vali-

dation loss does not decrease for five consecutive epochs. This approach accelerates convergence

and helps avoid local minima. We use the Adam optimization method (Kingma and Ba, 2014) as

our optimizer, leveraging its advantages in handling sparse gradients and adjusting learning rates

during training.

4.3. Results on Modeling Timing of Digital Footprints

In the previous section, we highlight the critical importance of accurately modeling the spo-

radic digital footprints that consumers leave on platforms. Incorporating the timing of these foot-

prints is essential for gaining comprehensive insights into consumer behavior and enhancing the

precision of credit risk predictions. To validate, we conduct a series of experiments within the Hi-

erarchical Network framework. In these experiments, we test the performance of various baseline

models by replacing our proposed attentive GRU-Hybrid unit with alternative units, while keeping
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the overall framework and training loss consistent to ensure a fair comparison.

We categorize the baseline models into three groups based on how they handle timing infor-

mation. The first stream includes traditional GRU cells (Cho et al., 2014), which primarily focus

on capturing the order of sequences but ignoring the actual timing of the footprints. This model

serves as a fundamental baseline, illustrating the impact of sequence order without explicit timing

information on the accuracy of predictions.

The second stream aims to enhance temporal sensitivity by incorporating the timing of foot-

prints directly into the input features, termed GRU-time. Building on this, the GRU-Time2Vec

model embeds the scalar time values into high-dimensional vectors using the Time2Vec method

(Kazemi et al., 2019). This approach provides a more expressive representation of temporal in-

formation. These enriched time vectors are then concatenated with the original input data and

processed through the GRU. The objective of these models is to empirically demonstrate the ben-

efits of including detailed timing information in improving prediction performance.

The third stream involves adapting the traditional RNN architecture to suit a continuous-time

framework. This adaptation is exemplified by models such as GRU-Decay (GRU-D) (Che et al.,

2018), Time-aware LSTM (T-LSTM) (Baytas et al., 2017), and Multirepresentational Attention

GRU (MA-GRU) (Yin et al., 2024), which integrate an exponential decay mechanism into the

hidden state. This mechanism dynamically adjusts based on the time intervals between events,

aiming to more accurately reflect the true dynamics of consumer interactions by accounting for

the decay in information relevance over time. We provide a detailed description of these streams

of baselines in Appendix Appendix E.

We rigorously train each baseline model and then evaluate their performance using the same

test set. By keeping the overall framework and training loss the same across all models, we ensure

that any differences in performance could be attributed to the modeling of timing information

rather than other factors. The results, detailed in Table 1, provide insightful comparisons among

the various models.

Specifically, the standard GRU model demonstrates the lowest performance metrics with an

AUC-ROC of 0.727 and an AUC-PR of 0.228. Incorporating time as an additional feature in

the GRU-Time model led to noticeable improvements, increasing the AUC-ROC to 0.739 and
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Table 1 Evaluation Metrics (mean±standard deviation) on Test Dataset in Five-fold Cross-

validation. Bold highlights the top-performing results.

Recurrent Unit AUC-ROC AUC-PR SRC

GRU 0.727 ± 0.003∗∗∗ 0.228 ± 0.007∗∗∗ 0.642 ± 0.015∗∗∗
GRU-Time 0.739 ± 0.006∗∗∗ 0.244 ± 0.011∗∗∗ 0.650 ± 0.015∗∗

GRU-Time2Vec 0.765 ± 0.017∗∗∗ 0.286 ± 0.030∗∗∗ 0.667 ± 0.005
GRU-D 0.745 ± 0.004∗∗∗ 0.255 ± 0.007∗∗∗ 0.642 ± 0.013∗∗∗
T-LSTM 0.737 ± 0.012∗∗∗ 0.239 ± 0.015∗∗∗ 0.548 ± 0.031∗∗∗
MA-GRU 0.773 ± 0.003∗∗∗ 0.319 ± 0.007∗∗∗ 0.609 ± 0.011∗∗∗

NeuCredit (GRU-Hybrid) 0.803 ± 0.008 0.369 ± 0.010 0.661 ± 0.008

Note: ∗ denote models significantly lower than the best-performing models (t-test ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1)

the AUC-PR to 0.244. This demonstrates that even a simple inclusion of timing information can

enhance predictive performance. Further enhancements are observed with the GRU-Time2Vec

model, where time is embedded into a high-dimensional vector, achieving an AUC-ROC of 0.765

and an AUC-PR of 0.286, underscoring the importance of effectively representing temporal infor-

mation.

Similarly, models that adapt the classical GRU or LSTM to a continuous-time framework—such

as GRU-D, T-LSTM, and MA-GRU—demonstrated superior performance compared to the stan-

dard GRU. For instance, GRU-D achieved an AUC-ROC of 0.745 and an AUC-PR of 0.255, while

MA-GRU attained an AUC-ROC of 0.773 and an AUC-PR of 0.319. These results suggest that in-

tegrating mechanisms to handle the decay of memory over time significantly improves prediction

accuracy, aligning more closely with the dynamic nature of consumer behaviors.

