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“A mysterious woman in ornate dark armor holds a staff before smoke, a red sky, and distant gothic buildings.”

FLUX YaRN Dy-YaRN

Figure 1: DYPE enables pre-trained diffusion transformers to generate ultra-high-resolution im-
ages (16M+ pixels) without retraining and without inference overhead, solely by coordinating the
positional encoding with the diffusion’s progression. We compare the baseline FLUX, YaRN, and
DYPE, specifically the DY-YaRN variant, both applied on top of FLUX, at 4096× 4096 resolution.

ABSTRACT

Diffusion Transformer models can generate images with remarkable fidelity and
detail, yet training them at ultra-high resolutions remains extremely costly due to
the self-attention mechanism’s quadratic scaling with the number of image tokens.
In this paper, we introduce Dynamic Position Extrapolation (DYPE), a novel,
training-free method that enables pre-trained diffusion transformers to synthesize
images at resolutions far beyond their training data, with no additional sampling
cost. DYPE takes advantage of the spectral progression inherent to the diffusion
process, where low-frequency structures converge early, while high-frequencies
take more steps to resolve. Specifically, DYPE dynamically adjusts the model’s
positional encoding at each diffusion step, matching their frequency spectrum with
the current stage of the generative process. This approach allows us to generate
images at resolutions that exceed the training resolution dramatically, e.g., 16 mil-
lion pixels using FLUX. On multiple benchmarks, DYPE consistently improves
performance and achieves state-of-the-art fidelity in ultra-high-resolution image
generation, with gains becoming even more pronounced at higher resolutions.

1 INTRODUCTION

Diffusion Transformers (DiTs) (Peebles & Xie, 2022) have recently emerged as a powerful class
of generative models, combining the stable training dynamics of diffusion (Ho et al., 2020; Song
et al., 2020) with the expressiveness and scalability of transformers (Vaswani et al., 2017; Kaplan
et al., 2020; Hoffmann et al., 2022). While this architecture fueled progress across large-scale vi-
sion (Dosovitskiy et al., 2021), training these models to ultra-high resolutions (e.g., 40962 and be-
yond) remains a formidable challenge: the quadratic complexity of self-attention in the number of
image tokens drives up memory and compute costs, making direct training infeasible.

This limitation is analogous to the long-context challenge in large language models (LLMs), where
transformers are trained with a fixed context horizon, but are expected to perform on much longer
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sequences during inference. The positional encoding (PE) mechanism is central to this generaliza-
tion, as it dictates how transformers align and extrapolate positional relations across unseen ranges.
Rotary Positional Embeddings (RoPE) (Su et al., 2021) are widely adopted but degrade when ex-
trapolated beyond the training range. This has motivated inference-time adaptations such as position
interpolation (PI) (Chen et al., 2023b), NTK-aware rescaling (Peng et al., 2023a), and YaRN (Peng
et al., 2023b), which adjust the frequency spectrum to better preserve long-range dependencies.

In image generation, these LLM-derived schemes were adapted to accommodate aspect-ratio
changes and moderate increases in resolution (Lu et al., 2024; YourTeam, 2025). However, these
static approaches do not account for the distinctive spectral progression of the diffusion process,
where low-frequency structures are generated in the first sampling steps, while high-frequency de-
tails are resolved later (Rissanen et al., 2023; Hoogeboom et al., 2023; Chen et al., 2023c). As shown
in Zhuo et al. (2024a), aligning with these dynamics can facilitate better resolution extrapolation.
These observations naturally lead to our guiding question: How should positional embeddings be
dynamically adjusted to reflect the spectral progression of the diffusion process?

In this work, we analyze the spectral dynamics of the inverse diffusion process. Specifically, we
assess the synthesis timeline at which each frequency component of the generated sample evolves
as a function of the sampling step. This analysis shows that low-frequency Fourier components
converge to their final values much earlier while high-frequency components evolve throughout the
denoising. This fine-grained observation allows us to design our Dynamic Position Extrapolation
(DYPE), which exploits this progression: as sampling continues, the PE shifts more emphasis from
the already-solidified low frequencies to the evolving high-frequency bands. By dynamically tailor-
ing the PE’s spectral allocation, DYPE better serves the instantaneous needs of the diffusion operator
throughout its sampling course.

This training-free strategy greatly improves generalization, allowing a pre-trained FLUX model (Lee
et al., 2025) to generate images at ultra-high resolutions (exceeding 16M pixels), as shown in Fig. 1.
We evaluate DYPE using quantitative metrics for image quality and prompt fidelity, alongside qual-
itative and human evaluations. The results show that DYPE achieves consistent improvements in
ultra-high-resolution synthesis across multiple benchmarks and resolutions, all without retraining or
additional sampling costs.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models progressively evolve samples from a latent pure-noise, Gaussian distribution
N (0, I), towards a target distribution q(x) via a sequence of intermediate mixture distributions.
The process is governed by a time parameter t ∈ [0, 1] that defines the mixture variables xt, by:

xt = αtx+ σtϵ, x ∼ q(x), ϵ ∼ N (0, I), (1)

where the schedule coefficients αt and σt are chosen to achieve the endpoints x0 = x (pure data)
and x1 = ϵ (pure Gaussian noise). We denote these mixture distributions by qt.

Different schedules αt and σt correspond to different formulations, e.g., Variance Preserving (Ho
et al., 2020; Song et al., 2020) and Flow Matching (Lipman et al., 2022; Liu et al., 2022). The latter
using the linear schedule αt = 1− t and σt = t, which we adopt in our derivation.

2.2 ROTARY POSITIONAL EMBEDDINGS AND POSITION EXTRAPOLATION

Positional Embedding (PE). The transformer block, which is the basis of DiT, is permutation
equivariant. Thus, a positional encoding mechanism is necessary to properly model the strong spa-
tial dependencies in natural images (LeCun & Bengio, 1998). Early solutions use fixed sinusoidal
positional embedding (Vaswani et al., 2017; Dosovitskiy et al., 2021), learned absolute embed-
dings (Devlin et al., 2019; Radford et al., 2019), or relative positional embeddings (Press et al.,
2021). More recently, the Rotary Positional Embeddings (RoPE) (Su et al., 2021) emerged as a
more effective alternative which provides the relative positions in the query–key interactions.

