
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

AI in a vat: Fundamental limits of efficient world
modelling for safe agent sandboxing

Anonymous authors
Paper under double-blind review

Keywords: World modelling, POMDP, agent sandboxing, AI safety, AI interpretability.

Summary
World models provide controlled virtual environments in which AI agents can be tested before
deployment to ensure their reliability and safety. Unfortunately, the scope and depth of safety
assessments can be severely restricted by the computational demands imposed by high-fidelity
simulations. Inspired by the classic ‘brain in a vat’ thought experiment, here we investigate
ways to simplify world models that remain agnostic to the AI agent under evaluation. Our
analysis reveals fundamental trade-offs in the construction of world models related to their
computational efficiency and interpretability. We identify procedures to build world models
that either minimise memory requirements, delineate the limits of what a capable agent could
learn about the world, or enable retrospective analyses to reveal the causes of undesirable
outcomes. In doing so, we take a first step toward charting the fundamental limits of agent
sandboxing, while establishing a common language bridging reinforcement learning, control
theory, and computational mechanics.

Contribution(s)
1. This paper conceptualises and formalises a novel problem: building efficient world models

to sandbox and evaluate the safety of AI agents before deployment.
Context: Prior work (e.g. (Ha & Schmidhuber, 2018; Hafner et al., 2020)) has used world
models for boosting performance, and has not considered this safety-inspired perspective.

2. We introduce generalised transducers based on quasi-probabilities, which lead to a compu-
tationally efficient approach to reduce world models.
Context: Generalised transducers are an extension of generalised hidden Markov models,
which have been thoroughly studied by previous work (Upper, 1997; Vidyasagar, 2011).

3. We provide a unifying formal framework to investigate and reason about world models of
beliefs, and show that all such models can be bisimulated into a cannonical world model
known as the ϵ-transducer.
Context: The minimality of the ϵ-transducer among predictive processes was proven
in (Barnett & Crutchfield, 2015), without investigating the links with bisimulation or other
concepts from reinforcement learning. Relationships between bisimulation and other com-
putational mechanics constructions were investigated by Zhang et al. (2019).

4. We introduce the notion of reverse interpretability, which is related to retrodictive analyses
that can identify the roots of undesirable outcomes.
Context: Standard interpretability approaches assess agents with respect to their capabili-
ties to predict and plan with respect to future events (Nanda et al., 2023; Gurnee & Tegmark,
2023; Shai et al., 2025).

5. We introduce the notion of reversible transducer, and identify necessary and sufficient con-
ditions for it. We also introduce and explore the notion of retrodictive beliefs.
Context: Retrodictive and reversible hidden Markov models have been investigated by El-
lison et al. (2009; 2011)
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Abstract

World models provide controlled virtual environments in which AI agents can be tested1
before deployment to ensure their reliability and safety. Unfortunately, the scope and2
depth of safety assessments can be severely restricted by the computational demands3
imposed by high-fidelity simulations. Inspired by the classic ‘brain in a vat’ thought4
experiment, here we investigate ways to simplify world models that remain agnostic to5
the AI agent under evaluation. Our analysis reveals fundamental trade-offs in the con-6
struction of world models related to their computational efficiency and interpretability.7
We identify procedures to build world models that either minimise memory require-8
ments, delineate the limits of what a capable agent could learn about the world, or9
enable retrospective analyses to reveal the causes of undesirable outcomes. In doing so,10
we take a first step toward charting the fundamental limits of agent sandboxing, while11
establishing a common language bridging reinforcement learning, control theory, and12
computational mechanics.13

1 Introduction14

Breakthroughs in deep learning are progressively enabling AI agents capable of mastering complex15
tasks across a wide array of domains (Arulkumaran et al., 2017; Wang et al., 2022), and a new16
generation of agents leveraging large language models (Wang et al., 2024) and large multimodal17
models (Yin et al., 2024) are expected to drive a new wave of technological innovation with the18
potential to benefit every sector of the global economy (Larsen et al., 2024). Alongside all these19
benefits, the proliferation of increasingly advanced autonomous AI systems will also bring important20
new risks regarding their safety, controllability, and alignment to human values (Bengio et al., 2024;21
Tang et al., 2024). Given these far-reaching prospects, it is imperative to develop frameworks and22
methodologies to guarantee the safe and beneficial integration of these technologies to our societies.23

One path to pursue AI safety and alignment is to use world models as sandbox environments to test24
and evaluate AI agents without real-world consequences (Dalrymple et al., 2024; Díaz-Rodríguez25
et al., 2023; EU Council, 2024). These simulated environments are ideal for observing how AI26
agents handle edge cases and respond to novel situations while pursuing their objectives, potentially27
revealing safety issues or alignment failures before deployment (He et al., 2024). However, the28
efficacy of this approach critically relies on the world model accurately representing relevant aspects29
of real environments, which is key for guaranteeing that the agent’s behaviour in simulation may30
transfer to real-world settings. Thus, a key challenge lies in dealing with the computational demands31
of high-fidelity simulations, whose costs can impose unfortunate restrictions on the breadth and32
depth of safety assessments.33

In this work we address these issues by investigating the fundamental limits that shape the design34
of world models for AI sandboxing. By bridging concepts from different disciplines, we identify a35
fundamental trade-off between the computational efficiency of a world model and its interpretability.36
Moreover, we identify between forward and reverse interpretability approaches, where the former37
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characterises the predictive capabilities of agents and the latter enables retrodictive analyses that38
can identify the roots of undesirable outcomes. We provide practical suggestions for building world39
models that are optimal according to different desiderata, while making no assumptions about the40
agent’s policy or capabilities.41

2 Scenario and approach42

Representation and what is represented belong to two completely different worlds.43

H. von Helmholtz, Handbuch der physiologischen Optik (1867)44

Consider the task of designing a world model to sandbox and test the safety of an AI agent (Dalrym-45
ple et al., 2024). What should this world model look like? What information should it encode? And46
for what purpose?47

To ensure a reliable assessment of AI agent behaviour from simulations to a real-world setting, world48
models must faithfully reflect the real world’s structure and dynamics. This could be seen as sug-49
gesting that designing reliable world models is critically limited by a trade-off between accuracy and50
computational tractability. Interestingly, this trade-off can be partially circumvented by recognising51
that effective world models only need to incorporate variables that make a difference for the AI’s52
actions, and these variables only require a granularity that is sufficient to accurately simulate their53
dynamics.54

To illustrate this idea, consider how one could construct a world model to sandbox a small agent55
such as a bacterium. While one could in principle run a simulation that includes the quantum dy-56
namics of the whole planet, such simulation would be not only computationally unfeasible but also57
unnecessary to answer most questions of interest at that scale. Indeed, such a world model would58
likely be too spatially extended (by including regions of the planet that are inaccessible to the agent)59
and too high-resolution (by including quantum effects for a fundamentally classical agent). To avoid60
this, the designer could instead choose to build an a more computationally-efficient world model that61
factor out indistinguishable properties from the bacterium perspective, and instead focuses on sen-62
sorimotor contingencies (O’Regan & Noë, 2001; Baltieri & Buckley, 2017; 2019; Tschantz et al.,63
2020; Mannella et al., 2021), or in the agent’s ‘interface’ that only considers information relevant64
for an agent and the particular task at end (Zhang et al., 2021).65

Related questions have been extensively investigated in the philosophy of mind and cognitive66
(neuro)science literatures for decades, and more recently in reinforcement learning. These inves-67
tigations highlight the fact that while an agent’s actions turn into outcomes due to the mediation of68
the external world, the agent has no direct access to the world and only interacts with it via its inputs69
and outputs (Clark, 2013; Seth & Tsakiris, 2018). This notion is illustrated by the classical ‘brain70
in a vat’ thought experiment, which suggests that if organism’s brain were to be placed inside a vat,71
and a computer used to read the brain’s output signals and generate plausible sensory signals, then72
the brain may not be able to tell it is in fact in a vat.173

Following this line of reasoning, an ideal world model should depend only on three key elements:74
(i) the set of possible actions of the agent A, (ii) the set of possible outcomes affecting the agent75
Y ,2 and (iii) the statistical relationship between action sequences and outcomes. Crucially, it should76
be possible to build a compressed representation of the effective world of an AI agent, such that it77
cannot be distinguished from a full simulation — irrespective of how smart or powerful it may be.78
This ‘AI in a vat’ perspective suggests that designers should not focus on a single world model, but79
instead consider the class of all world models that are indistinguishable from the AI agent’s perspec-80
tive, characterise their properties, and then use different ones depending on specific priorities. The81
remainder of this article formalises some of these issues and takes steps towards their resolution,82
while identifying fundamental trade-offs intrinsic to the design of world models.83

1The modern form of this thought experiment is due to Putnam (1981), but has roots in Descartes’ ‘evil demon’ (Descartes,
1641) and Plato’s cave allegory (Plato, 375 BC) — while serving as inspiration for popular media such as The Matrix movies.

2The outcome may be a combination of a quantity observable by the agent and a reward signal, so that Y = O × R.
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3 Generating interfaces via transducers84

We start by formalising the ideas of ‘world model’ and ‘interface’. In the following, uppercase letters85
(e.g. X,Y ) denote random variables and lowercase (e.g. x, y) their realisations, N = {0, 1, 2, . . .}86
corresponds to zero-based numbering. We use the shorthand notation p(x|y) = Pr(X = x|Y = y)87
to express probabilities when there is no risk of ambiguity, and assume that equalities of the form88
p(x|y) = p(x) hold for all realisations that can take place with non-zero probability. We also use89
the following abbreviations: xa:b = (xa, . . . , xb), x:b = x0:b, xa: = xa:∞, and x: = x0:∞.90

3.1 World models91

We operationalise interfaces as descriptions of how actions turn into outcomes for a particular agent.92

Definition 1. An interface I(Y |A) is a collection of distributions {p(y:t|a:), t ∈ N} corresponding93
to a stochastic process over outcome sequences y: ∈ YN conditioned on action sequences a: ∈ AN.94
An interface is anticipation-free if p(y:t|a:) = p(y:t|a:t) for all t ∈ N.95

Interfaces can be generated from an underlying world model that describes the transduction of ac-96
tions into outcomes. Notably, interfaces are agnostic to the computational capabilities of agents,97
their architecture, and internal functioning. We next introduce a general notion of world model98
stated in terms of sufficient statistics (App. A), and use the shorthand notation ht = (at, yt) so that99
h:t denotes the joint history of the interface up to time t.100

Definition 2. A world model for an interface I(Y |A) is a collection of distributions p(s:t|h:) for101
t ∈ N corresponding to a stochastic process over sequences of states s: := (s0, s1, . . . ) ∈ SN that102
satisfies103

(1) p(yt:|h:t−1, s:t,at:) = p(yt:|st,at:) and (2) p(yt|at:, st) = p(yt|at, st). (1)

A world model is anticipation-free if it also satisfies (3) p(s:t|h:t−1,at′:) = p(s:t|h:t−1) ∀t′ ≥ t.104

Intuitively, world models are auxiliary stochastic processes that ‘unravel’ interfaces. More precisely,105
world models encapsulate the relevant information between the past events and future outcomes106
(condition 1) and guarantee the arrow of time (conditions 2 & 3). This definition, together with107
the one of an interface, generalise popular modelling approaches such as partially observed Markov108
decision processes (POMDPs) (Kaelbling et al., 1998) (see App. B). We may denote a world model109
informally simply by St when it is unambiguous from context.110

A key property of anticipation-free world models is that they allow to express interfaces as (App. C)111

p(y:t|a:) =
∑
s:t+1

p(y:t, s:t+1|a:) =
∑
s:t+1

p(s0)

t∏
τ=0

p(yτ |sτ , aτ )p(sτ+1|h:τ , s:τ ). (2)

This provides a description of the interface in terms of a probabilistic graphical model (Koller &112
Friedman, 2009), which can be used to efficiently simulate it. Such graphical model allows, among113
other things, to generate outcomes for given sequence of actions a:τ and world states s:τ by directly114
sampling the posterior distribution p(y:τ |s:τ+1,a:) =

∏τ
t=0 p(yt|st, at). In this sense, we say that115

the world model St generates the interface I(Y |A), and that the graphical model outlined in Eq. (2)116
establishes a presentation of the interface.117

3.2 Transducers118

Unfortunately, sampling of world trajectories can be highly non-trivial as their dynamics may be119
non-Markovian. One way to address this problem is to build world models via transducers (Barnett120
& Crutchfield, 2015), a computational structure that we introduce next.121

Definition 3. A transducer is a tuple
(
S,Y,A,K, p

)
, where S is the set of memory states, A and122

Y are the sets of inputs and outputs, K = {κt(y, s′|a, s) : a ∈ A, y ∈ Y, s, s′ ∈ S, t ∈ N} is a123
collection of stochastic kernels, and p is an initial distribution for the memory states.124
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Figure 1: Illustration of an interface (left) and its unravelling via a presentation with world model
built from the memory states of a transducer (right), shown in Eq. (4).

