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Data as a Consumable Resource
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Abstract
Data as an economic resource is increasingly rele-
vant in an age of data-hungry parameterized mod-
els. The key property that sets classical data apart
from traditional economic goods is the possibility
of copying it at essentially no cost and without
a record. The ability to store and transmit data
as quantum states vulnerable to destructive mea-
surement and unable to be generically copied has
the potential to change this landscape. In this
work, we use communication complexity lower
bounds to demonstrate that encoding classical
data in quantum states can mimic the behavior
of a traditional, consumable economic good. We
achieve this by proving that the quantum commu-
nication complexity of certain problems scales
polynomially with the number of computational
tasks performed using the data. This suggests that
quantum networks hold the potential to enable
novel types of data markets and incentive struc-
tures for the creation and distribution of classical
data.

1. Introduction
Economic theory is concerned chiefly with goods that are
consumed during the process of production, known as rival
goods. However, for almost a century it has been recognized
that data and information also play a vital role in economic
processes (Schumpeter, 1942). The economic impact of
data is particularly noticeable as statistical models fitted
to large datasets are being usefully applied to problems in
various fields of science and engineering (Brown et al., 2020;
Chen et al., 2021a; Merchant et al., 2023). The ability to
cheaply replicate data has long been recognized as its chief
distinguishing characteristics compared to other economic
resources, and this nonrivality has dramatic consequences
(Arrow, 1962; Romer, 1990). It essentially implies that the
(albeit idealized) equilibrium known as perfect competition,
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in which the price of every good on the market is set by
its capacity for increasing output, cannot hold once data
is included. In some sense, one cannot “get their money’s
worth” when data is traded, unless there is some external
enforcement mechanism that sets prices. Such a mechanism
requires trust between the parties involved, and may have
complex structure. Examples of this can be seen in recent
proposals for data markets (Agarwal et al., 2018; Jones &
Tonetti, 2020).

In contrast to the classical picture, the destructive nature of
quantum measurement suggests that classical data encoded
in the amplitudes of a quantum state may behave more like a
traditional consumable economic resource, with potentially
significant economic consequences 1. For this to be the case,
one must first show that a problem of interest can be solved
with data encoded in this way. In addition, one must argue
that the resulting states cannot be replicated in a similar
manner to classical data. There is an inherent tension be-
tween these two goals, since while no-cloning is trivial for
general states (Nielsen & Chuang, 2010), this is no longer
the case once states are structured. As a simple example,
given a computational basis state, it can be measured in
the computational basis without disturbing it and copied in
this way, and thus acts analogously to classical data. A less
trivial example is states that encode boolean functions may
also be copied in some cases due to their underlying struc-
ture (Aaronson, 2011). It is therefore a priori not obvious
whether any problems satisfy these competing demands.

In Section 2 we make precise our definition of consumable
quantum data. We then prove that for a number of prob-
lems, namely (i) sampling from a distribution defined by
the solution of a linear system (Montanaro & Shao, 2022)
(Section 3.1), (ii) a computational problem over bipartite
graphs known as hidden matching (Bar-Yossef et al., 2008)
(Section 3.2), and (iii) a multi-party two-outcome observ-
able estimation problem (Appendix H), quantum data in
fact behaves like a consumable resource. We also prove
that classical data cannot behave in this manner. The main
ingredient in the proofs is a lower bound on the quantum
communication required to solve multiple instances of these
problems when a subset of the inputs are correlated. The
essence of the construction is that by sending a quantum

1For a very brief introduction to quantum mechanics, see Ap-
pendix A.
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message, Alice in some sense reveals only a tiny fraction of
her data while allowing Bob to solve these problems, and
the method by which he solves them destroys the data and
prevents it from being reused.

Motivated by the setting of data markets, we consider prob-
lems where one party (Alice) wants to sell some data in
her possession to another party (Bob), while Bob is inter-
ested in evaluating a set of m functions of Alice’s data. Our
results indicate that for certain problems, if Alice sends a
Bob enough (classical) bits to evaluate a single function
of interest, he can evaluate other functions as well, imply-
ing that Alice’s potential payoff from selling her data will
be independent of the number of Bobs (as for example in
(Nageeb Ali et al., 2020)). If, on the other hand, Alice is
willing to send only quantum copies of her data, Bob is in
some sense forced to purchase a copy of the data state for
each function he wishes to evaluate, and Alice’s payoff may
now be proportional to the number of functions. This is
generally impossible to achieve using classical resources
alone and without external mechanisms regulating the data
market. We illustrate a possible application of our results by
formulating a model of a data market as a strategic game in
Section 4, in which Alice’s payoff scales with the number
of times her data is used when she uses quantum communi-
cation, but not when classical communication is used. We
survey related work in Appendix F.

2. Consumable data
We now define the notion of consumable data. Denote by
X ,Y,O the space of Alice’s inputs, Bob’s inputs (or those
of a single Bob in case there is more than one), and a space
of outputs. Below, we use P = (R,PP , q) to denote a
family of relational problems R ⊆ X × Y × O and a set
of protocols PP . We informally use problem to refer to
tuples of this kind. We use Rm ⊆ X × Ym × Om to
denote the m-Bob relational problem where Alice receives
one input and the m Bobs have distinct inputs (or Bob
receives m inputs in the two-party case). The goal is to
solve the relation on at least 60% of the Bob instances with
75% probability. Similarly, we use Pm

P to denote the set of
protocols where Alice sends one message and the Bobs are
allowed to communicate classically if q = 0 and quantumly
if q = 1. So Pm = (Rm,Pm

P , q).

For a problem P , denote c(P ) to be the communication com-
plexity of the minimum cost protocol in the set PP which
solves R. Since we will be modeling scenarios where Alice
is selling her data to the Bobs who will be using it for com-
putation, the cost here will be in terms of communication
between Alice and the Bobs only.

Definition 2.1. A problem P is said to be a consumable
data problem if c(Pm)/c(P ) = Ω̃(mk) for some k > 0,
and a nonconsumable data problem if c(Pm)/c(P ) = Õ(1)

We refer to the quantity appearing in the lower bound in
Theorem 2.1 as the consumability factor of P . In both these
definitions, the tilde hides polylog(m) factors. The motiva-
tion of these definition comes from the economic theory of
production and the role of classical data in this framework,
as we outline in Appendix G. There is a subtlety in this defi-
nition, in the sense that the benefit of consumability arises
when Alice chooses to use a particular communication pro-
tocol (typically a quantum one over a classical one) but the
definition itself does not specify why she would have such a
preference. There are a few cases where consumability or
nonconsumability can be characterized in some generality,
which we consider in Appendix C.

3. Examples of consumable quantum data
3.1. Linear regression sampling

We consider here a sampling variant of linear regression
introduced by Montanaro et al. (Montanaro & Shao, 2022).
The notation in this section is defined in Appendix B.
Problem 1 (Multiple Linear Regression Sampling
(MLRSN,m)). Alice is given a vector x ∈ SN−1. Bob
is given m matrices Bk. The goal is for Bob to produce
one sample from each distribution Pk over [N ] defined by
p
(k)
i =

∣∣[B+
k x

]
i

∣∣2 / ∥∥B+
k x

∥∥2
2
.

Note that solving the above problem with some inaccuracy
η corresponds to sampling from some distribution with total
variation error at most η with respect to Pk. In order to
consider the communication complexity of these problems,
we must first discretize the inputs so that they have finite
size. We thus assume all real number are specified to logN
bits of precision.

Lemma 3.1. i) For TV error η ≤ 1/4, the quantum one-
way communication complexity is
SQ→

η (MLRSN,m) = Ω(m log(N/m)).

ii) For constant TV error η, in the multi-party
setting, the one way quantum communi-
cation complexity is SQ→

η (MLRSN,m) =

O(m log(N)max
k

(
∥∥B+

k

∥∥2 /∥∥B+
k x

∥∥2
2
)).