More specifically, RoPE represents a position coordinate m as a set of 2D rotations at different
frequencies. The number of frequencies is determined and limited by D = dmodel/2, where dmodel is
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the hidden model dimension. The frequencies θd are typically obtained from a geometric series,

θd = θbase

d
D−1 , d = 0, . . . , D − 1, (2)

with corresponding wavelength λd = 2π/θd, where θbase is a model hyper-parameter. We note that
in case of 2D images RoPE is applied axially: half of the hidden vector is rotated horizontally, and
the other half vertically. Thus this axial decomposition enables RoPE to encode relative offsets along
each axis independently, considering the spatial structure of images (Heo et al., 2024).

As discussed above, training DiT models at high resolutions incurs substantial memory and com-
pute cost. Applying a model at higher resolutions than it was trained on, suffers from degraded
performance as illustrated in Fig. 1. This shortcoming spurred the development of inference-time
positional encoding adaptations for a better generalization. Before we survey these approaches, let
us establish useful notations from Peng et al. (2023b).

Assuming the training context length, is L, and L′ is the extended context, we define the scaling
factor s by:

s = L′/L. (3)
Moreover, the different extrapolation methods can be characterized by their action over the spatial
coordinate m and frequencies θd that they represent, namely:

m 7→ g(m), θd 7→ h(θd), (4)

where g and h are method-specific transformations.

Position Interpolation (PI) is an early approach (Chen et al., 2023b), that rescales uniformly the
position m to the new context length L′ by:

g(m) = m/s, h(θd) = θd. (5)

This mapping resamples the waves cos(mθd), sin(mθd) at a finer rate in the larger context grid L′,
and while it correctly reproduces the lower end of the spectrum, it fails to reach the new grid’s higher
frequency band. While large scale content is properly synthesizes in this approach, the missing high-
frequencies manifest as blurriness and lack of fine detail, as discussed in Appendix A.

NTK-Aware Interpolation. To address this problem, the Neural Tangent Kernel (NTK-aware)
interpolation (Peng et al., 2023a;b) applies different scaling to the low and high frequencies, by:

g(m) = m, h(θd) =
θd

s 2d/(D−2)
. (6)

Thus, the low frequencies (large λd) remain nearly unchanged in the new grid as in PI, by trading
off the representation of the high frequencies (small λd) due to the compression resulting from
accommodating the higher band of the larger context L′.

YaRN. Yet another RoPE extensioN, or YaRN (Peng et al., 2023b) extends the latter in two ways.
The first is the NTK-by-parts interpolation, which splits the spectrum to three bands, where different
mappings are applied, namely:

g(m) = m, h(θd) = (1− γ(r(d))) θd
s + γ(r(d)) θd, (7)

where r(d) = L/λd. The ramp γ(r) provides a smooth transition from PI stretching to no scaling:

γ(r) =


0, r < α,
r−α
β−α , α ≤ r ≤ β,

1, r > β,

(8)

where α, β set the bands’ boundaries. Also here the bands are scaled non-uniformly, with more
flexibility to control the allocation trade-offs made by NTK-aware interpolation.

The second extension is the attention scaling, where attention logits are modified by a factor τ(s):

AttnYaRN(qi, kj) = softmax
(
τ(s) · q⊤i kj√

dmodel

)
. (9)

This allows to counterbalance (reduce) the increase in entropy of the attention weights due to the
introduction of additional keys in the larger context L′.

3
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Figure 2: Spectral Evolution of Samples in the Diffusion Process. (a) shows the average PSD
of images produced by a diffusion model, as a function of time t. The flat spectrum at t = 1
corresponds to the initial Gaussian samples, and the characteristic natural images power-law appears
as the process ends (t = 0). The combinations of these spectra, corresponding to the mixture
distributions qt, are seen at the intermediate steps (gray plots). The progression map γ(f, t) from
Eq. 12 is shown in (b), and measures in relative terms how each Fourier component evolves from
pure noise (t = 1) to its clean image value (t = 0). As seen in the top rows of this map (t ≈ 1),
the high-frequency modes evolve gradually and nearly linearly across the entire reverse process. By
contrast, the low-frequency modes converge much faster and cease to change early on, as indicated
by the map’s saturation (yellow) in the lower rows (t ≈ 0).

3 METHOD

We now present DYPE. We first analyze the spectral dynamics of the diffusion process, showing
how different frequency modes evolve over time (Sec. 3.1). Based on this analysis, we derive DYPE,
which dynamically adjusts positional encoding to match these dynamics (Sec. 3.2).

3.1 EVOLUTION OF FREQUENCY MODES IN THE DIFFUSION PROCESS

The simple mixture formulation in Eq. 1 allows us to derive a complementary perspective in Fourier
space, as given by:

x̂t = (1− t)x̂+ tϵ̂, (10)

where (̂·) denotes the Fourier transformed signals. The i.i.d noise vectors ϵ have a white (con-
stant) Power Spectrum Density (PSD), and the data of natural images, xt, is known to have a well-
characterized PSD with a power-law decay of ∝ 1/fω where ω ≈ 2 (van der Schaaf & van Hateren,
1996; Hyvrinen et al., 2009), as function of frequency f . These terms allow us to explicitly describe
the time-dependent mean PSD in Eq. 10, given by

∥x̂t∥2f = (1− t)2 C/fω + t2, (11)

which results from computing the mean PSD of xt, denoted by (·), according to Eq. 10, and noting
that the covariance ⟨x̂, ϵ̂⟩ = 0 due to independence. The constant C is a characteristic PSD scale of
the particular data distribution.

Fig. 2a depicts the empirical evaluation of the averaged PSD computed over samples generated by a
denoiser trained on ImageNet (Russakovsky et al., 2015). The function reveals the smooth transition
between the two spectra and reflects the growth of low-frequency image structures and the decay of
noise alongside the emergence of high-frequency fine-details, as predicted by Eq. 11.

The question we would like to address here is whether this evolution is fully “active” during the
entire sampling process and at all the frequencies, or whether it shows some regularities which we
can exploit for a better allocation of the represented spectrum.

To assess the rate at which these modes evolve, we consider a progression map relating each fre-
quency component f to a progress index, 0 ≤ γ(f, t) ≤ 1, that indicates the relation of its log-PSD
value at time t, i.e., log

(
∥x̂t∥2f

)
, in relation to its endpoints. By utilizing the fact that the transition

4
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described by Eq. 11 is monotonic, this index is easily obtainable by

γ(f, t) =
s(t)f − s(0)f
s(1)f − s(0)f

(12)

where s(t)f = log
(
∥x̂t∥2f

)
.