We may denote transducers informally as (Yt, At, St) when it is unambiguous from the context. If125
the transducer’s memory can only take |S| = n different states, then the transducer’s dynamics can126

be described via symbol-labelled substochastic matrices T (y|a)
t of the form127

T
(y|a)
t :=

n∑
i=1

n∑
j=1

κt(y, si|a, sj)eie⊺j , (3)

with κt(y, s′|a, s) = Pr(Yt = y, St+1 = s′|At = a, St = s) a Markov kernel and ek a binary vector128
with a one at the k-th position and zeros elsewhere. Transducers are closely related to stochastic129
automata (Claus, 1971; Cakir et al., 2021), a generalisation of classic automata (Minsky, 1967)130
that use stochastic transitions to generate outputs and update their state. In the degenerate case131
where p(y:t|a:) = p(y:t), corresponding to ‘contemplative’ agents that do not act but only sense,132
transducers reduce to a hidden Markov models (Ephraim & Merhav, 2002).133

Our next result provides alternative characterisations of transducers, which clarify under which con-134
ditions the memory states can be used as the world model of an interface (proof is given in App. D).135

Lemma 1. The following are alternative characterisations of a transducer:136

1. St is an anticipation-free world model for I(Y |A) whose dynamics satisfy p(st+1|s:t,h:t) =137
p(st+1|st, ht) for all t ≥ 0.138

2. St satisfies p(s0|a:) = p(s0) and p(st+1, yt|s:t,h:t−1,at:) = p(st+1, yt|st, at) for all t ≥ 0.139

3. St satisfies I(S:t,Y:t−1;At:|A:t−1, S0) = I(St+1:,Yt:;Y:t−1,S:t−1,A:t−1|At:, St) = 0.140

Lemma 1 implies that transducers are world models with Markovian dynamics. Thanks to this,141
transducers can be used to conveniently express interfaces as142

p(y:τs:τ+1|a:) = p(s0)

τ∏
t=0

p(st+1, yt|st, at), (4)

providing a graphical model that can be used to simulate the interface (Figure 1). In this construction,143
(st+1, yt) gets generated jointly out of (st, at), corresponding to what the literature describes as a144
‘Mealy’ machine (Virgo, 2023; Bonchi et al., 2024). This can be made simpler in several ways.145
Following the HMM literature (Riechers, 2016), we define an output-Moore transducer as the ones146
satisfying p(st+1 | st, ht) = p(st+1 | st, at), so that the future world state do not depend on the147
current output conditioned on the present state. Alternatively, following the automata literature (Lee148
& Seshia, 2017), we define an input-Moore transducer as the ones satisfying p(yt|st, st+1, at) =149
p(yt|st, st+1), so that the output does not depend on the current action.3 Finally, both conditions150
can be combined to form I-O Moore transducers that satisfy p(yt|st, st+1, at) = p(yt|st), which151
correspond to partially observed Markov decision processes (POMDPs) (Kaelbling et al., 1998) as152
shown in App. B.153

3Output-Moore systems can be used to represent physical processes whose evolution is not affected by observation, con-
trasting with models reflecting epistemic processes (see Sec. 5). The input-Moore condition is typically used as a modelling
choice to determine the temporal ordering between At and Yt.
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Some interfaces admit a very simple transducer. For example, an interface corresponding to a mem-154
oryless input-output processes with p(y:t|a:) =

∏t
τ=0 p(yτ |aτ ) can be generated by a trivial world155

model St = 0. This is a degenerate case of a broader family of interfaces that afford simple world156
models, which we define next — including Markov decision processes (MDPs) as a main example.157

Definition 4. An interface I(Y |A) is fully observable if St = Yt yields a valid transducer.158

Interestingly, non-trivial world models are required by interfaces with non-Markovian dynamics.159

Lemma 2. An interface is fully observable if and only if p(yt+1|y:t,a:) = p(yt+1|yt, at).160

Proof. This follows directly from using condition (2) from Lemma 1, an noticing that St = Yt161
yields a transducer if and only if p(yt+1, yt|y:t,a:) = p(yt+1, yt|yt, at) = p(yt+1|yt, at).162

4 Reducing world models163

After setting the formal foundations of world models, and transducers as a way to construct compu-164
tationally efficient ones, we now investigate minimal world models.165

4.1 Minimal world models166

We begin by showing that all interfaces have at least one transducer presentation, and hence one can167
focus on this computational structure without loss of generality (see the proof in App. E).168

Lemma 3. The world model St = H:t−1 yields a valid transducer for any interface I(Y |A).169

Unfortunately, the world model highlighted in Lemma 3 is far from parsimonious: resembling170
Borges’ character Funes the memorious, it does not forget anything and hence its implementa-171
tion would require an unbounded amount of memory. Thus, from here onwards we focus on the172
following question: how can one reduce/simplify a given transducer presentation of an interface?.173

To address this question, we first establish what it means to ‘reduce’ a transducer. For this, we build174
on the idea of MDP homomorphism (Ravindran, 2003), which we extend to transducers as follows.175

Definition 5. A homomorphim between transducers (Yt, At, St) and (Y ′
t , A

′
t, S

′
t) is given by the176

mappings ϕ : S → S ′, f : Y → Y ′, and g : A → A′ satisfying two compatibility conditions:177

(i) Pr
(
Y ′
t = f(y)|S′

t = ϕ(s), A′
t = g(a)

)
= Pr

(
Yt = y|St = s,At = a

)
.178

(ii) Pr
(
S′
t+1 = s′|S′

t = ϕ(s), H ′
t = (f(y), g(a))

)
=

∑
s′′∈[s′] Pr

(
St+1 = s′′|St = s,Ht = (y, a)

)
179

and Pr
(
S′
0 = s′

)
=

∑
s′′∈[s′] Pr

(
S0 = s′′

)
, where [s′] = {s ∈ S : ϕ(s) = s′}.180

A reduction of a world model St
ϕ−→ S′

t is a homomorphism between transducers with the same181
inputs and outputs (Yt, At, St) and (Yt, At, S

′
t) in which f and g are identity mappings and ϕ is182

surjective. Two worlds are isomorphic if they are reductions of each other. Finally, a world model183
St is minimal if all its reductions are isomorphic to itself.184

An homomorphism is a structure-preserving map between transducers, and a world reduction is a185
coarse-graining between the memory states of two transducers of the same interface. Condition (i)186
above ensures that outcomes are generated with the same statistics, and (ii) that the resulting world187
model is Markovian — as can be confirmed by relating it with the notion of ‘lumpability’ of Markov188
chains (Tian & Kannan, 2006). These properties let reductions of transducers to generate the same189
interfaces as the transducers they reduce, as shown next (see App. F for a proof).190

Lemma 4. A transducer and all its reductions generate the same interface.191

The next two sections study different approaches to look for minimal world models.4192

4Minimality can also be studied via the entropy of the world dynamics, which better accounts for encoding cost. In-
terestingly, minimal entropy models may not coincide with the models with fewer states — although the two coincide for
predictive models (Loomis & Crutchfield, 2019)
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4.2 Reduction via bisimulation193

A natural way to reduce a world model is via the notion of bisimulation, which is typically studied194
in the context of MDPs as a way of merging states that have an equivalent role in generation and195
dynamics (Givan et al., 2003). Here we leverage previous work on bisimulations for hidden Markov196
models (Jansen et al., 2012) to define bisimulations of transducers.197

Definition 6. For a given transducer with world model St and kernel κt, a bisimulation is an198
equivalence relationship Bt ⊆ S × S such that s ∼ s′ if they satisfy the following conditions199

(i) pt(y|s, a) = pt(y|s′, a), where pt(y|s, a) =
∑
s′′∈S κt(y, s

′′|s, a) is the probability of generat-200
ing y given s and a, and201

(ii) pt(C|s, a) = pt(C|s′, a) for all equivalence classes C ⊆ S, where pt(C|s, a) =202 ∑
y∈Y

∑
s′′∈C κt(y, s

′′|s, a).203

World model reductions (Def. 5) and bisimulations are two faces of the same coin, as shown next by204
extending a standard result from Taylor et al. (2008) to our world models (see proof in App. G).205

Proposition 1. St
ϕ−→ S′

t if and only if the equivalence relationship with classes given by ϕ−1(s′) =206
{s ∈ S : ϕ(s) = s′} is a bisimulation.207

This proposition has a simple yet powerful implication: it shows that the optimal way to reduce a208
given world model is to coarse-grain its states with a bisimulation.209

Unfortunately, bisimulation is often not able to deliver the smallest world model capable of gen-210
erating a given interface. To investigate this, let us consider a world model with |S| = n states211
and build the vectors w(h:t) ∈ Rn of probabilities of generating y:t given a:t when starting from212
different world states, so that its k-th coordinate is [w(h:t)]k = Pr(Y:t = y:t|A:t = a:t, S0 = sk).213
Intuitively, if the vectors w(h:t) are linearly dependent, that suggests that some of their dimensions214
— and, hence, their corresponding world states — are not being exploited. Crucially, the coarse-215
grainings related to bisimulation can only remove states that have identical components, but cannot216
reduce more general linear dependencies between states (see also Sec. 5.2 and App. M). Note that217
relaxing the criteria for merging states — e.g. via bisimulation metrics (Ferns & Precup, 2014) —218
does not solve this issue, as this would necessarily introduce changes in the resulting interface.219

These ideas can be made concrete by studying the so-called canonical dimension of a transducer T ,220
which is defined as221

d(T ) := lim
m→∞

dim(Um), where Um = Span{w(h:t) : t ≤ m} ⊆ Rn. (5)

If a transducer has |S| = n memory states then limm→∞ dim(Um) = dim(Un−1) (Cakir et al.,222
2021, Prop. 4.3). The canonical dimension is an important index of a transducer, as shown by the223
next result, whose proof can be found in (Cakir et al., 2021, Th. 4.8), and related results can be found224
in (Ito et al., 1992; Balasubramanian, 1993).225

Theorem 1. If T is a transducer with |S| = n ∈ N, then d(T ) = n implies that there are no226
transducers with fewer memory states that can generate the same interface.227

Unfortunately, it is often the case that the minimal bisimulation of a given transducer T̂ with world228
states in Ŝ still exhibits d(T̂ ) < |Ŝ|. In fact, there are interfaces for which no transducer reaches229
d(T ) = |S|. Furthermore, even if there exists a transducer with d(T̂ ) = |S|, we are not aware of any230
general algorithm that can directly build it. In fact, the relatively simpler case of reducing hidden231
Markov models is still not fully solved (Vidyasagar, 2011), although algorithms that can address232
some cases have been developed (Huang et al., 2015; Ohta, 2021).233

4.3 Pseudo-probabilities and generalised transducers234

In this section we focus on the reduction of world models with a finite number of states |S| = n.235
As discussed in Sec. 3.2, if a transducer has a world that can take n <∞ number of states, then the236
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probabilities of y:t given a:t can be calculated via237

p(y:t|y:t) = 1⊺ ·
( t∏
i=0

T
(yi|ai)
i

)
· p, (6)

where 1⊺ is a transposed vector with n ones as components. Normally, the substochastic matrices238
T

(y|a)
t and the initial distribution p are assumed to contain only non-negative terms. A more general239

class of transducers can be explored by reducing this constraint and considering quasi-distributions240
v ∈ Rn, which may have negative components but still satisfy

∑n
i=1 vi = 1, and quasi-stochastic241

matrices whose columns are quasi-distributions (Balasubramanian, 1993; Upper, 1997). This leads242
to a generalised notion of transducer, which we introduce next.243

Definition 7. A generalised transducer for an interface I(Y |A) is a tuple (A,Y,S, {A(y|a)},v,u)244
with u,v ∈ Rn and A(y|a) ∈ Rn×n that satisfy245

Pr(y:t|a:t) = u⊺ ·
( t∏
i=0

A
(yi|ai)
i

)
· v ∀y:t ∈ Yt+1,a:t ∈ At+1. (7)