On the other hand, while the prediction of PD benefits significantly from incorporating the

timing of digital footprints, the estimation of EAD appears less dependent on these temporal dy-

namics. Specifically, the SRC metric for the standard GRU model stands at 0.642, and shows

a modest increase to 0.667 when timing is integrated as an additional feature using GRU-Time.

Interestingly, in models adopting a continuous-time framework, the SRC either remains simi-

lar or decreases compared to the standard GRU. This suggests that the increased complexity of

continuous-time models might not necessarily translate to better EAD estimation. One possible

explanation is that EAD estimation relies more on cumulative behavior over time rather than the
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precise timing of individual events.

At last, NeuCredit, our proposed model, outperforms all baseline units with the highest scores

in AUC-ROC at 0.808 and AUC-PR at 0.376 while also achieving a competitive SRC score

of 0.661. These results clearly illustrate the advantage of NeuCredit’s approach in leveraging

continuous-time dynamics and a sophisticated attention mechanism, providing the most effective

solution for predicting credit risk using consumer digital footprints.

4.4. Source of Improvement

In this section, we delve into the enhancements provided by our model, NeuCredit, which

leverages continuous-time dynamics to improve credit risk prediction. We compare the perfor-

mance of NeuCredit with two baseline models: the standard GRU (representing models that con-

sider only the sequence order of events) and GRU-Time2Vec (representing models that include

timing information as additional features). Our objective is to understand how effectively model-

ing the timing of digital footprints contributes to enhanced predictive capabilities.

To illustrate the differences among these models, we analyze the dynamics of predicting the

probability of default within a month for two consumers, as depicted in Figure 6. Subplot (a)

presents data for a non-defaulting consumer, while Subplot (b) shows data for a defaulting con-

sumer. In each subplot, the lower graph displays the occurrence times of browsing, ordering, and

credit-management activities throughout the month. The upper graph plots the real-time predic-

tions of default probability generated by the three models.

The standard GRU model, serving as our foundational baseline, processes sequences without

explicitly accounting for the timing between events. As a result, its predictions of default probabil-

ity remain constant between observed activities, regardless of time intervals. The model updates its

predictions only when new digital footprints are recorded, leading to a stepwise prediction pattern

that may overlook important temporal dynamics.

Building upon the GRU, the GRU-Time2Vec model incorporates timing information by em-

bedding timestamps into high-dimensional vectors using the Time2Vec method (Kazemi et al.,

2019). These time embeddings are added as features to the model, allowing for more respon-

sive updates at the times when events occur and improving performance compared to the standard
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(a) The predicted default probability for a non-default consumer. (b) The predicted default probability for a default consumer.

Fig. 6. The predicted default probability for a default consumer and a non-default consumer via GRU (blue), GRU-

Time2Vec (green) and proposed NeuCredit (red).

GRU. However, GRU-Time2Vec still operates within a discrete-time framework, resulting in pre-

dictions that update in steps.

In contrast, NeuCredit employs a continuous-time framework that dynamically updates its

predictions not only in response to new activities but also based on the time elapsed since the last

event. This means that NeuCredit can adjust its assessment of a consumer’s default probability

continuously over time, providing a more accurate and real-time reflection of risk as time pro-

gresses. The model effectively captures the decay or escalation of risk during periods of inactivity,

when discrete-time models may fail to recognize.

For instance, by the end of the month, the standard GRU predicts a default probability of

approximately 0.17 for the non-defaulting consumer and 0.22 for the defaulting consumer—a rel-

atively small difference that may not effectively distinguish between the two. The GRU-Time2Vec

model offers some improvement, predicting probabilities of 0.12 and 0.30 for the non-defaulting

and defaulting consumers, respectively. NeuCredit, on the other hand, predicts a default proba-

bility of 0.08 for the non-defaulting consumer and 0.43 for the defaulting consumer. These more

distinct probabilities demonstrate NeuCredit’s enhanced ability to differentiate between consumer

behaviors and accurately assess credit risk.
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(a) PD vs. EL. (b) EAD vs. EL. (c) Predicted vs. True EAD. (d) PD vs. EAD.

Fig. 7. The relationship among PD, EAD, and EL. Blue/red dots represent non-default/default consumers.

4.5. Results for Expected Loss (EL)

In this section, we examine how our model estimates the PD and EAD to calculate the EL for

consumers. Specifically, Figures 7a and 7b illustrate the relationships between PD and EL, and

between EAD and EL, respectively. In Figure 7a, we observe that consumers with higher pre-

dicted PD values correspond to higher expected losses. Similarly, Figure 7b shows that increased

predicted EAD values are associated with higher expected losses. These patterns underscore the

importance of jointly modeling PD and EAD, as both components contribute significantly to the

estimation of EL.