Proof: Appendix E.

While these upper and lower bounds match in terms of
their N dependence if

∥∥B+
k x

∥∥
2

is relatively large (and in
particular does not decay with N ), they do not match in
terms of their m dependence. One example is when the
features of x that different samples are sensitive to are in
some sense uniformly distributed, as in the construction
used to obtain the lower bound in Theorem 3.1. In this
case, we have max

k

∥∥B+
k

∥∥2 /∥∥B+
k x

∥∥2
2
= O(m). In this

setting, based on the definitions of Section 2, we obtain that
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MLRSN,m is a consumable data problem for quantum data,
with consumability factor m.

3.2. Hidden Matching

We define the following generalization of the Hidden Match-
ing problem (Bar-Yossef et al., 2008):
Problem 2 (Multiple Hidden Matchings (MHMN,m)). Alice
is given a string x ∈ {0, 1}N . Each of the m Bobs is given
m perfect matchings {Mk} over [N ]. Their goal is to output
(i, j, xi ⊕ xj) where (i, j) ∈ Mk for all k. Only Alice is
allowed to send messages to Bob.

There is a quantum algorithm that solves this problem with
probability 1 using m logN qubits of communication (Bar-
Yossef et al., 2008): Alice sends Bob a copy of the state
|ψ⟩ = N−1/2

∑N
i=1(−1)xi |i⟩ over logN qubits. Denoting

the k-th pair in Bob’s a matching that Bob holds by (ik, jk),
Bob measures the state using the N -outcome POVM de-
fined by Ek,b = 1

2

(
|ik⟩+ (−1)b |jk⟩

) (
⟨ik|+ (−1)b ⟨jk|

)
for k ∈ [N/2], b ∈ {0, 1}. This process is repeated for
every matching. It is clear that the state cannot be re-used
after such a measurement to solve the problem for multiple
matchings. Since each POVM has N possible outcomes,
approaches based on gentle measurement that are discussed
in Appendix H should not be applicable to this problem
without requiring poly(N) copies of the state.

We also have the following lower bound on the quantum
communication required to solve the problem:

Lemma 3.2. Q→(MHMN,m) = Ω(
√
m) for m ≤ N/2.

Proof: Appendix E

The combination of Theorem 3.2 and the upper bound
implied by the algorithm described earlier implies that
MHMN,m is a consumable data problem when quantum
data is used, with consumability factor Ω(

√
m/ log(N)).

3.3. Economic onsequences of consumable data

The fact that quantum data is consumable for both of these
problems has consequences in a setting where Alice is in-
terested in maximizing her profit when selling her data to
Bob, who is interested in using it for computation. In this
scenario, our lower bounds imply that if Alice chooses to
use quantum communication, Bob must receive a message
of size that is polynomial in the number of instances of
the problem which he wants to solve. This is essentially
because he cannot reuse the quantum states for solving mul-
tiple instances. This is in stark contrast to the picture when
classical communication is used, since known bounds imply
immediately that classical data exhibits nonrival behaviour
for these problems (Appendix D). Once Alice sends Bob
a message sufficient for solving a single instance, he can
reuse it to solve multiple instances. We make these notions

more precise in the context of a strategic game that models
a data market in Section 4.

When considering estimation of two-outcome observ-
ables, we show in Appendix H that quantum data is non-
consumable in the two-player case, but is consumable in
a variant with multiple Bobs that can only communicate
classically and have limited memory.

4. A posted price data auction with
consumable data

We would like to identify more concretely the economic
consequences of the consumable nature of quantum data,
using the linear regression sampling problem Section 3.1 as
an example. We consider a formulation naturally related to
auction theory (Krishna, 2009; Roughgarden, 2016). Alice’s
action space AA = R+ is the set of prices she charges for
a single bit or qubit of her input. Once Alice fixes a price
p, Bob is free to purchase as many bits/qubits as he wants.
Bob’s action space is thus AB = N, and we denote the
number he purchases by b. This is known as a posted price
auction with only a single bidder and multiple items (or
a particularly simple combinatorial auction). Assume the
number of matrices Bob holds m takes values in [m] and
Alice has no knowledge of it (say she holds a uniform prior).
We also assume the matrices Bi, i ∈ [m] are chosen in a
worst-case fashion (in order for our communication lower
bounds to be applicable).

For any values of m, p, b, the payoffs of the two players are

vA(m, p, b) = pb, vB(m, p, b) = #S(m, b)− pb, (4.1)

where #S(m, b) represents the number of samples Bob can
produce using a message of b bits/qubits, given that he holds
m such Bi).

Consider first the quantum communication case. We know
from our lower bound Theorem 3.1 that for sufficiently large
m, there is an absolute constant C such that, if Bob were to
purchase b qubits produced by Alice, then

#SQ(m, b) ≤ Cb

log(N/#SQ(m, b))
≈ Cb

log(N)
(4.2)

for some absolute constant C. We also assume N ≫
m which allows us to use the approximation logN −
log SQ(m, b) ≈ logN since this slightly simplifies the anal-
ysis. Since additionally #S(m, b) ≤ m by definition, we
have the upper bound

vQB(m, p, b) ≤ min

{
Cb

logN
,m

}
− pb. (4.3)

If we also assume that Bob saturates this upper bound, to

3
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maximize his payoff he solves

max
b

min

{
Cb

logN
,m

}
− pb

=

{
m(1− p logN

C ) 0 < p < C
logN (b⋆ = m logN

C )

0 p ≥ C
logN (b⋆ = 0)

(4.4)
with the value of b achieving the maximum in the right
column. Alice’s payoff is maximized by thus choosing p as
close as possible to C from below without exceeding it, and
will be equal to b⋆(m, p)p = mp log(N)/C. This holds for
any value of m even though Alice has no knowledge of m,
and in particular C is independent of m.

In the classical case, we have tight upper and lower bounds
on the number of bits needed to solve the problem (Theo-
rem D.1), which give

vCB(m, p, b) = 1 [b ≥ C(N logN)]m− pb. (4.5)

For some constant C ′. Bob thus solves

max
b

1 [b ≥ C ′N logN ]m− pb

=

 m− pC ′N logN p < m
C′N logN

(
b⋆ =

C ′N logN

)
0 p ≥ m

C′N logN (b⋆ = 0)

(4.6)
Note that unlike the quantum case, Alice has no way of
knowing how to choose p appropriately ahead of time, since
it depends on m. If she wants to guarantee a nonzero payoff
she has to choose p = 1/(C ′N logN) (i.e. assume m = 1)
in which case her payoff is independent of m 2.

5. Discussion
We demonstrated that there exist problems for which en-
coding classical data into quantum states leads to behavior
that is akin to that of rival, or consumable, goods, which is
generally not possible using classical data alone. The inher-
ent privacy benefits of amplitude-encoded data might also
facilitate computation with proprietary data, giving users
fine-grained control over the dissemination of their private
data without the need for additional encryption. Being a
preliminary investigation into the possibility of using quan-
tum networks in this manner, our results do not immediately
apply to problems with clear economic value. If this were
the case, it could enable novel types of data markets and
incentive structures for the production of data. It is worth
noting however that our results for the linear regression
sampling problem apply immediately to a related problem
in which Bob obtains a state that encodes the solution to

2The expected payoffs (over the choice of m) do not exhibit
any interesting dependence on the type of communication. They
end up proportional to m in both the classical and quantum case.

a linear system rather than a classical sample. Such states
are known to be strictly more powerful resources than clas-
sical samples (Aharonov & Ta-Shma, 2003), and could be
useful in learning tasks such as updating the value of a lin-
ear estimator with new data (which is typically achieved
with the recursive least squares algorithm). Another limi-
tation of our work is that some of the bounds we present
are loose, but these can possibly be tightened using more
powerful tools such as Fourier analysis (Ben-Aroya et al.,
2007). We discuss additional related directions of future
work in Appendix I.