Generalised transducers are useful because, in contrast to standard transducers (or POMDPs), they246
can always be reduced to find representations with a minimal number of states, as shown next.247

Theorem 2. A generalised transducer T̃ with d(T̃ ) < n can always be reduced to another trans-248
ducer that generate the same interface using fewer states.249

This result follows directly from the proofs provided in (Balasubramanian, 1993, Ch. 3), and related250
results can be found in (Upper, 1997; Vidyasagar, 2011). Notably, these proofs lead to practical251
algorithms that can be used to efficiently reduce transducers with d(T̃ ) < n (see App. H). In this252
way, generalised transducers achieve a minimal computational complexity at the cost of introducing253
an opaque world model whose trajectories cannot be sampled (due to the quasi-probabilities), which254
results in a substantial lack of interpretability.255

5 Forward interpretability via epistemic world models256

The previous section shows how maximal computational efficiency can be achieved by either com-257
pressing memory state spaces with bisimulations, or by allowing memory states of transducers to258
follow quasi-probabilities. While the latter generally yields higher efficiency, this comes at the cost259
of making those reduced world models highly uninterpretable due to the possible presence of neg-260
ative probabilities. In this section we take a different route by investigating specific types of world261
models that focus on interpretability, bringing insights about what AI agents can learn.262

5.1 World models of beliefs263

Let us start by highlighting properties that can make world models more interpretable.264

Definition 8. A world model St is predictive if I(St;Yt:|H:t−1,At:) = 0, so that the present world265
state contains no present or future information (given the actions). A world model is observable if266
there is a mapping f : Y ×A → S such that St+1 = f(Y:t,A:t). A world model is unifilar if there267
is a function f such that St+1 = f(Yt, At, St).5268

These classes of models are linked in interesting ways: observable world models are always predic-269
tive, and unifilar models are observable if there is no randomness in the world’s initial condition.270

The literature contains various procedures that expand world models that trade computational com-271
plexity for observability. Many of these approaches model processes of inference and accumulation272

5Or St+1 = f(Yt+1, At, St), depending on time indexing conventions.
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of knowledge (Virgo et al., 2021; Biehl & Virgo, 2022). Following Bayesian principles (Jaynes,273
2003), these approaches shift the world configurations from elements in a set S to distributions over274
S — henceforth called belief states — that reflect different states of knowledge of agents. Moreover,275
by focusing on processes of optimal reasoning, one can assume that these belief states are updated276
via unifilar dynamics (Virgo, 2023). These ideas are captured in our next definition.277

Definition 9. A predictive belief transducer on the states a world model S is a tuple278 (
B,Y,A, K̂, b0

)
, where B ⊆ ∆(S) is a set of belief states, K̂ = {κ̂t(y, d′|a, d) : a ∈ A, y ∈279

Y, d, d′ ∈ B, t ∈ N} are stochastic kernels of the form κ̂t(y, d
′|a, d) = p(y|a, d)δd′f(y,a,d) with280

f : Y ×A×∆(S) → ∆(S), and b0 ∈ ∆(S) is an initial belief.281

Predictive belief transducers are predictive, observable since their initialisation is always determin-282
istic, and unifilar by construction. In general, predictive belief transducers may not generate the283
same interface as the world model over which they are built.284

Various types of belief transducer can be built by choosing different update functions f from the285
literature. A well-known update rule in the reinforcement literature comes from the notion of belief286
MDP (Kaelbling et al., 1998), which we extend to input-Moore transducers.287

Definition 10. An update transducer is a belief transducer determined by memory states of the form288
B = {bt = p(st|y:t,a:t−1) : st ∈ S,y:t ∈ Yt+1,a:t−1 ∈ At, t ∈ N} and an update rule given by289

bt(st) =
p(yt|st)
Z

∑
st−1

p(st|st−1, at−1)bt−1(st−1), (8)

with Z a normalising constant that does not depend on st.290

Above, Eq. (8) is the natural Bayes updating procedure that arises from the functional form of bt291
when St is a Moore transducer (for a derivation, see App. I). Update transducers are important as292
they enable policies that reach optimal control in partially observable settings (Sawaki & Ichikawa,293
1978; Åström, 1965; Yang et al., 2023).294

Another way to build belief states from a world model from ‘mixed-states’ (Riechers & Crutchfield,295
2018; Jurgens & Crutchfield, 2021), which we now generalise to world models.296

Definition 11. A mixed-state transducer is a belief transducer determined by memory states of the297
form B = {dt = p(st|h:t−1) : st ∈ S,h:t−1 ∈ Yt ×At, t ∈ N} and an update rule given by298

dt+1(st+1) =
1

Z ′(at, yt)

∑
st

p(yt, st+1|st, at)dt(st), (9)

with Z ′ a normalising constant that does not depend on st.299

A useful fact about mixed-state transducers is that they generate the same interface as the original300
transducer when their initial condition matches the one of the latter (proof in App. J). Interestingly,301
update and mixed-state transducers can be seen as two facets of Bayesian updating, corresponding302
to alternating phases of Bayesian filtering (Chen, 2003) as shown next (proof in App. I).303

Lemma 5. If St is the memory state of an input-Moore transducer, then the dynamics between304
update and mixed states follow the ‘predict-update’ process from Bayesian filtering:305

bt−1 = p(st−1|h:t−1)
predict−−−→ dt = p(st|h:t−1)

update−−−→ bt = p(st|h:t). (10)

5.2 Minimal predictive world models306

Following Barnett & Crutchfield (2015), let us now present a method from computational mechanics307
to build an observable world model directly from an interface I(Y |A) without the need to bootstrap308
from a world model. This will tell us, in some sense, what is reasonable to assume about a world309
model given only its interface.310
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For this, let us first consider the equivalence relationship of histories given by311

h:t ∼ϵ h′
:t iff p(yt+1:|h:t,at+1:) = p(yt+1:|h′

:t,at+1:), ∀yt+1:,at+1:. (11)

Let’s denote by ϵ the coarse-graining mapping that assigns each history to its corresponding equiva-312
lence class ϵ(h:t) = [h:t]∼ϵ , and define Mt = ϵ(H:t). This construction is known to be an effective313
way to build belief states without relying on a world model, known as predictive state represen-314
tations (Littman & Sutton, 2001; Singh et al., 2004) in reinforcement learning, which are based on315
older ideas for stochastic processes (without inputs/actions) from computational mechanics (Crutch-316
field & Young, 1989). This construction is also closely related to the notion of instrumental states317
presented by Kosoy (2019). We now show that these equivalence classes serve as memory states of318
a transducer that generates the original interface (proof in App. K).319

Proposition 2. The triplet (Yt, At,Mt) yields a valid transducer that is isomorphic to the minimal320
bisimulation of the world model St = H:t−1.321

The link between computational mechanics methods and predictive state representations was first322
noticed by Zhang et al. (2019), which addressed it using a different computational structure instead323
of transducers. Following Barnett & Crutchfield (2015), we now formally define the transducer that324
results from the ϵ coarse-graining.325

Definition 12. The ϵ-transducer of the interface I(Y |A) is the transducer with memory state given326
by Mt = ϵ(H:t−1), where ϵ is defined as in Eq. (11).327

Every interface has a unique (up to isomorphism) ϵ-transducer. The next result shows that the ϵ-328
transducer generates its interface, which was first proven in (Barnett & Crutchfield, 2015, Prop. 2).329
We provide an alternative proof that leverages links with the reinforcement learning literature.330

Lemma 6. The ϵ-transducer of an interface I(Y |A) always generates the same interface.331

Proof. For a given interface I(Y |A), Prop. 2 shows that the ϵ-transducer is a bisimulation of St =332
H:t−1. Given that St generates the interface (as shown in Lemma 3), Lemma 4 and Prop. 1 guarantee333
that the ϵ-transducer also does so.334

A salient feature of the ϵ-transducer (or, equivalently, predictive state representation) is that it335
provides belief dynamics over much fewer states than regular belief MDPs or equivalent meth-336
ods (Littman & Sutton, 2001). Our next result further sediments this by showing that it yields the337
most efficient predictive world model possible.338

Theorem 3. If Rt is a predictive world model of a transducer (such as, e.g., belief MDPs or mixed-339
states), then its minimal bisimulation is isomorphic to the ϵ-transducer.340

Proof. For a given transducer with memory Rt, one can build an equivalence relationship via341

ϵ(r) = ϵ(r′) iff Pr(Yt:|At:, Rt = r) = Pr(Yt:|At:, Rt = r′). (12)

Then, one can show that if Rt is a predictive world model, then ϵ(Rt) are isomorphic to the memory342
states of the ϵ-transducer. A proof of this can be found in App. L.343

This result leads to an important corollary relalated to the bisimulation of beliefs (Castro et al.,344
2009): while the bisimulation of general transducers may not fully reduce world models (as dis-345
cussed in Sec. 4.2), bisimulations of beliefs necessarily lead to the ϵ-transducer.346

Corollary 1. The ϵ-transducer is the minimal predictive model that generates a given interface.347

A discussion between the minimality of predictive vs general transducers is provided in App. M.348
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6 Backwards interpretability via retrodictive world models349

The previous section highlights the ϵ-transducer as the universal solution for scenarios where one350
needs a minimal predictive model. This model particularly useful to evaluate the capabilities of351
agents to distil information that is relevant to predict future events. Despite this being the prevalent352
approach to agent interpretability, it is crucial to note that prediction does not exhaust the possible353
knowledge-based activities in which an agent can be involved. In this section we explore retrodictive354
world models, which opens a new dimension of agent interpretability.355

6.1 Retrodictive transducers356

World models can in general contain information that the agent can only have access to in the future,357
without this violating the arrow of time. For example, a world model could be such that its state at358
t = 0 could already contain outcomes for any possible sequence of future actions (see App. N).359
In fact, in some scenarios the present state of a world models can be more strongly correlated with360
future observations rather than past ones (Ellison et al., 2009), and while this architecture may appear361
counterintuitive, it has been shown to be maximally efficient for processes that generate structure362
(Boyd et al., 2018).363

Building on these ideas, we now consider ‘retrodictive’ world models that only contain future infor-364
mation, being duals to predictive models as introduced in Def. 13. Following Riechers et al. (2016),365
we also introduce a dual notion to unifiliarity.366

Definition 13. A world model St is retrodictive if I(St;Y:t−1|Ht:,A:t−1) = 0. A world model is367
counifilar if there is a function f such that St = f(St+1, At, Yt).368

This notion makes one wonder if transducers could be made to ‘run backwards’, and what conditions369
would be necessary for this to happen. Functionally, Eq. (4) suggests that this could be done if370
rather than employing a forward-time kernel κ(yτ , sτ+1|sτ , aτ ) = p(yτ , sτ+1|sτ , aτ ) that updates371
the memory state from sτ to sτ+1, one could build a reverse-time kernel κR(yτ , sτ |sτ+1, aτ ) =372
p(yτ , sτ |sτ+1, aτ ) that updates the memory from sτ+1 to sτ .373

Definition 14. A reversible transducer is a transducer
(
S,Y,A,K, p

)
together with an additional374

stochastic kernels KR = {κRt (y, s′|a, s) : a ∈ A, y ∈ Y, s, s′ ∈ S, t ∈ N} such that375

p(y:t, s:t+1|a:) = p(s0)

t∏
τ=0

κt(yτ , sτ+1|sτ , at) = p(st+1|a:t)

t∏
τ=0

κR
t (yτ , sτ |sτ+1, at). (13)

While previous work has shown that all input-agnostic transducers (i.e. HMMs) can be time-376
reversed (Ellison et al., 2011), some transducers cannot. The key issue is that when swapping past377
and future one may break the condition of anticipation-free, which — according to Lemma 1 — is378
necessary for a world model to yield a transducer (an illustration of this is provided in App. O). Our379
next result provides necessary and sufficient conditions for a transducer to be reversed (see proof in380
App. P).381

Theorem 4. A transducer is reversible if an only if the dynamics of its memory state satisfy382
p(st|st+1,a:t) = p(st|st+1, at).383

Theorem 4 shows that if p(st|st+1a:t) ̸= p(st|st+1, at) then St does not yield a transducer that can384
be run backwards. This result also reveals that reversible transducers can be achieved in a variety385
of ways (see Figure 2). For example, if the transducer is memoryless then the condition is satisfied386
trivially since p(st|st+1,a:t) = p(st|st+1, at) = p(st). Also, if the transducer is action-agnostic387
(i.e. it is an HMM), then it is reversible as argued in Sec. P.2. Finally, being action counifiliar (i.e. if388
there exists f such that St = f(St+1, At)) is also sufficient for reversibility, as shown next.389

Lemma 7. If a transducer is action counifilar, then it is reversible.390

Proof. An action unifilar transducer satisfies p(st|st+1,a:t) = δst,f(st+1,at) = p(st|st+1, at).391
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Reversible Transducers
<latexit sha1_base64="tQWNgHdjvTBUQ7UrxmGfN0TmIrU=">AAACBnicbVDLSgMxFM34rPVVdSlCsAiuykwVdFl047JKX9CWkklv29BMZkjuiGXoyo2/4saFIm79Bnf+jem0C209EDg55x6Se/xICoOu++0sLa+srq1nNrKbW9s7u7m9/ZoJY82hykMZ6obPDEihoIoCJTQiDSzwJdT94fXEr9+DNiJUFRxF0A5YX4me4Ayt1MkdtRAeMLmDdMimaEUzZboxt/dxJ5d3C24Kuki8GcmTGcqd3FerG/I4AIVcMmOanhthO2EaBZcwzrZiAxHjQ9aHpqWKBWDaSbrGmJ5YpUt7obZHIU3V34mEBcaMAt9OBgwHZt6biP95zRh7l+1EqChGUHz6UC+WFEM66YR2hQaOcmQJ41rYv1I+YJpxtCVkbQne/MqLpFYseGeF4u15vnQ1qyNDDskxOSUeuSAlckPKpEo4eSTP5JW8OU/Oi/PufExHl5xZ5oD8gfP5A1Qxmas=</latexit>
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Memoryless
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Action Co-Unifilar
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Figure 2: Three examples of reversible transducers. Circles represent world states, and arrows
represent transitions and their labels describe the associated actions and outputs. For instance, the
label 1|0:0.5 on the edge from s0 to s1 indicates that Pr(St+1 = s1, Yt = 1|At = 0, St = s0) = 0.5.