Fig. 2b shows this progression map where a clear observation can be made. While the higher fre-
quency components show a fairly constant evolution throughout the sampling process, the lower fre-
quencies appear to evolve faster, and more importantly, cease to evolve fairly early in in sampling.
Assuming that the evolving modes depend more on their corresponding frequency representation in
the PE than the converged ones, the following frequency allocation strategy can be derived: at the
beginning of the process, all modes evolve and hence all modes in the finer grid should be accom-
modated in the PE, e.g., using an existing extrapolation encoding strategies such as YaRN. As the
sampling progresses, more and more modes in the lower end of the spectrum convergence and the
PE emphasis should be allocated in favor of representing the yet-unresolved higher frequencies.

We further note that frequency extrapolation formulae allocate more low frequency components at
the cost of removing higher ones, e.g., in NTK-aware and YaRN. Thus, switching off the extrapola-
tion, as we suggest, has two benefits: (i) more high-frequency modes are represented in the PE, and
(ii) the pretrained denoiser will operate in the conditions, namely the PE, it was trained with. These
observations serve as a basis for the design of our new approach, DYPE, which we describe next.

This topic is briefly touched in (Zhuo et al., 2024b) as part of deriving a new DiT architecture.
However, the opposite conclusions are drawn. We discuss this strategy in Appendix B.

3.2 DYNAMIC POSITION EXTRAPOLATION (DYPE)

Our new approach, DYPE, is motivated by two complementary insights. First, as discussed above,
the reverse diffusion trajectory exhibits a clear spectral ordering: low-frequency, large-scale struc-
tures converge early, while high frequency bands are resolved throughout the sampling process.
Second, while the existing positional extrapolation strategies, NTK-aware, and YaRN, are capable
of representing the spectrum of the larger context using the limited number of available modes,
D, they involve representation trade-offs due to the compression they must employ. Thus, rather
than pinpointing both ends of the spectrum at all times and accommodating these trade-offs, our
method, DYPE, accounts for the spectral progression and gradually lowers their use to minimize the
compression they involve.

We implement this strategy by introducing explicit time dependence into the formulae of PI, NTK-
aware, and YaRN. A unifying observation is that all three methods effectively “shut-down” when the
scaling factor s = 1, i.e., no change in context length. Specifically, in PI, we get g(m) = m/s = m;
in NTK-aware, h(θd) = θds

2d/(D−2) = θd; and YaRN, which combines the components of both PI
and NTK-aware, likewise collapses to no scaling.

Consequently, we define the following family of time-parameterized scalings,

κ(t) = λs · tλt , (13)

with tunable hyperparameters λs and λt. Early in sampling (t≈1), this formula yields near-maximal
scaling κ(1)=λs; late in sampling (t≈0), it approaches no scaling κ(0)=1.

The exponent λt controls how scaling attenuates over time, allowing us to align the evolution of
frequency emphasis with diffusion’s progression. The multiplier λs sets the maximal scaling that
DYPE attains; in principle it reflects the ratio between the desired and the training context lengths.

Finally, let us now go through the resulting extrapolation strategies from plugging κ(t) into each of
these methods instead of the fixed scaling parameters s.

DY-PI. PI in Eq. 5 uses uniform position scaling. We make it step-aware by exponentiating the scale
factor by κ(t):

g(m, t) =
m

sκ(t)
, h(θd, t) = θd. (14)

Early sampling steps (t ≈ 1) apply stronger compression to stabilize structure, while later steps
(t ≈ 0) resolve finer detail.

5
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Dy-YaRNYaRN

"Surreal painting of a valley in Nara, floating cherry blossoms, golden rivers, single giant crane in pastel sky."

Figure 3: Zoom-in comparison at 40962 of DY-YaRN vs. YaRN. Three magnified regions highlight
fine-detail differences. Additional example can be found in Fig. 13 in the Appendix.

DY-NTK. NTK-aware interpolation in Eq. 6 rescales frequencies non-uniformly. Our time-aware
variant generalizes this by multiplying the exponent with κ(t):

g(m, t) = m, h(θd, t) =
θd

sκ(t)·2d/(D−2)
. (15)

In this scheme. the low frequencies are well-represented at the initial steps, at the cost of compress-
ing the high-frequency band. As the sampling progresses, the low-frequency modes converge, and
the higher frequency band representation expands. An illustration of this approach is provided in
Appendix A.

DY-YaRN. YaRN in Sec. 2.2 combines NTK-by-parts frequency scaling (Eq. 7) with global at-
tention scaling (Eq. 9). Unlike the two methods above, here we introduce time-dependence via a
scheduler ρ(t) that dynamically adjusts the fixed ramp thresholds α and β in Eq. 8, resulting in

γ(r, t) =


0, r < α · ρ(t),

r−α·ρ(t)
β·ρ(t)−α·ρ(t) , α · ρ(t) ≤ r ≤ β · ρ(t),
1, r > β · ρ(t),

(16)

where the scheduler is defined by:
ρ(t) = tλt . (17)

Being a monotonic increasing function, the scheduler ρ(t) dynamically shifts the ramp boundaries
towards 1, i.e., no scaling, as function of the sampling step t, which meets our design goal.

4 EXPERIMENTS

We evaluate the effectiveness of DYPE across multiple aspects of high-resolution image generation,
covering both global structure (low-frequency aspects such as text–image alignment) and fine detail
(high-frequency aspects such as texture fidelity).

We first apply DYPE on top of FLUX (Lee et al., 2025), with evaluations on two established bench-
marks, DrawBench (Saharia et al., 2022) and Aesthetic-4K (Zhang et al., 2025), including automatic
metrics, human evaluation, and resolution-scaling analysis (Sec. 4.1). We then extend evaluation to
class-conditional image synthesis on FiTv2 (Wang et al., 2024) (Sec. 4.2). We also include zoom-
in studies to highlight improvements in preserving high-frequency details (Fig. 3). Furthermore,
in Appendix D, we present an ablation study examining design choices, focusing on (i) scheduler
variants for DY-NTK-aware and (ii) timestep incorporation strategies for DY-YaRN. Finally, addi-
tional results are provided in Appendix E, including further comparisons with baselines, panorama
generation, and more visual examples. Implementation details are in Appendix C.

4.1 ULTRA-HIGH-RESOLUTION TEXT-TO-IMAGE GENERATION

Baselines. We evaluate DYPE on top of the pre-trained FLUX (Lee et al., 2025), specifically the
FLUX.1-Krea-dev version, whose effective generation resolution is 1024× 1024. As baselines, we

6
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Table 1: High-resolution image generation on DrawBench and Aesthetic-4K, shown as two reso-
lutions per row. Each row reports CLIPScore (CLIP), ImageReward (IR), Aesthetics (Aesth) for
DrawBench, and CLIP, IR, Aesth, and FID for Aesthetic-4K. All methods are built on FLUX.