Furthermore, Figure 7c explores the relationship between the estimated EAD and the actual

exposure or default amount for default consumers. The positive proportional relationship indicates

that our model not only predicts the likelihood of default but also provides a reliable estimate of

the potential financial loss if a default occurs. This capability is crucial for lenders to assess the

severity of potential defaults and allocate resources appropriately.

Figure 7d further presents the relationship between PD and EAD, providing critical insights for

targeted credit management strategies. For example, consumers positioned in the upper right quad-

rant—those with high default probability and high exposure at default—should have their credit

limits reduced and be subject to more stringent monitoring to mitigate potential losses. Conversely,

consumers in the lower left quadrant—characterized by low default probability and low exposure

at default—could be encouraged to increase consumption through higher credit limits.
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4.6. Results for Continuous-time Attention

In this section, we explore the interpretative capabilities of our model by examining how it ap-

plies the continuous-time attention mechanism across different consumer profiles. Figure 8 illus-

trates the continuous-time attention weights for two consumers: one with dense digital footprints

and another with sparse digital activity. This visualization highlights where the model concentrates

its focus during the prediction process. The upper panels depict the evolution of attention weights

throughout the billing cycle, while the lower panels display the corresponding digital footprints

for each consumer.

For the consumer with rich digital footprints (Figure 8a), the model displays a pronounced

focus on credit-management activities, which is intuitive and logical, as financial data typically

contains the most essential information for assessing credit risk. Conversely, the consumer with

sparse digital footprints (Figure 8b) presents a different scenario, with limited data on ordering

and credit-management activities. In response, the model shifts its focus predominantly towards

the sparse browsing data available. This adaptation highlights the model’s capability to leverage

whatever data is available to optimize risk assessment, ensuring robust predictive performance

even in data-scarce environments.

Moreover, the attention weights further highlight the effectiveness of the GRU-Hybrid frame-

work. Specifically, the attention weights undergo significant shifts at each occurrence timing of

digital footprint, reflecting how the GRU-Hybrid updates its hidden state with new data. Addi-

tionally, the attention weights also change slightly even in the absence of new observations. For

example, in Figure 8(a), the attention allocate to credit-management data continues to increase

despite the absence of new footprints. This indicates that the GRU-Hybrid can extract valuable

temporal information from the passage of time itself and enhance the inference of credit risk. As

a result, the attention mechanism captures more informative aspects of the data, improving the

model’s overall predictive performance.

4.7. Heterogeneous Analysis

In this section, we examine the heterogeneous effect of NeuCredit compared to the baseline

GRU model, focusing on identifying which consumer groups benefit the most from incorporating
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(a) Consumer with dense digital footprints. (b) Consumer with sparse digital footprints.

Fig. 8. The continuous-attention of two distinct consumers.

timing information into credit risk assessment. Since the primary distinction between NeuCredit

and GRU lies in their treatment of event timing, this analysis allows us to evaluate the extent to

which capturing temporal dynamics enhances predictive performance.

To quantify the performance improvement of NeuCredit over GRU, we evaluate the predicted

default probability for each consumer in the test set. Performance improvement is defined based

on changes in the odds ratio between NeuCredit and GRU. Specifically, if a consumer defaults, a

higher predicted probability of default is considered better, as it reflects stronger predictive accu-

racy. Conversely, if a consumer does not default, a lower predicted probability is preferable, as it

reduces false positives. The relative improvement is thus computed as follows:

Relative Performace Improvement =


exp

(
logitNeuCredit − logitGRU

)
, if default,

exp
(
logitGRU − logitNeuCredit

)
, if not default,

where logit(p) = log( p
1−p ) represents the log odds transformation of the predicted default proba-

bility p.

To structure this analysis, we segment consumers based on two key temporal factors: the

frequency of digital footprints, measured as the total number of recorded digital footprints in a one-

month period, and the variability in footprint occurrence, quantified as the standard deviation of the

timestamps of online activities within the same period. Consumers are categorized into 15 groups

along these two dimensions, allowing us to assess how NeuCredit’s performance improvements
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(a) The occurrence frequency of digital footprints. (b) The occurrence variability of digital footprints.

Fig. 9. The heterogeneous analysis of occurrence frequency and irregularity of digital footprints. All test sets (39,223)

are equally clustered into 15 groups and the performance improvements are averaged.

over GRU vary across different consumer behaviors.

As shown in Figure 9a, NeuCredit consistently outperforms GRU across all frequency groups,

as performance improvement values consistently greater than 1, confirming the benefit of incor-

porating event timing. While the performance gains for non-default consumers remain relatively

stable, default consumers initially show a slight increase in improvement as footprint frequency

rises. However, when the number of digital footprints becomes excessively high, the performance

gap narrows, likely because the abundance of footprints provides sufficient predictive signals, re-

ducing the relative impact of precise timing information.