6.2 Retrodictive beliefs and reverse interpretability392

The previous section showed how, unlike for HMMs, there are strong restrictions on the reversibility393
of transducers. However, even if an interface cannot be generated via a reversed transducer, there394
still are retrodictive constructions that can be used to investigate those dynamics.395

Definition 15. A retrodictive belief transducer of a world model St ∈ S is a belief transducer396 (
B,Y,A, K̃, rt∗

)
where the initial condition rt∗ may depend on a:t∗ , and the stochastic kernels397

update the states following the mapping St = g(Yt, Ay, St+1).398

Using this as a foundation, let us construct retrodictive mixed-states — which provide an analogue to399
the backward pass of Bayesian smoothing (Särkkä & Svensson, 2023), in the same way that update400
beliefs and mixed-states correspond to different steps of Bayesian filtering (Lemma 5).401

Definition 16. The retrodictive mixed-states of a world model St are given by the collection of402
distribution over S given by r0,t(s0) = p(s0|y0:t−1,a0:t−1) for all y0:t−1 ∈ Yt,a0:t−1 ∈ At.403

In contrast with predictive mixed-state beliefs (Def. 11), which always yield a presentation of the404
interface (as shown in App. J), retrodictive mixed-states may not do this. Nevertheless, one can still405
evaluate their dynamics and use them for useful analyses via linear operators, as shown next.406

Definition 17. The bi-directional mixed-state matrix (BDMSM) of an action-outcome sequence407
ρ(y0:t,a0:t) is a |S| × |S| matrix given by408

ρ(y0:t,a0:t) ≡
∑
s0sτ

p(s0, st+1|y0:t,a0:t)est+1
e⊺s0 . (14)

The BDMSM is directly linked with predictive and retrodictive mixed-states (proof in App. Q).409

Theorem 5. The predictive mixed-states dt, retrodictive mixed-states r0,t, and the BDMSM can be410
calculated as411

ρ(y0:τ ,a0:τ ) =
T (y0:τ |a0:τ )ρ0

1⊺ · T (y0:τ |a0:τ )ρ0 · 1
, dt = ρ(y0:τ ,a0:τ ) · 1, and e0,t = ρ(y0:τ ,a0:τ )

⊺ · 1,

where 1 is a |S|-dimensional vector of 1’s, T (y0:t|a0:t) ≡
∏t
τ=0 T

(yτ |aτ ), and ρt =
∑
st
p(st)este

⊺
st412

is a diagonal matrix.413

Corollary 2. The forward-time update of the BDMSM is given by414

ρ(y0:τ+1,a0:τ+1) =
T (yτ+1|aτ+1)ρ(y0:τ ,a0:τ )

1⊺T (yτ+1|aτ+1)ρ(y0:τ ,a0:τ )1
, (15)

while the reverse-time update is415

ρ(y−1:τ ,a−1:τ ) =
ρ(y0:τ ,a0:τ )ρ

−1
0 T (y−1|a−1)ρ−1

1⊺ρ(y0:τ ,a0:τ )ρ
−1
0 T (y−1|a−1)ρ−11

. (16)

Given that not every transducer is reversible, the operation ρ−1
t T (y|a)ρt−1 do not generally yield the416

action of a transducer. It is, nevertheless, a valid method for retrodicting the state distribution of a417
world model if its initial state is assumed to be uncorrelated with future action sequences.418
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7 Discussion419

This paper explores the benefits of designing world models for sandboxing and testing AI systems420
by focusing on the agent’s interface, which characterises the viewpoint of the agent in consideration.421
This leads to a policy-agnostic approach that require no assumptions about the agent’s architecture422
and capabilities, being applicable to systems irrespective of how they were designed or trained.423
This allowed us to identify fundamental limits and trade-offs inherent to world modelling, whose424
demarcation leads to a number of practical recommendations to guide designers when constructing425
world models (Figure 3).426

World
model

Reduced
model

Belief/
Mixed-state

Retrodictive
transducer

Generalised
transducer

ϵ-transducer

compression via
bisimulation

forward
interpretability

backward
interpretability

compression via
quasi-probabilities

compression via
bisimulation

Figure 3: Recommendations for building world optimal models according to different desiderata.

Our analyses revealed a fundamental trade-off between the computational efficiency and inter-427
pretability of world models. Generalised transducers were found to yield the most efficient im-428
plementations at the cost of having to employ quasi-probabilities, resulting on opaque world models429
that cannot be sampled — remaining unknowable, akin to the Kantian noumena. In contrast, the430
ϵ-transducer, a generalisation of the geometric belief structure recently found in the residual stream431
of transformers (Shai et al., 2025), was found to yield the unique minimal predictive world model.432
The uniqueness of the ϵ-transducer implies that the refinement of the beliefs of any optimal predic-433
tive agent must eventually reach this model, regardless of the world model the agent uses. Thus, the434
ϵ-transducer can be seen as encapsulating all the predictive information that is available for agents435
to learn about their environments.436

We also introduced the notion of retrodictive world models for facilitating retrospective analyses to437
study the origins of undesirable events or behaviours. These models allow to, for instance, identify438
‘danger zones’ that are likely to lead to undesirable future states. This view complements standard439
interpretability approaches, which typically assess agents via their capabilities to predict and plan440
with respect to future events (Nanda et al., 2023; Gurnee & Tegmark, 2023; Shai et al., 2025).441

While this work focused on the fundamental limits of world modelling under the dictum of per-442
fect reconstruction, future work may relax this constraint by employing notions such as approxi-443
mate homomorphisms (Taylor et al., 2008) or bisimulation (Girard & Pappas, 2011), rate-distortion444
trade-offs (Marzen & Crutchfield, 2016), or other approaches (Subramanian et al., 2022). Another445
promising direction to yield efficient modelling is to explode the compositional structure of the446
world (Lake & Baroni, 2023; Elmoznino et al., 2024; Baek et al., 2025).447

Overall, the approach taken in this work complements the substantial body of work that uses world448
models to boost the performance of agents (Ha & Schmidhuber, 2018; Hafner et al., 2020; 2023;449
Hansen et al., 2024), and work on representations from the point of view of the agent (Ni et al.,450
2024). Additionally, the ideas put forward here establish new bridges between related subjects in451
reinforcement learning, control theory, and theoretical physics, and may serve as a rosetta stone for452
navigating across these literatures. Finally, the new insights related to world models revealed in453
this work also have significant implications for cognitive and computational neuroscience (Matsuo454
et al., 2022), particularly pertaining the formal characterisation of the internal world (‘umwelt’) of455
an agent (Von Uexküll, 1909; Ay & Löhr, 2015), which will be developed in a separate publication.456
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Supplementary Materials671

The following content was not necessarily subject to peer review.672
673

A Sufficient statistics674

Given the importance of the notion of sufficient statistics in this work, in this appendix we provide675
a detailed account of its origins and significance.676

Consider a random vector X = (X1, . . . , Xn) ∈ Xn that follows a distribution with parameter677
θ ∈ Θ, and a ‘statistic’ T (·) (that is, a mapping T : Xn → R). Following Fisher (1922), Y = T (X)678
is a classical/frequentist sufficient statistic for X w.r.t. θ if the value of Prθ(X = x|Y = y) is the679
same ∀θ ∈ Θ (Casella & Berger, 2002). This means that when estimating the value of θ via, e.g.,680
maximum likelihood, the information given by X after Y has been fixed is irrelevant.681

Another approach to statistical sufficiency due to Kolmogorov (1942), which can be called strong682
bayesian statistical sufficiency, states that Y is sufficient for X w.r.t. θ if X ⊥⊥ θ|Y for any prior683
distribution over θ. It can been shown that strong Bayesian sufficiency imply classical sufficiency,684
but the converse does not necessarily hold Blackwell et al. (1982).685

A useful generalisation of the above condition, which we simply call (weak) Bayesian statistical686
sufficiency, follows Kolmogorov’s condition just for a given distribution of θ (Cover & Thomas,687
2012). In particular, given two random variables X and Y , an statistic T = f(X) is said to be a688
Bayesian sufficient statistic forX w.r.t. Y ifX ⊥⊥ Y |T , i.e. if Pr(X = x|Y = y, T = t) = Pr(X =689
x|T = t). This is equivalent to the information-theoretic condition I(X;Y |T ) = 0, which state that690
X and Y share no information that is not given by T (Cover & Thomas, 2012). This is the definition691
of sufficient statistics that we use through this work.692

Another way to think of sufficient statistics is by noticing that, ifX−T−Y is a Markov chain, which693
implies that all the information shared betweenX and Y necessarily “goes through” T . Interestingly,694
for all mappings f , if T = f(X) then the following Markov chain hold: T −X −Y . Moreover, the695
data processing inequality says that for any such Markov chains then I(Y ;X) ≥ I(Y ;T ); therefore696
“processing” X cannot increase its information about Y . Moreover, following Cover & Thomas697
(2012), the equality I(Y ;X) = I(Y ;T ) is attained if an only if X − T − Y is also a Markov chain;698
i.e. if T is a sufficient statistic. In summary, sufficient statistics are related to optimal (i.e. lossless)699
data processing (Kullback, 1997).700

Sufficient statistics always exists — in particular, X is always sufficient for itself. The search for701
optimal but also efficient statistics lead to the idea of minimal sufficiency: a sufficient statistic S is702
minimal if for all other sufficient statistic T exists a function f(·) such that S = f(T ) (Lehmann703
& Scheffé, 2012), or equivalently, the following Markov chain holds: S − T − X − Y . From an704
information-theoretic point of view, a minimal sufficient statistic is the sufficient statistic of minimal705
entropy, hence providing the most parsimonious representation of the relevant information. Minimal706
sufficient statistics exist for a wide range of settings (Lehmann & Casella, 2006, Sec. 1.6), and707
are unique up to isomorphisms (i.e. re-labelling). Moreover, the minimal sufficient statistics of708
X w.r.t. Y can be build explicitly, built as the partition induced by the follwoing equivalence709
relationship (Asoodeh et al., 2014, Def. 2):710

x ∼ x′ iff ∀y ∈ Y : pY |X(y|x) = pY |X(y|x′). (17)

It is worth noticing the similarities between this way to build minimal sufficient statistics, Def. 6,711
and Eq. (11).712

B Relationship between transducers and POMDPs713

A POMDP is a tuple (S,A,O, τ, µ, ρ), where S are the states of the world, A the action space,714
O the observation space, and the probability kernels τ : S × A → P (S), µ : S → P (O), and715
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Figure 4: Mealy transducers (left) exhibit all connections, I-O Moore ones (right) restrict some.