2048× 3072 3072× 2048

Method DrawBench Aesthetic-4K DrawBench Aesthetic-4K
CLIP↑ IR↑ Aesth↑ CLIP↑ IR↑ Aesth↑ FID↓ CLIP↑ IR↑ Aesth↑ CLIP↑ IR↑ Aesth↑ FID↓

FLUX 26.64 -0.28 5.14 28.64 0.32 6.11 186.31 26.56 0.16 5.33 28.74 0.97 6.17 148.29

NTK 27.68 0.21 5.31 29.13 0.99 6.49 180.87 27.28 0.51 5.39 28.97 1.17 6.25 146.74
DY-NTK 27.91 0.48 5.54 29.14 1.10 6.56 176.13 27.44 0.60 5.55 29.11 1.21 6.53 146.40
YaRN 28.27 0.52 5.63 29.28 1.01 6.59 179.54 27.79 0.62 5.48 29.12 1.24 6.49 147.12
DY-YaRN 28.43 0.71 5.69 29.44 1.17 6.61 179.51 28.17 0.81 5.68 29.20 1.28 6.51 146.84

3072× 3072 4096× 4096

Method DrawBench Aesthetic-4K DrawBench Aesthetic-4K
CLIP↑ IR↑ Aesth↑ CLIP↑ IR↑ Aesth↑ FID↓ CLIP↑ IR↑ Aesth↑ CLIP↑ IR↑ Aesth↑ FID↓

FLUX 25.11 -0.53 5.01 28.62 0.46 6.16 187.96 16.43 -1.97 3.29 25.50 -0.73 5.42 195.68

NTK 26.07 -0.14 5.05 28.68 0.96 6.45 182.38 17.49 -1.88 3.57 24.88 -0.54 5.50 203.85
DY-NTK 27.02 0.30 5.36 28.83 1.10 6.57 179.98 21.51 -1.22 4.25 28.06 0.79 6.42 183.72
YaRN 27.92 0.41 5.37 29.26 1.14 6.67 184.16 25.71 -0.34 4.85 28.57 0.85 6.47 192.19
DY-YaRN 28.12 0.66 5.55 29.75 1.24 6.70 179.82 26.94 0.15 5.17 29.28 1.09 6.67 186.00

“A woman with short hair and a black dress stands in a forest, holding an owl with large, outstretched wings…”

NTK-aware YaRN Dy-YaRNDy-NTK-aware

“A decorative vase with floral branches and white blossoms sits on a light cloth, accompanied by a shiny red apple.”

Figure 4: Qualitative results at 40962 resolution using two representative prompts from Aesthetic-
4K. We compare NTK-aware, DY-NTK-aware, YaRN, and DY-YaRN.

use FLUX itself, and also, in test time only, apply on top of FLUX the positional embedding extrap-
olation methods NTK-aware and YaRN, adapted for vision tasks by applying them independently on
the x and y axes. On top of these, we apply our DYPE, specifically DY-NTK-aware, and DY-YaRN.

Benchmarks. As for benchmarks, we first consider DrawBench (Saharia et al., 2022), a set of
200 text prompts for evaluating text-to-image models across multiple criteria. Following Ma et al.
(2025); Chachy et al. (2025), we measure: (i) text-image alignment using CLIP-Score (Hessel et al.,
2022), a similarity metric between image and text embeddings based on CLIP (Radford et al., 2021),
(ii) human preference alignment using ImageReward (Xu et al., 2023), a reward model trained on
large-scale human feedback for generated images, and (iii) image aesthetics using Aesthetic-Score-
Predictor (Schuhmann et al., 2022), a model trained to predict human aesthetic judgments. Addi-
tionally, to specifically assess fine-grained, ultra-high-resolution fidelity, we evaluate on Aesthetic-
4K (Zhang et al., 2025). We use its 4K subset (Aesthetic-Eval@4096), which comprises 195 curated
image–prompt pairs, and downsample them to match the target test resolutions for fair comparison.
Following the official protocol, we report (i) CLIPScore, (ii) ImageReward, (iii) Aesthetics score,
and (iv) FID (Heusel et al., 2017), which assesses the fidelity and diversity of generated images
based on the distributional distance between real and generated features.

7
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Table 3: ImageNet results comparing FiTv2 and DYPE (PI, NTK-aware, YaRN) on FiTv2-XL/2.
We report FID↓, sFID↓, Inception Score (IS)↑, Precision↑, and Recall↑ at 3202 and 3842.

Method FID↓ sFID↓ IS↑ Precision↑ Recall↑
3202 3842 3202 3842 3202 3842 3202 3842 3202 3842

FiTv2 5.79 38.90 13.7 49.51 233.03 99.28 0.75 0.39 0.55 0.57

PI 11.47 118.60 21.13 85.98 197.04 23.10 0.67 0.16 0.51 0.38
DY-PI 7.16 39.56 17.40 51.90 231.70 99.97 0.67 0.36 0.53 0.49

NTK 6.04 36.75 14.35 47.82 232.91 104.73 0.75 0.40 0.55 0.56
DY-NTK 5.22 36.04 14.29 47.46 233.11 106.45 0.75 0.42 0.57 0.56

YaRN 5.87 22.63 15.38 36.09 250.66 156.34 0.77 0.48 0.52 0.50
DY-YaRN 5.03 21.75 14.48 33.92 251.73 158.02 0.77 0.49 0.53 0.52

Results. Quantitative results across different resolutions and aspect ratios are presented in Tab. 1,
with Fig. 4 showing side-by-side comparisons on Aesthetic-4K. Additional qualitative results are
provided in the Appendix for DrawBench (Fig. 11) and Aesthetic-4K (Fig. 12). As can be seen in
Fig. 1, FLUX exhibited repeating artifacts in ultra-high-resolution revealing the periodicity of the
sine waves in the larger context as further illustrated in Appendix. A. We also note that FLUX shows
relatively stronger performance on landscape resolutions compared to portrait, likely reflecting a
training bias, the gap on portrait settings widens once DYPE is applied, suggesting that our approach
helps to unlock this limitation. Importantly, the advantage of DYPE becomes more pronounced as
the generation resolution increases (e.g., to 30722 and 40962), underscoring the effectiveness of
DYPE within diffusion transformers for ultra-high-resolution generation. Further visual results are
presented in the supplementary.

Table 2: Human evaluation on
Aesthetic-4K. Each cell reports the
percentage of pairwise comparisons
in which DYPE was preferred.