References
Aaronson, S. Quantum copy-protection and quantum money.

arXiv [quant-ph], 2011.

Aaronson, S. Introduction to quantum information
science. https://www.scottaaronson.com/
qclec.pdf, 2017.

Aaronson, S. Shadow tomography of quantum states. In
Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 325–338, New York, NY,
USA, 2018. ACM.

Aaronson, S. and Rothblum, G. N. Gentle measurement of
quantum states and differential privacy. arXiv [quant-ph],
2019.

Aaronson, S., Liu, J., Liu, Q., Zhandry, M., and Zhang,
R. New approaches for quantum copy-protection. arXiv
[cs.CR], 2020.

Aaronson, S., Buhrman, H., and Kretschmer, W. A qubit, a
coin, and an advice string walk into a relational problem.
arXiv [quant-ph], 2023.

Agarwal, A., Dahleh, M., and Sarkar, T. A marketplace for
data: An algorithmic solution. arXiv [cs.GT], 2018.

Aharonov, D. and Ta-Shma, A. Adiabatic quantum state
generation and statistical zero knowledge. arXiv [quant-
ph], 2003.

Arrow, K. J. An extension of the basic theorems of classical
welfare economics. In Proceedings of the second Berkeley
symposium on mathematical statistics and probability,
volume 2, pp. 507–533, 1951.

Arrow, K. J. Economic welfare and the allocation of re-
sources for invention. In The Rate and Direction of In-
ventive Activity, pp. 609–626. Princeton University Press,
Princeton, 1962.

Badescu, C. and O’Donnell, R. Improved quantum data
analysis. arXiv [quant-ph], 2020.

4

https://www.scottaaronson.com/qclec.pdf
https://www.scottaaronson.com/qclec.pdf


220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2023

Bar-Yossef, Z., Jayram, T. S., and Kerenidis, I. Exponential
separation of quantum and classical one-way commu-
nication complexity. SIAM J. Comput., 38(1):366–384,
2008.

Ben-Aroya, A., Regev, O., and de Wolf, R. A hypercontrac-
tive inequality for matrix-valued functions with applica-
tions to quantum computing and LDCs. arXiv [quant-ph],
2007.

Brassard, G. Quantum communication complexity (a sur-
vey). arXiv [quant-ph], 2001.

Braverman, M., Rao, A., Weinstein, O., and Yehudayoff,
A. Direct products in communication complexity. In
2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pp. 746–755. IEEE, 2013.

Broadbent, A. and Islam, R. Quantum encryption with
certified deletion. arXiv [quant-ph], 2019.

Broadbent, A., Fitzsimons, J., and Kashefi, E. Universal
blind quantum computation. arXiv [quant-ph], 2008.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. arXiv [cs.CL], 2020.

Buhrman, H., Cleve, R., Massar, S., and de Wolf, R. Non-
locality and communication complexity. arXiv [quant-
ph], 2009.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I.,
Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,
Sutskever, I., and Zaremba, W. Evaluating large language
models trained on code. arXiv [cs.LG], 2021a.

Chen, S., Cotler, J., Huang, H.-Y., and Li, J. Exponential
separations between learning with and without quantum
memory. arXiv [quant-ph], 2021b.

Chi-Chih Yao, A. Quantum circuit complexity. In Proceed-
ings of 1993 IEEE 34th Annual Foundations of Computer
Science, pp. 352–361, 1993.

Cleve, R., van Dam, W., Nielsen, M., and Tapp, A. Quantum
entanglement and the communication complexity of the
inner product function. arXiv [quant-ph], 1997.

Debreu, G. Theory of value: An axiomatic analysis of
economic equilibrium, volume 17. Yale University Press,
1959.

Dwork, C. and Roth, A. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4):211–407, 2014.

Gentry, C. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the forty-first annual ACM sym-
posium on Theory of computing, pp. 169–178, 2009.

Gong, W. and Aaronson, S. Learning distributions over
quantum measurement outcomes. arXiv [quant-ph],
2022.

Gosset, D. and Smolin, J. A compressed classical descrip-
tion of quantum states. arXiv [quant-ph], 2018.

Huang, H.-Y., Kueng, R., and Preskill, J. Predicting many
properties of a quantum system from very few measure-
ments. arXiv [quant-ph], 2020.

Huang, H.-Y., Broughton, M., Cotler, J., Chen, S., Li,
J., Mohseni, M., Neven, H., Babbush, R., Kueng, R.,
Preskill, J., and McClean, J. R. Quantum advantage in
learning from experiments. Science, 376(6598):1182–
1186, 2022.

Jain, R. and Kundu, S. A direct product theorem for one-way
quantum communication. arXiv [cs.CC], 2020.

Ji, Z., Liu, Y.-K., and Song, F. Pseudorandom quantum
states. In Lecture Notes in Computer Science, Lecture
notes in computer science, pp. 126–152. Springer Inter-
national Publishing, Cham, 2018.

Jones, C. I. and Tonetti, C. Nonrivalry and the economics
of data. Am. Econ. Rev., 110(9):2819–2858, 2020.

Klartag, B. and Regev, O. Quantum one-way communica-
tion is exponentially stronger than classical communica-
tion. arXiv [cs.CC], 2010.

Kremer, I. Quantum communication. PhD thesis, Hebrew
University of Jerusalem, 1995.

Krishna, V. Auction Theory. Academic Press, San Diego,
CA, 2 edition, 2009.

Kurz, H. D. and Salvadori, N. Theory of Production: A
Long-Period Analysis. Cambridge University Press, 1995.

Kushilevitz, E. and Nisan, N. Communication Complexity.
Cambridge University Press, Cambridge, England, 2011.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2023

Lee, T., Shraibman, A., and Spalek, R. A direct product
theorem for discrepancy. In 2008 23rd Annual IEEE
Conference on Computational Complexity, pp. 71–80.
IEEE, 2008.

Merchant, A., Batzner, S., Schoenholz, S. S., Aykol, M.,
Cheon, G., and Cubuk, E. D. Scaling deep learning for
materials discovery. Nature, 624(7990):80–85, 2023.

Montanaro, A. Quantum states cannot be transmitted effi-
ciently classically. Quantum, 3(154):154, 2019.

Montanaro, A. and Shao, C. Quantum communication com-
plexity of linear regression. arXiv [quant-ph], 2022.

Nageeb Ali, S., Chen-Zion, A., and Lillethun, E. Reselling
information. arXiv [cs.GT], 2020.

Nayak, A. Optimal lower bounds for quantum automata and
random access codes. arXiv [quant-ph], 1999.

Nielsen, M. A. and Chuang, I. L. Quantum Computation
and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, 2010.

Raz, R. Exponential separation of quantum and classical
communication complexity. In Proceedings of the thirty-
first annual ACM symposium on Theory of Computing,
STOC ’99, pp. 358–367, New York, NY, USA, 1999.
Association for Computing Machinery.

Romer, P. M. Endogenous technological change. J. Polit.
Econ., 98(5):S71–S102, 1990.

Roughgarden, T. Communication complexity (for algorithm
designers). arXiv [cs.CC], 2015.

Roughgarden, T. Twenty lectures on algorithmic game the-
ory. Cambridge University Press, Cambridge, England,
2016.

Schumpeter, J. A. Capitalism, Socialism, and Democracy.
Harper & Brothers, New York, 1942.

Shaltiel, R. Towards proving strong direct product theorems.
Comput. Complex., 12(1-2):1–22, 2003.

Sherstov, A. A. Strong direct product theorems for quantum
communication and query complexity. In Proceedings
of the forty-third annual ACM symposium on Theory of
computing, New York, NY, USA, 2011. ACM.

Wiesner, S. Conjugate coding. SIGACT News, 15(1):78–88,
1983.

Yao, A. C.-C. Some complexity questions related to distribu-
tive computing(preliminary report). In Proceedings of the
eleventh annual ACM symposium on Theory of comput-
ing, STOC ’79, pp. 209–213, New York, NY, USA, 1979.
Association for Computing Machinery.