ρ : S × A → P (R) specify the world dynamics, observation map, and reward function (Kaelbling716
et al., 1998).717

From this definition one can see, under a POMDP, the joint dynamics satisfy Eq. (4), which — thanks718
to the second alternative definition in Lemma 1 — is sufficient to show that the POMDP induces a719
transducer. This, together with the first alternative definition in Lemma 1, imply that the process St720
in a POMDP is a world model, in the sense that it satisfies the conditions in Def. 2. Finally, one can721
observe that the kernel of the correspodning transducer allows the following factorisation:722

p(st+1, yt|st, at) = τ(st+1|st, at)µ(ot|st)ρ(rt|st, at). (18)

This shows that POMDP is a I-O Moore transducer, as defined in Sec. 3.2 and illustrated in Figure 4.723

C Derivation of Eq. (2)724

The properties of anticipation-free world models allows to factorise interfaces as follows:725

p(y:τ , s:τ+1|a:) = p(s0|a:)

τ−1∏
t=0

p(st+1, yt|h:t−1, s:t,at:) (19)

= p(s0|a:)

τ−1∏
t=0

p(yt|h:t−1, s:t,at:)p(st+1|,h:t, s:t,at+1:). (20)

Now, using the properties of world models, one can find that726

p(yt|h:t−1, s:t,at:) = p(yt|st,at:) = p(yt|st, at), (21)

where the first equality uses the first property in Def. 2, and the second equality the second property.727
Similarly, assuming that the world model is anticipation-free, then the expression for the dynamics728
of the world model can be simplified as follows:729

p(st+1|h:t, s:t,at+1:) =
p(s:t+1|h:t,at+1:)∑
st+1

p(s:t+1|h:t,at+1:)
=

p(s:t+1|h:t)∑
st+1

p(s:t+1|h:t)
= p(st+1|s:t,h:t).

(22)
Also, the anticipation-free property also guarantees that p(s0|a:) = p(s0).730

Putting this together, we find that731

p(y:τ , s:τ+1|a:) = p(s0)

τ−1∏
t=0

p(yt|st, at)p(st+1|h:t, s:t). (23)

D Proof of Lemma 1732

For clarity, let us divide the proof into sub-parts.733
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Part 1: Being a transducer is equivalent to Condition (2)734

Proof. Let us first show that being a transducer is equivalent to condition (2) of Lemma 1. One735
direction of the implication is trivial, as a transducer satisfies condition (2) by construction. To prove736
the converse, let’s assume that condition (2) holds. Then, one can define the kernel κt(y, s|a, s′) =737
Pr(Yt = y, St+1 = s|At = a, St = s). In virtue of condition (2), it is direct to see that Eq. (4)738
holds, which implies that this kernel gives rise to the dynamics.739

Part 2: Equivalence of conditions (1) and (2)740

Proof. Let’s first prove that condition (1) implies condition (2). Using the derivations presented741
in Eq. (21) and Eq. (22), one finds that if St is a world model then p(st+1, yt|s:t,h:t−1,at:) =742
p(yt|st, at)p(st+1|s:t,h:t). Then, using the definition of being a transducer p(st+1|s:t,h:t) =743
p(st+1|st, ht), which in turn implies that p(st+1, yt|s:t,h:t−1,at:) = p(st+1, yt|st, at).744

Let us now prove that condition (2) implies condition (1). The first property of world models can be745
proven as follows:746

p(yt:t′ |h:t−1, s:t,at:) =
∑

st+1:t′+1

p(st+1:t′+1,yt:t′ |h:t−1, s:t,at:) (24)

=
∑

st+1:t′+1

t′∏
τ=t

p(sτ+1, yτ |h:τ−1, s:τ ,aτ :) (25)

=
∑

st+1:t′+1

t′∏
τ=t

p(sτ+1, yτ |yt:τ−1, st:τ ,at:) (26)

=
∑

st+1:t′+1

p(st+1:t′+1,yt:t′ |st,at:) (27)

= p(yt:t′ |st,at:). (28)

Above, note that the third equality uses condition (2) to drop some of the conditioning elements.747
The second property of world models follows from this calculation:748

p(yt|at:, st) =
∑
st+1

p(st+1, yt|at:, st) =
∑
st+1

p(st+1, yt|at, st) = p(yt|at, st). (29)

The condition of anticipation-free world model is satisfied as follows:749

p(s:t|h:t−1,at′:) =
p(s:t,y:t−1|a:t−1,at′:)

p(y:t−1|a:t−1,at′:)
=

∏t
τ=0 p(sτ , yτ−1|s:τ−1,y:τ−2,a:t−1,at′:)

p(y:t−1|a:t−1)
(30)

=

∏t
τ=0 p(sτ , yτ−1|s:τ−1,y:τ−2,a:t−1)

p(y:t−1|a:t−1)
=
p(s:t,y:t−1|a:t−1)

p(y:t−1|a:t−1)
= p(s:t|h:t−1).

(31)

Finally, the Markovianity of state dynamics can be proven as follows:750

p(st+1|h:t, s:t) =
p(st+1, yt|at,h:t−1, s:t)∑
st+1

p(st+1, yt|at,h:t−1, s:t)
=

p(st+1, yt|at, st)∑
st+1

p(st+1, yt|at, st)
= p(st+1|st, ht).

(32)

751

Part 3: Being a transducer is equivalent to condition (3)752

Proof. We have two conditions that we claim are equivalent:753
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1) The following equalities hold754

I[S:t−1, St,Y:t−1;At:|A:t−1, Sti ] = 0 (33)
I[St+1:,Yt:;Y:t−1,S:t−1,A:t−1|At:, St] = 0. (34)

2) The joint distribution can be implemented by a transducer.755

• 1) ⇒ 2): If the equality I[A;B|C] holds, then we have the equality of probabilities p(A|C) =756
p(A|BC). Thus, the two information equalities imply the probability equalities757

Pr(St+1:,Yt:|Y:t−1,S:t−1,A:t−1,At:, St) = Pr(St+1:,Yt:|At:, St) (35)
Pr(S:t−1,Y:t−1, St|A:t−1,At:, Sti) = Pr(S:t−1,Y:t−1, St|A:t−1, Sti). (36)

Note that Sti is an element of the past S:t−1, so we can multiply these together to obtain758

Pr(S:t−1,Y:t−1, St|A:t−1, Sti) Pr(St+1:,Yt:|At:, St) (37)
= Pr(S:t−1,Y:t−1, St|A:t−1,At:, Sti) Pr(St+1:,Yt:|Y:t−1,S:t−1,A:t−1,At:, St, Sti) (38)
= Pr(St,St+1:,Yt:,Y:t−1,S:t−1|A:t−1,At:, Sti) (39)
= Pr(S:t−1St:,Y:t−1,Yt:|A:t−1,At:, Sti) (40)
= Pr(Sti:,Yti:, |Ati:, Sti), (41)

which uses the fact that the whole trajectory of X:t−1Xt: is the same as the forward trajectory759
from the initial time Xti: We can apply this recursively by first considering t = ti + 1:760

Pr(Sti:,Yti:, |Ati:, Sti) = Pr(S:ti ,Y:ti , Sti+1|A:ti , Sti) Pr(Sti+2:,Yti+1:|Ati+1:, Sti+1)
(42)

= Pr(Sti , Yti , Sti+1|Ati , Sti) Pr(Sti+2:,Yti+1:|Ati+1:, Sti+1) (43)

Note that Pr(A,B|A,C) = Pr(B|A,C), so we can simplify to the recursive relation:761

Pr(Sti:,Yti:, |Ati:, Sti) = Pr(Sti , Yti |Ati , Sti) Pr(Sti+1:,Yti+1:|Ati+1:, Sti+1), (44)

where we have isolated the kernel κt as Pr(St+1, Yt|At, St).762

Through recursion, we see that the joint probability can be constructed from the kernel763

Pr(Sti:,Yti:, |Ati:, Sti) =

tf−1∏
t=ti

Pr(St+1, Yt|At, St), (45)

meaning that this channel and world model can indeed be expressed as a transducer.764

2) ⇒ 1): If the world model can be expressed as a transducer, then the joint probability of hidden765
state, action, output trajectories can be broken into the product of terms766

Pr(Sti:tf ,Yti:tf−1, |Ati:tf−1, Sti) =

tf∏
t=ti

Pr(St+1, Yt|At, St). (46)

This can be split into the product of two terms767

Pr(Sti:tf ,Yti:tf−1|Ati:tf−1, St) =

tf−1∏
j=t

Pr(Sj+1, Yj |Aj , Sj)

 t−1∏
j=ti

Pr(Sj+1, Yj |Aj , Sj)


(47)

= Pr(St:tf ,Yt:tf−1|At:tf−1, St) Pr(Sti+1:t,Yti:t−1|Ati:t−1, Sti).
(48)
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Applying the definitions of past and futures of t, we have768

Pr(S:t−1StSt+1:,Y:t−1Yt:|A:t−1At:, Sti) = Pr(StSt+1:,Yt:|At:, St) Pr(S:t−1, St,Y:t−1|A:t−1, Sti)
(49)

= Pr(St+1:,Yt:|At:, St) Pr(S:t−1, St,Y:t−1|A:t−1, Sti),
(50)

using the fact that Pr(A,B|A) = Pr(B|A). If we sum over output/hidden-state futures, we get the769
relation:770

Pr(S:t−1, St,Y:t−1|A:t−1At:, Sti) = Pr(S:t−1, St,Y:t−1|A:t−1, Sti), (51)

which implies our first information equality771

I[At:;S:t−1St,Y:t−1|A:t−1, Sti ] = 0. (52)

Then, divide both sides of Eq. (50) by Pr(S:t−1St,Y:t−1|A:t−1At:, Sti) to obtain772

Pr(St+1:,Yt:|S:t−1, St,Y:t−1,A:t−1At:, Sti) = Pr(St+1:,Yt:|At:, St) (53)
Si is part of (54)

S:t−1 Pr(St+1:,Yt:|S:t−1,Y:t−1,A:t−1At:, St) = Pr(St+1:,Yt:|At:, St), (55)

that implies our second equality773

I[St+1:,Yt:;S:t−1,Y:t−1,A:t−1|At:, St] = 0. (56)

774

E Proof of Lemma 3775

Proof. Let consider St = Ht−1. The two conditions for being a world model, stated in Eq. (1), can776
be proved as follows. The first property follows directly by noticing that s:t = h:t−1 = st, and the777
second one from the following calculation:778

p(yt|st,at:) =p(yt|h:t−1,at:) = p(yt|y:t−1,a:) =
p(y:t|a:)

p(y:t−1|a:)
=

p(y:t|a:t)

p(y:t−1|a:t)

=p(yt|y:t−1,a:t) = p(yt|h:t−1, at) = p(yt|st, at), (57)

where we are using the fact that the interface is anticipation-free. Finally, the condition for being a779
transducer from Def. 14 can be proven by780

p(st+1|s:t,h:t,at+1:) = p(st+1|st, ht,at+1:) = δ(st,ht)
st+1

= p(st+1|st, ht), (58)

where δba is the Kroneker delta that is one if a = b.781
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F Proof of Lemma 4782

Proof. Consider S′
t = ϕ(St) a reduction of the memory state St of a transducer. Then783

p(y:ts
′
:t+1|a:) = p(s′0|a:)

t∏
τ=0

p(yτ , s
′
τ+1|h:τ−1, s

′
:τ ,aτ :) (59)

=

t∑
τ=0

∑
sτ∈S

ϕ(sτ )=s
′
τ

p(s0|a:)

t∏
τ=0

p(yτ , sτ+1|h:τ−1, s:τ ,aτ :) (60)

(a)
=

t∑
τ=0

∑
sτ∈S

ϕ(sτ )=s
′
τ

p(s0)

t∏
τ=0

p(yτ |sτ , aτ )p(sτ+1|sτ , hτ ) (61)

(b)
=

t∑
τ=0

∑
sτ∈S

ϕ(sτ )=s
′
τ

p(s0)

t∏
τ=0

p(yτ |s′τ , aτ )p(sτ+1|sτ , hτ ) (62)

=

t−1∑
τ=0

∑
sτ∈S

ϕ(sτ )=s
′
τ

p(s0)

t−1∏
τ=0

p(yτ |s′τ , aτ )p(sτ+1|sτ , hτ )p(yt|s′t, at)
∑

st+1∈S
ϕ(st+1)=s

′
t+1

p(st+1|st, hτ )

(63)