Additionally, Figure 9b illustrates that NeuCredit outperforms GRU across all levels of foot-

print variability. However, the extent of improvement differs between default and non-default

consumers. Default consumers with higher timing variance benefit significantly more from Neu-

Credit, suggesting that their online activities are more time-sensitive and may be often triggered by

external factors, such as liquidity constraints or repayment deadlines. In contrast, non-default con-

sumers exhibit stable improvements, implying that their behaviors follow more stable and struc-

tured patterns.

4.8. Ablation Studies

In this section, we perform two ablation studies to evaluate the effectiveness of key components

in NeuCredit and to understand their contributions to the model’s overall performance. In the first

experiment, we assess the role of the continuous-time attention mechanism in enhancing predictive
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accuracy. We modify NeuCredit by removing the continuous-time attention component, resulting

in a model that relies solely on the GRU-Hybrid to predict credit risk.

The results of this experiment are presented in Figure 10a. We observe that all evaluation

metrics, including the AUC-ROC, AUC-PR, and SRC, experience a slight decline compared to

the full NeuCredit model. These findings suggest that while the GRU-Hybrid effectively captures

the temporal patterns in consumer behavior, the continuous-time attention mechanism provides

additional benefits. By allowing the model to focus on the most relevant information at different

times, the attention mechanism enhances the representation of the consumer’s credit risk profile.

In the second experiment, we investigate the impact of different distributional assumptions for

the default amount in the Expected Loss calculation. In our original model, we assume that the

default amounts follow a log-normal distribution, which accounts for the positively skewed nature

of financial loss data and ensures that predicted amounts are non-negative. In this experiment,

we replace the log-normal distribution with three alternative distributions: Normal, Gamma, and

Weibull distributions. We then evaluate the model’s performance using each of these distributions

in the EL loss function.

The results are depicted in Figure 10b. We find that the model assuming a Normal distribution

for default amounts performs the worst among the alternatives, with significant decreases in both

AUC-ROC and AUC-PR metrics. This poor performance is likely due to the Normal distribution’s

inability to handle the skewness and non-negativity constraints of the default amount data. The

models using Gamma and Weibull distributions show better performance than the Normal dis-

tribution but still do not match the effectiveness of the log-normal assumption. The model with

the log-normal distribution assumption continues to deliver the best performance, with the highest

AUC-ROC and AUC-PR scores. This outcome suggests that the log-normal distribution aligns

most closely with the empirical distribution of default amounts in our dataset

5. Conclusion

The rapid expansion of BigTech firms into financial services has fundamentally transformed

consumer credit markets. In this study, we demonstrate the potential of using digital footprints to

improve consumer credit risk assessment. While traditional credit scoring models primarily rely
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(a) Ablation results in continuous-time attention. (b) Ablation results on the alterative distribution of EL loss.

Fig. 10. Results of Ablation Studies.

on static features, we show that digital footprints, comprising browsing behaviors, purchasing de-

cisions, and credit management activities, offer a dynamic and real-time perspective on consumer

creditworthiness.

We highlight the importance of not only the presence of digital footprints but also their tim-

ing in evaluating the credit risk. To effectively capture this temporal information, we introduce

NeuCredit, a continuous-time attentive neural network designed to model the irregular and spo-

radic nature of digital footprints. It overcomes the limitations of traditional RNNs, which process

information at fixed intervals and fail to capture variations in consumer behavior over time. Addi-

tionally, we propose an end-to-end training loss function that jointly estimates both the Probability

of Default and Exposure at Default within a unified framework. This dual-component risk assess-

ment enables financial institutions to improve credit allocation strategies, mitigate potential losses,

and personalize credit offerings.

Our empirical analysis, conducted on a real-world dataset, validates the effectiveness of Neu-

Credit. The results show that our model significantly outperforms baseline methods, achieving no-

table improvements in AUC-ROC and AUC-PR metrics. Furthermore, our heterogeneous analysis

reveals that NeuCredit’s performance gains are particularly pronounced among consumers with

frequent and irregular digital footprints, suggesting that default-prone consumers exhibit more

time-sensitive behavioral patterns.

30



These findings have important implications for the future of FinTech lending. By incorporating

digital footprints and their timing into credit risk assessment, BigTech lenders can develop more

accurate and adaptive risk models, fostering greater financial inclusion while managing default risk

more effectively. Future research can extend our approach by incorporating additional behavioral

signals, exploring causal relationships in consumer credit behavior, and refining continuous-time

modeling techniques to further enhance predictive accuracy.
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Appendix A. Notations for Main Variables

Table A.2 Summary of Main Notations.