Zhao, H., Lewis, L., Kannan, I., Quek, Y., Huang, H.-Y.,
and Caro, M. C. Learning quantum states and unitaries
of bounded gate complexity. arXiv [quant-ph], 2023.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2023

A. A very brief review of quantum mechanics
We denote by {ai} a set of elements indexed by i, with 1-based indexing unless otherwise specified, with the maximal value
of i explicitly specified when it is not clear from context. [N ] denotes the set {0, . . . , N − 1}. The complex conjugate of a
number c is denoted by c∗, and the conjugate transpose of a complex-valued matrix A by A†.

We denote by |ψ⟩ a vector of complex numbers {ψi} representing the state of a quantum system when properly normalized,
and by ⟨ψ| its dual (assuming it exists). The inner product between two such vectors of length N is denoted by

⟨ψ|φ⟩ =
N−1∑
i=0

ψ∗
i φi. (A.1)

Denoting by |i⟩ for i ∈ [N ] a basis vector in an orthonormal basis with respect to the above inner product, we can also write

|ψ⟩ =
N−1∑
i=0

ψi |i⟩ . (A.2)

Matrices will be denoted by capital letters, and when acting on quantum states will always be unitary. These can be specified
in terms of their matrix elements using the Dirac notation defined above, as in

A =
∑
ij

Aij |i⟩ ⟨j| . (A.3)

Matrix-vector product are specified naturally in this notation by

Quantum mechanics is, in the simplest possible terms, a theory of probability based on conservation of the L2 norm rather
than the standard probability theory based on the L1 norm (Aaronson, 2017; Nielsen & Chuang, 2010). The state of a pure
quantum system is described fully by a complex vector of N numbers known as amplitudes which we denote by {ψi} where
i ∈ {0, . . . , N − 1}, and is written using Dirac notation as |ψ⟩. The state is normalized so that

⟨ψ|ψ⟩ =
N−1∑
i=0

ψ∗
i ψi =

N−1∑
i=0

|ψi|2 = 1, (A.4)

which is the L2 equivalent of the standard normalization condition of classical probability theory. It is a curious fact that the
choice of L2 requires the use of complex rather than real amplitudes, and that no consistent theory can be written in this way
for any other Lp norm (Aaronson, 2017). The most general state of a quantum system is a probabilistic mixture of pure
states, in the sense of the standard L1-based rules of probability. We will not be concerned with these types of states, and so
omit their description here, and subsequently whenever quantum states are discussed, the assumption is that they are pure.

Since any closed quantum system conserves probability, the L2 norm of a quantum state is conserved during the evolution of
a quantum state. Consequently, when representing and manipulating quantum states on a quantum computer, the fundamental
operation is the application of a unitary matrix to a quantum state. Given a quantum system with some discrete degrees of
freedom, the number of amplitudes corresponds to the number of possible states of the system, and is thus exponential in the
number of degrees of freedom. The simplest such degree of freedom is a binary one, called a qubit, which is analogous to a
bit. Thus a state of logN qubits is described by N complex amplitudes.

A fundamental property of quantum mechanics is that the amplitudes of a quantum state are not directly measurable. Given
a Hermitian operator

O =

N−1∑
i=0

λi |vi⟩ ⟨vi| (A.5)

with real eigenvalues {λi}, a measurement of O with respect to a state |ψ⟩ gives the result λi with probability |⟨vi|ψ⟩|2.
The real-valued quantity

⟨ψ| O |ψ⟩ =
N−1∑
i=0

λi |⟨ψ|vi⟩|2 (A.6)
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is the expectation value of O with respect to |ψ⟩, and its value can be estimated by measurements. After a measurement with
outcome λi, the original state is destroyed, collapsing to the state |vi⟩. A consequence of the fundamentally destructive nature
of quantum measurement is that simply encoding information in the amplitudes of a quantum state dues not necessarily
render it useful for downstream computation. It also implies that operations using amplitude-encoded data may incur
measurement error, unlike their classical counterparts that are typically limited only by machine precision. The design of
quantum algorithms essentially amounts to a careful and intricate design of amplitude manipulations and measurements in
order to extract useful information from the amplitudes of a quantum state. For a comprehensive treatment of these topics
see (Nielsen & Chuang, 2010).

B. Notation
We denote by D→ deterministic classical one-way communication complexity. R→

ε denotes randomized one-way classical
communication complexity with error probability at most ε, in which players are allowed to share an unlimited number of
random bits that are independent of their inputs. We similarly define by Q→

ε one-way quantum communication complexity
with error probability at most ε. In all cases the one-way restriction implies that only Alice is allowed to send messages
to Bob (if there are multiple Bobs, they can communicate among themselves and we do not consider this as part of the
complexity of the problem). When the error is a nonzero constant (say 1/4) we omit the subscript.

We also consider sampling problems, where the goal is for Bob to produce a sample from a target distribution given some
inputs to Alice and Bob. For this type of problem, we define analogously SR, SQ for the classical (randomized) and
quantum communication complexity respectively (with the superscript → denoting one-way communication as before). We
allow constant error in TV distance between the target distribution and the one sampled by the algorithm. We denote by A+

the pseudoinverse of A.

C. Additional results on consumable data
Note that any problem involving only deterministic classical communication must be nonconsumable – every Bob can just
copy Alice’s message into his own working space. We also show in Appendix H that if P corresponds to a decision problem,
then even with quantum communication it must be a nonconsumable data problem. This is because the Bobs can apply
the Shadow Tomography protocol (Aaronson, 2018) (unless the Bobs are only allowed classical communication between
themselves and limited quantum memory). Nevertheless, consumability can be proved for certain search problems (with
many solutions) solved using randomised or quantum communication.
Lemma C.1. For any relational problem R and resource q, if the protocol is deterministic one way classical communication,
P = (R, D→, q), then c(Pm)

c(P ) = 1 and the data is nonconsumable.

Proof of Theorem C.1. For the m-Bob problem, Alice sends the same message as the protocol for the original problem.
Since her message depended only on her input, the message can be copied m times and the correctness gaurantee holds for
every instance on Bob’s end.

Similarly,
Lemma C.2. For any relational problem R and resource q, if the protocol is randomized one-way classical communication,
P = (R, R→, q), then c(Pm)

c(P ) = 1 and the data is nonconsumable.

Proof of Theorem C.2. Akin to Theorem C.1, for every instance the success probability is at least 75% and thus with high
probability 60% of Bobs succeed simultaneously.

Lemma C.3. For any relation with an output space of size K, R ⊆ X × Y ×O, with |O| = K, if the protocol is one way
quantum communication P = (R, Q→, q = 1) then c(Pm)

c(P ) = Õ(K log2m)c(P ).

Proof of Theorem C.3. Akin to Theorem C.2, we want to give a protocol for for Pm using a protocol for P as a subroutine.
We do this by relying on the work of Gong, Aaronson (Gong & Aaronson, 2022) who proved that the distribution of
K-outcome POVMs on logN qubits can be learned to constant additive error in Õ(K log2m logN) copies.

All of these lemmas can be generalised to the setting where PP is a strict subset of one of these sets.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2023

D. Nonconsumability of classical data
D.1. Linear regression sampling

Known results immediately imply the following bounds:

Lemma D.1 ((Montanaro & Shao, 2022)). For constant total variation distance error η in the sampled distribution,

i) The randomized one way classical communication complexity, SR→
η (MLRSN,1) = Ω(N logN).

ii) For any m, SR→
η (MLRSN,m) = O(N logN).

Proof of Theorem D.1. i) Theorem 9 of (Montanaro & Shao, 2022), applied to square matrices. The proof is based on
lower bounds for distributed Fourier sampling.

ii) It follows from the ability of Alice to send her whole input to Bob to complete the task.