(c)
=

t−1∑
τ=0

∑
sτ∈S

ϕ(sτ )=s
′
τ

p(s0)

t−1∏
τ=0

p(yτ |s′τ , aτ )p(sτ+1|sτ , hτ )p(yt|s′t, at)p(s′t+1|s′t, hτ ) (64)

(d)
= . . . (65)

=

[ ∑
s0∈S

ϕ(s0)=s
′
0

p(s0)

]
t∏

τ=0

p(yτ |s′τ , aτ )p(s′τ+1|s′τ , hτ ) (66)

(e)
= p(s′0)

t∏
τ=0

p(yτ |s′τ , aτ )p(s′τ+1|s′τ , hτ ). (67)

Above, (a) uses that St is the memory state of a transducer, (b) and (c/e) use the first and second784
properties of homomorphisms, respectively, and (d) assumes the same steps of previous equations785
are done iteratively. This result shows that S′

t yields a transducer for the same interface, given that786

p(y:t|a:) =
∑
s:t+1

p(y:ts:t+1|a:) =
∑
s′
:t+1

p(y:ts
′
:t+1|a:). (68)

787

G Proof of Prop. 1788

Proof. Let’s first assume that the mapping ϕ induces a reduction of the world model St into S′
t, and789

define the equivalence relation B such that s ∼ s′ when ϕ(s) = ϕ(s′). In this setting, let’s prove790
that B is a bisimulation. For this, one can note that if s ∼ s′ then one can use the first property of791
homomorphims to find that792

Pr(Yt = y|St = s,At = a) = Pr(Yt = y|S′
t = ϕ(s), At = a) (69)

= Pr(Yt = y|S′
t = ϕ(s′), At = a) (70)

= Pr(Yt = y|St = s′, At = a). (71)
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Additionally, using the second property one finds that793 ∑
s′′∈[s̃]

Pr
(
St+1 = s′′|St = s,Ht = (y, a)

)
= Pr

(
S′
t+1 = s̃|S′

t = ϕ(s), Ht = (y, a)
)

(72)

= Pr
(
S′
t+1 = s̃|S′

t = ϕ(s′), Ht = (y, a)
)

(73)

=
∑
s′′∈[s̃]

Pr
(
St+1 = s′′|St = s′, Ht = (y, a)

)
, (74)

where [s̃] = {s ∈ S : ϕ(s) = s̃}. Together, these two results show that B is a bisimulation.794

For proving the converse statement, let’s assume that B ⊆ S × S is a bisimulation, and define795
ϕ(s) = [s] as a function that maps each state s ∈ S into its equivalence class according to B.796

Let’s prove that St
ϕ−→ ϕ(St) = [St] is a reduction. First, for B being a bisimulation implies that797

Pr
(
Yt = y|St = s,At = a

)
= Pr

(
Yt = y|St = s′, At = a

)
for any (s, s′) ∈ B, which in turn798

implies that799

Pr
(
Yt = y|ϕ(St) = [s], A′

t = a
)
= Pr

(
Yt = y|St = s,At = a

)
, (75)

showing that ϕ satisfies the first property of homomorphisms. Furthermore, if (s, s′) ∈ B then800

Pr
(
ϕ(St+1) = [s̃]|St = s,Ht = (y, a)

)
=

∑
s′′∈[s̃]

Pr
(
St+1 = s′′|St = s,Ht = (y, a)

)
(76)

=
∑
s′′∈[s̃]

Pr
(
St+1 = s′′|St = s′, Ht = (y, a)

)
(77)

= Pr
(
ϕ(St+1) = [s̃]|St = s′, Ht = (y, a)

)
, (78)

which implies that801

Pr
(
ϕ(St+1) = [s̃]|St = s,Ht = (y, a)

)
= Pr

(
ϕ(St+1) = [s̃]|ϕ(St) = [s], Ht = (y, a)

)
. (79)

Using this, one can finally show that802

Pr
(
ϕ(St+1) = [s̃]|ϕ(St) = [s], Ht = (y, a)

)
=

∑
s′′∈[s̃]

Pr
(
St+1 = s′′|ϕ(St) = [s], Ht = (y, a)

)
(80)

=
∑
s′′∈[s]

Pr
(
St+1 = s̃|St = s,Ht = (y, a)

)
(81)

803

H Algorithms to reduce a transducer804

, then one can reduce the world model as follows:805

1. Compute a singular value decomposition Um = UΛV ⊺, where U ∈ Rm×m and V ∈ Rn×n are806
unitary matrices of singular vectors and Λ ∈ Rm×n is a diagonal matrix with Rank(Vm) = r807
non-zero elements.808

2. Collect the r left singular vectors associated with non-zero singular values, and create the matrix809
C = [v1, . . . ,vn] ∈ Rn×r.810

3. Use C as a transformation matrix to define the new world states, and calculate the resulting811
quasi-stochastic matrices.812

It can be shown that the resulting representation is minimal as in Def. 5. For more details on this813
procedure, see (Balasubramanian, 1993, Sec. 3) and also (Huang et al., 2015, Algorithm 1).814
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I Proof of Lemma 5815

Proof. The predict step is given by816

dt =
∑
st−1

p(st|st−1,h
t−1)p(st−1|ht−1) =

∑
st−1

p(st|st−1, ht−1)bt−1(st−1), (82)

and the update step is given by817

bt =
p(st,h

t−1, at, yt)

p(ht−1, at, yt)
=
p(yt|st,ht−1, at)p(st|ht−1, at)

p(yt|ht−1, at)
=
p(yt|st, at)

Z ′ dt(st) (83)

with Z ′ a normalising constant, where the last equality uses the fact that that818

p(st|ht−1, at) =
p(st,h

t−1, at)

p(ht−1, at)
=
p(at|st,ht−1)p(st|ht−1)

p(at|ht−1)
= p(st|ht−1), (84)

thanks to the fact that actions depend on histories and not on states, and hence p(at|st,ht−1) =819
p(at|ht−1). Direct updates between b’s and d’s can be calculated from these equations directly,820
giving821

bt(st) =
p(yt|st, at)

Z ′
∑
st−1

p(st|st−1, ht−1)bt−1(st−1), (85)

dt(st) =
1

Z ′
∑
st−1

p(st|st−1, ht−1)p(yt−1|st−1, at−1)dt−1(st−1), (86)

corresponding to the updates of beliefs and mixed-states. Finally, notice that if St belongs to a822
input-Moore transducer, then p(yt|st, at) = p(yt|st) and hence one arrives to Eq. (8).823

J Mixed-states are transducers and generate the same interface824

As mentioned earlier, the predictive mixed-state presentation (MSP) of a transducer is determined825
by the probability of hidden state st given the action-outcome history826

p(st|a0:t−1, y0:t−1). (87)

As discussed in App. R, the belief states represent points in the Hilbert space of S:827

|ρP (y0:t−1, a0:t−1)⟩ ≡
∑
st

|st⟩p(st|a0:t−1, y0:t−1). (88)

This can be exactly calculated from the vector that represents the initial state distribution828

|ρ0⟩ ≡
∑
s0

|s0⟩p(s0), (89)

and applying the linear operators of the transducer in sequence829

|ρP (y0:t−1,a0:t−1))⟩ =
T (y0:t−1|a0:t−1)|ρ0⟩

⟨1|T (y0:t−1|a0:t−1)|ρ0⟩
, (90)

where T (y0:t−1|a0:t−1) ≡
∏t−1
τ=0 T

(yτ |aτ ) and ⟨1| ≡
∑
s⟨s|.830

The mixed states are themselves predictive memory states of the transducer. They are functions831
of the past, and they store the relevant information necessary to produce the future action-outcome832
mapping:833

p(yt:z|at:z, y0:t, a0:t) =
∑
s

⟨s|
z∏
τ=t

T (yτ |aτ )|ρP (y0:t−1, a0:t−1)⟩, (91)
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which uses the fact that834

p(y0:t) =
∑
s

⟨s|
t∏

τ=0

T (yτ |aτ )|ρ0)⟩. (92)

Because the MSP is a predictive transducer, it can be coarse-grained to the ϵ-transducer. The exact835
form of the transducer of the MSP states is836

M
(y|a)
|ρ⟩→|ρ′⟩ = ⟨1|T (y|a)|ρ⟩δ

|ρ′⟩, T (y|a)|ρ⟩
⟨1|T (y|a)|ρ⟩

. (93)

Thus, if we can calculate the behavior of actions and outcomes alongside the mixed-state trajectory837
|ρ⟩0:t:838

p(|ρ⟩0:t,y0:t−1|a0:t−1, |ρ0⟩) =
t−1∏
τ=0

M
(yτ |aτ )
|ρτ ⟩→|ρτ+1⟩ (94)

=

t−1∏
τ=0

⟨1|T (yτ |aτ )|ρτ ⟩δ|ρτ+1⟩, T (yτ |aτ )|ρτ ⟩
⟨1|T (yτ |aτ )|ρτ ⟩

(95)

We can then sum over all mixed-state trajectories to obtain the original interface, using the fact that839
the only nonzero terms in the sum are those for which |ρτ ⟩ = |ρ(y0:τ−1,a0:τ−1)⟩:840

∑
|ρ⟩0:t

p(|ρ⟩0:t,y0:t−1|a0:t−1, |ρ0⟩) =
∑
|ρ⟩0:t

t−1∏
τ=0

⟨1|T (yτ |aτ )|ρτ ⟩δ|ρτ+1⟩, T (yτ |aτ )|ρτ ⟩
⟨1|T (yτ |aτ )|ρτ ⟩

(96)

=

t−1∏
τ=0

⟨1|T (yτ |aτ )|ρ(y0:τ−1,a0:τ−1)⟩ (97)

=

t−1∏
τ=0

⟨1|T (y0:τ |a0:τ )|ρ0⟩
⟨1|T (y0:τ−1|a0:τ−1)|ρ0⟩

(98)

=
⟨1|T (y0:t−1|a0:t−1)|ρ0⟩

⟨1|ρ0⟩
(99)

= ⟨1|T (y0:t−1|a0:t−1)|ρ0⟩. (100)

This is precisely the probability of outcomes given by the original transducer T . Note that with this841
notation xt:t = xt and xt:t−1 is null, meaning with applying no actions or outcomes. Thus we have842
constructed a transducer M that uses the mixed-states to generate the original interface, meaning843
that the corresponding belief transducer is a presentation of that interface. Therefore, we call it the844
Mixed-State Presentation (MSP) of that particular transducer.845

The causal states of the ϵ-transducer are a function of the past st = ϵ(y0:t−1, a0:t−1). Therefore, the846
MSP states are isomorphic to the causal states847

|ρP (y0:t−1, a0:t−1)⟩ =
∑
s

|s⟩δs,ϵ(y0:t−1,a0:t−1). (101)

As a result, the MSP is also the ϵ-transducer.848

The ϵ-transducer is not the only machine whose MSP produces the ϵ-transducer. The MSP of any849
transducer without redundant states will produce be the ϵ-machine. In this case, a redundant state st850
has a future distribution p(yt:|at:, st) that is a linear combination of other states851

p(yt:|at:, st) =
∑
s′t ̸=st

q(s′t)p(yt:|at:, s′t). (102)

If all these states have linearly independent futures, then every linear combination of states produces852
a distinct future distribution. Thus, it is impossible to coarse-grain further while preserving the853
functionality of the transducer, and the MSP must be the ϵ-transducer.854
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K Proof of Prop. 2855

Proof. Lemma 3 shows that St = H:t−1 is always a valid transducer. Also, from Def. 5 and Prop. 1856
one can see that a bisimulation of a transducer always yields a valid transducer. Thus, the only857
thing that remains is to prove that the coarse-graing defined by Eq. (11) has the two properties of a858
bisimulation (Def. 6). Condition (i) follows from Eq. (11) directly, since it only considers futures of859
length 1. A proof that Condition (ii) follows from Eq. (11), i.e. that the dynamics of the equivalence860
classes are conditionally Markovian on the actions, can be found in (Barnett & Crutchfield, 2015,861
Prop. 5).862

863

L Proof of Theorem 3864

Proof. A predictive transducer has memory states St that satisfy the condition865

I[St, Yt:|At:, Y:t−1A:t−1] = 0, (103)

for all t. In combination of the property of being non-anticipatory866

I[A:t−1, Y:t−1;Yt:|At:, St] = 0, (104)

this is equivalent to the tripartite equality867

Pr(Yt:|At:, St, A:t−1, Y:t−1) = Pr(Yt:|At:, St) = Pr(Yt:|Xt:, A:t−1, Y:t−1), (105)

holding whenever Pr(Yt:, At:, St, A:t−1, Y:t−1) ̸= 0. In general, A:t−1 and Y:t−1 are the actions868
that the agent has already interacted with when it is in configuration St, so we can express them to869
them as the past at time t Y:t−1 ≡ Y:t−1 A:t−1 ≡ A:t−1. This allows us to rewrite the condition for870
an agent being predictive871

Pr(Yt:|At:, St,A:t−1,Y:t−1) = Pr(Yt:|At:, St) = Pr(Yt:|At:,A:t−1,Y:t−1), (106)

when Pr(Yt:,At:, St,A:t−1,Y:t−1) ̸= 0. This condition means that the memory St and history872
A:t−1,Y:t−1 are mutually compatible and can coexist.873

For comparison, consider the causal equivalence relation that leads to the ϵ-transducer for the same874
interface:875

ϵ(a:t−1,y:t−1) = ϵ(a′
:t−1,y

′
:t−1) (107)

⇔ (108)
Pr(Yt:|At:,A:t−1 = a:t−1,Y:t−1 = y:t−1) = Pr(Yt:|At:,A:t−1 = a′

:t−1,Y:t−1 = y′
:t−1).