Sections Notations Description Range/Shape

N the total number of consumers N+
M the total number of months N+
Tm the total number of days in month m N+
ti,b
m the browsing timestamps vector for consumer i at month m (Ki,b

m , 1)
Ki,b

m the total number of browsing timestamps for consumer i at month m N+
ti,o
m the ordering timestamps vector for consumer i at month m (Ki,o

m , 1)
Ki,o

m the total number of ordering timestamps for consumer i at month m N+
Data ti,c

m the credit-management timestamps vector for consumer i at month m (Ki,c
m , 1)

Ki,c
m the total number of credit-management timestamps for consumer i at

month m

N+

xb
m,tbm,k

the browsing features for consumer i at timestamp tb
m,k in month m (Db, 1)

xo
m,tom,k

the ordering features for consumer i at timestamp to
m,k in month m (Do, 1)

xc
m,tlm,k

the credit-management features for consumer i at timestamp tc
m,k in

month m

(Dc, 1)

Xb
m the browsing feature matrices for consumer i in month m (Db,Ki,b

m )
Xo

m the ordering feature matrices for consumer i in month m (Do,Ki,o
m )

Xc
m the credit-management feature matrices for consumer i in month m (Dc,Ki,c

m )

xt the input vector of GRU at timestamp t (Dx, 1)
h(t) the continuous-time memory vector of GRU at t (Dh, 1)

Sequential W(r,z,h) the trainable input-to-hidden matrices of GRU (Dh,Dx)
Encoding U(r,z,h) the trainable hidden-to-hidden matrices of GRU (Dh,Dh)

b(r,z,h) the trainable bias vector of GRU (Dh, 1)

h(T ) the memory vector at end time T (Dh, 1)
Continuous -time C(T ) the numerator of context vector at time T (Dh, 1)

Attention E(T ) the denominator of context vector at time T R ∈ (0, 1)
z(T ) the enhanced representation memory vector at time T (Dz, 1)

zb
m(Tm) the encoded memory vector of browsing features in month m (Dz, 1)

zo
m(Tm) the encoded memory vector of ordering features in month m (Dz, 1)

zc
m(Tm) the encoded memory vector of credit-management features in month m (Dz, 1)

Hierarchical zd the encoded vector of static features in month m (Dz, 1)
Network U(b,o,c) the trainable fusion weight matrices (Dz,Dbh/oh/ch)

b(b,o,c) the trainable fusion bias vectors (Dz, 1)
zm the fused memory vector in month m (Dz, 1)
hm the memory vector of monthly-GRU in month m (Dh, 1)

Expected pd(yi
m > 0) the default probability for consumer i at month m [0, 1]

Loss µi
m, σ

i
m the parameters of predicted default distribution for consumer i at month

m

R+
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Appendix B. Empirical Evidence for the Essential of Capturing Timing of Digital Foot-

prints in Consumer Credit Risk Prediction

Consumer behaviors, especially online behaviors, often deviate from traditional rational mod-

els, exhibiting patterns influenced by timing and psychological triggers rather than strict utility

optimization. As Agarwal et al. (2021) demonstrate, there is a 15% surge in credit card spending

during the week immediately following a statement issuance, a pattern that suggests behavioral

responses tied to financial cycles rather than purely liquidity needs. This insight aligns with a

growing body of literature that highlights how consumers may not always follow strict economic

rationality, often influenced by psychological factors and situational salience rather than objective

financial logic.

In our main paper, we analyze behavioral changes in browsing, borrowing, and repayment

patterns across a monthly billing cycle using basic statistical measures, as shown in Figure 2. The

findings reveal distinct temporal patterns in financial behaviors between consumers who eventually

default and those who do not. To further substantiate the statistical significance of these patterns,

we conduct a regression analysis inspired by Agarwal et al. (2021). Consumers are categorized

into two groups—default and non-default—and we first estimate the following model for each

group:

yit = αi +

n∑
j=2

βt− jIi,t− j + γ
′Xt + ϵit

where the coefficients β2, . . . , β31 measure the incremental effect on spending each day after the

issuance of the credit statement, with the first day (omitted from the model) serving as the baseline.

Here, Xt is a vector of controls, which include day-of-the-week, day-of-the-month, and standard

errors clustered by the consumers. yit represents various consumer behaviors, such as the number

of product browses, borrowing amount, and repayment on each day. In the top panels of Figure

10, we plot the coefficient fluctuations for both default (red) and non-default (blue) consumers,

with shaded areas indicating the confidence intervals for the estimated coefficients.

Then, we combine the two groups and employ an interaction term to capture differential effects
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between the default and non-default groups for each day. Specifically, we estimate:

yit = αi +

n∑
j=2

βt− jIi,t− j +

n∑
j=2

θt− jIi,t− j · si + ϕsi + γ
′Xt + ϵit

where si indicates whether the consumer is a defaulter (denote as 1) or non-defaulter (demnote as

0), and the interaction coefficients θ2, . . . , θ31 quantify the statistical differences between the two

groups on each day. In Figure 10, the lower panels depict the fluctuations in these interaction

coefficients.