Comp. Txt↑ Str↑ Det↑

NTK vs. DY-NTK 88.5 88.7 88.3
YaRN vs. DY-YaRN 90.1 87.3 88.1

Perceptual Evaluation. To complement the automatic
metrics, we conduct a human study on a curated subset of
20 prompts from Aesthetic-4K, obtained by sampling every
fourth entry to ensure uniform coverage. We consider 50
raters and present them with pairwise comparisons at 40962
resolution, generated on FLUX. Each prompt yields two
comparisons: (i) NTK-aware vs. DY-NTK-aware, and (ii)
YaRN vs. DY-YaRN. For each pair, participants answer the
following three questions: (i) Which image is more aligned
with the given text prompt? (ii) Which image has better overall geometry and structure (coherent
shapes, correct proportions, fewer distortions) and (iii) Which image has more aesthetic and realis-
tic textures and fine details? Results, summarized in Tab. 2 shows that DYPE consistently achieves
superior quality, with preference rates ranging from about 87% to nearly 90%.

10242 20482 30722 40962 51202

Resolution

1.5

1.0

0.5

0.0

0.5

1.0
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Im
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eR
ew

ar
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Dy-YaRN
YaRN
FLUX

Figure 5: Resolution scaling analysis.

Resolution Scaling Analysis. We next investigate the
resolution limit beyond which methods fail. Using 20
Aesthetic-4K prompts sampled at intervals of 10, we eval-
uate FLUX, YaRN, and our DY-YaRN across five square
resolutions from 10242 to 51202, reporting ImageReward
(Fig. 5). The trend shows FLUX degrades sharply at
30722 and YaRN at 40962, while our method remains sta-
ble across scales, with only a moderate decline as resolu-
tion increases.

4.2 HIGHER-RESOLUTION CLASS-TO-IMAGE GENERATION

After validating our method on text-to-image generation, we next test whether its consistency gains
transfer to the core task of class-conditional generation on ImageNet (Russakovsky et al., 2015). We
apply DYPE on FiTv2 (Wang et al., 2024), a flexible DiT trained on multiple resolutions. Specif-
ically, we use the FiTv2-XL/2 variant (675M parameters), which was trained at a maximum res-
olution of 256 × 256, and test it on resolutions 320 × 320 and 384 × 384. We consider three
baselines—PI, NTK-aware interpolation, and YaRN—against their DYPE-enhanced variants (DY-
PI, DY-NTK, DY-YaRN). All models are evaluated on the ImageNet validation set (50, 000 images).
We report FID (Heusel et al., 2017), sFID (Nash et al., 2021), Inception Score (IS) (Salimans et al.,
2016), Precision, and Recall (Kynkäänniemi et al., 2019). Quantitative results are reported in Tab. 3,
show that, as with FLUX, DYPE consistently improves over all vanilla baselines, with DY-YaRN
achieving the best overall performance. Notably, PI severely underperforms relative to base FiTv2,
highlighting its ineffectiveness for image generation due to the loss of high-frequency details.
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5 RELATED WORK

Diffusion Transformers. DiT (Peebles & Xie, 2022) have recently emerged as the leading archi-
tecture for diffusion-based text-to-image generation (Ho et al., 2020; Song et al., 2020). While U-
Nets (Ronneberger et al., 2015) underpinned earlier advances (Rombach et al., 2022; Podell et al.,
2023; Ramesh et al., 2022), DiTs instead adopt transformer-based backbones that naturally cap-
ture global context and scale effectively with model and data size, enabling increasingly capable
text-to-image models such as FLUX (Lee et al., 2025), Stable-Diffusion-3 (Esser et al., 2024) and
subsequent advances (Gao et al., 2024; Liu et al., 2024a; Chen et al., 2023a; Betker et al.). Yet, train-
ing these architectures on ultra-high resolutions (e.g., 4K and beyond) remains an open challenge
due to the quadratic cost of self-attention, which quickly becomes prohibitive in both memory and
computation at such resolutions.

Ultra-High Resolution Image Synthesis. Despite this limitation, many works explored fine-tuning
diffusion models on higher-resolution (Liu et al., 2025; Cheng et al., 2025; Hoogeboom et al., 2023;
Liu et al., 2024b; Ren et al., 2024; Teng et al., 2023; Zheng et al., 2024; Zhang et al., 2025; Huang
et al., 2024), yet these remain limited in their ability to scale to ultra-high resolutions due to the
expensive tuning phase. Alternatively, patch-based methods (Bar-Tal et al., 2023; Du et al., 2024;
He et al., 2023) aim to reduce costs by stitching generated regions, yet often suffer from duplication
and local repetition. Input-level techniques suppress undesired semantics (Lin et al., 2024b; Liu
et al., 2024c), but are limited to small artifacts and risk information leakage. More recently, tuning-
free methods that synthesize full images without retraining (Qiu et al., 2025; Cao et al., 2024; Haji-
Ali et al., 2024; Hwang et al., 2024; Jin et al., 2023; Kim et al., 2025; Lee et al., 2023; Lin et al.,
2024a; Zhang et al., 2024) offer a practical alternative, but since all such approaches rely on U-
Net backbones, adapting them to DiTs is non-trivial, leaving a critical gap for transformer-based
methods capable of true end-to-end ultra-high-resolution generation.

Position Extrapolation Schemes. The challenge of ultra–high-resolution generation in DiTs
closely mirrors that of long-context generation in language models, often tackled through advances
in positional encoding. RoPE (Su et al., 2021) dominates this space, with extrapolation framed as
frequency scaling: PI (Chen et al., 2023b) compresses positions to limit phase drift, while NTK-
aware (Peng et al., 2023a) and YaRN (Peng et al., 2023b) rescale frequencies to stabilize low modes
and suppress unstable high ones. Inspired by these advances, vision models have begun to adopt
these techniques. FiT (Lu et al., 2024) and FiT-v2 (Wang et al., 2024) introduce Vision-PI, Vision-
NTK, and Vision-YaRN within DiTs by applying these frequency-scaling techniques independently
to the horizontal and vertical axes. While this approach allows for flexible aspect-ratio generation
and modest resolution gains, it remains a generic solution that overlooks the low-to-high frequency
progression inherent to diffusion. Lumina-Next (Zhuo et al., 2024a) incorporates timestep dynam-
ics by interpolating from PI to NTK-aware scaling as denoising advances. Yet, its heavy reliance
on interpolation throughout the denoising process suppresses high frequencies, yielding blurry out-
puts. Our work, instead, directly analyzes the diffusion process frequency progression, leading to a
principled approach that preserves fine-grained detail without compromising structural fidelity.