D.2. Hidden Matching

A tight lower bound shows that classical communication indeed acts like a nonrival good for this problem. While it is
known that R→(HMN ) = Ω(

√
N) (Bar-Yossef et al., 2008), we believe this is the first characterization of the deterministic

complexity of the Hidden Matching problem. The results are consistent with Theorem C.1.

Lemma D.2. D→(MHMN,m) = D→(HMN ) = N/2 + 1.

Proof of Theorem D.2. We begin by proving D→(MHMN,1) ≥ N/2 + 1.

A deterministic protocol P for MHMN,1 is defined by a matrix with 2N rows denoting the inputs to Alice and (N − 1)!!
columns denoting the inputs to Bob ((N − 1)!! is the number of perfect matchings over [N ]). The entry in the matrix
corresponding to inputs (x,M) is a tuple (i, j, b) such that (i, j) ∈ M and b = xi ⊕ xj . Define by τ a message sent by
Alice, and by Sτ the subset of the rows for which Alice sends τ to Bob. The choice of (i, j, b) depends on x only through
the message τ . Since the protocol is deterministic, for a given column, the entries in each column of Sτ must have the same
value since they share the same τ,M , so we may write (with slight abuse of notation)

P(x,M) = P(τ,M) = (i, j, b), (i, j) ∈M. (D.1)

Thus the rows of Sτ are all identical, and we can view each entry as a constraint that each vector x for which Alice sends the
message τ must obey. We will bound the maximal possible size of Sτ by bounding the number of xs that can satisfy all
these constraints.

The constraints on the bits can be thought of as edges on a graph G = (V,E) with nodes V indexed by [N ]. We begin with
E = ∅ and choose a sequence of matchings M = {M ℓ}. For every matching, P must produce a valid output that selects an
edge from the matching and constrains the corresponding entries of x. While we have no control over which edge is chosen,
we will choose M in such a way that at each step of the algorithm, the size of the connected components in G increases for
any edge output by P .

Denote by {Cℓ
i } the connected components of G at step ℓ, and Cℓ = ∪

i
Cℓ

i . Initially we thus have
∣∣C0

∣∣ = 0.

i) |Cℓ| ≤ N/2

We start with an arbitrary matching M1. For any x for which Alice communicates τ , the entries in Sτ in the column
corresponding to M1 is Sτ must contain an edge (i, j) ∈M1, hence after adding (i, j) to E and M1 to M we have
|C1| = 2. Denoting by Dℓ the disconnected nodes, we next define a matching M2 that pairs each node in C1 with
some node in D1. The remaining nodes of D1 are paired among themselves. Note that M2 cannot be equal to M1,
since M1 contained an edge between two nodes that are both in C1 while M2 does not. We add (i, j) to E where
P(τ,M2) = (i, j, b). If the edge connects C1 and D1, then |C2| = 3. Otherwise, |C2| = 4.

We pick M3, . . . in the same fashion, defining M ℓ+1 by pairing each node in Cℓ with a node in Dℓ (and pairing
the remaining nodes arbitrarily). This can be done as long as |Cℓ| ≤ N/2. At every stage, we are guaranteed that
M ℓ+1 /∈ M by the same argument used for M2, hence we are assured that it is a valid choice.
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After at most N/2 − 1 such steps, we have either |Cℓ| = N/2 + 1 or |Cℓ| = N/2 + 2. From this point a different
strategy is required, since there are not enough disconnected nodes in Dℓ to pair with all the nodes in Cℓ. Subsequently,
we order the nodes in Cℓ by first ordering the connected components {Cℓ

i } by size, with Cℓ
0 being the largest (or tied

for the largest, breaking ties arbitrarily), and then arbitrarily ordering the nodes within each Cℓ
i .

ii) |Cℓ| > N/2 and |Cℓ
0| ≤ N/2

Order the nodes in Cℓ in the manner specified above. Denote by Rℓ
− the first N/2 nodes in this ordering, and by Rℓ

+

the remaining |Cℓ| −N/2 nodes. Define the matching M ℓ+1 by first pairing each node in Rℓ
+ with a node in Rℓ

− in
descending order (i.e. starting with the nodes in Cℓ

0). Note that two nodes in the same connected component cannot be
paired in this way. This is because, if this occurred for some connected component Ci, this would imply that either
|Ci| > |Cℓ

0| (since Ci must have a node in Rℓ
−, the boundary between Rℓ

− and Rℓ
+ divides Ci, so every node in the

matching so far is in Ci, and we started the pairing in Rℓ
− with the nodes in Cℓ

0 and went through all of them and
reached Ci) contradicting the imposed ordering, or else Ci = Cℓ

0, in which case since some nodes in Cℓ
0 are also in

Rℓ
+, we have |Cℓ

0| > N/2 and we terminate the algorithm. Having thus paired all the nodes in Rℓ
+ (we can always do

this since |Rℓ
+| ≤ N/2), we complete M ℓ+1 by pairing the remaining nodes in Rℓ

− with the unconnected nodes Dℓ

in an arbitrary way. Note that M ℓ+1 does not contain any edge between two nodes that are in the same connectivity
component. Thus it is distinct from all of the matchings already in M (since by construction each one contained such
an edge) and we can add it to M. We add (j, k) to E where P(τ,M ℓ+1) = (j, k, b).

For the same reason specified above, the edge from M ℓ+1 that is selected by P will either connect two previously
unconnected components in Cℓ hence Cℓ+1

k = Cℓ
i ∪ Cℓ

j for some i, j, k, or else connect some Cℓ
i with a previously

unconnected edge (meaning |Cℓ+1| = |Cℓ|+ 1).

We run the above algorithm until some step ℓ̃ when either (a) |C ℓ̃| = N or (b) C ℓ̃
0 > N/2.

The algorithm is guaranteed to terminate in O(N) steps. If (a) occurs, then either (a1) there are strictly less than N/2
connectivity components or (a2) there are exactly N/2 connectivity components, since each one contains at least two nodes.
In case (a1), there are strictly less than N/2 independent degrees of freedom in the choice of the bits of any x for which
Alice sends the message τ , since each connectivity component C ℓ̃

i implies |C ℓ̃
i | constraints of the form xj ⊕ xk = b where

P(τ,M) = (j, k, b), (j, k) ∈ M connects two nodes in C ℓ̃
i . In case (a2), there are N/2 connectivity components of size

2. We then consider a final matching M ℓ̃+1 that first divides {C ℓ̃
i } into groups of two {Ki} and then pairs each node to a

node in a different connectivity component within the same Ki. As before, this matching is valid since M ℓ̃+1 /∈ M. After
including the edge in P(τ,M ℓ̃+1) into E, G will contain N/2− 1 connected components. As before, there are strictly less
than N/2 degrees of freedom in choosing x. In case (b), there is a single component of size strictly larger than N/2. Thus
even if all the remaining nodes are disconnected, there are strictly less than N/2 degrees of freedom once again.

In conclusion, in all cases we obtain that the number of rows of Sτ is at most 2N/2−1. The number of possible messages
Alice must send is therefore at least 2N/2N/2−1 = 2N/2+1 and thus the number of bits Alice must send in order to
solve MHMN,1 is at least N/2 + 1. Since this bound is valid for the multi-Bob version of the problem as well, we have
D→(MHMN,m) ≥ N/2 + 1.

The upper bound is trivial: Alice sends the Bobs the first N/2 + 1 bits of her input. These are sufficient for the Bobs to
compute the output for all m matchings simultaneously. The result follows.

E. Additional Proofs
Proof of Theorem 3.1. i) Say Alice is given a binary vector y of length m log(N/m) and there are m Bobs. Each Bob

uses the matrix

Bj =

(N/m)(j+1)∑
i=(N/m)j

|i⟩ ⟨i| . (E.1)
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Alice then divides her bits into m sets of size log(N/m) and treats the bits in each set as an integer rj ∈ [N/m]. She
creates a vector x of length N by concatenating a unary encoding of these numbers, meaning

[x[(N/m)j:(N/m)(j+1)]]i =

√
1

m
δirj , (E.2)

where we used x[l:m] denotes the subset of the entries of a vector ranging from [l,m).