Our findings reveal that, compared to non-default consumers, default-prone consumers display

similar browsing patterns at the beginning and end of each billing cycle but tend to browse more

products in the mid-cycle and after the due date (around the 10th day of each cycle), suggesting a

propensity for impulsive spending. For borrowing behavior, defaulting consumers initially show

no difference but tend to borrow more after the due date. In terms of repayment, non-default

consumers are more likely to repay 1-3 days before the due date, whereas defaulting consumers

often delay repayment, suggesting potential liquidity constraints or a lower repayment priority

among defaulters.

This empirical evidence underscores the critical importance of incorporating timing in ana-

lyzing consumer digital footprints for credit risk prediction. It illustrates how specific temporal

markers within the billing cycle can significantly impact consumer financial behaviors. Incorpo-

rating temporal dimensions of digital interactions can thus enhance credit risk models, potentially

leading to more accurate predictions and targeted interventions.

Appendix C. Hyper-parameters Selection

Neural networks, owing to their complex architectures, involve the selection of various hyper-

parameters critical to their performance. The optimization of these hyper-parameters is an indis-

pensable aspect of training neural networks, as it directly influences the model’s ability to capture

intricate patterns within the data. The conventional methodology for hyper-parameter tuning in-

volves cross-validation. In this approach, neural networks with different hyper-parameter config-

urations are trained on the training set, and their performance is evaluated based on metrics such

as log-likelihood on the validation set.
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(a) Coefficients of Number of browse on products. (b) Coefficients of the borrow amount.

(c) Coefficients of the repay amount.

Fig. B.11. The fluctuation of the regression coefficients for three key variables across one billing month.

Given the inherent computational demands of training recurrent neural network (RNN) models,

characterized by their sequential processing nature, we adopt a random search strategy for hyper-

parameter selection rather than a grid search. This strategy allows for a more efficient exploration

of the hyper-parameter space. In our investigation, we focus on the three most pivotal hyper-

parameters: learning rate, batch size, and the hidden size of the Gated Recurrent Unit (GRU). The

hyper-parameter search space is defined to cover a range of values deemed crucial for the optimal

functioning of the model. Specifically, the learning rate varied across [0.05, 0.01, 0.005, 0.001],

the batch size explored options such as [256, 512, 1024, 2048], and the hidden size of the GRU

spanned [30, 50, 80, 100].

Among these hyper-parameters, the learning rate emerged as particularly influential. An ex-

cessively high learning rate could lead to erratic fluctuations in training loss, hindering effective

convergence. Conversely, a small learning rate might impede the learning process. To address this,

we implement an adaptive learning rate strategy. If the validation loss fails to decrease over five

consecutive epochs, the learning rate is halved.
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Ultimately, after a systematic exploration and evaluation, our chosen hyperparameters are set

as follows: initial learning rate equals 0.005, batch size equals 512, and hidden size of GRU equals

50. These selections are informed by a nuanced consideration of model performance, computa-

tional efficiency, and convergence stability.

Appendix D. Descriptive Statistics

Among the 49,223 sampled consumers, 11,862 experienced at least one billing month with a

delay of 1 to 29 days (0+ default), 2,023 had a delay of 30 to 59 days (30+ default), 849 were

delayed for 60 to 89 days (60+ default), and 1,506 were late for more than 90 days (90+ default).

Remarkably, 32,983 consumers maintained a pristine record with no delinquencies during the

entire observation period.

Table D.3 The descriptive statistics of important variables in the dataset (all the footprint variables are aggregated at

the daily level).

Dimensions Variables Mean Std q=5% q=25% q=50% q=75% q=95%
Demographics Gender (Male=1) 0.591 0.492 0 0 1 1 1

Age 29.05 7.19 20 23 28 33 43
Orders amounts before discount 461.22 1041.98 20.4 76 179.6 399 1779
Orders amounts after discount 333.42 821.14 15.8 54 121.1 272 1270

Orders discounts 161.01 1500.16 0 8.6 48.29 156.13 639
Ordering Orders payments 300.21 1646.52 2.69 45 105.32 231.5 1117.94

Avg num of products per order 3.67 8.91 1 1 2 4 11
Avg num of orders per day 2.45 2.94 1 1 1 3 7

Intervals of orders 8.72 12.20 1 2 4 10 31
Num of platform visits 20.43 35.14 1 3 9 23 77

Num of product browsing 10.86 16.87 1 2 5 13 39
Num of shop visits 6.79 8.95 1 2 4 8 23

Browsing Num of brand visits 6.15 8.09 1 1 3 8 21
Num of mobile visits 19.94 34.67 1 3 9 22 76

Num of pc visits 0.43 5.12 0 0 0 0 0
Intervals of browsing 2.22 3.15 1 1 1 2 7

Amount of credit borrows 398.89 932.85 10.4 55.88 124.9 300.13 1789
Installment period of credit 2.31 3.69 1 1 1 1 12

Credit-management Installment cost 9.94 66.66 0 0 0 0 31.44
Amount of credit repays 805.84 1160.66 33.03 170 423.57 954.82 2962.78
Amount of credit refunds 458.87 1118.11 5.9 49.58 126.4 319.4 2296.99

Intervals of credit borrowing 8.16 11.23 1 2 4 10 31

We present a detailed analysis of the key variables within our dataset, summarized in Table

D.3. The descriptive statistics offer insights into four main dimensions: demographics, ordering,

browsing, and credit management. Starting with demographics, our dataset indicates a male ma-

jority, with males comprising 59% of the consumer base. The age demographic skews young,
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with an average age of just 29.1 years, and more than half of the consumers are under 30 years

old, suggesting a youthful consumer base primarily engaging with e-commerce platforms.