(109)

By construction St = ϵ(A:t−1,Y:t−1), which means that876

Pr(Yt:|At:, St,A:t−1,Y:t−1) = Pr(Yt:|At:, ϵ(A:t−1,Y:t−1),A:t−1,Y:t−1) (110)
= Pr(Yt:|At:,A:t−1,Y:t−1), (111)

using the fact that Pr(A|f(B), B) = Pr(A,f(B)|B)
Pr(f(B)|B) = Pr(f(B)|A,B) Pr(A|B)

Pr(f(B)|B) = Pr(A|B). Further-877
more, the equivalence condition implies that the memory shields that future from the past878

Pr(Yt:|
−→
X t, ϵ(A:t−1,Y:t−1),A:t−1,Y:t−1) = Pr(Yt:|At:, ϵ(A:t−1,Y:t−1)), (112)

so the ϵ-transducer is predictive.879
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Furthermore, any predictive transducer can be coarse-grained to the ϵ-transducer. This can be seen880
by setting the equivalence relation881

ϵ′(st) = ϵ′(s′t) (113)
⇔ (114)

Pr(Yt:|At:, St = st) = Pr(Yt:|At:, St = s′t). (115)

This coarse-graining achieves the ϵ-transducer, because the equality condition can be re-expressed882
for predictive transducers883

Pr(Yt:|At:, St = st) = Pr(Yt:|At:, St = s′t) (116)
Pr(Yt:|At:, St = st,A:t−1 = a:t−1,Y:t−1 = y:t−1) = Pr(Yt:|At:, St = s′t,A:t−1 = a′

:t−1,Y:t−1 = y′
:t−1)

(117)

Pr(Yt:|At:,A:t−1 = a:t−1,Y:t−1 = y:t−1) = Pr(Yt:|At:,A:t−1 = a′
:t−1,Y:t−1 = y′

:t−1),
(118)

when the memory and history are mutually compatible. Thus, we have the causal equivalence re-884
lation is satisfied for all histories that are consistent the coarse-grained with the memory states that885
map to the same state ϵ′(s) = ϵ′(s′). This logic can be performed in both directions: from memory886
to past and past to memory. Thus the causal equivalence relation and ϵ′ are identical, meaning that887
the equivalence relation ϵ′ yields the ϵ-transducer.888

M Comparing the reduction of general vs predictive transducers889

Building upon the discussion about the canonical dimension of a transducer (see Eq. (5)), let us focus890
on transducers with finite memory states (i.e. |S| = n) and consider the matrix W whose columns891
given by the vectors w(h:t) ∈ Rn of probabilities of generating y:t given a:t when starting from892
different world states, so that its k-th coordinate is [w(h:t)]k = Pr(Y:t = y:t|A:t = a:t, S0 = sk)893
for all possible sequences when t = n − 1 (see (Cakir et al., 2021, Prop. 4.3)). Then, the coarse-894
graining ϵ defined by Eq. (11) correspond to merging together all rows of Wt that are equal. In895
contrast, the cannonical dimension d(T ) defined in Eq. (5) corresponds to the number of linearly896
independent rows. The crucial point is that, if a transducer with memory states St is predictive, then897
any coarse-graining ϵ(St) will also be predictive. However, reductions via more general procedures898
to trim linearly dependent components may not be attainable via coarse-grainings. In particular, the899
matrix Wt of an ϵ-transducer may have linearly dependent rows, and reducing those would — due900
to Cor. 1 — necessary make the transducer to stop being predictive.901

A mixed-state construction of a transducer is guaranteed to produce the ϵ-transducer when there is no902
linear dependency in its future distributions for each state. We will use Dirac notation as discussed903
in App. R for the future vector of each state s0904

|−→p t(s0)⟩ ≡
∑

y:t,y:t

|y:t,a:t⟩p(y:t|a:t, s0), (119)

where the joint ket is defined905

|y:t,a:t⟩ ≡
t⊗

τ=0

|yτ ⟩ ⊗ |aτ ⟩ (120)

Redundancy appears as linear dependence between future distributions, meaning that we can express906
the future of one state as a linear combination of the others907

|−→p t(s0)⟩ =
∑
s′0 ̸=s0

k(s′0)|−→p t(s′0)⟩, (121)

where k(s′t) is some real function of the memory states.908
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Lemma 8. If there no linear dependence between the future distributions of a transducers memory909
states, then the MSP is the ϵ-transducer.910

Proof. The future distribution of belief state dt is given by911

|−→p t(d0)⟩ =
∑
s0

d0(s0)|−→p t(s0)⟩. (122)

If there is another state d′of the MSP with the same future distribution, then it must be true that912 ∑
st

(d(st)− d′(st))|−→p t(s0)⟩ = 0. (123)

However, this contradicts linear independence of the futures, so it must be true that d = d′ if they913
have the same future distribution. Therefore, all states of the MSP have distinct future distributions,914
meaning that they satisfy they are the states of the ϵ-transducer.915

If there is linear dependence, then there is the possibility that different mixed-states have the same916
future distribution, in which case the dimensionality MSP can be reduced.917

N Some generic retrodictive world models918

N.1 A cannonical retrodictive world model919

For a given interface I(Y |A), the process St = Yt: is a retrodictive world model but is not920
anticipatory-free, and hence it doesn’t lead to a transducer (see Sec. N.2). This world model can921
be described as a ‘transducer with insider information’, which knows what decisions are going to be922
made beforehand.923

One can further show that all anticipation-free transducer have a retrodictive transducer, which can924
be described as ‘the profet’ as it has an answer to all possible sequence of future actions. To build925
the world model of this transducer, let us first denote as TA the regular tree with one root and where926
each node has one branch per elements in A. Let’s denote by N (TA) the nodes of the tree, and927
establish some operations:928

• µ : N (TA) → A∗ and ν : N (TA) → N (TA)∗, where µ(v) and ν(v) returns a vector with all the929
branches and nodes in the path leading back from v to the root, respectively, with ()∗ being the930
Kleene operator.931

• π : N (TA)×A → N (TA), where π(v, a) gives the descendent of v connected via branch a.932

• τ : N (TA) → N, where τ(v) is the depth of v in the tree.933

With all this, we are ready to define our world model. In general, St ∈ YTA are random varibles934
that take values on TA-shaped sequences of symbols in Y . Concretely, S0 =

(
Zv : v ∈ N (TA)

)
935

with Zv ∈ Y being random variables, whose joint distribution is given by936

Pr
(
S0 = (Zv : v ∈ TA)

)
:=

∏
v∈TA

Pr(Zv|Zν(v)) (124)

with Zν(v) the vector of variables corresponding to nodes in ν(v) and937

Pr(Zv = y|Zν(v) = y:ν(v)−1) := Pr
(
Yτ(v) = y|Y:τ(v)−1 = y:ν(v)−1,A:τ(v) = µ(v)

)
(125)

Then, the world’s dynamics are established recursively by p(st+1|s:t,h:) := δ
f(st,at)
st+1 so that938

St+1 = f(St, At) a.s., with the unifilar update established by939

St+1 = (Zt+1
v : v ∈ TA) with Zt+1

v = Ztπ(v,At)
. (126)

In summary, the world is first initialised at time zero by sampling S0, i.e. by sampling Zv for all940
v ∈ TA — which stands to sample Y: for all possible sequences of actions a:. After this, the world941
evolves deterministically by following the update rule given by f .942
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N.2 Naive retrodictive model is a world model but cannot be run943

Here we prove that taking Rt = Yt: is a valid world model, but is not anticipation-free and hence is944
not a transducer — as it cannot be properly run without future information.945

Proof. For a given interface I(Y |A), let’s define a stochastic process Rt ∈ YN conditional on946
the semi-infinite history H: as the coarse-graining Rt = g(Y:,A:) = Yt:. Let’s show that Rt is947
a valid world model. For this, let’s first introduce operations ψ0(rt) and ψ(rt) that are such that948
rt =

(
ψ0(rt), ψ(rt)

)
, so that ψ0 is a projection that gives the first component of rt and ψ gives949

all the rest without the first component. Then, let us first notice that Rt induces a simple yet valid950
conditional distributions of the form951

p(r:t|h:) = p(r0|y:,a:)

t−1∏
τ=0

δ
rτ+1

ψ(rτ )
= δy:

r0

t−1∏
τ=0

δ
rτ+1

ψ(rτ )
, (127)

which is the type of object specified by Def. 2. Furthermore, direct calculations show that952

p(yt:|h:t−1, r:t,at:) = δrtyt:
= p(yt:|rt,at:) (a.s.) (128)

and also953
p(yt|at:, st) = δψ0(rt)

yt = p(yt|at, st). (129)

This proves that Rt is a valid world model. However, it is not anticipation-free given that954

p(r0|a:) = p(y:|a:) ̸= p(y:) = p(r0). (130)

Therefore, this world model cannot be ran, as it cannot be properly initialised unless having infor-955
mation about future actions.956

O About non-reversible transducers957

Let us consider the delay channel, for which the output Yt+1 is equal to the previous action At (Bar-958
nett & Crutchfield, 2015). This channel displays paradoxically acausal behaviour when time re-959
versed. Now, somehow the action At determines the outcome at the previous time step Yt−1, mean-960
ing that961

I[Y:t−1;At:|At−1:] = I[Yt−1;At|At−1:] (131)
= H[At|At−1:], (132)

which is nonzero if the entropy rate of the actions is nonzero. Moreover, even if the time-reversed962
interface is anticipation-free, it may be possible that the dynamics of the memory cannot be imple-963
mented causaly in reverse time.964

P Reversing processes and proof of Theorem 4965

Here we present an extended exposition of the conditions for reversing stochastic processes.966

P.1 Reversing Markov processes967

Let’s say Xt is a Markov process Xt, so that p(xt|x:t−1) = p(xt|xt−1). Then, one can show the968
reverse process is also Markov, as969

p(xt|xt+1:t′) =
p(xt:t′)

p(xt+1:t′)
=

p(xt)
∏t′

k=t+1 p(xk|xt:k−1)

p(xt+1)
∏t′

j=t+2 p(xj |xt+1:j−1)
(133)

=
p(xt)

∏t′

k=t+1 p(xk|xk−1)

p(xt+1)
∏t′

j=t+2 p(xj |xj−1)
=
p(xt)p(xt+1|xt)

p(xt+1)
= p(xt|xt+1). (134)
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P.2 Reversing HMMs970

Let’s now consider a general (Mealy) HMM, where p(st+1, yt|s:t,y:t−1) = p(st+1, yt|st). Then,971
one can show the reverse process is also an HMM, as972

p(st, yt|st+1:t′+1,yt+1:t′) =
p(st:t′+1,yt:t′)

p(st+1:t′+1,yt+1:t′)
(135)

=
p(st, yt, st+1)

∏t′

k=t+1 p(sk+1, yk|st:k,yt:k−1)

p(st+1, yt+1, st+2)
∏t′

j=t+2 p(sj+1, yj |st:j ,yt:j−1)
(136)

=
p(st, yt, st+1)

∏t′

k=t+1 p(sk+1, yk|sk)
p(st+1, yt+1, st+2)

∏t′

j=t+2 p(sj+1, yj |sj)
(137)

=
p(st)

∏t′

k=t p(sk+1, yk|sk)
p(st+1)

∏t′

j=t+1 p(sj+1, yj |sj)
(138)

=
p(st)p(st+1, yt|st)

p(st+1)
(139)