6 CONCLUSION

We presented DYPE, a training-free approach enabling diffusion transformers to synthesize ultra-
high-resolution images without retraining or additional sampling overhead. Our method stems from
a Fourier-space analysis of the samples’ spectrum evolution during the diffusion sampling process,
revealing that low-frequency content converges faster than the higher frequency bands. This regu-
larity allows DYPE to better represent the evolving frequencies in the PE dynamically as well as
enable the denoiser to operate more effectively within its training conditions.

As demonstrated on a pre-trained FLUX model, this strategy enables generation at unprecedented
resolutions. Extensive qualitative and quantitative evaluations consistently confirm that DYPE offers
superior generalization over existing static extrapolation techniques, with its advantage growing at
higher resolutions.

As future work, we aim to pursue even more ambitious resolutions, not only through inference-time
scaling but also by incorporating time-dependent positional extrapolation into a light tuning phase.
Another avenue is video generation, where these principles benefit both spatial fidelity and temporal
coherence through time-aware positional extrapolation.
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Ethics Statement. This work focuses on improving the efficiency and scalability of diffusion
transformers for ultra-high-resolution image synthesis. Our research does not involve human sub-
jects, personal or sensitive data, or deployment in user-facing systems. All experiments are con-
ducted on publicly available datasets (e.g., DrawBench, Aesthetic-4K, ImageNet), which are widely
adopted benchmarks in the generative modeling community. We acknowledge that high-fidelity im-
age generation carries potential risks of misuse, such as generating deceptive or harmful content. To
mitigate this, our contributions are aimed at methodological advancements and evaluations on stan-
dardized datasets, rather than deployment pipelines or applications. We adhere fully to the ICLR
Code of Ethics, including transparency in methodology, dataset usage, and disclosure of limitations,
and believe this work aligns with the principles of responsible AI research.

Reproducibility Statement. We have taken extensive measures to ensure the reproducibility of
our results. The paper provides precise descriptions of the proposed DYPE, including the mathe-
matical formulation of the time-dependent positional encoding adjustment and its integration into
diffusion transformers (Sec. 3). Experimental protocols, training-free evaluation procedures, and
benchmarking setups are detailed in Sec. 4. Hyperparameters, dataset splits, and evaluation metrics
are documented in the appendix. In addition, we will release the full source code and reproduction
scripts upon acceptance, enabling independent verification of our findings.
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A ILLUSTRATION OF DYPE

Fig. 6 illustrates the behavior of RoPE frequencies under different scaling strategies, highlighting
how our approach compares with position extrapolation methods.

0 1000 2000 3000 4000 5000 6000 7000 8000
Position (token index)

1.0

0.5

0.0

0.5

1.0

Ro
PE

RoPE without scaling
Pre-trained range
Unseen range

Low freq (period=4096)
High freq (period=512)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
Position (token index)

1.0

0.5

0.0

0.5

1.0

Ro
PE

Position Interpolation (PI)

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000
Position (token index)

1.0

0.5

0.0

0.5

1.0

Ro
PE

NTK-Aware Interpolation

(c)

0 1000 2000 3000 4000 5000 6000 7000 8000
Position (token index)

1.0

0.5

0.0

0.5

1.0

Ro
PE

Dy-NTK-Aware t = 0.2

(d)

0 1000 2000 3000 4000 5000 6000 7000 8000
Position (token index)

1.0

0.5

0.0

0.5

1.0

Ro
PE

Dy-NTK-Aware t = 0.8

(e)

Figure 6: Frequency Behavior Across Scaling Strategies. (a) RoPE without scaling. (b) Posi-
tion Interpolation (PI) where the sinusoidal curves are unchanged but the positions are normalized.
(c) NTK-Aware Interpolation (frequency-dependent normalization; low frequency normalized more
than high). (d–e) Dy-NTK-Aware (ours): our method dynamically interpolates between RoPE and
NTK-aware by blending their effective periods as a function of the diffusion timestep t (shown here
for t=0.2—close to image—and t=0.8—close to noise). Across panels, low frequency is shown
in blue and high frequency in orange; training-context markers use filled circles, and test-context
markers use hollow squares. Shaded backgrounds indicate pretrained (left) and unseen (right) posi-
tion ranges.

B COMPARISON BETWEEN DYPE AND LUMINA-NEXT

The frequency allocation strategy behind DYPE is based on two complementary observations made
in Sec. 3.1. The first related to the fact that low-frequency modes converge early in the sampling
process, whereas the high frequency bands are resolved throughout the process. The second, is
related to the trade-off exiting extrapolation method must take when trying to capture the entire
spectrum of the larger resolution using the the fixed number of representable modes in the mode,
D. Thus, rather than pinpointing both ends of the spectrum at all times and accommodating these
trade-offs, DYPE, exploits the fact hat low-frequencies are resolved earlier to better represent the
higher bands and reduce the extrapolation compression.

The possibility of time-aware position extrapolation was briefly discussed in Zhuo et al. (2024b)
as part of introducing a new DiT architecture. However, the opposite conclusions were drawn by
the authors. Specifically, their scheme starts by representing only the low-frequency band via PI
(discarding high frequencies), and then switching to NTK-aware extrapolation that trades-off high
frequency representation, in favor of low frequencies, which according to our analysis in Sec. 3.1
have already converged. We also note that in this scheme, the denoiser is not operating under the PE
it was trained with unlike the case of DYPE.

Fig. 7 illustrates the complementary strategies of DYPE specifically DY-NTK-aware, and Time-
Aware Scaled RoPE (Zhuo et al., 2024b) in terms of the wavelengths they cover throughout the
sampling.

Quantitative and Qualitative Comparison with Time-Aware Scaled RoPE. We conducted an
experiment by applying DY-NTK-aware and Lumina-Next Time-Aware Scaled RoPE on top of the
same pre-trained model, FLUX. Both methods are evaluated on the Aesthetic-4K benchmark using
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Figure 7: Wavelengths of the RoPE embeddings under different strategies. Solid curves show the
baseline methods: Extrapolation (no scaling), PI, and NTK-aware. Dashed curves depict dynamic
variants: Time-aware interpolates NTK-aware with PI, while Dy-NTK-aware interpolates NTK-
aware with Extrapolation.

CLIPScore, ImageReward, Aesthetic-Score, and FID. For a better context, we also report the NTK-
aware results.