Suppose Alice and the Bobs manage to solve MLRSN,m with inaccuracy η. This means that Bob produces a sample
from a distribution that is at most η in TV from each of his target distributions Pj . From the definition of x and the
B(j), Pj is be a delta function at rj . This means that with probability at least 1− 2η, Bob recovers the log(N/m) bits
of rj by performing a computational basis measurement. It follows that Alice’s message to Bob is a random-access
encoding of m log(N/m) bits. From known lower bounds on the number of qubits needed for random access coding
(Nayak, 1999), if 2η < 1/2, Alice must send at least Ω(m log(N/m)) qubits to the Bobs.

ii) This follows immediately from the bound of Theorem 4 of (Montanaro & Shao, 2022) with an additional factor of
m due to the number of samples, and using ||x||2 = 1. The bound uses an amplitude-encoding of x, followed by the
application of B+

k using block-encoding. If two-way communication is allowed, the complexity can be improved to
O(m log(N)max

k

∥∥B+
k

∥∥ / ∥∥B+
k x

∥∥
2
) since Alice and Bob can run amplitude amplification.

Proof of Theorem 3.2. Let us consider the distributional complexity of MHMN,m where Alice’s input is a uniform random
string X ∼ U({0, 1}N ). The Bobs have a deterministic input Y, where M1 is just the matching {(i, i+ 1)|i odd, i < N}.
The matching Mk is just the kth cyclic permutation on nodes on the left. The Bobs output random variables ok =
(ik, jk, xik ⊕ xjk) as their respective solutions. For notational convenience, we define O = o1o2 . . . om. Note that since
m ≤ N/2, each matching consists of N/2 edges that do not appear in any other matching. It follows that for any choice of
O, no edge (as defined by the first two entries of each ok) will be repeated.

Let ρX be density matrix corresponding to the message of length l sent by Alice, of dimension 2l. By Holevo’s theorem,
I(X : O) ≤ l. We will show that if the Bobs solve MHMN,m then I(X : O) ≥ Ω(

√
m). This gives us the required lower

bound.

I(X : O) = H(O)−H(O|X). Note that H(O|X) = 0 since every Bob’s output is deterministic given the input X. Thus,
I(X : O) = H(O). To make this tuple amenable to analysis, we remove dependencies in the output by considering a
spanning forest of the graph induced by V = ∪k{ik, jk} = ∪k{ik} ∪ ∪k{jk}. We have that |V | ≥

√
m since we had a

graph with m distinct edges by construction. Therefore, we get a lower bound of Ω(
√
m) by Theorem E.1.

Lemma E.1. If we have a tree T on n vertices labelled with variables x1 . . . xn, then if x is a uniform random string then
the set of random variables PT = {buv|(u, v) ∈ T} where each buv = xu ⊕ xv with probability at least 2/3 has total
entropy at least Ω(n).

Proof. We prove this by induction on the height of the tree T , say h. If h = 0, then we have only 1 vertex and the set of
parities is empty so the entropy is 0. In the inductive step, we assume that for all trees of height h− 1, the statement is true.
Now, consider any tree T on n vertices of height h. Let L be the set of leaves of this tree, and set k = |V (T ) \L|. We know
that the subtree of T upto height h− 1 has total entropy on the set PT,h−1 at least k − 1. For any vertex v ∈ L, let p(v) be
its parent. Then since xv is a uniform random bit and v does not appear in any other parities, H(xv ⊕ xp(v)|PT,h−1) = 1.
Since buv = xu ⊕ xv with probability 2/3, by concavity of entropy we have that H(buv|PT,h−1) = Ω(1). We now iterate
this argument over all leaves, adding the parities at the leaves to the conditioning. We thus prove our claim.

F. Related Work
F.1. Destructive measurement as a resource

The idea of using uncloneability of quantum states as a feature has a long history, starting with the seminal work of
Weisner (Wiesner, 1983) that introduced the notion of quantum money. However, the states used in construction of quantum
money schemes typically do not encode or transmit useful information and can benefit from the computational power of
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pseudo-randomness in quantum state (Ji et al., 2018). While no-cloning is easy to show for states with little or no structure,
this notion becomes more subtle for structured states, and in particular ones that might be useful in performing computation.
Aaronson considered the question of uncloneablity of states that encode classical boolean functions, a problem known
as quantum software copy-protection (Aaronson, 2011; Aaronson et al., 2020). He showed that the presence of structure
enables such states to be cloned unless computational assumptions are made, and even then cannot be ruled out for states
that encode functions that can be efficiently learned. The setting we consider can be seen as a distributed generalization of
this problem. In the simplest case, evaluating the function of interest requires not only a quantum state in the possession of
one player (or the equivalent classical description), but also an observable in the possession of another player.

F.2. Communication complexity (classical and quantum)

Our framework for demonstrating consumable behavior of data relies heavily on ideas from communication complexity (Yao,
1979). This is the study of distributed computational problems using a cost model that considers the communication required
between parties. An excellent classical treatment is provided by (Kushilevitz & Nisan, 2011) (see also (Roughgarden, 2015)).
The power of replacing classical bits of communication with qubits has been the subject of extensive study (Chi-Chih Yao,
1993; Brassard, 2001; Buhrman et al., 2009). Of particular relevance to our analysis are problems that exhibit exponential
quantum communication advantages such as Hidden Matching (Bar-Yossef et al., 2008), Vector-in-Subspace (Raz, 1999)
and sampling problems related to solutions of linear systems (Montanaro & Shao, 2022). See also (Nielsen & Chuang,
2010) for a general treatment of quantum computing.

G. Data as an economic resource
Production theory (Kurz & Salvadori, 1995) is one of the principal frameworks for the quantitative study of economic
systems. A fundamental object of interest within this framework is the production function F : RM

+ → R+ that quantifies in
some form the output of an economic agent, for example the goods produced by a firm. The inputs to F denote the resources
required to produce said goods, such as labor, capital and raw materials. For conventional goods of this form, which cannot
be replicated at zero cost (and are referred to as rival goods), it is known that the production function is typically a degree 1
homogeneous function of its inputs (at least locally when restricted to some set S):

F (λx) = λF (x) (G.1)

for any λ ≥ 0. This captures the notion that e.g. doubling the number of factories and raw materials will double a firm’s
output. It follows directly from Euler’s theorem for homogeneous functions that within the interior of S,

F (x) = x · ∂F
∂x

. (G.2)

Since the output of the production function is a measure of the firm’s capacity to pay for the needed resources, we see that if
the price of resource i, denoted pi, is set according to

pi =
∂F

∂xi
, (G.3)

for all i ∈ [M ], then the output of the firm suffices exactly to purchase all the resources required, and there is no surplus
profit. This is known as competitive equilibrium, which maximizes social welfare in the sense that the price of each good is
commensurate to its usefulness in increasing the total output (Arrow, 1951; Debreu, 1959).

While it has long been understood at a qualitative level that data is an inherently different resource than the ones considered
above due to the ability to copy it for free (Schumpeter, 1942; Arrow, 1962), the quantitative form of this statement was
realized decades later by the seminal work of Romer (Romer, 1990). If we include data y as an input into the production
function, we instead have

F (λx, y) = λF (x, y) (G.4)

rather than the expected need to double each input proportionate to match production as in F (λx, λy) = λF (x, y). This is
because the data used by one process can be copied and used by several with negligible additional cost. Euler’s theorem
once again gives

F (x, y) = x · ∂F
∂x

. (G.5)
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However, since increasing the amount of data will generally increase the output (say by improving the quality of inference),
we have ∂F

∂y > 0. It follows that

F (x, y) < x · ∂F
∂x

+ y
∂F

∂y
. (G.6)

Due to this inequality, it is impossible to set prices according to Equation (G.3). If this were done for all inputs including
data, the total output would be insufficient to pay for all the required resources. As a result, markets involving data must be
inherently inefficient in the sense that one must underpay for some resource, or must include some external mechanism to
enforce adequate compensation for resources that can be freely replicated. Mechanisms such as patent law or subsidies that
incentivize innovation are all examples of this. Other examples are afforded by the trusted third parties that are introduced in
proposals for data markets and handle the data in lieu of the data buyers themselves (Agarwal et al., 2018). In the context
of strategic games that model data selling, the ability to copy data is also manifest in the payoff for the data seller being
independent of the number of buyers, unless a mechanism is put in place by which the data buyers all agree to pay in
advance for their data (Nageeb Ali et al., 2020).