In the ordering dimension, we focus on several important features: the total orders amounts

before and after discount, the discount of orders, the actual order payments, the average number

of products per order, and the average number of orders per day. The data shows a high degree of

variability in these aspects, as evidenced by standard deviations that are significantly higher than

the means, reflecting the diverse range of prices and product types involved in different orders.

The browsing data highlights key features such as the number of platform visits, the number

of products, shops, and brands browsed, and the usage of mobile versus PC devices for these

activities. The data show that consumers are highly active in engaging in product exploration,

indicating that consumers compare products across different shops and brands before purchasing.

The data also emphasizes the dominance of mobile devices in e-commerce, with most browsing

and purchasing actions conducted on mobile, while PC usage remains comparatively minimal.

In the credit management dimension, we examine features like the total amount of credit used,

the installment period, the installment cost, and the amount of repayment and refund. Our findings

suggest a prevalent use of credit among consumers, with a significant preference for the one-month

repayment option. This preference is likely influenced by the interest-free period offered by the

platform, highlighting consumer tendencies towards short-term financing options.

Last, we present statistics on the temporal intervals between successive ordering, browsing,

and credit-management footprints for all consumers. On average, consumers exhibit a pattern of

placing a order every 8.72 days, browsing a product every 2.22 days, managing credit every 8.16

days. Notably, the standard deviations for the temporal intervals in all three types of footprints sur-

pass their respective means, indicating sporadic consumer footprints and diverse intervals between

successive consumer footprints.

We further illustrate the temporal dynamics of some important variables in Figure D.12, includ-

ing the total number of platform visits and product browsing, the total amount of order payments,

the average number of order payments, the default rate, and the total default amount, over the

12-month observation period. The visualization reveals prominent peaks in both browsing and

order placement during the months of June and November, which are attributed to promotional
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(a) Total num of platform visit/Total num of

products clicked

(b) Total amount of orders payment/Avg

amount of orders payment (c) The default rate/Total default amount.

Fig. D.12. The dynamics of browsing, order payments, and default rate/amount across 12 months.

Fig. D.13. The default amount distribution in one month.

activities. Regarding credit risk, the default rate remains stable around 10%, while the total de-

fault amount exhibits a consistent upward trend. This trend may be attributed to factors such as

an increase in individual default amounts and the potential accumulation of interest on overdue

balances, emphasizing the need for proactive credit risk management by the platform.

At last, we plot the default amount distribution in our data, as in Figure D.13. Specifically, the

default records pertaining to consumer behaviors exhibit an extreme imbalance, as illustrated in

Figure D.13, where the distribution of log-transformed default amounts for one month is depicted.

Notably, consumers without any default behavior account for 90% of the total consumer base,

while consumers with default records constitute only 10%. Upon logarithmic transformation, the

default distribution approximates a normal distribution, indicating that the original default amounts
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follow an approximately log-normal distribution.

Appendix E. Introduction to the baseline models

Appendix E.1. GRU-D

GRU-D (Che et al., 2018) introduces decay factors to adapt the model to time series data where

observations may be missing or occur at irregular intervals. These decay factors help in adjusting

the model’s hidden states based on the elapsed time since the last observation, thereby allowing

the model to handle gaps in data effectively.

The decay rate for the hidden state, denoted as γh, is crucial for moderating the influence of

previous observations on the current state. This rate is a function of the time gap δt between the

current and the last observed time steps, usually defined as:

γh(t) = exp(−max(0,Wγδt + bγ))

where Wγ and b are model parameters that we train jointly with all the other parameters of the

GRU. This formulation ensures that the influence of the past states decays exponentially with

the increase in time gap. Then, the decay factor integrates with hidden state of standard GRU

equations as:

ht−1 ← γh(t) ⊙ ht−1.

At last, the decayed hidden state ht−1 is feed directly into the standard GRU for updating with input

xt.