The results in Tab. 4 show that DY-NTK-aware achieves the best performance across all metrics.
Additionally, a qualitative comparison provided in Fig. 8

Table 4: Comparison of NTK-aware, Time-Aware Scaled RoPE, and DY-NTK-aware on the
Aesthetic-4K benchmark

Method CLIPScore ↑ ImageReward ↑ Aesthetic-Score ↑ FID ↓
NTK-aware 24.88 -0.54 5.50 203.85
Time-Aware Scaled RoPE 25.09 -0.09 5.96 221.39
DY-NTK-aware 28.06 0.79 6.42 183.72

C IMPLEMENTATION DETAILS

Unless otherwise stated, all experiments are conducted on a single L40S GPU. We set α = 1,
β = 32, and use an effective resolution of L = 1024. Diffusion inference is performed with 28
sampling steps. For our method, we apply λs = λt = 2. Code will be released upon acceptance.

D ABLATION STUDY

We perform an ablation study to better understand the role of specific design choices in DYPE,
specifically, we consider alternative weighting schedulers for (i) DY-NTK-aware and (ii) DY-YaRN.

Scheduler designs for DY-NTK-aware. A central motivation for this ablation is to test how
best to incorporate the low-to-high nature of diffusion into NTK-aware extrapolation. Recall from
Sec. 2.2 that NTK-aware interpolation rescales each RoPE frequency θd as

h(θd) =
θd

s 2d/(D−2)
, (18)

compressing low frequencies more while preserving higher ones. However, this scaling is fixed
across all denoising steps and thus agnostic to the diffusion dynamics.

In DY-NTK-aware, we introduce a timestep-dependent scheduler κ(t) to allow the effective fre-
quency scaling to evolve with the diffusion timestep t. Here, we consider two ways the scheduler
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"A woman in a vintage, elegantly tailored gown with intricate embroidery gazes thoughtfully over a balcony, with a 
scenic river and historic buildings in the background."

“A serene lake reflecting mountains and forested hills under a dramatic sky, with sunlight illuminating the trees on the 
opposite shore and rocky banks lining the water's edge.”

Dy-NTK-awareTime-Aware Scaled RoPE

Figure 8: Qualitative comparison between DYPE and Time-Aware Scaled RoPE (Lumina-Next) on
the Aesthetic-4K benchmark.

can interact with the NTK-aware rescaling factor s from Eq. 6: (i) Multiplicative scaling, where the
scheduler linearly modulates the compression,

h(θd, t) =
θd

(s · κ(t))
2d

D−2

, (19)

and (ii) Exponential scaling, where the scheduler exponentiates the compression,

h(θd, t) =
θd

s
κ(t)· 2d

D−2

. (20)

In both cases, the scheduler is defined by the following family of time-parameterized scalings from
Eq. 13:

κ(t) = λs · tλt , (21)

with λs and λt controlling the magnitude and progression of the scheduler.

We ablate along two axes. First, we fix λt = 1 and vary λs ∈ {1, 1.5, 2, 2.5} to identify the best
magnitude scaling. Then, we fix λs = 2 (the winner) and vary λt ∈ {0.5, 1, 2}, corresponding to
sublinear, linear, and exponential progression. We also compare against an NTK-aware variant with
λs = 2 for completeness.

Results are summarized in Tab. 5, showing that increasing the initial scaling (toward position in-
terpolation) improves structural fidelity (CLIP), while faster attenuation with t (toward complete
position extrapolation) yields more aesthetic outputs. The exponential scheduler with λs = 2 and
λt = 2 achieves the best balance between these objectives.
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Table 5: Comparison of scheduler designs for DY-NTK-aware on FLUX at 30722 resolution. Eval-
uated on 50 DrawBench prompts (sampled every 4th index). Baselines (FLUX, NTK-Aware) are
included. Metrics: CLIP-Score (CLIP↑), ImageReward (IR↑), and Aesthetics-Score (Aesth↑).

Variant λs λt CLIP↑ IR↑ Aesth↑

FLUX - - 25.33 -0.52 5.12
NTK-Aware - - 25.83 -0.13 4.99

Multiplicative 1.0 1.0 25.67 0.11 5.08
Multiplicative 1.5 1.0 25.75 0.10 5.18
Multiplicative 2.0 1.0 26.09 0.16 5.31
Multiplicative 2.5 1.0 26.38 0.21 5.34

Multiplicative 2.0 0.5 26.28 0.21 5.34
Multiplicative 2.0 2.0 26.12 0.17 5.40

Exponential 1.0 1.0 25.81 -0.13 5.03
Exponential 1.5 1.0 26.02 0.10 5.26
Exponential 2.0 1.0 26.52 0.29 5.39
Exponential 2.5 1.0 26.21 0.10 5.35

Exponential 2.0 0.5 26.69 0.24 5.34
Exponential 2.0 2.0 26.51 0.30 5.41

Scheduler designs for DY-YaRN. Building on the ablation study of DY-NTK-aware, we explore
how to incorporate timestep dynamics into YaRN’s frequency-dependent interpolation. Recall from
Sec. 2.2 that YaRN introduces a weight γ(r). YaRN smoothly interpolates between PI and no
scaling. Specifically, YaRN rescales each RoPE frequency θd as:

h(θd) = (1− γ(r(d))) θd
s + γ(r(d)) θd, (22)

where r(d) = L/λd. The ramp function γ(r) smoothly transitions between PI-like stretching and
no scaling:

γ(r) =


0, r < α,
r−α
β−α , α ≤ r ≤ β,

1, r > β,

(23)

where α, β are hyperparameters setting the bands’ boundaries.

This can be viewed as partitioning frequencies into bands: low frequencies (small d) receive PI-like
uniform scaling (γ(r) = 0), while high frequencies undergo no scaling (γ(r) = 1), while mid bands
frequencies smoothly interpolate between the two by performing NTK-aware rescaling.

To leverage the low-to-high dynamics of diffusion, we introduce timestep dependence in three fash-
ions: (i) Apply scheduler κ(t) to the mid-level NTK-aware components, similarly to DY-NTK-aware
in Eq. 15. (ii) Weight modulation: Apply scheduler ρ(t) to the ramp γ parameters α, β, effectively
shifting the frequency bands assigned to each scaling regime as denoising progresses. (iii) Com-
bined: Apply both κ(t) and ρ(t) simultaneously.

Following Sec. D, we use the best scheduler configuration (exponential with λs = 2, λt = 2). For
ρ(t) we found that the best performing scheduler is, ρ(t) = t2. Intuitively, (i) controls how aggres-
sively mid bands frequencies are compressed at each timestep, while (ii) controls which frequencies
are considered “high”, “mid” and “low” as a function of t.