The distributed problems we consider can be interpreted within this formalism. For example, the solution of MLRSN,m

(Section 3.1) can be seen as the output of a production function, with the number of samples m and Alice’s message
equivalent to λ and y respectively. The result of Theorem D.1 is then analogous to Equation (G.4). Up to constant factors,
this is an example of the well-known nonrival nature of classical data. Alice must send a significant portion of her input
to Bob for him to produce even a single sample, and once Alice sends her full input he can produce an unlimited number
of samples in this way. If Alice were to sell Bob her data in the setting of a strategic game, her potential payoff will be
essentially independent of the value that Bob can derive (since this is proportional to m).

On the other hand, Theorem 3.1 indicates that if Alice insists on using quantum communication, the data is analogous to a
rival good as described by Equation (G.1). Bob can still produce m samples, but this requires that Alice sends at least a
number of qubits proportional to m. If Alice were to charge Bob for each qubit sent for example, she would obtain a payoff
proportional to the Bob’s output m (as long as m < N ). The lower bound indicates that this scaling holds regardless of
the strategy Alice uses to encode her input into the message, and of the strategy Bob uses to process this message. Using
classical resources alone this would be impossible to achieve.

The Multiple Hidden Matching problem (Section 3.2) and the associated bounds we prove can be interpreted similarly.

H. Two-outcome observable estimation
In the previous sampling problem, we used the potential exponential quantum communication advantage in the linear
sampling problem to make quantum representations of data a rival resource. It is then natural to ask if all problems exhibiting
an exponential quantum advantage in communication can be made into a problem where data can be used as a rival resource.
We will see that this is not the case quite generically, when Bob’s task is a decision problem.

As a key example, consider the following problem built upon a classic problem in quantum communication complexity:
Problem 3 (Vector In Subspace (VSN,θ) (Kremer, 1995)). Alice is given a vector x ∈ SN−1. Bob is given two orthogonal
subspaces of dimension N/2 specified by projection operators M (1),M (2). Under the promise that either

∥∥M (1)x
∥∥
2
≥√

1− θ2 or
∥∥M (2)x

∥∥
2
≥

√
1− θ2 for θ < 1/

√
2, their goal is to determine which is the case.

It is known that this problem exhibits an exponential advantage in quantum communication with respect to randomized
classical communication complexity (Klartag & Regev, 2010). Consider the following generalization:
Problem 4 (Vector In Multiple Subspaces (VMSN,θ,m)). Alice is given a vector x ∈ SN−1. Bob is given m pairs of
orthogonal subspaces M (1)

j ,M
(2)
j . Given a similar promise to the vector in subspace problem for each pair of subspaces,

the goal is to determine which subspaces x has large overlap with.

The exponential advantage in quantum communication might suggest that for this problem as well, classical data will
behave like a nonrival good while the quantum analog might behave like a rival good. Indeed the destructive nature of the
measurements would naively seem to satisfy our intuitive requirements. This is because even for m = 1, Alice must send
most of her input to Bob, and thus she may not be able to derive value that is proportional to m for larger m. However, the
problem can still be solved with relatively little quantum communication, since data states can be re-used in a manner that
allows Bob to solve the problem for m > 1 with Alice communicating a number of qubits that is only logarithmic in m.
This can be achieved via shadow tomography:
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Theorem H.1 (Shadow Tomography (Aaronson, 2018) solved with Threshold Search (Badescu & O’Donnell, 2020)). For
an unknown state |ψ⟩ of logN qubits, given m known two-outcome measurements Ei, there is an explicit algorithm that
takes |ψ⟩⊗k as input, where k = Õ(log2m logN log(1/δ)/ε4), and produces estimates of ⟨ψ|Ei |ψ⟩ for all i up to additive
error ε with probability greater than 1− δ. Õ hides subdominant polylog factors.

VMSN,θ,m is a problem of estimating m expectation values up to some constant error (due to the constraint on θ) on a
target state. If polynomial error is required, it is known that Ω(N) qubits of communication may be required, and hence
quantum communication is essentially equivalent to classical communication (from e.g. lower bounds on estimating inner
products (Cleve et al., 1997)). Allowing constant error, Theorem H.1 implies that polylog(m) qubits of communication
suffice to solve the problem. This directly implies that, at least if Alice sends multiple copies of her state, a lower bound
analogous to Theorem 3.1 is impossible, and Alice cannot hope to derive a payoff linear inm. This shows that an exponential
communication advantage is not a sufficient condition for quantum data to behave like a rival good.

Given that multiple entangled copies of a quantum state are known to be a more powerful resource than single copies (Huang
et al., 2022), it would also be interesting to consider a setting where Alice sends only single copies of her data states. One
way to do this is by introducing assumptions about the computation Bob is allowed to perform with his message. Ideally this
would be avoided, and one possible way to avoid this is using results on certified deletion (Broadbent & Islam, 2019). While
requiring additional encryption, it may be possible in this way for Alice to only send a copy of her state after receiving a
certificate that Bob has deleted the previous state, ensuring that multi-copy measurements cannot be performed.

A key difference between the vector in subspace problem and the other problems we consider is that the former is a decision
problem (a two-outcome measurement), while the latter are sampling problems or relations. This may suggest that these
type of problems are more amenable to the use of communication advantages to instill value in data as a resource.

H.1. Multiple Bobs: An arms race?

Here we consider the task of two-outcome observable estimation more generally. If Alice has a vector which she can encode
in a quantum state |x⟩ and each of m Bobs has an observable Oi, Alice is only willing to send the Bobs copies of |x⟩ (when
using quantum communication), and the Bobs cannot (i) store multiple copies of |x⟩ or (ii) communicate quantum states
between them, this is equivalent to the setting of learning without quantum memory that is studied in (Chen et al., 2021b).
More precisely, this is a setting where each Bob can perform a POVM on a single copy of |x⟩ only, and exchange classical
messages which correspond to the classical memory used in this setting. In contrast, the setting of learning with quantum
memory (as per (Chen et al., 2021b)) is one where the Bobs are allowed quantum communication (but still can measure only
a single copy of |x⟩ each), with the content of the quantum communication channel corresponding to the quantum memory.
In both cases, Alice’s messages correspond to samples of an unknown quantum state as is standard in learning problems.
While the results of (Chen et al., 2021b) apply to samples of a mixed state described by a density matrix ρ, they also apply
to a purification of ρ in a larger space. This will not affect the scaling with m which is the main object of interest for our
purposes.

Define by O an ensemble of two-outcome POVMs given byOi = UiZnU
†
i for 0 ≤ i < m/2 andOi = −Ui−m/2ZnU

†
i−m/2

for m/2 ≤ i < m, where the Ui are drawn i.i.d. from the Haar measure and Zn acts only on the last qubit.