Appendix E.2. T-LSTM Networks

The Time-Aware LSTM (T-LSTM) introduces a novel approach to handling time decay in

LSTM models, which is essential for managing the varying intervals between observations in

longitudinal patient records. The T-LSTM model modifies the standard LSTM architecture by

introducing a time decay component into the cell state updates. Detailed mathematical expressions
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of the proposed T-LSTM architecture are given below:

CS
t−1 = tanh (WdCt−1 + bd) (Short-term memory)

ĈS
t−1 = CS

t−1 ∗ g (∆t) (Discounted short-term memory)

CT
t−1 = Ct−1 − CS

t−1 (Long-term memory)

C∗t−1 = CT
t−1 + ĈS

t−1 (Adjusted previous memory)

ft = σ
(
W f xt + U f ht−1 + b f

)
(Forget gate)

it = σ (Wixt + Uiht−1 + bi) (Input gate)

ot = σ (Woxt + Uoht−1 + bo) (Output gate)

C̃t = tanh (Wcxt + Ucht−1 + bc) (Canditate memory)

Ct = ft ⊙ C∗t−1 + it ⊙ C̃t (Current memory)

ht = ot ⊙ tanh (Ct) (Current hidden state)

where xt represents the current input, ht−1 and ht are previous and current hidden states, and

Ct−1 and Ct are previous and current cell memories. {W f ,U f ,b f }, {Wi,Ui,bi}, {Wo,Uo,bo}, and

{Wc,Uc,bc} are the network parameters of the forget, input, output gates and the candidate mem-

ory, respectively. {Wd,bd} are the network parameters of the subspace decomposition. ∆t is the

elapsed time between xt−1 and xt. g(∆t) = 1/ log(e + ∆t) can be chosen as the decay function.

Appendix E.3. MA-GRU Network

Multirepresentational Attention GRU (Yin et al., 2024) introduces a novel adaptation of the

traditional GRU model to better handle continuous-time data within consumer digital footprints.

This adaptation is crucial because standard GRU models, which process sequences using the fol-

lowing formula:

ht = GRU(ht−1, xt)

are typically structured to handle discrete-time data and therefore do not incorporate the continuous-

time dynamics naturally present in consumer behavior data.
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To address this limitation, multi-representational attention mechanism is designed to layer on

top of the GRU to capture the elapsed time between events effectively. This mechanism computes

an influence score for each hidden state produced by the GRU, using the formula:

e(t) = tanh(u⊤htγ(t − t j))

where γ(t − t j) = e−w(t−t j) represents a time-decaying function that diminishes the impact of past

states over time. The parameters u and w are learned through the model training process, enabling

the system to adaptively determine the relevance of each historical hidden state ht in predicting

the outcome. Higher influence scores indicate greater relevance.

Finally, the attention mechanism aggregates these influence scores to construct a continuous-

time representation of the consumer’s past behaviors. This is done by computing a weighted

average of all previous hidden states, where the weights are the normalized influence scores:

s(t) =
∑
t j<t

a(t j)ht j , where a(t j) =
exp(e(t j))∑

t j<t exp(e(t j))

This weighted summary, s(t), effectively captures the significant historical influences on the cur-

rent state, enhancing the model’s ability to make more accurate predictions based on a comprehen-

sive view of the consumer’s past interactions. In the experiment, we compute the context vector at

the last time point of each month, i.e., s(T ), for classification.

Appendix E.4. GRU-Time2Vec

Time2Vec (Kazemi et al., 2019) is a temporal encoding technique designed to transform scalar

time data into a high-dimensional vector representation, enhancing the ability of deep learning

models to capture and leverage temporal dependencies in sequential data. Unlike traditional meth-

ods that treat time as a simple scalar or positional index, Time2Vec represents time as a combi-

nation of a linear component and multiple sinusoidal components, allowing the model to encode

both linear trends and periodic patterns.

Mathematically, for a given time step t, Time2Vec generates an embedding v(t) ∈ Rk, where k

is the dimension of the embedding. The first component of this embedding is a linear transforma-

tion:

v0(t) = w0 · t + b0
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where w0 and b0 are learnable parameters that allow the model to capture linear temporal trends.

The remaining components are sinusoidal functions that capture periodic patterns:

vi(t) = sin(wi · t + bi), i = 1, 2, . . . , k − 1

where wi and bi are learnable parameters that determine the frequency and phase of each sinusoidal

component, enabling the model to learn complex cyclical patterns in the data.

The final Time2Vec embedding is formed by concatenating the linear component and the sinu-

soidal components:

v(t) = [v0(t), v1(t), . . . , vk−1(t)]

This embedding v(t) is then used as input to models such as GRU, LSTM, or Transformers, provid-

ing them with a rich temporal representation that enhances their ability to recognize and leverage

the timing and periodicity of events in the data.

Appendix F. Computation Infrastructure

All studies and experiments are run on Dell Precision 7920 Workstations with Intel(R) Xeon(R)

Gold 6256 CPU at 3.60GHz and three sets of NVIDIA Quadro GV100 GPUs. All models are im-

plemented in Python 3.8. The versions of the main packages of our code are Pytorch 1.8.1+cu102,

torchdiffeq: 0.2.2, Sklearn: 0.23.2, Numpy: 1.19.2, Pandas: 1.1.3, Matplotlib: 3.3.2.
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