= p(st, yt|st+1). (140)

Note that this is not time-symmetric, but a ‘co-Mealy’ structure — as the time indices of the world973
are shifted.974

If the HMM is Moore, so that p(st+1, yt|s:t,y:t−1) = p(st+1|st)p(yt|st), then a similar calculation975
leads to976

p(st, yt|st+1:t′+1,yt+1:t′) =
p(st)p(st+1, yt|st)

p(st+1)
=
p(st)p(st+1|st)p(yt|st)

p(st+1)
= p(st|st+1)p(yt|st),

(141)
yielding another Moore HMM.977

P.3 Reversing transducers978

Using the previous calculations as a foundation, let’s now explore the reverse properties of a trans-979
ducer, where p(st+1, yt|s:t,y:t−1,a:) = p(st+1, yt|st, at) holds. Using this property, it is direct to980
see that981

p(y:t, s:t+1|a:) = p(s0)

t∏
τ=0

p(yτ , sτ+1|y:τ−1, s:τ ,a:) (142)

= p(s0)

t∏
τ=0

p(yτ , sτ+1|sτ ,a:t) (143)

= p(y:t, s:t+1|a:t), (144)

showing that transducers naturally impose some arrow of time over actions. Note that for this to982
work we are using the fact that p(s0|a:) = p(s0), and it would not work for other initial point where983
this doesn’t hold.984

Now, let’s consider expressing p(y:t, s:t+1|a:) factor backwards as follows985

p(y:t, s:t+1|a:) = p(y:t, s:t+1|a:t) = p(st+1|a:t)

t∏
τ=0

p(yτ , sτ |yτ+1:t, sτ+1:t+1,a:t). (145)
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This shows that we need to looks for ways of simplifying expressions of the form986
p(yτ , sτ |yτ+1:t, sτ+1:t+1,a:t). Using the properties of transducers, we can show that987

p(sτ , yτ |sτ+1:t+1,yτ+1:t,a:t) =
p(sτ :t+1,yτ :t,a:t)

p(sτ+1:t+1,yτ+1:t,a:t)
(146)

=
p(sτ , yτ , sτ+1,a:t)

∏t
k=τ+1 p(sk+1, yk|sτ :k,yτ :k−1,a:t)

p(sτ+1, yτ+1, sτ+2,a:t)
∏t
j=τ+2 p(sj+1, yj |sτ :j ,yτ :j−1,a:t)

=
p(sτ , yτ , sτ+1,a:t)

∏t
k=τ+1 p(sk+1, yk|sk, ak)

p(sτ+1, yτ+1, sτ+2,a:t)
∏t
j=τ+2 p(sj+1, yj |sj , aj)

(147)

=
p(sτ ,a:t)

∏t
k=τ p(sk+1, yk|sk, ak)

p(sτ+1,a:t)
∏t
j=τ+1 p(sj+1, yj |sj , aj)

(148)

=
p(sτ |a:t)p(sτ+1, yτ |sτ , aτ )

p(sτ+1|a:t)
(149)

From this point, there are different ways forward. One possibility is to define988

∆τ :=
p(sτ |a:t)

p(sτ |aτ )
and ∆′

τ :=
p(sτ |a:t)

p(sτ |aτ−1)
(150)

as measures of discrepancy, which allow us to express the reverse transducer as follows:989

p(sτ , yτ |sτ+1:t+1,yτ+1:t,a:t) =
p(sτ |a:t)

p(sτ+1|a:t)
p(sτ+1, yτ |sτ , aτ ) (151)

=
∆τ

∆′
τ+1

p(sτ |aτ )
p(sτ+1|aτ )

p(sτ+1, yτ |sτ , aτ ) (152)

=
∆τ

∆′
τ+1

p(sτ , yτ |sτ+1, aτ ). (153)

Another option is to try a different algebraic route, and do as follows:990

p(sτ , yτ |sτ+1:t+1,yτ+1:t,a:t) =
p(sτ |a:t)

p(sτ+1|a:t)
p(sτ+1, yτ |sτ , aτ ) (154)

=
p(sτ |a:t)

p(sτ+1|a:t)
p(sτ+1, yτ |sτ ,a:t) (155)

=
p(sτ+1, yτ , sτ |a:t)

p(sτ+1|a:t)
(156)

= p(sτ , yτ |sτ+1,a:t) (157)
= p(yτ |sτ , sτ+1, aτ )p(sτ |sτ+1,a:t). (158)

In both cases, these calculations reveal what is the problem with running transducers back! This991
usually break down because generally p(sτ |sτ+1,a:t) ̸= p(sτ |sτ+1, aτ ), or equivalently that ∆τ ̸=992
1 or ∆′

τ ̸= 1.993

In summary, for any transducer St, we can always run it back to reproduce the interface but this994
needs the whole sequence of actions, as shown by the factorisation given by995

p(y:t, s:t+1|a:) = p(st+1|a:t)

t∏
τ=0

p(yτ |, sτ , sτ+1, aτ )p(yτ , sτ |sτ+1,a:t). (159)

If the transducer satisfies the additional condition996

p(sτ |sτ+1,a:t) = p(sτ |sτ+1, aτ ), (160)
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or equivalently, the information relation997

I[Sτ ;A0:τ−1Aτ+1:∞|Sτ+1, Aτ ] = 0, (161)

or the condition998
∆t = ∆′

t+1 = 1, (162)

then one could run all back yielding999

p(y:t, s:t+1|a:) = p(st+1|a:t)

t∏
τ=0

p(yτ , sτ |sτ+1, at). (163)

So, if the above conditions are satisfied, one could generate the interface by the following procedure:1000

(1) Initialise the world at p(st+1|a:t). Or, for counterfactual analysis, pick a world state St+1 = s1001
that one want to evaluate.1002

(2) Then run things backward using p(yτ , sτ |sτ+1, at).1003

Notice the difference between the kernel of a transducer,1004

p(sτ+1, yτ |s:τ ,y:τ−1,a:t) = p(sτ+1, yτ |sτ , at), (164)

and the kernel of a transducer running backwards, Co-transducer:1005

p(sτ , yτ |sτ+1:t+1,yτ+1:t,a:t) = p(sτ , yτ |sτ+1, at). (165)

P.4 Effect of action-unifiliarity1006

A transducer is action-unifilar if p(sτ+1|sτ , aτ ) = δ
f(sτ ,aτ )
sτ+1 with Sτ+1 = f(Sτ , Aτ ) a function. If1007

the dynamics of the transducer is action-counifilar, meaning that p(sτ |sτ+1, aτ ) = δ
r(sτ+1,aτ )
sτ where1008

Sτ = r(Sτ+1, Aτ ), then we necessarily safisfy the condition of being reversible p(sτ |sτ+1, a:τ ) =1009
p(sτ |sτ+1, aτ ). However, this is much more restrictive if than action-unifilarity if we insist that1010
every world-state can accept every action

∑
sτ+1

p(sτ+1|sτ , aτ ) = 1. Using Bayes rule1011

p(sτ+1|sτ , aτ ) = p(sτ |sτ+1, aτ )
p(sτ+1|aτ )
p(sτ |aτ )

(166)

= δr(sτ+1,aτ )
sτ

p(sτ+1|aτ )
p(sτ |aτ )

, (167)

we see that there is one nonzero transition for every combination of state sτ+1 and action aτ . We can1012
think of each transition as an edge betweens states labeled with the action, like a driven transition.1013
This means that there are |A| transitions per state sτ . The condition that every world-state can accept1014
every action means that every state has at least one outgoing edge for every action. If this were a non-1015
unifilar model, this would mean that there an action that had two or more outgoing edges. However,1016
that would mean that the total number of edges in the automata is larger than |A||S|, which is a1017
contradiction. Thus, each state sτ has exactly one outgoing edge for each action aτ , meaning that1018
the next state is a function of these states1019

Sτ+1 = f(Sτ , Aτ ). (168)

Therefore, every action-counifilar transducer is also action-unifilar, meaning that it obeys a type of1020
reversibility.1021

Q Proof of Theorem 51022

This appendix uses notation introduced in App. R.1023
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We will represent both in the larger vector space R|S| using the orthonormal basis of states {|s⟩}s∈S1024
such that ⟨s|s′⟩ = δs,s′ : The predictive mixed-state belief (MSB) of an action outcome sequence is1025

|ρP (y0:t,a0:t)⟩ =
∑
st+1

|st+1⟩p(st+1|y0:t,a0:t), (169)

and the retrodictive MSB is1026

⟨ρR(y0:t,a0:t)| =
∑
s0

p(s0|y0:t,a0:t)⟨s0|. (170)

The matrix corresponding a sequence of actions a0:τ and outputs y0:τ has a direct probabilistic1027
interpretation1028

T (y0:τ |a0:τ ) ≡
τ∏
t=0

T (yt|at) (171)

=
∑

s0,sτ+1

|sτ+1⟩p(sτ+1, y0:τ |a0:τ , s0)⟨s0|, (172)

If we define the initial diagonal state ρt ≡
∑
st
|st⟩p(st)⟨st| and assume the initial state is uncor-1029

related with the action sequence, then we can also calculate the probability of joint start and end1030
state1031

T (y0:τ |a0:τ )ρ0 =
∑

s0,sτ+1

|sτ+1⟩p(sτ+1, s0, y0:τ |a0:τ )⟨s0|. (173)

Therefore, we can exactly calculate the word probability via linear algebraic expression1032

p(y0:τ |a0:τ ) = ⟨1|T (y0:τ |a0:τ )ρ0|1⟩, (174)

where |1⟩ ≡
∑
s |s⟩.1033

Definition 18 (Bidirectional Mixed State Matrix). The joint probability of initial and final density1034
given the intermediate action-observation sequence determines the bidirectional mixed state matrix1035
(BMSM)1036

ρ(y0:τ , a0:τ ) ≡
∑

s0,sτ+1

|sτ+1⟩p(sτ+1, s0|y0:τ , a0:τ )⟨s0|. (175)

Lemma 9. The BMSM can be exactly calculated from the product of the linear operators of the1037
transducer1038

ρ(y0:τ , a0:τ ) =
T (y0:τ |a0:τ )ρ0

⟨1|T (y0:τ |a0:τ )ρ0|1⟩
. (176)

Lemma 10. The BMSM exactly determines both the predictive and retrodictive MSBs1039

|ρP (y0:τ , a0:τ )⟩ = ρ(y0:τ , a0:τ )|1⟩ (177)

⟨ρR(y0:τ , a0:τ )| = ⟨1|ρ(y0:τ , a0:τ ). (178)

From this we see that there are recursive relations that allow us to exactly determine the forward-1040
time and reverse-time update steps for both. The forward-time update is to apply the transducer1041
operator T (y|a) and normalize1042

ρ(y0:τ+1, a0:τ+1) =
T (yτ+1|aτ+1)ρ(y0:τ , a0:τ )

⟨1|T (yτ+1|aτ+1)ρ(y0:τ , a0:τ )|1⟩
. (179)
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By contrast, the reverse-time update requires applying a modified version of the transducer operator1043
ρ−1
0 T (y|a)ρ0 and normalizing:1044

ρ(y−1:τ , a−1:τ ) =
ρ(y0:τ , a0:τ )ρ

−1
0 T (y−1|a−1)ρ−1

⟨1|ρ(y0:τ , a0:τ )ρ−1
0 T (y−1|a−1)ρ−1|1⟩

. (180)

Reflecting the fact that not every transducer is reversible, the operation of ρ−1
0 T (y|a)ρ0 cannot nec-1045

essarily be interpreted as the action of a transducer. However, it is nevertheless a valid method for1046
retrodicting the state distribution of the world.1047

R Dirac Notation1048

For notational simplicity, we turn to quantum mechanics for a large portion of our proofs with1049
linear algebra. This notation uses bras like ⟨v| and kets like |v⟩ to express row and column vectors1050
respectively. If we are describing vectors and matrices over states S, then we can use an orthonormal1051
basis ({|s⟩}s∈S such that ⟨s|s′⟩ = δs,s′ ) in the Hilbert space HS to express the vector1052

|v⟩ =
∑
s

v(s)|s⟩. (181)

Here, v(s) represents the sth element of the vector. Similarly, for a linear operator in this Hilbert1053
space, we can think of1054

⟨s′|M |s⟩, (182)

as the element in the sth row and s′th column, and we can translate a matrix A with elements Ass′1055
into a linear operator in this space by using the outer-product1056

A =
∑
ss′

|s′⟩Ass′⟨s|. (183)
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