When only classical communication is used between Alice and the Bobs, an optimal lower bound of Ω(
√
N) for estimating

the expectation value of a single two-outcome observable with constant probability is applicable (Gosset & Smolin, 2018).
Lemma 1 of that paper also provides a matching upper bound in the m-observable case (up to logarithmic factors). Namely,
estimating m expectation values of unit norm observables to constant error can be done with probability 2/3 by sending
Õ(log(m)

√
N) bits from Alice to Bob (where Õ hides polylog(N) factors). Alice requires no knowledge of the observables

themselves. This protocol is based on sending O(log(m)) random stabilizer sketches of Alice’s input state |x⟩. Each sketch
involves Alice drawing a Clifford unitary C from a uniform distribution over the Clifford group Cn (n = logN), and
computing

〈
0⊗(n−k)z

∣∣C |x⟩ for all z ∈ |0, 1⟩k for 2k = Õ(
√
N). Alice generates O(log(m)) i.i.d. sketches in this way

and sends both the measurement results and a description of the Clifford unitaries to the Bobs. Each Clifford unitary is
defined by specifying O(n2) one or two-qubit gates from a small set, and thus has an efficient classical description.

If Alice instead sends copies of her input encoded in the amplitudes of a quantum state |x⟩ to the Bobs, but we allow
classical communication only between the Bobs, and restrict the Bobs to performing single-copy measurements, the number
of samples of |x⟩ required is linear in m (Chen et al., 2021b):

Theorem H.2 (Corollary 5.7, (Chen et al., 2021b)). With constant probability over Oi drawn i.i.d. from O, estimating the
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expectation values of all Oi w.r.t. |x⟩ without quantum communication between Bobs with success probability at least 2/3
requires Ω

(
min {m/ log(m), N} /ε2

)
copies of |x⟩.

Note that this is worst-case over |x⟩ (if |x⟩ was uniformly random Bobs could just guess 0). Note also that the Oi are
chosen so that classical shadows do not help (for the operators in question the Hilbert-Schmidt norm is ||O2

i || = N , which
is roughly equivalent to the shadow norm that sets the sample complexity of classical shadows (Huang et al., 2020)). A
matching upper bound (up to log(m) factors, as long as m < N ) is obtained by the straightforward approach in which Alice
sends each Bob O(1/ε2) copies of her state.

When the Bobs are allowed to use quantum communication, they can jointly use shadow tomography (Aaronson, 2018;
Badescu & O’Donnell, 2020) to estimate all the expectation values using a logarithmic number of copies of ρ.

These results are summarized in Table 1.

Qubits/bits sent from Alice to the Bobs
Classical A → Bs, Classical Bs ↔ Bs Θ̃(N1/2) (Gosset & Smolin, 2018)
Quantum A → Bs, Classical Bs ↔ Bs Θ̃(m logN) (Huang et al., 2020)
Quantum A → Bs, Quantum Bs ↔ Bs O((log(m) log(N))2) (Badescu & O’Donnell, 2020)

Table 1. A communication arms race in estimating expectation values of two-outcome observables to within constant error: Alice must
send a significant portion of her input when using classical communication. If Alice sends quantum states and the Bobs use classical
communication among themselves, Alice can obtain a large payoff (linear in m). If the Bobs also use quantum communication, she can
no longer obtain such a payoff. We assume Alice only sends copies of her state, and assume constant error. Θ̃ hides factors of logm.

I. Future work
Our results suggest that consumability arises most naturally in relational and sampling problems. Note that both of these
classes of problems exhibit unique properties not shared by decision problems, which are the primary objects of study in
complexity theory (Montanaro, 2019; Aaronson et al., 2023). For decision problems, we were able to demonstrate that the
consumable data property only holds in the multi-Bob setting with classical communication between the Bobs. It is thus
natural to ask whether consumability is unachievable for decision problems in the two-party setting. In this context, it is
worth noting that our proof techniques are based on communication complexity reductions. These are cooperative problems,
and it could be that leveraging Alice’s ability to choose a data encoding that allows Bob to solve a problem yet somehow
makes the task of copying the state more difficult, perhaps by additionally using cryptographic primitives, will change this
picture.

The problems considered serve as a model for performing computation with user data, where both the data and the model
used for computation are proprietary, valuable, and private. The setup we consider does not require end-users to possess a
quantum computer in order to be valuable. Instead, the user must simply trust an entity possessing a networked quantum
computer to distribute data states on their behalf (but not to perform more complex functions such as setting prices in a data
market). This is similar to entrusting a bank to distribute funds on the behalf of an account holder.

The form of the quantum communication lower bound that indicates the rival behavior of quantum data is reminiscent of a
direct sum theorem. Direct sum theorems demonstrate that the complexity of solving m independent instances of certain
problems scales linearly with m. They have been studied extensively in both the classical (Shaltiel, 2003; Braverman et al.,
2013; Lee et al., 2008) and quantum (Sherstov, 2011; Jain & Kundu, 2020) setting. These results are not directly applicable
since in our setting the inputs to Alice are not independent. Thus, this work motivates an asymmetric direct sum result for
classes of communication relations.

I.1. Task clonability and the possibility of computationally consumable data

In analogy to the potential clonability of quantum states with structure, there is a sense in which any non-consumable
data may be cloned with respect to a particular task sample efficiently, even when cloning the overall state containing
the information remains sample inefficient. This is exemplified by the shadow tomography task above in which the task
is solved via the creation of a classical representation of a hypothesis ρT , such that r̃(EiρT ) ≈ r̃(Eiρ) for all i for the
ground truth state ρ. This classical representation ρT need not be close in trace distance such that ||ρ− ρT ||tr is small, as
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would be required for a high fidelity cloning of the true state. However it suffices for the task of shadow tomography, and
admits an entirely classical representation that may be cloned through classical communication at will, making the data
non-consumable, hence this task is clonable even when the underlying states might not be.

A lens we have not yet considered that is touched upon by the task of shadow tomography, is if data can become consumable
when Bob is restricted in computational capacity. It has been noted that general shadow tomography procedures are expected
to scale polynomially with the dimension of the Hilbert space of ρ or the trial state ρT . If Bob is restricted to polylog
computational time, then the creation of the clonable hypothesis state may become impossible. This is analogous to the
effect in cryptographic no-cloning theorems on pseudorandom quantum states (Ji et al., 2018), where even when sample
efficient cloning is possible, no computationally efficient scheme can be used to clone the states of interest. The addition of
computational restrictions on Bob hence potentially widens the class of consumable data tasks, but requires moving beyond
a purely communucation model that permits unbounded computation. We leave this exciting area for future work.

I.2. On purposeful data hiding - classical and quantum

So far we have discussed cases where quantum communication advantages along with the destructive nature of measurement
naturally lead to situations where quantum data behaves as a rival good. In all these situations, however, the results are based
on properties of the communication complexity of the problems, with the consequences for data economy was a byproduct.
This is a convenient setting to understand how such an economy can arise naturally, but one may wonder if the introduction
of cryptographic techniques can lead to additional situations where data may be treated as a rival good.

A setting that is known to bridge data privacy, destructive, and gentle quantum measurement is the study of differential
privacy (Dwork & Roth, 2014; Aaronson & Rothblum, 2019). In differential privacy, a query is promised not to reveal too
much about the specifics of the data, making it challenging to recreate and reuse the specifics of the data set by an individual
user. Alternatively, one could consider the potential economic utility of primitives such as fully homomorphic encryption
(Gentry, 2009) or blind quantum computation (Broadbent et al., 2008). Another interesting approach is to consider the dual
view where rather than the data, the model is transmitted as a quantum state. This is of interest in practice, since both user
data and the models used to compute with it are typically proprietary.

Moreover, in the above schemes we have focused on cases where the data is provided as pure states and when the only
advantage examined otherwise is communication complexity. When data is transmitted as a pure state, it is known that
classical shadows have the potential to remove strict communication advantages when the circuits are too simple, but
reconstruction can still be challenging computationally based on arguments from quantum pseudorandom states (Zhao et al.,
2023). An interesting direction could be to enhance some of the features of the example problems here by providing the data
as a mixed state, such that it is more difficult for an adversary to learn under certain assumptions such as lack of a substantial
quantum memory. We leave these directions for future work.
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