Results in Tab. 6 show that considering only ρ(t) performs best. Further exhibiting our key idea—the
fact that the diffusion process unfolds in a low-to-high manner, where early timesteps benefit from
broader coverage of low frequencies, while later ones require sharper high-frequency detail. By
modulating the ramp parameters α, β through ρ(t), the model adaptively reassigns frequencies be-
tween low, mid, and high bands in synchrony with the denoising trajectory. This dynamic partition-
ing allows YaRN to better capture large-scale structure early on while still allocating capacity to finer
details as synthesis progresses, thereby yielding more coherent and visually appealing generations.
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Table 6: Comparison of scheduler application strategies for DY-YaRN on FLUX at 30722 resolution.
Evaluated on 50 DrawBench prompts (sampled every 4th index), with baselines (FLUX, YaRN)
included. Metrics: CLIP-Score (CLIP↑), ImageReward (IR↑), and Aesthetics-Score (Aesth↑). All
experiments use the best scheduler configuration from Sec. D (exponential with λs = 2, λt = 2),
i.e., κ(t) = 2t2, ρ(t) = t2.

Variant NTK term κ(t) By-parts ρ(t) CLIP↑ IR↑ Aesth↑

FLUX - - 25.33 -0.52 5.12
YaRN - - 27.32 0.36 5.47

κ(t) on NTK only ✓ - 27.35 0.37 5.50
ρ(t) on by-parts only - ✓ 27.78 0.58 5.56
κ(t) on NTK & ρ(t) on by-parts ✓ ✓ 27.76 0.36 5.41

E ADDITIONAL RESULTS

Additional Baseline Comparison. For completeness, we conduct an additional comparison, eval-
uating DYPE, specifically DY-YaRN, against FreeScale (Qiu et al., 2025). Although FreeScale is
built on SDXL, an older model than FLUX (which underlies our method), we include it since it is
a recent leading approach for ultra-high-resolution image generation (4096 × 4096). We run both
methods on the Aesthetics-4K benchmark and report CLIPScore, ImageReward, Aesthetic-Score,
and FID. The results are summarized in Tab. 7. As shown, DYPE achieves superior performance
across all reported metrics.

Table 7: Comparison of DYPE (DY-YaRN) with FreeScale for 4096 × 4096 image generation on
the Aesthetics-4K benchmark.

Method CLIPScore ↑ ImageReward ↑ Aesthetic-Score ↑ FID ↓
FreeScale 25.91 -1.19 5.75 259.24
DY-YaRN 29.28 1.09 6.67 186.00

Panoramic Image Generation. We investigate DYPE’s ability to handle extreme aspect ratios,
focusing on panoramic images (3 : 1, 4096 × 1365). Such generation poses challenges for position
encoding, as large horizontal spans can intensify aliasing and spatial inconsistencies. We evaluate
on 20 prompts from Aesthetic-4K (every 10th entry), comparing DY-YaRN with YaRN and FLUX
using CLIP-Score, ImageReward, and Aesthetics-Score. As shown in Table 8, DY-YaRN consis-
tently outperforms YaRN, suggesting strong suitability for extreme spatial layouts. Figure 9 shows
that YaRN fails to maintain correct aspect ratio proportion, leading to distorted object placement,
while DY-YaRN preserves coherent spatial structure across the panorama.

Table 8: Panoramic image generation at 4096× 1365 resolution.

Method CLIP-Score↑ ImageReward↑ Aesthetics-Score↑

YaRN 28.92 0.86 5.71
DY-YaRN 29.45 1.29 5.75

Additional Qualitative Results. We present a collage of multi- and high-resolution outputs (see
Fig. 10), all generated by DYPE.

Qualitative results on the DrawBench benchmark. Building upon the comparisons presented in
Sec. 4.1, we provide further qualitative results comparing our approach to existing baselines.

Additional Qualitative Results on the Aesthetic-4K Benchmark. Expanding upon the compar-
isons discussed in Sec. 4.1, we present additional qualitative examples that highlight the performance
of our method relative to existing baselines.
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“A silhouetted pagoda stands against a large red moon, surrounded by dark mountains and 
trees, with some stylized birds flying in the sky. Stars twinkle in the night backdrop.”

YaRN

Dy-YaRN

Figure 9: Qualitative comparison of panoramic generation at 4096× 1365 resolution.

Additional Zoom-in comparison. Expanding upon the comparisons discussed in Fig. 13, we
present additional qualitative examples that illustrate the differences if DY-YaRN with YaRN in
fine details.

F THE USE OF LARGE LANGUAGE MODELS (LLMS).

LLMs were used in this work solely to aid and polish the writing of the manuscript. No parts
of the research ideation, experimental design, analysis, or conclusions were generated by LLMs.
All scientific content, including methodology, experiments, and results, was conceived and written
by the authors. The authors take full responsibility for the final text. LLMs are not eligible for
authorship.
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Figure 10: Collage of multi- and high-resolution results generated by DYPE. Prompts were taken
from the Aesthetic-4K test set. Zoom-in for details.
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NTK-aware YaRN Dy-YaRNDy-NTK-aware

"A bird scaring a scarecrow."

"A black colored dog."

“A realistic photo of a Pomeranian dressed up like a 1980s professional wrestler with neon green and neon orange 
face paint and bright green wrestling tights with bright orange boots.”

"Rainbow coloured penguin."

Figure 11: Qualitative results for high-resolution text-to-image generation on the DrawBench bench-
mark.
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NTK-aware YaRN Dy-YaRNDy-NTK-aware

“A lone figure wearing a dark cloak and a horned hat stands on a rocky outcrop, gazing out over a vast, misty 
landscape of mountains and valleys, with autumn-hued foliage and dramatic, cloud-filled skies.”

“A female astronaut in a sleek, high-tech suit stands against a backdrop of a turbulent cosmic scene featuring 
asteroids and a distant, fire-ridden planet, with spacecraft flying in formation.”

“A man in a patterned vest and tie stands confidently next to a woman wearing a sleek, cream-colored coat, both 
posing near an elegant train entrance.”

“A middle-aged man with long, gray hair and a short beard smiles gently, his warm, expressive eyes capturing 
attention against a dark background.”

Figure 12: High-resolution text-to-image generation results on the Aesthetic-4K benchmark.
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Dy-YaRNYaRN

“Snow-covered landscape featuring a group of sheep in the foreground, with a quaint, 
snow-dusted church and rustic houses in the background surrounded by trees.”

Figure 13: Zoom-in comparison at 40962 resolution showing DY-YaRN versus YaRN. Three mag-
nified regions per image compare differences in fine details.
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